Luca De Cicco 
email: ldecicco@poliba.it
  
Saverio Mascolo 
email: mascolo@poliba.it
  
Silviu-Iulian Niculescu 
email: silviu.niculescu@lss.supelec.fr
  
Robust Stability Analysis of a Class of Smith Predictor-based Congestion Control Algorithms for Computer Networks

Keywords: Time-delay systems, Robust stability, congestion control, Smith predictor

come  

INTRODUCTION

Time delays are often present in feedback control systems due to reasons such as the transport of material or information. From the control theoretic point of view it is well-known that an increase of the time delay may lead to instability of the closed loop system and to performance degradation as well.

The Smith principle is a classic approach which is often employed to design controllers for time delay systems [START_REF] Smith | A controller to overcome dead time[END_REF]). It is known that, by assuming exact knowledge of both the plant model and time delay, controllers designed using a Smith predictor are very eective in counteracting the eect of time delays. Robustness of the Smith predictor with respect to uncertainties in the knowledge of the time delay has been extensively studied since 1980 [START_REF] Palmor | Stability properties of Smith deadtime compensator controllers[END_REF], [START_REF] Yamanaka | Eects of mismatched Smith controller on stability in systems with time-delay[END_REF]).

The Internet represents a relevant example of time delay system due to the presence of delays that are caused by the propagation of the information, which is sent in form of data packets, from a source to a destination through a series of communication links and router queues.

A cornerstone component of the Internet protocol stack is the end-to-end congestion control which has been implemented in the TCP by [START_REF] Jacobson | Congestion avoidance and control[END_REF] in order to avoid congestion and preserve network stability. Several uid models have been proposed for the TCP congestion control algorithm in order to analytically study the stability of the network under dierent scenarios. See [START_REF] Mascolo | Congestion control in high-speed communication networks using the Smith principle[END_REF]; [START_REF] Hollot | Analysis and design of controllers for AQM routers supporting TCPows. Automatic Control[END_REF]; [START_REF] Srikant | The Mathematics of Internet Congestion Control[END_REF] and references therein.

In [START_REF] Mascolo | Congestion control in high-speed communication networks using the Smith principle[END_REF] a simple model of the plant made of an integrator (modelling the bottleneck queue) plus two time delays (modelling forward and backward delays), has been proposed along with a Smith predictor plus a proportional controller. The paper also shows that the Smith predictor controller with a proportional gain models the congestion control law which is employed in the today running TCP congestion control algorithm. Moreover, the model presented in [START_REF] Mascolo | Congestion control in high-speed communication networks using the Smith principle[END_REF] has been employed in [START_REF] Grieco | Adaptive rate control for streaming ows over the internet[END_REF] to design and implement a ratebased congestion control algorithm which has been found to produce ows that are TCP-friendly.

A similar plant model is employed in [START_REF] Quet | Rate-based ow controllers for communication networks in the presence of uncertain time-varying multiple time-delays[END_REF] to design a rate-based congestion control algorithm implemented at the router that is robust to uncertain timedelays by employing the H ∞ technique. The controller parameters are quite complex to derive and, at the best of authors knowledge, no real implementations are currently available to assess the eectiveness of the proposed solution.

Measurement of the plant time delay to be used in the Smith predictor can be aected by uncertainties due to the fact that the time delay is made of a constant propagation delay plus time-varying queueing delays. To the purpose, the standard TCP [START_REF] Postel | Transmission Control Protocol[END_REF]) estimates the Round Trip Time (RTT) through time-stamping in order to set the retransmission timeout (RTO) which is needed for detecting heavy congestion episodes in the network. The RTT is dened as the time that elapses from when a segment is sent until the corresponding acknowledgement segment is received by the sender. In the standard TCP implementation, the RTT is measured each RT T seconds, whereas no measurements are taken on retransmitted segments due to the Karn's algorithm in order to avoid spurious timeouts (see [START_REF] Karn | Estimating round-trip times in reliable transport protocols[END_REF]). For these reasons the standard TCP does not provide an accurate measure of RTT. In order to overcome this issue an optional scheme has been proposed and standardized in [START_REF] Jacobson | TCP Extensions for High Performance[END_REF] which makes use of timestamps in an optional eld of the TCP header.

