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Abstract: Congestion control is a fundamental building block in packet switching networks such
as the Internet due to the sharing of communication resources. It has been shown that the
plant dynamics is essentially made of an integrator plus time delay and that a proportional
controller plus a Smith predictor is a simple and e�ective controller. It has been also shown
that the today running TCP congestion control can be modelled using a Smith predictor plus
a proportional controller. Due to the importance of this control structure in the �eld of data
network congestion control, we analyze the robust stability of the closed loop system in the
face of delay uncertainties that in data networks are present due to queuing. In particular, by
applying a geometric approach, we derive a bound on the proportional controller gain which is
necessary and su�cient to guarantee stability given a bound on the delay uncertainty.
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1. INTRODUCTION

Time delays are often present in feedback control systems
due to reasons such as the transport of material or in-
formation. From the control theoretic point of view it is
well-known that an increase of the time delay may lead to
instability of the closed loop system and to performance
degradation as well.

The Smith principle is a classic approach which is often
employed to design controllers for time delay systems
(Smith (1959)). It is known that, by assuming exact knowl-
edge of both the plant model and time delay, controllers
designed using a Smith predictor are very e�ective in coun-
teracting the e�ect of time delays. Robustness of the Smith
predictor with respect to uncertainties in the knowledge
of the time delay has been extensively studied since 1980
(Palmor (1980), Yamanaka and Shimemura (1987)).

The Internet represents a relevant example of time delay
system due to the presence of delays that are caused by
the propagation of the information, which is sent in form
of data packets, from a source to a destination through a
series of communication links and router queues.

A cornerstone component of the Internet protocol stack is
the end-to-end congestion control which has been imple-
mented in the TCP by Jacobson (1988) in order to avoid
congestion and preserve network stability. Several �uid
models have been proposed for the TCP congestion control
algorithm in order to analytically study the stability of
the network under di�erent scenarios. See Mascolo (1999);
Hollot et al. (2002); Srikant (2004) and references therein.

In Mascolo (1999) a simple model of the plant made of
an integrator (modelling the bottleneck queue) plus two
time delays (modelling forward and backward delays),
has been proposed along with a Smith predictor plus a
proportional controller. The paper also shows that the
Smith predictor controller with a proportional gain models
the congestion control law which is employed in the today
running TCP congestion control algorithm. Moreover, the
model presented in Mascolo (1999) has been employed in
Grieco and Mascolo (2004) to design and implement a rate-
based congestion control algorithm which has been found
to produce �ows that are TCP-friendly.

A similar plant model is employed in Quet et al. (2002)
to design a rate-based congestion control algorithm imple-
mented at the router that is robust to uncertain time-
delays by employing the H∞ technique. The controller
parameters are quite complex to derive and, at the best of
authors knowledge, no real implementations are currently
available to assess the e�ectiveness of the proposed solu-
tion.

Measurement of the plant time delay to be used in the
Smith predictor can be a�ected by uncertainties due
to the fact that the time delay is made of a constant
propagation delay plus time-varying queueing delays. To
the purpose, the standard TCP (Postel (1981)) estimates
the Round Trip Time (RTT) through time-stamping in
order to set the retransmission timeout (RTO) which is
needed for detecting heavy congestion episodes in the
network. The RTT is de�ned as the time that elapses
from when a segment is sent until the corresponding
acknowledgement segment is received by the sender. In



the standard TCP implementation, the RTT is measured
each RTT seconds, whereas no measurements are taken
on retransmitted segments due to the Karn's algorithm in
order to avoid spurious timeouts (see Karn and Partridge
(1987)). For these reasons the standard TCP does not
provide an accurate measure of RTT. In order to overcome
this issue an optional scheme has been proposed and
standardized in Jacobson et al. (1992) which makes use
of timestamps in an optional �eld of the TCP header.
However, even if the timestamp option is employed by both
peers of the communication, the granularity chosen for
TCP timestamps is implementation-dependent. In a recent
work Veal et al. (2005) carry out an extensive measurement
campaign on RTTs. Authors used 500 servers and found
that 76% of the servers had timestamping option enabled,
and out of these servers 37% used a 100ms granularity,
55% a 10ms granularity and only 7% of them had a
granularity of 1ms.

A preliminary study on robust stability of a proportional
Smith predictor used for congestion control in data net-
works has been carried out by using the Nyquist criterion
in Mascolo (2003). It revealed that in order to guarantee
asymptotic stability it is su�cient that ∆ < 1/k where ∆
represents the delay uncertainty and k is the gain of the
proportional controller.

