
HAL Id: hal-02291575
https://hal.science/hal-02291575v1

Submitted on 19 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Comparative Study of Forced Oscillators for the
Adaptive Generation of Rhythmic Movements in Robot

Controllers
Melanie Jouaiti, Patrick Henaff

To cite this version:
Melanie Jouaiti, Patrick Henaff. Comparative Study of Forced Oscillators for the Adaptive Generation
of Rhythmic Movements in Robot Controllers. Biological Cybernetics (Modeling), 2019, 113 (5-6),
pp.547-560. �10.1007/s00422-019-00807-8�. �hal-02291575�

https://hal.science/hal-02291575v1
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

Comparative Study of Forced Oscillators for the Adaptive
Generation of Rhythmic Movements in Robot Controllers

Melanie Jouaiti · Patrick Hénaff
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Abstract The interest of Central Pattern Generators

(CPGs) in robot motor coordination is universally rec-

ognized so much so that a lot of possibilities on different

scales of modeling are nowadays available. While each

method obviously has its advantages and drawbacks,

some could be more suitable for human-robot interac-

tions.

In this paper, we compare three oscillator models:

Matsuoka, Hopf and Rowat-Selverston models. These

models are integrated to a control architecture for

a robotic arm and evaluated in simulation during

a simplified handshaking interaction which involves

constrained rhythmic movements. Furthermore, Heb-

bian plasticity mechanisms are integrated to the Hopf

and Rowat-Selverston models which can incorporate

such mechanisms, contrary to the Matsuoka. Results

show that the Matsuoka oscillator is subpar in all

aspects and for the two others, that plasticity improves

synchronization and leads to a significant decrease of

the power consumption.

Keywords Oscillator · synchronization · rhythmic

movements · robot controller

1 Introduction

Central Pattern Generators (CPGs) are biological

structures found in the central nervous system of

vertebrates or in some ganglia of invertebrates. CPGs
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can generate a rhythmic signal even when the in-

put signal is not rhythmic, modulated by afferent

sensory feedbacks. While their implication in upper

limb movements is strongly suspected (Schaal, 2006;

Zehr et al, 2004), their role in locomotion has been

recognized and widely studied. Mesoscopic CPGs

are usually based on a pair of half-center neurons

(Grillner and Wallen, 1985), controlling the extensor

and flexor muscles. CPGs have several interpretations

which differ according to the level of bio-inspiration

(Ijspeert, 2008; Yu et al, 2014). Biologists usually

present CPGs as complex structures which encompass

sensory neurons, motor neurons and interneurons and

receive sensory feedback (Rybak et al, 2006; Cattaert

and Le Ray, 2001). However, in computational neuro-

science, some aspects tend to not be taken into account

for simplicity’s sake. While some studies endeavour

to be biologically accurate (Nassour et al, 2019; Taga

et al, 1991; Manoonpong et al, 2008), others present

simplified interpretations (Mori et al, 2004; Wu and

Ma, 2010).

The interest of using CPGs in robotics is nowadays

widely recognized, so much so that a great variety of

possibilities has been proposed (see Yu et al (2014);

Ijspeert (2008) for reviews). The term CPG refers to

a network of coupled oscillators. Non-linear models of

CPGs, composed of relaxation oscillators, can be en-

trained by an oscillatory input or with a coupled CPG if

the coupling is strong enough or if the input frequency is

close enough to the intrinsic frequency of the oscillator,

thus ensuring coordination. Even though CPGs have

mostly been used for robotic locomotion (Taga, 1995;

Shan and Nagashima, 2002; Ayers, 2004; Kamimura

et al, 2005; Arena et al, 2006; He et al, 2006; Pelc et al,

2008; Sprowitz et al, 2010; Liu et al, 2011; Pinto et al,

2012; Wang et al, 2013), see Ijspeert (2008) for a review,
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some studies explore how CPGs affect upper limb con-

trol as well (Williamson, 1998; Yang et al, 2010). The

strength of CPGs resides in their self-synchronization

ability, their oscillating stability despite perturbation

and the variety of behaviors they can generate. Besides,

plasticity mechanisms can be integrated, thus making

the CPG even more robust and versatile. This is actu-

ally essential to have adaptive robot controllers.

