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Shape and Time Distortion Loss for Training Deep Time Series Forecasting Models

This paper addresses the problem of time series forecasting for non-stationary signals and multiple future steps prediction. To handle this challenging task, we introduce the Shape and Time Distortion Loss (STDL), a new objective function dedicated to training deep neural networks. STDL aims at accurately predicting sudden changes, and explicitly incorporates two terms supporting precise shape and temporal change detection. We introduce a differentiable loss function suitable for training deep neural nets, and provide a custom back-prop implementation for speeding up optimization. We also introduce a variant of STDL, which provides a smooth generalization of temporally-constrained Dynamic Time Warping (DTW). Experiments carried out on various non-stationary datasets reveal the very good behaviour of STDL compared to models trained with the standard Mean Squared Error (MSE) loss function, and also to DTW and variants. STDL is also agnostic to the choice of the model, and we highlight its benefit for training fully connected networks as well as specialized recurrent architectures, showing its capacity to improve over state-of-the-art trajectory forecasting approaches.

Introduction

Time series forecasting [START_REF] George Ep Box | Time series analysis: forecasting and control[END_REF] consists in analyzing the dynamics and correlations between historical data for predicting future behavior. In one-step prediction problems [START_REF] Yao Qin | A dual-stage attention-based recurrent neural network for time series prediction[END_REF][START_REF] Lai | Modeling long-and shortterm temporal patterns with deep neural networks[END_REF], future prediction reduces to a single scalar value. This is in sharp contrast with multi-step time series prediction [START_REF] Ben Taieb | A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition[END_REF][START_REF] Hoang | Comparison of strategies for multi-step-ahead prediction of time series using neural network[END_REF][START_REF] Ben | A bias and variance analysis for multistep-ahead time series forecasting[END_REF], which consists in predicting a complete trajectory of future data at a rather long temporal extent. Multi-step forecasting thus requires to accurately describe time series evolution. This work focuses on multi-step forecasting problems for non-stationary signals, i.e. when future data cannot only be inferred from the past periodicity, and when abrupt changes of regime can occur. This includes important and diverse application fields, e.g. regulating electricity consumption [START_REF] Zheng | Electric load forecasting in smart grids using long-short-term-memory based recurrent neural network[END_REF][START_REF] Masum | Multi-step time series forecasting of electric load using machine learning models[END_REF], predicting sharp discontinuities in renewable energy production [START_REF] Ghaderi | Deep forecast: Deep learning-based spatio-temporal forecasting[END_REF] or in traffic flow [START_REF] Lv | Traffic flow prediction with big data: a deep learning approach[END_REF][START_REF] Li | Diffusion convolutional recurrent neural network: Data-driven traffic forecasting[END_REF], electrocardiogram (ECG) analysis [START_REF] Chauhan | Anomaly detection in ECG time signals via deep long short-term memory networks[END_REF], stock markets prediction [START_REF] Ding | Deep learning for event-driven stock prediction[END_REF], etc.

Deep learning is an appealing solution for this multi-step and non-stationary prediction problem, due to the ability of deep neural networks to model complex nonlinear time dependencies. Many approaches have recently been proposed, mostly relying on the design of specific one-step ahead 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada. architectures recursively applied for multi-step [START_REF] Girard | Multiple-step ahead prediction for non linear dynamic systems -a gaussian process treatment with propagation of the uncertainty[END_REF][START_REF] Hussein | Multi-step-ahead chaotic time series prediction using coevolutionary recurrent neural networks[END_REF][START_REF] Chandra | Co-evolutionary multi-task learning with predictive recurrence for multi-step chaotic time series prediction[END_REF][START_REF] Borovykh | Conditional time series forecasting with convolutional neural networks[END_REF], on direct multi-step models [START_REF] Bao | Multi-step-ahead time series prediction using multipleoutput support vector regression[END_REF] such as Sequence To Sequence [START_REF] Li | Diffusion convolutional recurrent neural network: Data-driven traffic forecasting[END_REF][START_REF] Yu | Long-term forecasting using tensor-train RNNs[END_REF][START_REF] Wen | A multihorizon quantile recurrent forecaster[END_REF][START_REF] Yu | Learning chaotic dynamics using tensor recurrent neural networks[END_REF] or State Space Models for probabilistic forecasts [START_REF] Salinas | DeepAR: Probabilistic forecasting with autoregressive recurrent networks[END_REF][START_REF] Sundar Rangapuram | Deep state space models for time series forecasting[END_REF].

