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Improved stability for 2D attractive Bose gases

Introduction

Consider a 2D non-relativistic gas of bosonic particles trapped in the external potential Mathematically this means looking at the action of the many-body Schrödinger operator

V : R 2 → R + , V (x) -→
H N := N j=1 (-i∇ j + A(x j )) 2 + V (x j ) + 1 N -1 1 i<j N N 2β w(N β (x i -x j )) (1.2)
on the symmetric space

H N = L 2 sym (R 2N ) = N sym L 2 (R 2 ).
For nice data V, w, A, this operator is bounded from below with the core domain H N ∩ C ∞ c (R 2N ), and thus can be extended to be a self-adjoint operator by Friedrichs' method. The non-trivial question is then that of stability of the second kind [START_REF] Lieb | The Stability of Matter in Quantum Mechanics[END_REF], i.e. whether H N -CN for a constant C independent of N . Note that when the negative part w -:= min{w, 0} is nonzero, the interaction energy with the rescaled potential in (1.1) may be very negative, and we will see that the stability question cannot be answered using merely the uncertainty principle.

Date: September, 2019.

1

Out of H N one constructs a corresponding non-linear Schrödinger (NLS) functional

E nls [u] = lim N →∞ 1 N u ⊗N |H N |u ⊗N = u|h|u L 2 + b 2 R 2 |u| 4 (1.3) where b = R 2 w and h = (-i∇ + A(x)) 2 + V (1.4)
is the one-body Hamiltonian. Clearly, E nls is bounded from below under the constraint

u L 2 (R 2 ) = 1 if and only if b -a * (1.5)
where a * is the optimal constant for the Gagiardo-Nirenberg inequality

R 2 |u| 2 R 2 |∇u| 2 a * 2 R 2 |u| 4 , ∀u ∈ H 1 (R 2 ). (1.6) 
See [START_REF] Weinstein | Nonlinear Schrödinger equations and sharp interpolation estimates[END_REF][START_REF] Guo | Symmetry breaking and collapse in Bose-Einstein condensates with attractive interactions[END_REF][START_REF] Maeda | On the symmetry of the ground states of nonlinear Schrödinger equations with potential[END_REF][START_REF] Kwong | Uniqueness of positive solutions of ∆u -u + u p = 0 in R n[END_REF][START_REF] Frank | Ground states of semi-linear PDEs[END_REF] for references. Given the variational construction (1.3), Condition (1.5) is necessary for H N to be stable of the second kind. Sufficient conditions are in fact more stringent. Simple considerations show that we must demand more than (1.5). Here we work with the condition

R 2 |w -| < a * (1.7)
and refer to [START_REF] Lewin | The mean-field approximation and the non-linear Schrödinger functional for trapped Bose gases[END_REF] for a refinement (Hartree stability).

In this note we are interested in the range of diluteness parameter β > 0 for which the stability of the second kind can be shown to hold. Indeed, β measures how fast the interactions converge to point-like ones. Implicit in the above is that the reference lengthscale of the system is fixed, set by that of the one-body Hamiltonian h (think of particles in a fixed box if you wish). Hence N -β measures the range of the interaction potential in units of the reference length scale. From the point of view of interactions, N β-1/2 is the average number of particles a tagged one interacts with at a time, for N -1/2 is the mean inter-particle distance.

It is well-known that large quantum interacting systems are harder to deal with for large values of β, in particular, in our 2D case, for β > 1/2 which is the threshold to have a dilute system (few but strong inter-particle collisions). In this note we make the remark that a combination of the tools in [START_REF]A note on 2D focusing many-boson systems[END_REF][START_REF]Non linear schrödinger limit of bosonic ground states, again[END_REF] allows to prove stability of the second kind under the condition β < 1. This extends the range of validity of methods [START_REF] Lewin | The mean-field approximation and the non-linear Schrödinger functional for trapped Bose gases[END_REF][START_REF]A note on 2D focusing many-boson systems[END_REF][START_REF] Chen | The rigorous derivation of the 2D cubic focusing NLS from quantum manybody evolution[END_REF][START_REF] Jeblick | Derivation of the time dependent two dimensional focusing NLS equation[END_REF] dealing with the large-N limit of H N .

