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The two-state Gacs-Kurdyumov-Levin (GKL) cellular automaton has been a staple model in the study of complex systems due to its ability to classify binary arrays of symbols according to their initial density. We show that a class of modified GKL models over extended neighborhoods, but still involving only three cells at a time, achieves comparable density classification performance but in some cases reach consensus more than twice as fast. Our results suggest the time to consensus (relative to the length of the CA) as a complementary measure of density classification performance.

In 1978, Gacs, Kurdyumov, and Levin (GKL) introduced the density classification problem for cellular automata (CA) in the literature [START_REF] Gach | One-dimensional uniform arrays that wash out finite islands[END_REF][START_REF] Toom | Discrete local Markov systems[END_REF][START_REF] Gonzaga De Sá | The Gacs-Kurdyumov-Levin automaton revisited[END_REF]. The problem consists in classifying arrays of symbols according to their initial density using local rules, and is completed successfully if all the cells of the CA converge to the initial majority state in linear time in the size of the input array. Density classification is a nontrivial task for CA composed of autonomous and memoryless cells because the cells have to achieve a global consensus cooperating locally; emergence of collective behavior is required. The GKL two-state model, or GKL-II for short, became a staple model in the theory of complex systems related with the concepts of communication, efficiency, and emergence [START_REF] Mitchell | Revisiting the edge of chaos: Evolving cellular automata to perform computations[END_REF][START_REF] Crutchifeld | The evolution of emergent computation[END_REF][START_REF] Crutchfield | The evolutionary design of collective computation in cellular automata[END_REF]. It has been demonstrated that the density classification problem cannot be solved correctly 100% of the times by uniform two-state CA, although no upper bound on the maximum possible efficiency has been set [START_REF] Land | No perfect two-state cellular automata for density classification exists[END_REF][START_REF] Busić | Density classification on infinite lattices and trees[END_REF]. Solutions involving nonuniform CA and less strict criteria for what a solution to the problem means exist [START_REF] Fukś | Solution of the density classification problem with two cellular automata rules[END_REF][START_REF] Sipper | A simple cellular automaton that solves the density and ordering problems[END_REF]. Recent reviews on the density classification problem for CA are given in [START_REF] De Oliveira | On density determination with cellular automata: Results, constructions and directions[END_REF][START_REF] Fatès | Stochastic cellular automata solutions to the density classification problem -When randomness helps computing[END_REF].

The GKL-II CA is a finite one-dimensional array of n ≥ 4 cells under periodic boundary conditions evolving by the action of a transition function Φ II : {0, 1} n → {0, 1} n that given the state x x x t = (x t 1 , . . . , x t n ) of the CA at instant t determines its state x x x t+1 = Φ II (x x x t ) at instant * Permanent address: Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, SP, Brazil. Email: jricardo@usp.br.

t + 1 by the majority rule

x t+1 i = maj(x t i-3 , x t i-1 , x t i ), if x t i = 0, maj(x t i , x t i+1 , x t i+3 ), if x t i = 1, (1) 
where maj(p, q, r) = 1 2 (p + q + r) for 0-1 variables p, q, r. The CA classifies density if x x x t → 0 0 0 = (0, . . . , 0) or 1 1 1 = (1, . . . , 1) depending whether, respectively, the initial density ρ 0 = n -1 ∑ i x 0 i < 1/2 or ρ 0 > 1/2. We do not require a definite behavior when ρ 0 = 1/2. The CA is supposed to reach consensus in O(n) time steps. In [START_REF] Gach | One-dimensional uniform arrays that wash out finite islands[END_REF][START_REF] Gonzaga De Sá | The Gacs-Kurdyumov-Levin automaton revisited[END_REF], the authors prove that the GKL-II CA on the infinite lattice Z displays the eroder property, washing out finite islands of the minority phase in finite time and eventually leading the CA to one of the two invariant states 0 0 0 or 1 1 1. In an array of n = 149 cells (odd length to avoid ties), GKL-II scores an average density classification performance of 81.5% over random initial conditions with each cell initialized in the state 0 or 1 equally at random, taking on average 86 ∼ 0.576 n time steps to reach consensus. Details on the GKL-II performance are given in [START_REF] Mitchell | Revisiting the edge of chaos: Evolving cellular automata to perform computations[END_REF][START_REF] Crutchifeld | The evolution of emergent computation[END_REF][START_REF] Crutchfield | The evolutionary design of collective computation in cellular automata[END_REF][START_REF] De Oliveira | On density determination with cellular automata: Results, constructions and directions[END_REF][START_REF] Fatès | Stochastic cellular automata solutions to the density classification problem -When randomness helps computing[END_REF][START_REF] Mendonc ¸a | Sensitivity to noise and ergodicity of an assembly line of cellular automata that classifies density[END_REF][START_REF] Mendonc ¸a | Density classification performance and ergodicity of the Gacs-Kurdyumov-Levin cellular automaton model IV[END_REF].