Regarding training, the huge majority of methods use the Mean Squared Error (MSE) or its variants (MAE, etc) as loss functions. However, relying on MSE may arguably be inadequate in our context, as illustrated in To train deep neural nets with STDL, we derive a differentiable loss function for both shape and temporal terms (section 3.1), and an efficient and custom back-prop implementation for speeding up optimization (section 3.2). We also introduce a variant of STDL, which provides a smooth generalization of temporally-constrained Dynamic Time Warping (DTW) metrics [START_REF] Sakoe | Dynamic programming algorithm optimization for spoken word recognition[END_REF][START_REF] Jeong | Weighted dynamic time warping for time series classification[END_REF]. Experiments carried out on several synthetic and real non-stationary datasets reveal that models trained with STDL significantly outperform models trained with the MSE loss function when evaluated with shape and temporal distortion metrics, while SDTL maintains very good performance when evaluated with MSE. Finally, we show that STDL can be used with various network architectures and can outperform on shape and time metrics state-of-the-art models specifically designed for multi-step and non-stationary forecasting.

Related work

Time series forecasting Traditional methods for time series forecasting include linear autoregressive models, such as the ARIMA model [START_REF] George Ep Box | Time series analysis: forecasting and control[END_REF], and Exponential Smoothing [START_REF] Hyndman | Forecasting with exponential smoothing: the state space approach[END_REF], which both fall into the broad category of linear State Space Models (SSMs) [START_REF] Durbin | Time series analysis by state space methods[END_REF]. These methods handle linear dynamics and stationary time series (or made stationary by temporal differences). However the stationarity assumption is not satisfied for many real world time series that can present abrupt changes of distribution. Since, Recurrent Neural Networks (RNNs) and variants such as Long Short Term Memory Networks (LSTMs) [START_REF] Hochreiter | Long short-term memory[END_REF] have become popular due to their automatic feature extraction abilities, complex patterns and long term dependencies modeling. In the era of deep learning, much effort has been recently devoted to tackle multivariate time series forecasting with a huge number of input series [START_REF] Laptev | Time-series extreme event forecasting with neural networks at Uber[END_REF], by leveraging attention mechanisms [START_REF] Lai | Modeling long-and shortterm temporal patterns with deep neural networks[END_REF][START_REF] Yao Qin | A dual-stage attention-based recurrent neural network for time series prediction[END_REF][START_REF] Tao | Hierarchical attentionbased recurrent highway networks for time series prediction[END_REF][START_REF] Choi | RETAIN: An interpretable predictive model for healthcare using reverse time attention mechanism[END_REF] or tensor factorizations [START_REF] Yu | Long-term forecasting using tensor-train RNNs[END_REF][START_REF] Yu | Temporal regularized matrix factorization for high-dimensional time series prediction[END_REF][START_REF] Sen | Think globally, act locally: a deep neural network approach to high dimensional time series forecasting[END_REF] for capturing shared information between series. Another current trend is to combine deep learning and State Space Models for modeling uncertainty [START_REF] Seeger | Bayesian intermittent demand forecasting for large inventories[END_REF][START_REF] Salinas | DeepAR: Probabilistic forecasting with autoregressive recurrent networks[END_REF][START_REF] Sundar Rangapuram | Deep state space models for time series forecasting[END_REF][START_REF] Wang | Deep factors for forecasting[END_REF]. In this paper we focus on deterministic multi-step forecasting. To this end, the most common approach is to apply recursively a one-step ahead trained model. Although mono-step learned models can be adapted and improved for the multi-step setting [START_REF] Venkatraman | Improving multi-step prediction of learned time series models[END_REF], a thorough comparison of the different multi-step strategies [START_REF] Ben | A bias and variance analysis for multistep-ahead time series forecasting[END_REF] has recommended the direct multi-horizon strategy. Of particular interest in this category are Sequence To Sequence (Seq2Seq) RNNs models1 [START_REF] Salinas | DeepAR: Probabilistic forecasting with autoregressive recurrent networks[END_REF][START_REF] Laptev | Time-series extreme event forecasting with neural networks at Uber[END_REF][START_REF] Yu | Long-term forecasting using tensor-train RNNs[END_REF][START_REF] Wen | A multihorizon quantile recurrent forecaster[END_REF][START_REF] Fox | Deep multi-output forecasting: Learning to accurately predict blood glucose trajectories[END_REF] which achieved great success in machine translation. Theoretical generalization bounds for Seq2Seq forecasting were derived with an additional discrepancy term quantifying the non-stationarity of time series [START_REF] Kuznetsov | Foundations of sequence-to-sequence modeling for time series[END_REF]. Following the success of WaveNet for audio generation [START_REF] Van Den | WaveNet: A generative model for raw audio[END_REF], Convolutional Neural Networks with dilation have become a popular alternative for time series forecasting [START_REF] Borovykh | Conditional time series forecasting with convolutional neural networks[END_REF]. The self-attention Transformer architecture [START_REF] Vaswani | Attention is all you need[END_REF] was also lately investigated for accessing long-range context regardless of distance [START_REF] Li | Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting[END_REF]. We highlight that our proposed loss function can be used for training any direct multi-step deep architecture.