Main result

For simplicity we assume that V, A, w are smooth. The actual condition on the interaction potential we need is

w ∈ L 1 (R 2 ) ∩ L 2 (R 2 ).
(2.1) We also assume that there exist positive constants s > 0 and c > 0 such that 

V (x) c -1 |x| s -c ( 
H N = L 2 sym (R 2N ). Remarks.
1. The best result preceding the above is that from [START_REF]A note on 2D focusing many-boson systems[END_REF] which covers β < s + 1 s + 2 with s the exponent in (2.2). This had the merit of allowing a dilute gas, β > 1/2, whereas the previous results [START_REF] Lewin | The mean-field approximation and the non-linear Schrödinger functional for trapped Bose gases[END_REF] were limited to β < 1/2. It is not our aim to pretend that increasing β > 0 is an undertaking that should go on forever, but there are reasons that make us feel the above is noteworthy. First, the annoying dependence on the trapping potential gets dispensed with (provided the growth is still polynomial). Second, the proof is somewhat cleaner. Third, a natural barrier seems to have been reached: the condition β < 1 is that needed to obtain a second-moment estimate following the techniques of [START_REF] Erdös | Derivation of the nonlinear Schrödinger equation from a many body Coulomb system[END_REF][START_REF] Nam | Ground states of large Bose systems: The Gross-Pitaevskii limit revisited[END_REF][START_REF]A note on 2D focusing many-boson systems[END_REF].

2.

It is not obvious to us whether there should exist a physically natural upper bound on β in the attractive case. For 3D repulsive gases this would be given by the Gross-Pitaevskii [START_REF] Lieb | The mathematics of the Bose gas and its condensation[END_REF][START_REF]Scaling limits of bosonic ground states[END_REF] limit β = 1. For 2D repulsive gases, any β > 0 should be allowed, for the GP limit [START_REF] Lieb | A rigorous derivation of the Gross-Pitaevskii energy functional for a two-dimensional Bose gas[END_REF][START_REF] Jeblick | Derivation of the time dependent gross-pitaevskii equation in two dimensions[END_REF] corresponds to an interaction scaled exponentially with N .

3. The proof proceeds by combining the second moment estimate of [START_REF]A note on 2D focusing many-boson systems[END_REF] with the informationtheoretic quantum de Finetti theorem [START_REF] Brandão | Quantum de Finetti Theorems under Local Measurements with Applications[END_REF][START_REF] Li | Quantum de Finetti Theorems under fully-one-way adaptative measurements[END_REF] of Brandão-Harrow. The interest of the latter for large bosonic systems [START_REF]Non linear schrödinger limit of bosonic ground states, again[END_REF] is that it (almost) gives a quantitative de Finetti theorem when the one-body state-space is infinite dimensional (more precisely the dimension should be still finite but only its logarithm enters relevant estimates), thus bypassing the main technical limitation of the tools used in [START_REF]A note on 2D focusing many-boson systems[END_REF].

4.

For the above stability result we may assume A = 0, thanks to the diamagnetic inequality [16,Theorem 7.21], as well as ignore the bosonic symmetry (i.e. the lower bound holds true on the full space L 2 (R 2N )). However, the presence of the magnetic field and the Bose-Einstein statistics are meaningful for the Corollary 2.2 below.

The stability result has two corollaries regarding the large N limit of the system at hand. First for ground states: Corollary 2.2 (NLS limit for ground states). Under the above assumptions, the ground state energy per particle

E(N ) N = 1 N inf σ H N (H N ) = 1 N inf{ Ψ, H N Ψ : Ψ H N = 1}
converges when N → ∞ to the ground state energy of the NLS functional in (1.3), i.e.