In social, collaborative robotics, human-robot inter-

actions are paramount. If humans are to be comfortable

interacting with robots, robots have to behave in a co-

herent and adaptive way, i.e. their response has to be

suited to the partner and the social context. Human

interactions entail a lot of rhythmic non-verbal com-

munication (waving, handshaking, walking) and it has

been observed that humans learn from these interac-

tions and adapt to their partner, thus leading to inter-

personal synchronization and motor coordination and

to a greater engagement in the interaction. It is hence

important for robots to be able to replicate that. We

consider the case of handshaking which is a highly social

act responsible for the creation of conscious and uncon-

scious links between the interaction partners. Despite

its apparent triviality, it involves complex tasks from a

neuroscience and robotics point of view, one of them be-

ing the emergence of synchronization and phase-locking

observed during the act. Kasuga and Hashimoto (2005)

introduced a framework for human-robot handshaking

using neural oscillators. They were able to control how

passive or active the robot handshake was and modu-

late the human perception of the response.

A great variety of oscillators can be found in the

literature at different modeling scales; amongst the

most popular, to name a few: microscopic (Hodgkin

and Huxley, 1952) which models single neuron; meso-

scopic (Rowat and Selverston, 1993; Matsuoka, 1985)

which models populations of neurons, taking biological

mechanisms into account and macroscopic (Hopf,

1942) which also models populations of neurons but

with no bio-inspiration. To determine which oscillator

is actually more suited to a given purpose and why,

our contribution consists in comparing three oscillator

models in the same control architecture (Kasuga and

Hashimoto, 2005) and in explaining the differences

observed. A similar endeavour was undertaken by

Collins and Richmond (1994) who compared three

different neuronal oscillator models (Stein, Van der

Pol and Fitzhugh Nagumo) and two different coupling

schemes for locomotion. They studied the ability of

each oscillator to produce the walking, trotting, and

bounding gaits, as well as the possibility to switch

between multiple gait patterns. The originality of

this paper resides in comparing three oscillators by

evaluating them on their entrainment abilities, power

consumption with and without plasticity mechanisms

in the same handshaking task, which, to our knowledge,

has never been done before.

This paper is organized as follows. First, we present

the three oscillator models studied: Matsuoka, Hopf and

Rowat-Selvertson. They were chosen because Matsuoka

is a neural oscillator, Hopf a non-linear oscillator and

they are both the most popular choices in robotics. Be-

sides, we believe Rowat-Selverston to be a compromise

between the two alternatives, being a non-linear oscilla-

tor inspired by Van der Pol but it also encompasses bio-

logical inspiration, making it a neural oscillator as well.

Then, in section III, we compare the three oscillators, in

one set of experiments on their entrainment range and

in another set of experiments with their synchroniza-

tion capacity. Then we integrate plasticity mechanisms

to Hopf and Rowat-Selverston and evaluate the ener-

getic cost. Finally, in section IV, we discuss our results

and future prospects.

2 Material and Method

2.1 Oscillating Neuron Models

2.1.1 Matsuoka neuron

Introduced in 1985, the Matsuoka model (Matsuoka,

1985) is undoubtedly the most well-known and em-

ployed neural oscillator. In the original paper, a single

neuron defined by two differential equations was stud-

ied, as well as its behaviour in networks of n coupled

neurons. Since Taga et al (1991), it has become custom-

ary to couple two neurons in CPGs. While this model

has mostly been used for robotic biped locomotion (Liu

et al, 2006, 2007, 2008; Panwart and Kumar, 2012; Liu

et al, 2012; Al-Busaidi et al, 2012), some original works

applied it to achieve human-robot handshaking (Ka-

suga and Hashimoto, 2005), a chewing robot (Xu et al,

2009) or traffic lights regulation (Fang et al, 2013). A

Matsuoka neuron is a mesoscopic model defined by the

following equations:

ẋ =
1

T
(−x− bv + c+ εF ) (1a)

v̇ =
1

τ
(−v + y) (1b)

y = max(x, 0) (1c)

where F represents the input signal, T and τ are time

constants and b the self-inhibition (or neuron fatigue),

y is the cell output and c the excitatory tonic input.
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2.1.2 Hopf oscillator