Evaluation and training metrics

The largely dominant loss function to train and evaluate deep models is the MAE, MSE and its variants (SMAPE, etc). Metrics reflecting shape and temporal localization exist: Dynamic Time Warping [START_REF] Sakoe | Dynamic programming algorithm optimization for spoken word recognition[END_REF] for shape ; timing errors can be casted as a detection problem by computing Precision and Recall scores after segmenting series by Change Point Detection [START_REF] Chang | Kernel change-point detection with auxiliary deep generative models[END_REF][START_REF] Li | M-statistic for kernel change-point detection[END_REF], or by computing the Hausdorff distance between two sets of change points [START_REF] Garreau | Consistent change-point detection with kernels[END_REF][START_REF] Truong | Supervised kernel change point detection with partial annotations[END_REF]. For assessing the detection of ramps in wind and solar energy forecasting, specific algorithms were designed: for shape, the ramp score [START_REF] Florita | Identifying wind and solar ramping events[END_REF][START_REF] Vallance | Towards a standardized procedure to assess solar forecast accuracy: A new ramp and time alignment metric[END_REF] based on a piecewise linear approximation of the derivatives of time series; for temporal error estimation, the Temporal Distortion Index (TDI) [START_REF] Frías-Paredes | Assessing energy forecasting inaccuracy by simultaneously considering temporal and absolute errors[END_REF][START_REF] Vallance | Towards a standardized procedure to assess solar forecast accuracy: A new ramp and time alignment metric[END_REF]. However, these evaluation metrics are not differentiable, making them unusable as loss functions for training deep neural networks. The impossibility to directly optimize the appropriate (often non-differentiable) evaluation metric for a given task has bolstered efforts to design good surrogate losses in various domains, for example in ranking [START_REF] Durand | Mantra: Minimum maximum latent structural svm for image classification and ranking[END_REF][START_REF] Yue | A support vector method for optimizing average precision[END_REF] or computer vision [START_REF] Nowozin | Optimal decisions from probabilistic models: the intersection-over-union case[END_REF][START_REF] Yu | The lovász hinge: A novel convex surrogate for submodular losses[END_REF].

Recently, some attempts have been made to train deep neural networks based on alternatives to MSE, especially based on a smooth approximation of the Dynamic time warping (DTW) [START_REF] Cuturi | Soft-dtw: a differentiable loss function for time-series[END_REF][START_REF] Mensch | Differentiable dynamic programming for structured prediction and attention[END_REF][START_REF] Abid | Learning a warping distance from unlabeled time series using sequence autoencoders[END_REF].

Training DNNs with a DTW loss enables to focus on the shape error between two signals. However, since DTW is by design invariant to elastic distortions, it completely ignores the temporal localization of the change. In our context of sharp change detection, both shape and temporal distortions are crucial to provide an adequate forecast. A differentiable timing error loss function based on DTW on the event (binary) space was proposed in [START_REF] Rivest | A new timing error cost function for binary time series prediction[END_REF] ; however it is only applicable for predicting binary time series. This paper specifically focuses on designing a loss function able to disentangle shape and temporal delay terms for training deep neural networks on real world time series.