E nls = inf{E nls (u) : u L 2 (R 2 ) = 1}.
Moreover, the reduced density matrices {γ

(k)
Ψ N } N of ground states Ψ N of H N converge to convex combinations of projections on NLS minimizers, namely there exists a Borel probability measure µ supported on the minimizers of E nls such that, along a subsequence N → ∞,

lim N →∞ Tr γ (k) Ψ N -|u ⊗k u ⊗k |dµ(u) = 0, ∀k ∈ N.
(2.5)

Next, for dynamics:

Corollary 2.3 (NLS limit for dynamics).

Under the above assumptions and with A ≡ 0, the many-body Schrödinger dynamics

i∂ t Ψ N (t) = H N Ψ N (t)
starting from a well-prepared initial datum, e.g. Ψ N (0) = u(0) ⊗N with u(0) smooth, converges when N → ∞ to the NLS dynamics

i∂ t u(t) = hu(t) + b|u(t)| 2 u(t)
in the sense of reduced density matrices 

lim N →∞ Tr γ (k) Ψ N (t) -|u(t) ⊗k u(t) ⊗k | = 0, ∀k ∈ N, ∀t ∈ R. ( 2 
u ⊗N = |u ⊗k u ⊗k |.
Thus the convergences (2.5), (2.6) tells us that the corresponding many-body wave functions are close to product states in a weak sense (it is well known that they are not close in L 2 -norm).

2.

Although the statements cover also repulsive gases (w 0), the novelty lies mainly in the attractive case. If w 0 the proof is much simpler indeed and one can reach much higher values of β; see [START_REF] Lieb | A rigorous derivation of the Gross-Pitaevskii energy functional for a two-dimensional Bose gas[END_REF] for ground states and [START_REF] Jeblick | Derivation of the time dependent gross-pitaevskii equation in two dimensions[END_REF] for dynamics.

3.

We do not even sketch the proof of Corollary 2.2. The reader should have no difficulty in figuring out that, given Theorem 2.1, the proof of [14, Theorem 1] applies mutatis mutandis for β < 1, at least under the additional condition |A(x)| 2

V (x). The latter technical condition can be replaced by (2.3) following arguments from [22, Section 4.2].

4.

For the dynamical statement, the method of [START_REF] Jeblick | Derivation of the time dependent two dimensional focusing NLS equation[END_REF] allows to derive NLS dynamics provided (2.4) holds. Hence, Theorem 2.1 extends the range of validity of their main result to all β < 1. Such a range was obtained previously in [START_REF] Nam | Norm approximation for many-body quantum dynamics: focusing case in low dimensions[END_REF] (without using (2.4)), and a more restricted one in [START_REF] Chen | The rigorous derivation of the 2D cubic focusing NLS from quantum manybody evolution[END_REF] (in the special case s = 2). We also refer to these references for precise descriptions of the well-prepared initial data that can be covered.

Remark 2.4 (Classically stable case in 3D). Stability of the second kind is also an issue for 3D Bose gases with potentials

N 3β-1 w(N β x)
having an attractive part, in the dilute regime β > 1/3. Because of the respective scalings of the mean-field interaction and kinetic energy one must then assume [START_REF] Lewin | The mean-field approximation and the non-linear Schrödinger functional for trapped Bose gases[END_REF][START_REF] Triay | Derivation of the dipolar Gross-Pitaevskii energy[END_REF] that the unscaled potential w is classically stable

1 i<j N w(x i -x j ) -CN
for all x 1 , . . . , x N ∈ R d . This holds for exampe if w 0.