The non-linear Hopf oscillator (Hopf, 1942) is partic-

ularly popular in robotics. It has been widely applied

to robot locomotion (Li et al, 2013; Matos and Santos,

2010; Ijspeert, 2004; Brambilla et al, 2006; Fuente et al,

2013; Buchli and Ijspeert, 2008; Righetti and Ijspeert,

2006, 2008) and robot swimming (Seo et al, 2010; Hu

et al, 2011; Zhou and Low, 2012; Hu et al, 2014); but

also to robot hopping (Buchli et al, 2005, 2006), drum-

ming (Degallier et al, 2006), crawling, reaching (Degal-

lier et al, 2008), the flight of a robotic bat (Chung and

Dorothy, 2010).

The Hopf oscillator can be considered as a macro-

scopic model of neural oscillator structures, so it does

not have the half center structure usually present in

neural oscillators. The equations for a Hopf cell are de-

fined as follows:

ẋ = (µ− (x2 + y2))x− θy + εF (2a)

ẏ = (µ− (x2 + y2))y + θx (2b)

with F the input signal and y the neuron output. For

µ < 0.5, oscillations are damped. µ determines the out-

put amplitude which can be influenced by ε the input

gain. θ determines the intrinsic frequency of the oscil-

lator (ω ≈ 0.155 · θ).

2.1.3 Rowat-Selverston Neuron

The Rowat-Selverston neuron (Rowat and Selverston,

1993) is able to produce discrete and rhythmic activi-

ties depending of two parameters like shown in Jouaiti

and Henaff (2018); Nassour et al (2014). Properties of

the Van der Pol can be applied to it since it is a gen-

eralized Van der Pol oscillator, notably the dynamic

Hebbian learning of frequency introduced by Righetti

et al (2006), as demonstrated in Jouaiti et al (2018).

This model has been underused to this day, only few

studies employ it (e.g. (Jouaiti et al, 2018; Arikan and

Irfanoglu, 2011; Nassour et al, 2014)).

V̇ = y + εF (3a)

ẏ =
1

τm

(
σf −

τm
τs
− 1− σf tanh2

(
σf
Af

V

))
y

− 1 + σs
τsτm

V +
Af
τsτm

tanh

(
σf
Af

V

) (3b)

with F the input signal and y the neuron output, V the

cellular membrane potential, q the slow current, τm the

time constant of the cellular membrane, τs is the time

constant of slow current activation (τm � τs), σs and

σf represent respectively the conductance of slow and

fast currents, Af influences the amplitude of V .

2.1.4 Mathematical Plasticity Modeling

Righetti et al (2006) presented a frequency adaptation

rule for the Hopf oscillator. This rule allows the oscilla-

tor to learn the input frequency and truly adapt to the

input signal. Besides, when the interaction stops, the

system retains the learning and remains at the learned

frequency:

θ̇ = −η y√
x2 + y2

F (4)

With η the learning step.

For the Rowat-Selverston cells, the plasticity mech-

anisms previously introduced in Jouaiti et al (2018) are

employed: frequency learning, amplitude learning and

synaptic gain learning:

σ̇s =2εF
√
τmτs(1 + σs − σf ) · y√

V 2 + y2
(5)

Ȧf = − µ

((
νσfV

Af

)2

− F 2

)
(6)

ε̇ = λtanh2(ξF )
(
1− (εF )2

)
(7)

with µ and λ learning steps, ν a gain modulating the

output amplitude and ξ a gain ensuring that tanh2(ξF )

is 0 when no input is applied and 1 otherwise.

For the Matsuoka model, one could modulate the

global output as done in Taga et al (1991) or change the

time constants (de Rugy et al, 2003). We will present

the latter option. This method consists in comparing

the oscillator period Pr and the target period Pt and if

this difference exceeds a given threshold δ, the following

adaptation equation is enabled:

τ = c1 · Pt (8)

T = c2 · Pt (9)

with c1 and c2 two empirically determined constants

and Pt the target period, i.e. the period of the input.

2.1.5 Parameter Tuning

The intrinsic properties of each oscillator model can be

modulated thanks to the various parameters available.