Training Deep Neural Networks with the Shape and Time Distortion Loss

Our proposed framework for multi-step forecasting is depicted in Figure 2. During training, we consider a set of N input time series A = {x i } i∈{1:N } . For each input example of length n, i.e. x i = (x 1 i , ..., x n i ) ∈ R p×n , a forecasting model such as a neural network predicts the future k-step ahead trajectory ŷi = (ŷ 1 i , ..., ŷk i ) ∈ R d×k . Our Shape and Time Distortion Loss (STDL), which compares this prediction ŷi with the actual ground truth future trajectory *

y i = ( * y i 1 , ..., * y i k ) of length k, is composed of two terms balanced by the hyperparameter α ∈ [0, 1]: L ST DL (ŷ i , * y i ) = α L shape (ŷ i , * y i ) + (1 -α) L temporal (ŷ i , * y i ) (1) 
Notations and definitions Both our shape L shape (ŷ i , * y i ) and temporal L temporal (ŷ i , * y i ) distortions terms are based on the alignment between predicted ŷi ∈ R d×k and ground truth * y i ∈ R d×k time series. We define a warping path as a binary matrix A ⊂ {0, 1}

k×k with A h,j = 1 if ŷh i is associated to * y i j , and 0 otherwise. The set of all valid warping paths connecting the endpoints (1, 1) to (k, k)

with the authorized moves →, ↓, be the pairwise cost matrix, where δ is a given dissimilarity between ŷh i and * y i j , e.g. the euclidean distance.

(step condition) is noted A k,k . Let ∆(ŷ i , * y i ) := [δ(ŷ h i ,

Shape and temporal terms

Shape term Our shape loss function is based on the Dynamic Time Warping (DTW) [START_REF] Sakoe | Dynamic programming algorithm optimization for spoken word recognition[END_REF], which corresponds to the following optimization problem: DT W (ŷ i , *

y i ) = min A∈A k,k A, ∆(ŷ i , * y i ) . A * = arg min A∈A k,k A, ∆(ŷ i , * y i )
is the optimal association (path) between ŷi and * y i . By temporally aligning the predicted ŷi and ground truth * y i time series, the DTW loss focuses on the structural shape dissimilarity between signals. The DTW, however, is known to be non-differentiable. We use the smooth min operator min γ (a 1 , ..., a n ) = -γ log( n i exp(-a i /γ)) with γ > 0 proposed in [START_REF] Cuturi | Soft-dtw: a differentiable loss function for time-series[END_REF] to define our differentiable shape term L shape :

L shape (ŷ i , * y i ) = DT W γ (ŷ i , * y i ) := -γ log   A∈A k,k exp   - A, ∆(ŷ i , * y i ) γ     (2) 
Temporal term Our second term L temporal in Eq (1) aims at penalizing temporal distortions between ŷi and * y i . Our analysis is based on the optimal DTW path A * between ŷi and * y i . A * is used to register both time series when computing DTW and provide a time-distortion invariant loss. Here, we analyze the form of A * to compute the temporal distortions between ŷi and * y i . More precisely, our loss function is inspired from computing the Time Distortion Index (TDI) for temporal misalignment estimation [START_REF] Frías-Paredes | Assessing energy forecasting inaccuracy by simultaneously considering temporal and absolute errors[END_REF][START_REF] Vallance | Towards a standardized procedure to assess solar forecast accuracy: A new ramp and time alignment metric[END_REF], which basically consists in computing the deviation between the optimal DTW path A * and the first diagonal. We first rewrite a generalized TDI loss function with our notations:

T DI(ŷ i , * y i ) = A * , Ω = arg min A∈A k,k A, ∆(ŷ i , * y i ) , Ω (3) 
where Ω is a square matrix of size k × k penalizing each element ŷh i being associated to an * y j i , for h = j. In our experiments we choose a squared penalization, e.g. Ω(h, j) = 1 k 2 (h -j) 2 , but other variants could be used. Note that prior knowledge can also be incorporated in the Ω matrix structure, e.g. to penalize more heavily late than early predictions (and vice versa).

The TDI loss function in Eq (3) is still non-differentiable. Here, we cannot directly use the same smoothing technique that for defining DTW γ in Eq (2), since the minimization involves two different quantities Ω and ∆. Since the optimal path A * is itself non-differentiable, we use the fact that A * = ∇ ∆ DT W (ŷ i , * y i ) to define a smooth approximation A * γ of the arg min operator, i.e. :

A * γ = ∇∆DT Wγ(ŷi, * y i ) = 1/Z A∈A k,k A exp - A,∆(ŷ i , * y i ) γ , with Z = A∈A k,k exp - A,∆(ŷ i , * y i ) γ
being the partition function. Based on A * γ , we obtain our smoothed temporal loss from Eq (3):

L temporal (ŷ i , * y i ) := A * γ , Ω = 1 Z A∈A k,k A, Ω exp - A,∆(ŷ i , * y i ) γ (4) 

STDL Efficient Forward and Backward Implementation

The direct computation of our shape and temporal losses in Eq (2) and Eq (4) is intractable, due to the cardinal of A k,k , which exponentially grows with k. We provide a careful implementation of the forward and backward passes in order to make learning efficient.