The goal of this paper is to provide a characterization
of the robust stability of system introduced in Mascolo
(1999) by applying the geometric approach which has been
developed in Gu et al. (2005).

The rest of the paper is organized as follows: in Section 2
we brie�y review the model of the closed loop congestion
control in a generic packet switching network presented
in Mascolo (1999); in Section 3 we apply the geometrical
approach developed in Morarescu et al. (2006) in order to
�nd the stability crossing curves of the system; in Section 4
we present the robust stability analysis; in Section 5 some
simulations are presented to support the theoretical results
obtained; �nally Section 6 concludes the paper.

2. CONGESTION CONTROL MODEL

A network connection is basically made by a set of com-
munication links and store-and-forward nodes (routers)
where packets are enqueued before being routed to the
destination . Congestion can arise when packets arrive at
a rate r(t) which is above the capacity of the output link
so that the router queue builds up until it is full and it
starts to drop packets.

In Mascolo (1999) a model of the Internet �ow and
congestion control as a time delay system is provided
and in Mascolo (2006) it is shown that di�erent variants
of TCP congestion control algorithms can be modelled
in a uni�ed framework by proper input shaping of the
proportional Smith predictor controller.

In particular, the model consists of a feedback loop in
which two time delays are present as it is shown in Figure
1: τfw models the propagation time of a packet from source
to the bottleneck queue and τfb models the propagation
time from the bottleneck to the destination and then back
to the sender. The round trip time of the connection is
τ = τfw + τfb.

k 1
s

e−sτfb

e−sτfw
− −

w(t)

1−e−sτ
s

q(t)−r(t)

b(t)

Figure 1. Functional block of the congestion control model

The simple integrator 1/s models the bottleneck queue
that is �lled (or drained) by the rate mismatch r(t)− b(t),
where b(t) is the bottleneck available bandwidth.

The controller is a proportional Smith predictor with gain
k that computes the rate r(t) to match the available
bandwidth b(t) and to produce a stable output. The
reason for using a simple proportional controller is that
in this way the closed-loop dynamics can be made that
of a �rst-order system with time constant 1/k delayed by
τfw. Thus, the step response of the system can be made
faster by increasing the proportional gain k providing an
always stable system without oscillations or overshoots.
This choice provides a controller in which only one design
parameter, i.e. the gain k, has to be tuned having a direct
in�uence on the dynamics of the output. Finally, the input
signal w(t) models the congestion window (cwnd) or the
advertised window, that is used by the congestion control
algorithm to bound in-�ight packets (Mascolo (1999)).

Model mismatches are known to a�ect the closed loop
dynamics when a Smith predictor controller is employed.
In this case, it is worth noting that the only source of
mismatch between the model and the actual plant is the
entity of the delay (see Section 1) whereas the model of
the bottleneck queue is an integrator and does not add
any uncertainty. In the next sections we will give simple
tuning rules for the design parameter k in order to retain
asymptotic stability when the measure of time delay τ is
uncertain.

Finally, we remark that a Smith predictor controller is
recommended when designing a congestion control algo-
rithm for data networks, since using PID controllers would
provide an unacceptable sluggish system due to large de-
lays involved in communication networks (see Astrom and
Hagglund (1995) and Mascolo (1999)).

3. STABILITY CROSSING CURVES IN THE
PARAMETERS SPACE

3.1 Review of the geometrical approach

We start by brie�y reviewing the geometrical approach
developed in Morarescu et al. (2006) which we will employ
to analyze the robust stability of the considered system.
The reader is advised to refer to Gu et al. (2005) for
a complete description of the method. We denote with
a(s; τ1, τ2) the characteristic function of the closed-loop
system where τ1 represents the nominal delay used in the
Smith predictor and τ2 = τ1 + ∆ represents the actual
plant delay a�ected by a bounded mismatch ∆. It is easy
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Figure 2. Triangle formed by the three vectors when the
characteristic equation holds

to show that the characteristic function in this case is given
by:

a(s; τ1, τ2) = 1− h(s)e−τ1s + h(s)e−τ2s (1)

where h(s) is the transfer function of the closed loop
system when no delays are present in the loop:

h(s) =
C(s)G0(s)

1 + C(s)G0(s)

with G0(s) being the delay free plant and with C(s) being
the controller transfer function.