Our method also covers this case, but we refrain from stating details, for the range of β we are allowed to reach is 1/3 < β < 9/26. Triay, in his study of the dipolar Bose gas [START_REF] Triay | Derivation of the dipolar Gross-Pitaevskii energy[END_REF], has already obtained 1/3 < β < 1/3 + s/(45 + 42s) where s is the exponent in (2.2). Only for rather small values of s does our estimate improve on his. The 3D case for a restricted class of potentials with an attractive part has also been considered [START_REF] Lee | Ground state energy of dilute Bose gases in small negative potential case[END_REF][START_REF] Yin | The ground state energy of the dilute Bose gas in potentials with positive scattering length[END_REF] for homogeneous gases in the thermodynamic limit. ⋄

Proof

This being for a large part an improvement on [START_REF]A note on 2D focusing many-boson systems[END_REF][START_REF]Non linear schrödinger limit of bosonic ground states, again[END_REF], we shall be brief. See [START_REF] Benedikter | Effective Evolution Equations from Quantum Dynamics[END_REF][START_REF] Golse | On the Dynamics of Large Particle Systems in the Mean Field Limit[END_REF][START_REF] Lieb | The mathematics of the Bose gas and its condensation[END_REF][START_REF]Scaling limits of bosonic ground states[END_REF][START_REF] Rougerie | De Finetti theorems, mean-field limits and Bose-Einstein condensation[END_REF][START_REF] De | limites de champ moyen et condensation de Bose-Einstein, Les cours Peccot[END_REF][START_REF] Schlein | Derivation of effective evolution equations from microscopic quantum dynamics[END_REF] for general background on large N limits of bosonic quantum systems.

Recall that we write the proof for A ≡ 0, which implies the general statement using the diamagnetic inequality [16, Theorem 7.21].

Old arguments. Consider the spectral projectors

P = 1 h Λ , Q = 1 -P (3.1)
with Λ > 0 a (large enough) one-body energy cut-off. Let

H 2 := h 1 + h 2 + N 2β w(N β (x 1 -x 2 ))
be the two-body Hamiltonian associated with (1.2). Let Ψ N be a ground state of H N and let γ

(k)

N be its k-body density matrix. Then

1 N E(N ) = 1 N Ψ N |H N |Ψ N = 1 2 Tr H 2 γ (2) N . (3.2)
We start with a localization lemma, essentially a restatement of [START_REF]A note on 2D focusing many-boson systems[END_REF]Equation (46)]:

Lemma 3.1 (Localization).
With the above notation, for any δ > 1/2 there exists a C δ > 0 such that

Tr H 2 -P ⊗2 H 2 P ⊗2 γ (2) Ψ N -C δ Λ (δ-1)/2 Tr h γ (1) Ψ N (1-δ)/2 Tr h ⊗ h γ (2) Ψ N δ .
To put the above to good use we need a priori bounds on the first and second moments of the one-body Hamiltonian. The following is [14, Lemma 5], and this is where we use our main assumption β < 1 and also the requirement w ∈ L 2 (R 2 ).

Lemma 3.2 (Moments).

Let 0 < β < 1. For all ε ∈ (0, 1) we have

Tr h γ (1) Ψ N C 1 + |e N,ε | ε and Tr h ⊗ h γ (2) Ψ N C 1 + |e N,ε | ε 2 (3.3)
where

e N,ε := N -1 inf Ψ∈H N , Ψ =1 Ψ H N -ε N j=1 h j Ψ . (3.4)
3.2. New argument. We rely on a version of the quantum de Finetti theorem from [START_REF] Brandão | Quantum de Finetti Theorems under Local Measurements with Applications[END_REF][START_REF] Li | Quantum de Finetti Theorems under fully-one-way adaptative measurements[END_REF]:

Lemma 3.3 (de Finetti).
Let H be a complex separable Hilbert space, and H N = H ⊗symN the corresponding bosonic space. Let γ

N be the 2-body reduced density matrix of a N -body state vector Ψ N ∈ H N (or a general mixed state).

Let P be a finite dimensional orthogonal projector. There exists a Borel measure µ

(2) N with total mass 1 on the set of one-body mixed states

S P := {γ positive trace-class operator on P H, Tr γ = 1} (3.5) 
such that

Tr A ⊗ B P ⊗2 γ (2) 
N P ⊗2 -γ ⊗2 dµ (2) 
N (γ) C log(dim(P )) N ||A|| ||B|| (3.6) 
for all A, B self-adjoint operators on P H. The norm in the right-hand side is the operator norm.