Shape loss Regarding L shape , we rely on [START_REF] Cuturi | Soft-dtw: a differentiable loss function for time-series[END_REF] to efficiently compute the forward pass with a variant of the Bellmann dynamic programming approach [START_REF] Bellman | On the theory of dynamic programming[END_REF]. For the backward pass, we implement the recursion proposed in [START_REF] Cuturi | Soft-dtw: a differentiable loss function for time-series[END_REF] in a custom Pytorch loss. This implementation is much more efficient than relying on vanilla auto-differentiation, since it reuses intermediate results from the forward pass.

Temporal loss For L temporal , note that the bottleneck for the forward pass in Eq (4) is to compute A * γ = ∇ ∆ DT W γ (ŷ i , * y i ), which we implement as explained for the L shape backward pass.

Regarding L temporal backward pass, we need to compute the Hessian ∇ 2 DT W γ (ŷ i , * y i ). We use the method proposed in [START_REF] Mensch | Differentiable dynamic programming for structured prediction and attention[END_REF], based on a dynamic programming implementation that we embed in a custom Pytorch loss. Again, our back-prop implementation allows a significant speed-up compared to standard auto-differentiation (see section 4.4).

The resulting time complexity of both shape and temporal losses for forward and backward is O(k 2 ).

Discussion A variant of our approach to combine shape and temporal penalization would be to incorporate a temporal term inside our smooth L shape function in Eq (2), i.e. :

L ST DL t (ŷ i , * y i ) := -γ log   A∈A k,k exp   - A, α∆(ŷ i , * y i ) + (1 -α)Ω γ     (5) 
We can notice that Eq (5) reduces to minimizing A, α∆(ŷ i , * y i ) + (1 -α)Ω when γ → 0 + . In this case, L ST DL t can recover DTW variants studied in the literature to bias the computation based on penalizing sequence misalignment, by designing specific Ω matrices: Sakoe-Chiba DTW hard band constraint [START_REF] Sakoe | Dynamic programming algorithm optimization for spoken word recognition[END_REF] Ω(h, j) = +∞ if |h -j| > T , 0 otherwise

Weighted DTW [START_REF] Jeong | Weighted dynamic time warping for time series classification[END_REF] Ω(h, j) = f (|i -j|), f increasing function L ST DL t in Eq (5) enables to train deep neural networks with a smooth loss combining shape and temporal criteria. However, L ST DL t presents limited capacities for disentangling the shape and temporal errors, since the optimal path is computed from both shape and temporal terms. In contrast, our L ST DL loss in Eq (1) separates the loss into two shape and temporal misalignment components, the temporal penalization being applied to the optimal unconstrained DTW path. We verify experimentally that our L ST DL loss outperforms its "tangled" version L ST DL t (section 4.3).

Experiments 4.1 Experimental setup

Datasets: To illustrate the relevance of our STDL approach, we carry out experiments on 3 nonstationary time series datasets from different domains (see examples in Fig 4). The multi-step evaluation consists in forecasting the future trajectory on k future time steps. Synthetic (k = 20) dataset consists in predicting sudden changes (step functions) based on an input signal composed of two peaks. This controlled setup was designed to measure precisely the shape and time errors of predictions. We generate 500 times series for train, 500 for validation and 500 for test, with 40 time steps: the first 20 are the inputs, the last 20 are the targets to forecast. In each series, the input range is composed of 2 peaks of random temporal position i 1 and i 2 and random amplitude j 1 and j 2 between 0 and 1, and the target range is composed of a step of amplitude j 2 -j 1 and stochastic position i 2 + (i 2 -i 1 ) + randint(-3, 3). All time series are corrupted by an additive gaussian white noise of variance 0.01.

ECG5000 (k = 56) dataset comes from the UCR Time Series Classification Archive [START_REF] Chen | The UCR time series classification archive[END_REF], and is composed of 5000 electrocardiograms (ECG) (500 for training, 4500 for testing) of length 140. We take the first 84 time steps (60 %) as input and predict the last 56 steps (40 %) of each time series (same setup as in [START_REF] Cuturi | Soft-dtw: a differentiable loss function for time-series[END_REF]).