However, even if the timestamp option is employed by both peers of the communication, the granularity chosen for TCP timestamps is implementation-dependent. In a recent work [START_REF] Veal | New Methods for Passive Estimation of TCP Round-Trip Times[END_REF] carry out an extensive measurement campaign on RTTs. Authors used 500 servers and found that 76% of the servers had timestamping option enabled, and out of these servers 37% used a 100 ms granularity, 55% a 10 ms granularity and only 7% of them had a granularity of 1 ms.

A preliminary study on robust stability of a proportional Smith predictor used for congestion control in data networks has been carried out by using the Nyquist criterion in [START_REF] Mascolo | Modeling the Internet congestion control as a time delay system: a robust stability analysis[END_REF]. It revealed that in order to guarantee asymptotic stability it is sucient that ∆ < 1/k where ∆ represents the delay uncertainty and k is the gain of the proportional controller.

The goal of this paper is to provide a characterization of the robust stability of system introduced in Mascolo (1999) by applying the geometric approach which has been developed in [START_REF] Gu | On stability crossing curves for general systems with two delays[END_REF].

The rest of the paper is organized as follows: in Section 2 we briey review the model of the closed loop congestion control in a generic packet switching network presented in [START_REF] Mascolo | Congestion control in high-speed communication networks using the Smith principle[END_REF]; in Section 3 we apply the geometrical approach developed in [START_REF] Morarescu | On the geometry of stability regions of Smith predictors subject to delay uncertainty[END_REF] in order to nd the stability crossing curves of the system; in Section 4 we present the robust stability analysis; in Section 5 some simulations are presented to support the theoretical results obtained; nally Section 6 concludes the paper.

CONGESTION CONTROL MODEL

A network connection is basically made by a set of communication links and store-and-forward nodes (routers) where packets are enqueued before being routed to the destination . Congestion can arise when packets arrive at a rate r(t) which is above the capacity of the output link so that the router queue builds up until it is full and it starts to drop packets.

In [START_REF] Mascolo | Congestion control in high-speed communication networks using the Smith principle[END_REF] a model of the Internet ow and congestion control as a time delay system is provided and in [START_REF] Mascolo | Modeling the Internet congestion control using a Smith controller with input shaping[END_REF] it is shown that dierent variants of TCP congestion control algorithms can be modelled in a unied framework by proper input shaping of the proportional Smith predictor controller.

In particular, the model consists of a feedback loop in which two time delays are present as it is shown in Figure 1: τ f w models the propagation time of a packet from source to the bottleneck queue and τ f b models the propagation time from the bottleneck to the destination and then back to the sender. The round trip time of the connection is

τ = τ f w + τ f b . k 1 s e -sτ f b e -sτ f w - - w(t) 1-e -sτ s q(t) - r(t) b(t) Figure 1. Functional block of the congestion control model
The simple integrator 1/s models the bottleneck queue that is lled (or drained) by the rate mismatch r(t) -b(t), where b(t) is the bottleneck available bandwidth.

The controller is a proportional Smith predictor with gain k that computes the rate r(t) to match the available bandwidth b(t) and to produce a stable output. The reason for using a simple proportional controller is that in this way the closed-loop dynamics can be made that of a rst-order system with time constant 1/k delayed by τ f w . Thus, the step response of the system can be made faster by increasing the proportional gain k providing an always stable system without oscillations or overshoots.