Proof. The proof of [START_REF] Brandão | Quantum de Finetti Theorems under Local Measurements with Applications[END_REF] gives the statement with A, B replaced by quantum measurements.

In [START_REF]Non linear schrödinger limit of bosonic ground states, again[END_REF]Proposition 3.2] it is explained how the statement with A, B positive operators follows. The full result is obtained by decomposing self-adjoint operators in the manner

A = 1 A<0 A + 1 A 0 A
as used already in [START_REF] Girardot | Average field approximation for almost bosonic anyons in a magnetic field[END_REF].

To apply the above we shall, as in [START_REF]Non linear schrödinger limit of bosonic ground states, again[END_REF], decompose the interaction operator using the Fourier transform in the manner

N 2β w(N β (x -y)) = R 2 N 2β w(N β •)(k)e ik•x e -ik•y dk = R 2 w(N -β k) (cos (k • x) cos (k • y) + sin (k • x) sin (k • y)) dk (3.7)
and apply Lemma 3.3 for each k. We interject a simple control of the involved multiplication operators: Lemma 3.4 (Multiplication by plane waves). Let k ∈ R 2 , k = 0 and e k be the multiplication operator on L 2 (R 2 ) by either cos(k • x) or sin(k • x). Let P be the spectral projector in (3.1). As operators

± P e k P min 1, C Λ 1/2 |k| . (3.8) 
Proof. The first upper bound 1 is obvious as |e k | 1. We write the proof of the second bound for e k the multiplication by cos(k • x) (the case of sin(k • x) is similar). For any smooth compactly supported function f , integrating by parts,

f |e k |f = - R 2 sin(k • x) |k| k |k| • ∇ |f | 2 , whence | f |e k |f | 2 |k| R 2 |f ||∇f | 2 |k| R 2 |f | 2 1/2 R 2 |∇f | 2 1/2 .
Applying the above with f = P g, g ∈ L 2 (R d ) proves the claim (recall we work without a magnetic field).

We can finally give the Proof of Theorem 2.1. According to Lemma 3.1 and Lemma 3.2 we have

Tr H 2 γ (2) N Tr P ⊗2 H 2 P ⊗2 γ (2) N -C δ Λ (δ-1)/2 Tr hγ (1) N (1-δ)/2 Tr h ⊗ hγ (2) N δ Tr P ⊗2 H 2 P ⊗2 γ (2) N -C δ Λ (δ-1)/2 1 + |e N,ε | ε (1+3δ)/2
(3.9)

for any 1/2 < δ 1 and 0 < ε < 1. On the other hand we may use Lemma 3.3: denoting

γ N (2) := γ ⊗2 dµ (2) 
N (γ)

we have

Tr P ⊗2 H 2 P ⊗2 γ (2) N Tr P ⊗2 H 2 P ⊗2 γ N (2) -C log(Λ) N   Λ + e k ∈{cos(k•x),sin(k•x)} R 2 ||P e k P || 2 | w(N -β k)|dk   . (3.10)
Here we have decomposed the interaction term as in (3.7), used the triangle inequality with (3.6) and recalled that dim(P ) depends at worst polynomially on Λ as recalled e.g. in [START_REF] Lewin | The mean-field approximation and the non-linear Schrödinger functional for trapped Bose gases[END_REF]Lemma 3.3] (this is the place where Condition (2.2) is used). The error term also contains the operator norm 2Λ of P ⊗2 (h 1 + h 2 )P ⊗2 . The second term on the right side of (3.10) can be estimated using Lemma 3.4 and Condition (2.1) (the latter ensures that w ∈ L 2 ∩ L ∞ ):

R 2 ||P e k P || 2 | w(N -β k)|dk R 2 min{1, CΛ|k| -2 }| w(N -β k)|dk |k| 1 w L ∞ dk + C 1<|k| N β Λ|k| -2 w L ∞ dk + C |k|>N β Λ|k| -2 | w(N -β k)|dk C + CΛ log N + CΛ.
As regards the first term on the right-hand side of (3.10) we write

