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Abstract

The two-state Gacs-Kurdyumov-Levin (GKL) cellular automaton has been a staple model in the study of complex
systems due to its ability to classify binary arrays of symbols according to their initial density. We show that a class of
modified GKL models over extended neighborhoods, but still involving only three cells at a time, achieves comparable
density classification performance but in some cases reach consensus more than twice as fast. Our results suggest the
time to consensus (relative to the length of the CA) as a complementary measure of density classification performance.
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In 1978, Gacs, Kurdyumov, and Levin (GKL) intro-
duced the density classification problem for cellular au-
tomata (CA) in the literature [1–3]. The problem con-
sists in classifying arrays of symbols according to their
initial density using local rules, and is completed suc-
cessfully if all the cells of the CA converge to the ini-
tial majority state in linear time in the size of the in-
put array. Density classification is a nontrivial task for
CA composed of autonomous and memoryless cells be-
cause the cells have to achieve a global consensus coop-
erating locally; emergence of collective behavior is re-
quired. The GKL two-state model, or GKL-II for short,
became a staple model in the theory of complex sys-
tems related with the concepts of communication, effi-
ciency, and emergence [4–6]. It has been demonstrated
that the density classification problem cannot be solved
correctly 100% of the times by uniform two-state CA,
although no upper bound on the maximum possible ef-
ficiency has been set [7, 8]. Solutions involving nonuni-
form CA and less strict criteria for what a solution to the
problem means exist [9, 10]. Recent reviews on the den-
sity classification problem for CA are given in [11, 12].

The GKL-II CA is a finite one-dimensional array of
n ≥ 4 cells under periodic boundary conditions evolv-
ing by the action of a transition function ΦII : {0,1}n→
{0,1}n that given the state xxxt = (xt

1, . . . ,x
t
n) of the CA

at instant t determines its state xxxt+1 = ΦII(xxxt) at instant
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t +1 by the majority rule
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t
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i = 1,
(1)

where maj(p,q,r) = b 1
2 (p+q+ r)c for 0-1 variables p,

q, r. The CA classifies density if xxxt → 000 = (0, . . . ,0)
or 111 = (1, . . . ,1) depending whether, respectively, the
initial density ρ0 = n−1

∑i x0
i < 1/2 or ρ0 > 1/2. We

do not require a definite behavior when ρ0 = 1/2. The
CA is supposed to reach consensus in O(n) time steps.
In [1, 3], the authors prove that the GKL-II CA on the
infinite lattice Z displays the eroder property, washing
out finite islands of the minority phase in finite time and
eventually leading the CA to one of the two invariant
states 000 or 111. In an array of n = 149 cells (odd length to
avoid ties), GKL-II scores an average density classifi-
cation performance of 81.5% over random initial condi-
tions with each cell initialized in the state 0 or 1 equally
at random, taking on average 86 ∼ 0.576n time steps
to reach consensus. Details on the GKL-II performance
are given in [4–6, 11–14].

We now modify the neighborhood in the GKL-II. In-
stead of evaluating the majority vote of cell i with its
nearest i±1 and third i±3 neighbours, we pick neigh-
bors i± j and i± k, with k > j ≥ 1. The rules for the
modified CA read

xt+1
i =

{
maj(xt

i−k,x
t
i− j,x

t
i) if xt

i = 0,
maj(xt

i ,x
t
i+ j,x

t
i+k) if xt

i = 1.
(2)

We refer to this CA as GKL( j,k); GKL(1,3) recovers
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Table 1: Best density classification performances of GKL( j,k) in the range 1 ≤ j ≤ 5, j < k ≤ 15 in an array of n = 299 cells averaged over 106

random initial configurations near the critical density ρ0 = 1/2. The uncertainty in the performance 〈 f 〉 is ±0.0004. GKL-II figures are displayed
in bold for comparison.