This choice provides a controller in which only one design parameter, i.e. the gain k, has to be tuned having a direct inuence on the dynamics of the output. Finally, the input signal w(t) models the congestion window (cwnd) or the advertised window, that is used by the congestion control algorithm to bound in-ight packets [START_REF] Mascolo | Congestion control in high-speed communication networks using the Smith principle[END_REF]).

Model mismatches are known to aect the closed loop dynamics when a Smith predictor controller is employed.

In this case, it is worth noting that the only source of mismatch between the model and the actual plant is the entity of the delay (see Section 1) whereas the model of the bottleneck queue is an integrator and does not add any uncertainty. In the next sections we will give simple tuning rules for the design parameter k in order to retain asymptotic stability when the measure of time delay τ is uncertain.

Finally, we remark that a Smith predictor controller is recommended when designing a congestion control algorithm for data networks, since using PID controllers would provide an unacceptable sluggish system due to large delays involved in communication networks (see [START_REF] Astrom | PID Controllers: Theory, Design, and Tuning[END_REF] and [START_REF] Mascolo | Congestion control in high-speed communication networks using the Smith principle[END_REF]).

STABILITY CROSSING CURVES IN THE PARAMETERS SPACE

Review of the geometrical approach

We start by briey reviewing the geometrical approach developed in [START_REF] Morarescu | On the geometry of stability regions of Smith predictors subject to delay uncertainty[END_REF] which we will employ to analyze the robust stability of the considered system.

The reader is advised to refer to [START_REF] Gu | On stability crossing curves for general systems with two delays[END_REF] for a complete description of the method. We denote with a(s; τ 1 , τ 2 ) the characteristic function of the closed-loop system where τ 1 represents the nominal delay used in the Smith predictor and τ 2 = τ 1 + ∆ represents the actual plant delay aected by a bounded mismatch ∆. It is easy 

q(ω) -h ( s ) e
a(s; τ 1 , τ 2 ) = 1 -h(s)e -τ1s + h(s)e -τ2s
(1) where h(s) is the transfer function of the closed loop system when no delays are present in the loop:

h(s) = C(s)G 0 (s) 1 + C(s)G 0 (s)
with G 0 (s) being the delay free plant and with C(s) being the controller transfer function.

In order to analyze the stability of the system we look for the solutions of the characteristic equation:

a(jω; τ 1 , τ 2 ) = 0 (2)
In this way we are able to nd all the conditions under which the system has at least one pole on the imaginary axis. The geometrical approach relies on the observation that the three terms of the characteristic function (1) can be seen as vectors in the complex plane. Therefore, the equality a(s; τ 1 , τ 2 ) = 0 can be represented in the complex plane via an isosceles triangle as it is shown in Figure 2. Thus, equation ( 2) is equivalent to the following three conditions:

(1) The triangular inequality must hold for the triangle shown in Figure 2, which implies that:

|h(jω)| ≥ 1 2 (3) 
(2) Equation ( 2) must satisfy the phase rule;

(3) The sum of the internal angles of the isosceles triangle must be equal to π;

The solution of (3), which does not depend on time delays τ 1 or τ 2 , forms the frequency crossing set Ω which is the union of a nite number N of intervals of nite length Ω 1 , Ω 2 , . . . , Ω N . For any ω > 0 which belongs to the frequency crossing set there exists at least a pair (τ 1 , τ 2 ) in the parameters space such that the system has at least one imaginary pole. The conditions 2 and 3 imply that for all ω ∈ Ω all the couples (τ 1 , τ 2 ) ∈ R 2 + satisfying a(jω; τ 1 , τ 2 ) = 0 can be found using the following equations:

τ u± 1 = ∠h(jω) + 2uπ ± q(ω) ω (4) τ v± 2 = ∠h(jω) + (2v -1)π ∓ q(ω) ω (5)
where u and v are integers such that the corresponding τ u± 1 , τ v± 2 are non negative and q(ω) represents the internal angle of the isosceles triangle:

q(ω) = arccos 1 2|h(jω)|
In order to understand the meaning of equations ( 4) and

(5) let us x u = u,v = v and consider the set Ω i ⊆ Ω : if ω varies in Ω i and we evaluate (4) and ( 5) for both positive and negative signs we obtain two curves in the parameter space (τ 1 , τ 2 ) which we denote T i+ u,v and T i- u,v respectively.