In order to analyze the stability of the system we look for
the solutions of the characteristic equation:

a(jω; τ1, τ2) = 0 (2)

In this way we are able to �nd all the conditions under
which the system has at least one pole on the imaginary
axis. The geometrical approach relies on the observation
that the three terms of the characteristic function (1) can
be seen as vectors in the complex plane. Therefore, the
equality a(s; τ1, τ2) = 0 can be represented in the complex
plane via an isosceles triangle as it is shown in Figure
2. Thus, equation (2) is equivalent to the following three
conditions:

(1) The triangular inequality must hold for the triangle
shown in Figure 2, which implies that:

|h(jω)| ≥ 1
2

(3)

(2) Equation (2) must satisfy the phase rule;
(3) The sum of the internal angles of the isosceles triangle

must be equal to π;

The solution of (3), which does not depend on time delays
τ1 or τ2, forms the frequency crossing set Ω which is
the union of a �nite number N of intervals of �nite
length Ω1,Ω2, . . . ,ΩN . For any ω > 0 which belongs
to the frequency crossing set there exists at least a pair
(τ1, τ2) in the parameters space such that the system
has at least one imaginary pole. The conditions 2 and 3
imply that for all ω ∈ Ω all the couples (τ1, τ2) ∈ R2

+
satisfying a(jω; τ1, τ2) = 0 can be found using the following
equations:

τu±1 =
∠h(jω) + 2uπ ± q(ω)

ω
(4)

τv±2 =
∠h(jω) + (2v − 1)π ∓ q(ω)

ω
(5)

where u and v are integers such that the corresponding
τu±1 , τv±2 are non negative and q(ω) represents the internal
angle of the isosceles triangle:

q(ω) = arccos
(

1
2|h(jω)|

)
In order to understand the meaning of equations (4) and
(5) let us �x u = u,v = v and consider the set Ωi ⊆ Ω : if ω
varies in Ωi and we evaluate (4) and (5) for both positive
and negative signs we obtain two curves in the parameter
space (τ1, τ2) which we denote T i+u,v and T i−u,v respectively.
It is worth noting that the curves T iu,v = T i−u,v ∪T i+u,v can be
either open curves or closed curves depending on the set
Ωi we are considering. In particular, it is easy to show that
if the left end of Ωi is 0 then the associated curve is an
open curve with both ends approaching ∞ when ω → 0.
On the other hand, if the left end of Ωi is not 0 then T iu,v
is a closed curve (Gu et al. (2005)).

We de�ne the stability crossing curves T in the τ1, τ2 plane
as the union of all the curves T iu,v when i ∈ {1, . . . , N},
and u and v vary in the set of integers.

Finally, it is important to point out that when a stability
crossing curve is crossed in the τ1, τ2 plane, two poles cross
the imaginary axis on the complex plane (Gu et al. (2005)).

3.2 Stability crossing curves of the computer network
congestion control model

In order to characterize the impact of the delay uncertainty
on the stability of the considered feedback system we apply
the geometric approach we have reviewed in Section 3.1.
It is worth to notice that the delay-free model of the plant
is G0(s) = 1/s and the controller transfer function is
C(s) = k.

We suppose that the system described in Section 2 is
a�ected by a delay uncertainty ∆ which is bounded by
δ > 0, i.e. |∆| < δ. By considering the delay uncertainty,
the characteristic equation of the system can be rewritten
as follows:

1 +
k

s
− k

s
e−τ1·s(1− e−∆·s) = 0 (6)

where τ1 represents the nominal round trip time (RTT)
of the considered connection, which is used in the Smith
predictor, and τ2 = τ1 + ∆ is the actual plant time delay.

By multiplying by s/(s+ k) both sides of (6) we obtain:

1− k

s+ k
e−τ1s +

k

s+ k
e−(∆+τ1)s = 0 (7)

so that by considering h(s) = k/(s+ k) (7) is in the form
of (1). We are interested in characterizing the stability of
the system when τ1, τ2 and k vary in R+.

By making the change of variable z = s/k we obtain:

1− 1
z + 1

e−h1z +
1

z + 1
e−h2z = 0 (8)

where h1 = kτ1 and h2 = kτ2 , which reduces the
free parameters to two. It is worth to notice that the
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Figure 3. Stability crossing curves for the considered
system

transformation from (7) to (8) simply involves a scaling
of the closed-loop eigenvalues by 1/k, thus indicating a
natural trade-o� between gain and delay since when k
increases the closed loop poles approach to the imaginary
axis (Niculescu and Michiels (2004)).

We are now ready to study the stability of the original
system in the h1, h2 plane regardless the value of the
proportional gain k.