Traffic (k = 24) dataset corresponds to road occupancy rates (between 0 and 1) from the California Department of Transportation (48 months from 2015-2016) measured every 1h. We work on the first univariate series of length 17544 (with the same 60/20/20 train/valid/test split as in [START_REF] Lai | Modeling long-and shortterm temporal patterns with deep neural networks[END_REF]), and we train models to predict the 24 future points given the past 168 points (past week).

Network architectures and training:

We perform multi-step forecasting with two kinds of neural network architectures: a fully connected network (1 layer of 128 neurons), which does not make any assumption on data structure, and a more specialized Seq2Seq model [START_REF] Sutskever | Sequence to sequence learning with neural networks[END_REF] with Gated Recurrent Units (GRU) [START_REF] Cho | Learning phrase representations using RNN encoderdecoder for statistical machine translation[END_REF] with 1 layer of 128 units. Each model is trained with PyTorch for a max number of 1000 epochs with Early Stopping with the ADAM optimizer. The smoothing parameter γ of DTW and TDI is set to 10 -2 . The hyperparameter α balancing L shape and L temporal is determined on a validation set to get comparable DTW shape performance than the DT W γ trained model: α = 0.5 for Synthetic and ECG5000, and 0.8 for Traffic. Our code implementing the STDL is available on line from https://github.com/vincent-leguen/STDL.

STDL forecasting performances

We evaluate the performances of our STDL loss function, and compare it against two strong baselines: the widely used Euclidean (MSE) loss, and the smooth DTW introduced in [START_REF] Cuturi | Soft-dtw: a differentiable loss function for time-series[END_REF][START_REF] Mensch | Differentiable dynamic programming for structured prediction and attention[END_REF]. For each experiment, we use the same neural network architecture (section 4.1), in order to isolate the impact of the training loss and to enable fair comparisons. The results are evaluated using three metrics: MSE, DTW (shape) and TDI (temporal). We perform a Student t-test with significance level 0.05 to highlight the best(s) method(s) in each experiment (averaged over 10 runs).

Overall results are presented in Table 1. MSE comparison: STDL outperforms MSE when evaluated on shape (DTW) in all experiments, with significant differences on 5/6 experiments. When evaluated on time (TDI), STDL also performs better in all experiments (significant differences on 3/6 tests). Finally, STDL is equivalent to MSE when evaluated on MSE on 3/6 experiments.

DTW γ [START_REF] Cuturi | Soft-dtw: a differentiable loss function for time-series[END_REF][START_REF] Mensch | Differentiable dynamic programming for structured prediction and attention[END_REF] comparison: When evaluated on shape (DTW), SDTL performs similarly to DTW γ (2 significant improvements, 1 significant drop and 3 equivalent performances). Regarding time (TDI) and MSE evaluations, STDL is significantly better than DTW γ in all experiments, as expected.

We display a few qualitative examples for Synthetic, ECG5000 and Traffic datasets on Fig 4 (other examples are provided in supplementary 2). We see that MSE training leads to predictions that are non-sharp, making them inadequate in presence of drops or sharp spikes. DTW γ leads to very sharp predictions in shape, but with a possibly large temporal misalignment. In contrast, our STDL predicts series that have both a correct shape and precise temporal localization. Evaluation with external metrics To consolidate the good behaviour of our loss function seen in Table 1, we extend the comparison using two additional (non differentiable) metrics for assessing shape and time. For shape, we compute the ramp score [START_REF] Vallance | Towards a standardized procedure to assess solar forecast accuracy: A new ramp and time alignment metric[END_REF]. For time, we perform change point detection on both series and compute the Hausdorff measure between the sets of detected change points T * (in the target signal) and T (in the predicted signal):

Hausdorff(T * , T ) := max(max t∈ T min t * ∈T * | t -t * |, max t * ∈T * min t∈ T | t -t * |) (6) 
We provide more details about these external metrics in supplementary 1.1.