It is worth noting that the curves

T i u,v = T i- u,v ∪ T i+ u,v can be
either open curves or closed curves depending on the set Ω i we are considering. In particular, it is easy to show that if the left end of Ω i is 0 then the associated curve is an open curve with both ends approaching ∞ when ω → 0.

On the other hand, if the left end of Ω i is not 0 then T i u,v is a closed curve [START_REF] Gu | On stability crossing curves for general systems with two delays[END_REF]).

We dene the stability crossing curves T in the τ 1 , τ 2 plane as the union of all the curves T i u,v when i ∈ {1, . . . , N }, and u and v vary in the set of integers.

Finally, it is important to point out that when a stability crossing curve is crossed in the τ 1 , τ 2 plane, two poles cross the imaginary axis on the complex plane [START_REF] Gu | On stability crossing curves for general systems with two delays[END_REF]).

Stability crossing curves of the computer network congestion control model

In order to characterize the impact of the delay uncertainty on the stability of the considered feedback system we apply the geometric approach we have reviewed in Section 3.1.

It is worth to notice that the delay-free model of the plant is G 0 (s) = 1/s and the controller transfer function is C(s) = k.

We suppose that the system described in Section 2 is aected by a delay uncertainty ∆ which is bounded by δ > 0, i.e. |∆| < δ. By considering the delay uncertainty, the characteristic equation of the system can be rewritten as follows:

1 + k s - k s e -τ1•s (1 -e -∆•s ) = 0 (6)
where τ 1 represents the nominal round trip time (RTT) of the considered connection, which is used in the Smith predictor, and τ 2 = τ 1 + ∆ is the actual plant time delay.

By multiplying by s/(s + k) both sides of ( 6) we obtain:

1 - k s + k e -τ1s + k s + k e -(∆+τ1)s = 0 (7)
so that by considering h(s) = k/(s + k) (7) is in the form of (1). We are interested in characterizing the stability of the system when τ 1 , τ 2 and k vary in R + .

By making the change of variable z = s/k we obtain:

1 - 1 z + 1 e -h1z + 1 z + 1 e -h2z = 0 (8)
where h 1 = kτ 1 and h 2 = kτ 2 , which reduces the free parameters to two. It is worth to notice that the 7) to (8) simply involves a scaling of the closed-loop eigenvalues by 1/k, thus indicating a natural trade-o between gain and delay since when k increases the closed loop poles approach to the imaginary axis [START_REF] Niculescu | Stabilizing a chain of integrators using multiple delays. Automatic Control[END_REF]).

We are now ready to study the stability of the original system in the h 1 , h 2 plane regardless the value of the proportional gain k.

First of all, by applying (3) we nd that the crossing set is made by the single interval Ω = [0, √ 3] which means that the stability crossing curves in the h 1 , h 2 plane are open curves which extend to innity when ω → 0. By using (4) and (5) the stability crossing curves of the considered system result the following:

h u± 1 (ω) = -arctan ω + 2uπ ± arccos √ 1+ω 2 2 ω (9) h v± 2 (ω) = -arctan ω + (2v -1)π ∓ arccos √ 1+ω 2 2 ω ( 10 
)
Figure 3 shows the stability crossing curves of the considered system. We start by considering the h 2 axis (h 1 = 0), which means that we are employing a simple proportional controller without the Smith predictor. By starting from the origin and increasing the value of h 2 the rst curve is crossed at h 2 = π/2 which means that the system becomes unstable for h 2 > π/2 as expected. On the other hand, the axis h 1 represents the system in which no delay aects the plant, but the Smith predictor is in the controller. Figure 3 shows that the system is stable for all the delays in the Smith predictor.