First of all, by applying (3) we �nd that the crossing set is
made by the single interval Ω = [0,

√
3] which means that

the stability crossing curves in the h1, h2 plane are open
curves which extend to in�nity when ω → 0. By using
(4) and (5) the stability crossing curves of the considered
system result the following:

hu±1 (ω) =
− arctanω + 2uπ ± arccos

(√
1+ω2

2

)
ω

(9)

hv±2 (ω) =
− arctanω + (2v − 1)π ∓ arccos

(√
1+ω2

2

)
ω

(10)

Figure 3 shows the stability crossing curves of the consid-
ered system. We start by considering the h2 axis (h1 = 0),
which means that we are employing a simple proportional
controller without the Smith predictor. By starting from
the origin and increasing the value of h2 the �rst curve is
crossed at h2 = π/2 which means that the system becomes
unstable for h2 > π/2 as expected. On the other hand, the
axis h1 represents the system in which no delay a�ects the
plant, but the Smith predictor is in the controller. Figure
3 shows that the system is stable for all the delays in the
Smith predictor.

Finally, points on the positive bisector represent the case
of perfect matching of nominal delay τ1 with the actual
delay τ2. Indeed, if we move on this line no curves will be
crossed since the Smith predictor in this case provides a

stable system regardless the value of the proportional gain
k.

4. ROBUST STABILITY ANALYSIS

In this Section we will develop an analysis of the robust
stability of the considered system by using the stability
crossing curves we have shown in the previous Section. We
already know that the considered system is always asymp-
totically stable for any delay τ1 and any proportional gain
k as far as the delay uncertainty is zero thanks to the
perfect compensation of the time delay τ1 provided by the
Smith predictor. In the h1, h2 plane this condition means
that the system is asymptotically stable on all the positive
bisector.

In order to characterize the robustness of the system in
the face of delay uncertainties we compute the maximum
delay mismatch which still preserves stability. Thus, the
problem here is to look for the maximum deviation δ with
respect to a generic point (τ∗1 , τ

∗
1 ) with τ∗1 ≥ 0 which lies

on the positive bisector such that the system is stable for
any (τ1, τ2) which satis�es:

|τ2 − τ∗1 | < δ

We remark that solving the maximum admissible delay
uncertainty problem is equivalent to �nd the minimum
distance between the stability crossing curves and a generic
point on the positive bisector of the h1, h2 plane.

Thus for any τ∗1 > 0 we have to solve:

δ(τ∗1 ) = min
u,v

min
τv±
2 ∈T

|τv±2 − τ∗1 | (11)

so that the maximum delay to retain stability is:

δ = min
τ∗1∈R+

δ(τ∗1 ) (12)

Proposition 1. A necessary and su�cient condition for the
asymptotic stability of the system regardless the value of
the nominal delay τ1 is:

|∆| < α

k
(13)

where ∆ is the delay uncertainty, α ∼= 1.4775 and k is the
proportional gain of the controller.

Proof.

We start by considering the stability crossing curves in
the parameters space h1, h2. In order to �nd the minimum
distance between the stability crossing curves and a generic
point of positive bisector of the h1, h2 plane we evaluate
the tangent to the crossing curves with direction parallel
to the positive bisector:

dh2

dh1
= 1⇔ dh2

dω

dω

dh1
= 1⇔ dh1

dω
=
dh2

dω
(14)

To the purpose we look for a subset T of the stability
crossing curves T that are the �closest� curves to the
positive bisector. By considering a generic curve Tu,v and
by applying (9) and (10) it turns out that for all u and
v and for all ω ∈ Ω it holds hv+

2 − hu+
1 < hv−2 − hu−1

so that it is su�cient to consider only the curves T +
u,v

in the region h2 > h1 and the curves T −u,v in the region



h2 < h1, since they will be the closest ones to the positive
bisector. Thus, we can refer without loss of generality to
the generic curves of T as Tu,u+i for all i and u in the
integers. Straightforward computations on (9) and (10)
give:

hu+i
2 − hu1 > hu+i−1

2 − hu1

which means that when i decreases the curves Tu,u+i will
move downwards in the h1, h2 plane. Figure 4 shows the
values of u and v for the curves Tu,u and Tu,u+1. It is
then easy to show that if we set v = u we obtain the
closest curves to the positive bisector in the region h2 < h1

whereas the curves with v = u + 1 are those which are
closest to the positive bisector in the region h2 > h1 . In
conclusion we can restrict our search to the set :