We now modify the neighborhood in the GKL-II. Instead of evaluating the majority vote of cell i with its nearest i ± 1 and third i ± 3 neighbours, we pick neighbors i ± j and i ± k, with k > j ≥ 1. The rules for the modified CA read

x t+1 i = maj(x t i-k , x t i-j , x t i ) if x t i = 0, maj(x t i , x t i+ j , x t i+k ) if x t i = 1.
(

) 2 
We refer to this CA as GKL( j, k); GKL(1, 3) recovers the original GKL-II model. To the best of our knowledge these models have never been considered in the literature before. We measured the average density classification performance f of GKL( j, k) over 10 6 random initial states close to the critical density (x 0 i = 0 or 1 equally at random) in an array of n = 299 cells to minimize finite-size effects that show up in the rules with larger ( j, k). Our results appear in Table 1. We see that the GKL( j, k) with k = 3 j, i. e., the GKL( j, 3 j) models, all display virtually the same density classification and relative time to consensus ( t * /n) performances. Otherwise, the GKL(1, 9) and GKL(1, 11) models display almost the same density classification performance as GKL-II but achieve consensus in about half the time. Explicitly, GKL [START_REF] Gach | One-dimensional uniform arrays that wash out finite islands[END_REF][START_REF] De Oliveira | On density determination with cellular automata: Results, constructions and directions[END_REF] is just about 0.53% less efficient than GKL-II but is ∼ 2.5 times faster. From Table 1 we conclude that if quality is critical, then GKL [START_REF] Mitchell | Revisiting the edge of chaos: Evolving cellular automata to perform computations[END_REF][START_REF] Fatès | Stochastic cellular automata solutions to the density classification problem -When randomness helps computing[END_REF] is the best CA in its class, while if one needs speed, then GKL [START_REF] Gach | One-dimensional uniform arrays that wash out finite islands[END_REF][START_REF] Fukś | Solution of the density classification problem with two cellular automata rules[END_REF] or GKL [START_REF] Gach | One-dimensional uniform arrays that wash out finite islands[END_REF][START_REF] De Oliveira | On density determination with cellular automata: Results, constructions and directions[END_REF] becomes the CA of choice.

Figure 1 displays the average classification performance of the GKL(1, k) CA as a function of the imbalance δ = 1 2 (n 1n 0 ) between the number of cells in states 1 and 0 in the initial configuration. Here the initial density ρ 0 = 1/2 + δ /n is fixed but the configurations are random. By symmetry, the performance of the CA depends only on the magnitude of δ , not on its sign. The data show that the density classification performance of all these CA are close over a range of initial densities, differing significantly, however, on the time to consensus. Space-time diagrams of some GKL( j, k) CA are displayed in Figure 2.