Finally, points on the positive bisector represent the case of perfect matching of nominal delay τ 1 with the actual delay τ 2 . Indeed, if we move on this line no curves will be crossed since the Smith predictor in this case provides a stable system regardless the value of the proportional gain k.

ROBUST STABILITY ANALYSIS

In this Section we will develop an analysis of the robust stability of the considered system by using the stability crossing curves we have shown in the previous Section. We already know that the considered system is always asymptotically stable for any delay τ 1 and any proportional gain k as far as the delay uncertainty is zero thanks to the perfect compensation of the time delay τ 1 provided by the Smith predictor. In the h 1 , h 2 plane this condition means that the system is asymptotically stable on all the positive bisector.

In order to characterize the robustness of the system in the face of delay uncertainties we compute the maximum delay mismatch which still preserves stability. Thus, the problem here is to look for the maximum deviation δ with respect to a generic point (τ * 1 , τ * 1 ) with τ * 1 ≥ 0 which lies on the positive bisector such that the system is stable for any (τ 1 , τ 2 ) which satises:

|τ 2 -τ * 1 | < δ
We remark that solving the maximum admissible delay uncertainty problem is equivalent to nd the minimum distance between the stability crossing curves and a generic point on the positive bisector of the h 1 , h 2 plane.

Thus for any τ * 1 > 0 we have to solve:

δ(τ * 1 ) = min u,v min τ v± 2 ∈T |τ v± 2 -τ * 1 | (11) 
so that the maximum delay to retain stability is:

δ = min τ * 1 ∈R+ δ(τ * 1 ) (12) 
Proposition 1. A necessary and sucient condition for the asymptotic stability of the system regardless the value of the nominal delay τ 1 is:

|∆| < α k (13)
where ∆ is the delay uncertainty, α ∼ = 1.4775 and k is the proportional gain of the controller.

Proof.

We start by considering the stability crossing curves in the parameters space h 1 , h 2 . In order to nd the minimum distance between the stability crossing curves and a generic point of positive bisector of the h 1 , h 2 plane we evaluate the tangent to the crossing curves with direction parallel to the positive bisector:

dh 2 dh 1 = 1 ⇔ dh 2 dω dω dh 1 = 1 ⇔ dh 1 dω = dh 2 dω (14)
To the purpose we look for a subset T of the stability crossing curves T that are the closest curves to the positive bisector. By considering a generic curve T u,v and by applying ( 9) and ( 10) it turns out that for all u and v and for all ω ∈ Ω it holds h v+ 2 -h u+

1 < h v- 2 -h u-
1 so that it is sucient to consider only the curves T + u,v in the region h 2 > h 1 and the curves T - u,v in the region h 2 < h 1 , since they will be the closest ones to the positive bisector. Thus, we can refer without loss of generality to the generic curves of T as T u,u+i for all i and u in the integers. Straightforward computations on ( 9) and ( 10)

give:

h u+i 2 -h u 1 > h u+i-1 2 -h u 1
which means that when i decreases the curves T u,u+i will move downwards in the h 1 , h 2 plane. Figure 4 shows the values of u and v for the curves T u,u and T u,u+1 . It is then easy to show that if we set v = u we obtain the closest curves to the positive bisector in the region h 2 < h 1 whereas the curves with v = u + 1 are those which are closest to the positive bisector in the region h 2 > h 1 . In conclusion we can restrict our search to the set :