( j,k) (4,12) (3,9) (2,6) (5,15) (1,3) (1,9) (1,11) (2,14) (2,10) (3,15) (1,7) (1,5)
〈 f 〉 0.7926 0.7922 0.7921 0.7920 0.7917 0.7893 0.7875 0.7874 0.7873 0.7869 0.7868 0.7865
〈t∗〉/n 0.5843 0.5848 0.5844 0.5849 0.5848 0.2633 0.2289 0.3270 0.4123 0.4123 0.3269 0.4122

the original GKL-II model. To the best of our knowl-
edge these models have never been considered in the lit-
erature before. We measured the average density classi-
fication performance 〈 f 〉 of GKL( j,k) over 106 random
initial states close to the critical density (x0

i = 0 or 1
equally at random) in an array of n = 299 cells to min-
imize finite-size effects that show up in the rules with
larger ( j,k). Our results appear in Table 1. We see that
the GKL( j,k) with k = 3 j, i. e., the GKL( j,3 j) mod-
els, all display virtually the same density classification
and relative time to consensus (〈t∗〉/n) performances.
Otherwise, the GKL(1,9) and GKL(1,11) models dis-
play almost the same density classification performance
as GKL-II but achieve consensus in about half the time.
Explicitly, GKL(1,11) is just about 0.53% less efficient
than GKL-II but is ∼ 2.5 times faster. From Table 1 we
conclude that if quality is critical, then GKL(4,12) is
the best CA in its class, while if one needs speed, then
GKL(1,9) or GKL(1,11) becomes the CA of choice.

Figure 1 displays the average classification perfor-
mance of the GKL(1,k) CA as a function of the im-
balance δ = 1

2 (n1−n0) between the number of cells in
states 1 and 0 in the initial configuration. Here the initial
density ρ0 = 1/2+ δ/n is fixed but the configurations
are random. By symmetry, the performance of the CA
depends only on the magnitude of δ , not on its sign. The
data show that the density classification performance of
all these CA are close over a range of initial densities,
differing significantly, however, on the time to consen-
sus. Space-time diagrams of some GKL( j,k) CA are
displayed in Figure 2.

We do not currently have a sound explanation for
the efficient combinations of j, k found. The effi-
ciency of the GKL( j,3 j) can be related with that of
GKL(1,3) in one or more sublattices, although the fast
convergence of GKL(1,9) and GKL(1,11) cannot be
immediately related with any sublattice dynamics. In-
tuitively, in the GKL( j,k) CA information about the
dynamics of the interfaces between islands of 0s and
1s can jump over longer distances (i. e., move faster)
with increased k− j. Data from Table 1 for the time
to consensus for GKL(1,k) with k = 3, 5, 7, 9, and 11
corroborates this idea. Note that the metric 〈t∗〉/n is
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Figure 1: Density classification performance 〈 f 〉 and time to consen-
sus 〈t∗〉/n averaged over 106 random initial configurations of some
GKL(1,k) CA of length n = 299 as a function of the relative im-
balance δ/n = 1

2 (n1− n0)/n in the initial configurations. Error bars
(±0.5% or smaller) are of the order of the sizes of the symbols shown.

not unique—one could consider the alternative timings
given by 〈t∗〉/nk, with k the radius of the CA, as well
as 〈t∗〉/nz, with z the number of cells that enter the lo-
cal rule (z = 3 for the GKL( j,k)). A characterization
of the “computational mechanics” of the GKL( j,k) CA
[4–6, 15] may help to understand their eroder mecha-
nism and their efficiency better. It would also be of in-
terest to assess the robustness of the GKL( j,k) against
noise and whether the ensuing probabilistic CA dis-
play an ergodic-nonergodic transition, a long-standing
unsettled issue for one-dimensional density classifiers
[1–3, 12–18]. These and related questions (e. g., how
〈 f (n,δ > 0)〉 → 1 as n↗∞, see [8]) will be the subject
of forthcoming publications.
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Figure 2: Space-time diagrams of GKL( j,k) with n = 299, 0≤ t ≤ 200 (time flows downwards), and random initial conditions with ρ0 = 150/299.
From left to right, top to botton, ( j,k) = (1,3) (the usual GKL-II) and (2,6), (3,9) and (4,12), (1,9) and (1,11). The diagrams displayed are those
that reached or would eventually reach the majority state of all-1 cells (in black).
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