Tr P ⊗2 H 2 P ⊗2 γ N (2) = E H [γ]dµ (2) 
N (γ)

where

E H [γ] = Tr (hγ) + 1 2 R 2 ×R 2 ρ γ (x)N 2β w(N β ((x -y))ρ γ (y)dxdy.
Here the density ρ γ (x) = γ(x, x) (defined properly by the spectral decomposition) satisfies

R 2 ρ γ = Tr γ = 1.
Using the diamagnetic inequality [16,Theorem 7.21] and the convexity of the kinetic energy [16,Theorem 7.8] we have the Hoffmann-Ostenhof-type inequality

Tr (hγ) R 2 |∇ √ ρ γ | 2 .
Then inserting the Cauchy-Schwarz inequality in the interaction term,

N 2β w(N β ((x -y))ρ γ (x)ρ γ (y)dxdy -N 2β |w -(N β ((x -y))| ρ γ (x) 2 + ρ γ (y) 2 2 ,
and combining with the Gagiardo-Nirenberg inequality (1.6) and Assumption (1.7), we get

E H [γ] R 2 |∇ √ ρ γ | 2 - 1 2 |w -| R 2 ρ 2 γ 0. (3.11)
Thus the first term on the right side of (3.10) is nonnegative. Therefore, (3.9) reduces to

e N = Tr H 2 γ (2) N -C log(Λ) N Λ log N -C δ Λ (δ-1)/2 1 + |e N,ε | ε (1+3δ)/2
.

Moreover by a simple trial state argument we know that e N C. In summary, we have

|e N | C + C log(Λ) N Λ log N + C δ Λ (δ-1)/2 1 + |e N,ε | ε (1+3δ)/2
(3.12) for all 1/2 < δ 1 and 0 < ε < 1. Now we bootstrap the above arguments. Let ε 0 ∈ (0, 1) be a fixed constant such that Clearly we can pick 0 < a < 1/2 and b > 0 small enough so that this implies

|e N,ε | C ε 1 + N α-c
for a fixed constant c > 0 (independent of N, ε, α). Thus we have shown that if (3.13) holds with α > 0, it also holds with α replaced by max(α -c, 0). After finitely many steps of this procedure, we deduce that actually |e N,ε | is bounded independently of N , which implies the theorem.

  an external magnetic field B of vector potential A : R 2 → R 2 such that curl A = B. The particles interact via the pair potential of the form 1 N -1 N 2β w(N β x), (1.1) with a fixed (N -independent) parameter β > 0 and a fixed function w : R 2 → R, w(x) = w(-x), w(x) -→ |x|→∞ 0.
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 61 RemarksRecall that the k-particles reduced density matrix of any Ψ ∈ H N is defined asγ (k) Ψ := Tr k+1→N |Ψ Ψ|.Here Tr k+1→N means the partial trace over N -k factors of H N = N sym L 2 (R 2 ). In particular, for the product state we have γ (k)

R 2 w

 2 -> -a * (1 -ε 0 ). Assume we know that there is a α > 0 such that|e N,ε | C ε,α N α for all 0 < ε < ε 0 . (3.13)We can start the bootstrap from α = 2β, using the simple one-body inequality1 -∆ x -N 2β w(N β x) -CN 2βThen, we can apply the above arguments to the ε-perturbed Hamiltonian in(3.4) to bound e N,ε . Note that the lower bound (3.11) remains valid with w replaced by (1 -ε) -1 w, provided that 1 < ε < ε 0 . Combining with (3.13) we obtain|e N,ε | C ε + C ε log(Λ) N Λ log N + C δ,ε Λ (δ-1)/2 N α(1+3δ)/2 , ∀0 < ε < ε 0 .If we choose Λ = N α+a and δ = 1/2 + b ∈ (1/2, 1) in the above we obtain |e N,ε | C ε,a,b 1 + N α+a-1/2 log N + N α+2bα+ab/2-a/4 .

Here we do not need the improved bound O(N

2β-1 ) in [14,Lemma 2] which requires w ∈ L 1 .
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