T = T - u,u ∪ T + u,u+1
for all u in the integers. Let us consider the region h 2 > h 1 i.e. we consider the subset T + u,u+1 . By considering (14) after straightforward computations we get the following equation:

arccos

√ ω 2 + 1 2 + ω 2 √ ω 2 + 1 √ 3 -ω 2 + +π(v -u - 1 2 ) = 0 (15) 
with ω ∈ Ω. By letting v = u + 1 the equation ( 15) has the unique solution ω = 1.3483 rad/s in Ω which is independent of u. If we substitute this value in ( 9) and ( 10) we obtain:

h 1 (ω) = h 1 = 4.6601u -0.2654 h 2 (ω) = h 2 = 4.6601v -3.4480
Thus, all the points belonging to the the curves T + u,u+1

having a tangent which is parallel to the positive bisector, lie on the line:

h 2 = h 1 + 1.4775 (16) 
For this reason we can conclude that the maximum uncertainty, in the h 1 , h 2 coordinates is 1.4775. The proof is completed by recalling that h 1 = kτ 1 and h 2 = kτ 2 and that τ 2 = τ 1 + ∆. Thus, we nally obtain:

h 2 -h 1 < 1.4775 ⇒ k∆ < 1.4775 ⇒ ∆ < 1.4775 k (17)
It is worth to notice that the same procedure can be followed in the case v = u which leads to the inequality:

h 1 -h 2 < 1.4775 ⇒ -k∆ > 1.4775 ⇒ ∆ > - 1.4775 k (18)
Thus, by considering both ( 17) and ( 18) we obtain (13).

In order to prove the necessity of the condition (13) let us consider the curves T u,u+1 . The points of the curve T u,u+1 that correspond to the frequency ω = 1.3483 rad/s lie on the line described by ( 16) so that the maximum delay uncertainty admissible for those points is exactly α/k. If we select a larger value for δ the system will become unstable at least on those points. This concludes the proof.

Remark 2. The fact that the maximum uncertainty allowed does not depend on the nominal delay τ 1 is a nice Remark 3. The condition (13) expresses a trade-o between the maximum delay mismatch δ and the proportional gain that can be used to tune the controller gain k.

Remark 4. This result improves the robust stability condition |∆| < 1/k found in [START_REF] Mascolo | Modeling the Internet congestion control as a time delay system: a robust stability analysis[END_REF].

Proposition 5. The system is stable, regardless the value of τ 1 , if the delay uncertainty ∆ satises the following inequality:

-

τ 1 < ∆ < -τ 1 + β k (19) 
with β = 1.1188.

Proof.

The proof follows the same arguments of Proposition 1, therefore it is omitted.

Remark 6. The condition (19) implicitly requires the delay uncertainty ∆ to be negative, i.e. the nominal delay τ 1 should be always below the actual delay of the plant τ 2 .

Thus, condition (19) has no particular meaning for the characterization of controller robustness, since the sign of the uncertainty is not known a priori.

SIMULATION RESULTS

In this Section we report simulation results obtained by using a SIMULINK model that implements the system when τ 1 = 1 sec, k = 4 sec -1 , b(t) = 100 packets/sec, w = 150 packets evolution q(t) and the input rate r(t) when the delay uncertainty is either zero, δ/2 ∼ = 0.185 sec or δ ∼ = 0.37 sec.

The gure shows, as expected, that the performance of the closed loop response degrades when the delay uncertainty increases. In particular, oscillations are present when the delay uncertainty is δ/2 still providing an acceptable response, whereas when the delay uncertainty increases to the maximum allowed value persistent oscillations occur.

CONCLUSIONS

In this paper we have analyzed the robust stability of a very important class of congestion control algorithms when delay uncertainties are present. We have shown how the geometrical approach developed in [START_REF] Morarescu | On the geometry of stability regions of Smith predictors subject to delay uncertainty[END_REF] can be easily applied in order to nd stability bounds on the parameter of the controller. Moreover, we found a simple necessary and sucient condition on the gain of the proportional controller k in order to retain asymptotic stability regardless the value of the nominal delay τ 1 . Such a result suggests that congestion control algorithms that employ controllers made by a Smith predictor plus a proportional gain can be easily tuned in order to be robust to a bounded delay uncertainty.
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