T = T −u,u ∪ T +
u,u+1

for all u in the integers. Let us consider the region h2 > h1

i.e. we consider the subset T +
u,u+1. By considering (14)

after straightforward computations we get the following
equation:

arccos

(√
ω2 + 1

2

)
+

ω2

√
ω2 + 1

√
3− ω2

+

+π(v − u− 1
2

) = 0 (15)

with ω ∈ Ω. By letting v = u + 1 the equation (15)
has the unique solution ω = 1.3483 rad/s in Ω which is
independent of u. If we substitute this value in (9) and
(10) we obtain:

h1(ω) = h1 = 4.6601u− 0.2654

h2 (ω) = h2 = 4.6601v − 3.4480

Thus, all the points belonging to the the curves T +
u,u+1

having a tangent which is parallel to the positive bisector,
lie on the line:

h2 = h1 + 1.4775 (16)

For this reason we can conclude that the maximum un-
certainty, in the h1, h2 coordinates is 1.4775. The proof is
completed by recalling that h1 = kτ1 and h2 = kτ2 and
that τ2 = τ1 + ∆. Thus, we �nally obtain:

h2 − h1 < 1.4775⇒ k∆ < 1.4775⇒ ∆ <
1.4775
k

(17)

It is worth to notice that the same procedure can be
followed in the case v = u which leads to the inequality:

h1 − h2 < 1.4775⇒ −k∆ > 1.4775⇒ ∆ > −1.4775
k

(18)

Thus, by considering both (17) and (18) we obtain (13).
In order to prove the necessity of the condition (13) let
us consider the curves Tu,u+1. The points of the curve
Tu,u+1 that correspond to the frequency ω = 1.3483 rad/s
lie on the line described by (16) so that the maximum
delay uncertainty admissible for those points is exactly
α/k. If we select a larger value for δ the system will become
unstable at least on those points. This concludes the proof.

Remark 2. The fact that the maximum uncertainty al-
lowed does not depend on the nominal delay τ1 is a nice
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Figure 4. Stability regions for the considered system

feature of the Smith predictor based controller. This makes
the controller e�ective even with large delays.
Remark 3. The condition (13) expresses a trade-o� be-
tween the maximum delay mismatch δ and the propor-
tional gain that can be used to tune the controller gain
k.
Remark 4. This result improves the robust stability con-
dition |∆| < 1/k found in Mascolo (2003).

Proposition 5. The system is stable, regardless the value
of τ1, if the delay uncertainty ∆ satis�es the following
inequality:

−τ1 < ∆ < −τ1 +
β

k
(19)

with β = 1.1188.

Proof.

The proof follows the same arguments of Proposition 1,
therefore it is omitted.
Remark 6. The condition (19) implicitly requires the delay
uncertainty ∆ to be negative, i.e. the nominal delay τ1
should be always below the actual delay of the plant τ2.
Thus, condition (19) has no particular meaning for the
characterization of controller robustness, since the sign of
the uncertainty is not known a priori.

5. SIMULATION RESULTS

In this Section we report simulation results obtained by
using a SIMULINK model that implements the system
depicted in Figure 1. The bottleneck available bandwidth
has been set to vary as a step function starting at time
t = 1 sec and having a �nal value of b = 100packets/sec.
The queue set-point is a step function starting at t = 0 sec
with a �nal value of w = 150packets. The gain of the
controller has been set to k = 4 sec−1 corresponding to a
maximum delay uncertainty of δ ∼= 0.37 sec. The nominal
RTT of the connection is 1 sec. Figure 5 reports the queue
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Figure 5. Queue length (a) and input rate evolution (b)
when τ1 = 1 sec, k = 4 sec−1, b(t) = 100 packets/sec,
w = 150 packets

evolution q(t) and the input rate r(t) when the delay
uncertainty is either zero, δ/2 ∼= 0.185 sec or δ ∼= 0.37 sec.

The �gure shows, as expected, that the performance of the
closed loop response degrades when the delay uncertainty
increases. In particular, oscillations are present when the
delay uncertainty is δ/2 still providing an acceptable
response, whereas when the delay uncertainty increases to
the maximum allowed value persistent oscillations occur.

6. CONCLUSIONS

In this paper we have analyzed the robust stability of a
very important class of congestion control algorithms when
delay uncertainties are present. We have shown how the
geometrical approach developed in Morarescu et al. (2006)
can be easily applied in order to �nd stability bounds
on the parameter of the controller. Moreover, we found
a simple necessary and su�cient condition on the gain of
the proportional controller k in order to retain asymptotic
stability regardless the value of the nominal delay τ1.
Such a result suggests that congestion control algorithms
that employ controllers made by a Smith predictor plus a

proportional gain can be easily tuned in order to be robust
to a bounded delay uncertainty.
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