We do not currently have a sound explanation for the efficient combinations of j, k found. The efficiency of the GKL( j, 3 j) can be related with that of GKL [START_REF] Gach | One-dimensional uniform arrays that wash out finite islands[END_REF][START_REF] Gonzaga De Sá | The Gacs-Kurdyumov-Levin automaton revisited[END_REF] in one or more sublattices, although the fast convergence of GKL [START_REF] Gach | One-dimensional uniform arrays that wash out finite islands[END_REF][START_REF] Fukś | Solution of the density classification problem with two cellular automata rules[END_REF] and GKL [START_REF] Gach | One-dimensional uniform arrays that wash out finite islands[END_REF][START_REF] De Oliveira | On density determination with cellular automata: Results, constructions and directions[END_REF] cannot be immediately related with any sublattice dynamics. Intuitively, in the GKL( j, k) CA information about the dynamics of the interfaces between islands of 0s and 1s can jump over longer distances (i. e., move faster) with increased kj. Data from Table 1 for the time to consensus for GKL(1, k) with k = 3, 5, 7, 9, and 11 corroborates this idea. Note that the metric t * /n is q q q q q q q q q q q q q q q 0% 1% 2% 3% 4% 5% 50% 60% 70% 80% 90% 100% [START_REF] De Oliveira | On density determination with cellular automata: Results, constructions and directions[END_REF] q q q q q q q q q q q q q q q 0% 1% 2% 3% 4% 5% 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 not unique-one could consider the alternative timings given by t * /nk, with k the radius of the CA, as well as t * /nz, with z the number of cells that enter the local rule (z = 3 for the GKL( j, k)). A characterization of the "computational mechanics" of the GKL( j, k) CA [START_REF] Mitchell | Revisiting the edge of chaos: Evolving cellular automata to perform computations[END_REF][START_REF] Crutchifeld | The evolution of emergent computation[END_REF][START_REF] Crutchfield | The evolutionary design of collective computation in cellular automata[END_REF][START_REF] Gács | Stable multi-level monotonic eroders[END_REF] may help to understand their eroder mechanism and their efficiency better. It would also be of interest to assess the robustness of the GKL( j, k) against noise and whether the ensuing probabilistic CA display an ergodic-nonergodic transition, a long-standing unsettled issue for one-dimensional density classifiers [START_REF] Gach | One-dimensional uniform arrays that wash out finite islands[END_REF][START_REF] Toom | Discrete local Markov systems[END_REF][START_REF] Gonzaga De Sá | The Gacs-Kurdyumov-Levin automaton revisited[END_REF][START_REF] Fatès | Stochastic cellular automata solutions to the density classification problem -When randomness helps computing[END_REF][START_REF] Mendonc ¸a | Sensitivity to noise and ergodicity of an assembly line of cellular automata that classifies density[END_REF][START_REF] Mendonc ¸a | Density classification performance and ergodicity of the Gacs-Kurdyumov-Levin cellular automaton model IV[END_REF][START_REF] Gács | Stable multi-level monotonic eroders[END_REF][START_REF] Mairesse | Around probabilistic cellular automata[END_REF][START_REF] Fernández | Overview: PCA models and issues[END_REF][START_REF] Marcovici | Ergodicity of some classes of cellular automata subject to noise[END_REF]. These and related questions (e. g., how f (n, δ > 0) → 1 as n ∞, see [START_REF] Busić | Density classification on infinite lattices and trees[END_REF]) will be the subject of forthcoming publications. From left to right, top to botton, ( j, k) = (1, 3) (the usual GKL-II) and (2, 6), [START_REF] Gonzaga De Sá | The Gacs-Kurdyumov-Levin automaton revisited[END_REF][START_REF] Fukś | Solution of the density classification problem with two cellular automata rules[END_REF] and [START_REF] Mitchell | Revisiting the edge of chaos: Evolving cellular automata to perform computations[END_REF][START_REF] Fatès | Stochastic cellular automata solutions to the density classification problem -When randomness helps computing[END_REF], [START_REF] Gach | One-dimensional uniform arrays that wash out finite islands[END_REF][START_REF] Fukś | Solution of the density classification problem with two cellular automata rules[END_REF] and [START_REF] Gach | One-dimensional uniform arrays that wash out finite islands[END_REF][START_REF] De Oliveira | On density determination with cellular automata: Results, constructions and directions[END_REF]. The diagrams displayed are those that reached or would eventually reach the majority state of all-1 cells (in black).
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Figure 1 :

 1 Figure 1: Density classification performance f and time to consensus t * /n averaged over 10 6 random initial configurations of some GKL(1, k) CA of length n = 299 as a function of the relative imbalance δ /n = 1 2 (n 1n 0 )/n in the initial configurations. Error bars (±0.5% or smaller) are of the order of the sizes of the symbols shown.

Figure 2 :

 2 Figure 2: Space-time diagrams of GKL( j, k) with n = 299, 0 ≤ t ≤ 200 (time flows downwards), and random initial conditions with ρ 0 = 150/299.From left to right, top to botton, ( j, k) = (1, 3) (the usual GKL-II) and (2, 6),[START_REF] Gonzaga De Sá | The Gacs-Kurdyumov-Levin automaton revisited[END_REF][START_REF] Fukś | Solution of the density classification problem with two cellular automata rules[END_REF] and[START_REF] Mitchell | Revisiting the edge of chaos: Evolving cellular automata to perform computations[END_REF][START_REF] Fatès | Stochastic cellular automata solutions to the density classification problem -When randomness helps computing[END_REF],[START_REF] Gach | One-dimensional uniform arrays that wash out finite islands[END_REF][START_REF] Fukś | Solution of the density classification problem with two cellular automata rules[END_REF] and[START_REF] Gach | One-dimensional uniform arrays that wash out finite islands[END_REF][START_REF] De Oliveira | On density determination with cellular automata: Results, constructions and directions[END_REF]. The diagrams displayed are those that reached or would eventually reach the majority state of all-1 cells (in black).

Table 1 :

 1 Best density classification performances of GKL( j, k) in the range 1 ≤ j ≤ 5, j < k ≤ 15 in an array of n = 299 cells averaged over 10 6 random initial configurations near the critical density ρ 0 = 1/2. The uncertainty in the performance f is ±0.0004. GKL-II figures are displayed in bold for comparison.

	( j, k) (4, 12) (3, 9) (2, 6) (5, 15) (1, 3) (1, 9) (1, 11) (2, 14) (2, 10) (3, 15) (1, 7) (1, 5)
	f	0.7926 0.7922 0.7921 0.7920 0.7917 0.7893 0.7875 0.7874 0.7873 0.7869 0.7868 0.7865
	t * /n 0.5843 0.5848 0.5844 0.5849 0.5848 0.2633 0.2289 0.3270 0.4123 0.4123 0.3269 0.4122
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