In Table 2 

Comparison to temporally constrained versions of DTW

In Table 3, we compare the Seq2Seq STDL to its tangled variants Weighted DTW (STDL t -W) [START_REF] Jeong | Weighted dynamic time warping for time series classification[END_REF] and Band Constraint (STDL t -BC) [START_REF] Sakoe | Dynamic programming algorithm optimization for spoken word recognition[END_REF] on the Synthetic dataset. We observe that STDL performances are similar in shape for both the DTW and ramp metrics and better in time than both variants. This shows that our STDL leads a finer disentanglement of shape and time components. Results for ECG5000 and Traffic are consistent and given in supplementary 3. We also analyze the gradient of STDL vs STDL t -W in supplementary 3, showing that STDL t -W gradients are smaller at low temporal shifts, certainly explaining the superiority of our approach when evaluated with temporal metrics. Qualitative predictions are also provided in supplementary 3. 

Eval loss STDL (ours) STDL

STDL Analysis

Custom backward implementation speedup: We compare in Fig 5(a) the computational time between the standard Pytorch auto-differentiation mechanism and our custom backward pass implementation (section 3.2). We plot the speedup of our implementation with respect to the prediction length k (averaged over 10 random target/prediction tuples). We notice the increasing speedup with respect to k: speedup of × 20 for 20 steps ahead and up to × 35 for 100 steps ahead predictions.

Impact of α (Fig 5(b))

: When α = 1, L ST DL reduces to DTW γ , with a good shape but large temporal error. When α -→ 0, we only minimize L temporal without any shape constraint. Both MSE and shape errors explode in this case, illustrating the fact that L temporal is only meaningful in conjunction with L shape . 4 for the traffic dataset reveal the superiority of TT-RNN over LSTNet-rec, which shows that dedicated multi-step prediction approaches are better suited for this task. More importantly, we can observe that our Seq2Seq STDL outperforms TT-RNN in all shape and time metrics, although it is inferior on MSE. This highlights the relevance of our STDL loss function, which enables to reach better performances with simpler architectures.

Eval loss

LSTNet-rec [START_REF] Lai | Modeling long-and shortterm temporal patterns with deep neural networks[END_REF] TT-RNN [START_REF] Yu | Long-term forecasting using tensor-train RNNs[END_REF][START_REF] Yu | Learning chaotic dynamics using tensor recurrent neural networks[END_REF] 

Conclusion and future work

In this paper, we have introduced the Shape and Time Distortion Loss (STDL), a new differentiable loss function for training deep multi-step time series forecasting models. The STDL combines two terms for precise shape and temporal localization of non-stationary signals with sudden changes. We showed that the STDL is comparable to the standard MSE loss when evaluated on MSE, and far better when evaluated on several shape and timing metrics. STDL compares favourably on shape and timing to state-of-the-art forecasting algorithms trained with the MSE.

For future work we intend to explore the extension of these ideas to probabilistic forecasting, for example by using bayesian deep learning [START_REF] Gal | Dropout as a bayesian approximation: Representing model uncertainty in deep learning[END_REF] to compute the predictive distribution of trajectories, or by embedding the STDL loss in a deep State Space Model architecture suited for probabilistic forecasting. Another interesting direction is to adapt our training scheme to relaxed supervision contexts, e.g. semi-supervised [START_REF] Robert | Hybridnet: Classification and reconstruction cooperation for semi-supervised learning[END_REF] or weakly supervised [START_REF] Durand | Exploiting negative evidence for deep latent structured models[END_REF], in order to perform full trajectory forecasting using only categorical labels at training time (e.g. presence or absence of change points).
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Figure 1 :

 1 Figure 1: Limitation of the euclidean (MSE) loss: when predicting a sudden change (target blue step function), the 3 predictions (a), (b) and (c) have similar MSE but very different forecasting skills. In contrast, the STDL loss proposed in this work, which disentangles shape and temporal decay terms, supports predictions (b) and (c) over prediction (a) that does not capture the sharp change of regime.

Fig 1 .

 1 Here, the target ground truth prediction is a step function (in blue), and we present three predictions, shown in Fig 1(a), (b), and (c), which have a similar MSE loss compared to the target, but very different forecasting skills. Prediction (a) is not adequate for regulation purposes since it doesn't capture the sharp drop to come. Predictions (b) and (c) much better reflect the change of regime since the sharp drop is indeed anticipated, although with a slight delay (b) or with a slight inaccurate amplitude (c). This paper introduces the Shape and Time Distortion Loss (STDL), a new objective function for training deep neural networks in the context of multi-step and non-stationary time series forecasting. STDL explicitly disentangles into two terms the penalization related to the shape and the temporal localization errors of change detection (section 3). The behaviour of STDL is shown in Fig 1: whereas the values of our proposed shape and temporal losses are large in Fig 1(a), the shape (resp. temporal) term is small in Fig 1(b) (resp. Fig 1(c)). STDL combines shape and temporal terms, and is consequently able to output a much smaller loss for predictions (b) and (c) than for (a), as expected.

Figure 2 :

 2 Figure 2: Our proposed framework for training deep forecasting models.

Figure 3 :

 3 Figure 3: Shape and Time Distortion Loss computation for separating the shape and temporal errors.

Figure 4 :

 4 Figure 4: Qualitative forecasting results.

Figure 5 (

 5 Figure 5(a): Speedup of STDL

Table 1 :

 1 Forecasting results evaluated with MSE, Shape and Time metrics, averaged over 10 runs (mean ± standard deviation). For each experiment, best method(s) (Student t-test) in bold.

			Fully connected network (MLP)	Recurrent neural network (Seq2Seq)
	Dataset Eval	MSE	DTWγ [13]	STDL (ours)	MSE	DTWγ [13]	STDL (ours)
		MSE	1.65 ± 0.14	4.82 ± 0.40	1.67± 0.184	1.10 ± 0.17	2.31 ± 0.45	1.21 ± 0.13
	Synth	DTW	38.6 ± 1.28	27.3 ± 1.37	32.1 ± 5.33	24.6 ± 1.20	22.7 ± 3.55	23.1 ± 2.44
		TDI	15.3 ± 1.39	26.9 ± 4.16	13.8 ± 0.712	17.2 ± 1.22	20.0 ± 3.72	14.8 ± 1.29
		MSE	31.5 ± 1.39	70.9 ± 37.2	37.2 ± 3.59	21.2 ± 2.24	75.1 ± 6.30	30.3 ± 4.10
	ECG	DTW	19.5 ± 0.159	18.4 ± 0.749	17.7 ± 0.427	17.8 ± 1.62	17.1 ± 0.650	16.1 ± 0.156
		TDI	7.58 ± 0.192	38.9 ± 8.76	7.21 ± 0.886	8.27 ± 1.03)	27.2 ± 11.1	6.59 ± 0.786
		MSE	0.620 ± 0.010	2.52 ± 0.230	1.93 ± 0.080	0.890 ± 0.11	2.22 ± 0.26	1.00 ± 0.260
	Traffic	DTW	24.6 ± 0.180	23.4 ± 5.40	23.1 ± 0.41	24.6 ± 1.85	22.6 ± 1.34	23.0 ± 1.62
		TDI	16.8 ± 0.799	27.4 ± 5.01	16.7 ± 0.508	15.4 ± 2.25	22.3 ± 3.66	14.4± 1.58

Table 2 :

 2 , we report the comparison between Seq2Seq models trained with STDL, DTW γ and MSE. We see that STDL is always better than MSE in shape (Ramp score) and equivalent to DTW γ in 2/3 experiments. In time (Hausdorff metric), STDL is always better or equivalent compared to MSE (and always better than DTW γ , as expected). Forecasting results of Seq2Seq evaluated with Hausdorff and Ramp Score, averaged over 10 runs (mean ± standard deviation). For each experiment, best method(s) (Student t-test) in bold.

			MSE	DT W γ [13]	STDL (ours)
		Hausdorff	2.87 ± 0.127	3.45 ± 0.318	2.70 ± 0.166
	Synthetic Ramp score (x10)	5.80 ± 0.104	4.27 ± 0.800	4.99 ± 0.460
		Hausdorff	4.32 ± 0.505	6.16 ± 0.854	4.23 ± 0.414
	ECG5000 Ramp score	4.84 ± 0.240	4.79 ± 0.365	4.80 ± 0.249
		Hausdorff	2.16 ± 0.378	2.29 ± 0.329	2.13 ± 0.514
	Traffic	Ramp score (x10) 6.29 ± 0.319	5.78 ± 0.404	5.93 ± 0.235

Table 3 :

 3 Comparison to the tangled variants of STDL for the Seq2Seq model on the Synthetic dataset, averaged over 10 runs (mean ± standard deviation).

	43]

t -W [28] STDL t -BC [

Table 4 :

 4 Comparison with state-of-the-art forecasting architectures trained with MSE on Traffic, averaged over 10 runs (mean ± standard deviation).

	Seq2Seq STDL

A Seq2Seq architecture was the winner of a

Kaggle competition on multi-step time series forecasting (https://www.kaggle.com/c/web-traffic-time-series-forecasting)

We use the available Github code for both methods.