Properties of interest are the intrinsic frequency and

amplitude of the oscillations.
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For the Matsuoka model, the amplitude is deter-

mined by c, though this is merely an offset so the am-

plitude really does not change. For Hopf and Rowat-

Selverston, µ and Af determine the amplitude respec-

tively but it can be further influenced by the input

amplitude εF . Note though that setting the amplitude

of Hopf is rather troublesome and some output ampli-

tudes are just impossible to set, Rowat-Selverston is

more straightforward because the amplitude is propor-

tional to Af .

In the Matsuoka model, four parameters are neces-

sary to set the intrinsic frequency

(
ω = 1

τ

√
(T+τ)b
T ·W − 1

)
and two conditions have to be met in order to obtain

oscillations (W > 1 + T/τ and b > W + 1) (see

Matsuoka (2011) for details). Note also that Matsuoka

synchronizes better with an input signal when it is

unable to oscillate by itself. For Hopf, if µ < 0.5,

the oscillations are damped; the intrinsic frequency

depends solely on θ. Finally, the Rowat-Selverston

model produces oscillations if σf > 1 + τm/τs. The

intrinsic frequency is dependent on τm, τs, σs, W .

While the Rowat-Selverston model seems as difficult

to control as the Matsuoka model, it really is not

so. Setting a particular intrinsic frequency is, in

both cases, a complicated endeavour but putting the

oscillator in conditions such that it can adapt to a

wide range of frequencies is actually fairly easy with

Rowat-Selverston. Indeed, by choosing wisely τm and

τs, the oscillator can cover the desired frequency range

quite easily, even if it is quite wide. Then the value

of σs hardly matters, thanks to the learning rule. On

the contrary, in order to change the frequency range

of the Matsuoka model, the time constants have to be

changed since they’re only able to cover a small range.

In biological systems, the membrane time constants are

set and cannot be modulated so this kind of plasticity

is not biologically sound.

2.2 Implementing the CPG controller for a robot

2.2.1 Coupling the oscillatory neurons

From now on, we consider two coupled oscillators con-

trolling the flexor and the extensor muscles in reference

to the half center structure introduced by Rybak et al

(2006). However, in robotics, this is hardly applicable

as such since robots have a single joint in place for the

flexor and extensor parts. It is then common practice

to subtract both commands to obtain the output (see

Figure 1).

In all equations, the term in W models the mutual

inhibition between the extensor and the flexor cells.

Fig. 1 Coupled oscillatory cells. C{E,F} indicates whether
the neuron cell controls the extensor or the flexor

The equations are thus rewritten as follows (with FF =

−FE):

• Matsuoka model

ẋ{E,F} =
1

T
(−x{E,F} −W · y{F,E}−

b · v{E,F} + c+ εF{E,F})
(10a)

v̇{E,F} =
1

τ
(−v{E,F} + y{E,F}) (10b)

y{E,F} = max(x{E,F}, 0) (10c)

• Hopf model

ẋ{E,F} =(µ− (x2{E,F} + y2{E,F}))x{E,F}−

W tanh(x{F,E})− θy{E,F} + εF{E,F}
(11a)

ẏ{E,F} =(µ− (x2{E,F} + y2{E,F}))y{E,F}+

θx{E,F}
(11b)

Note that the term W tanh(xj) has been added to

the original model in order to couple the two Hopf cells

and thus obtain a half center model. In the rest of the

paper, we consider W = 1 for Hopf.

• Rowat-Selverston model

V̇{E,F} =y{E,F} −W
y{E,F}

1 + e−4y{F,E}

+ εF{E,F}

(12a)

ẏ{E,F} =
1

τm

(
σf −

τm
τs
− 1−

σf tanh2

(
σf
Af

V{E,F}

))
y{E,F}−

1 + σs
τsτm

V{E,F}+

Af
τsτm

tanh

(
σf
Af

V{E,F}

)
(12b)

2.2.2 The Kasuga Control Architecture

Kasuga and Hashimoto (2005) introduced a control

architecture for human-robot handshaking using
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Matsuoka neurons. This framework was validated

in simulation and experimentally. This architecture

controls two robot joints which are coupled together

(see Figure 2). The input of each neural oscillator is

the weighted sum of the force exerted on the joint,

absolute value of the force and output of the other joint

controller. The force inputs determine the oscillation

amplitude and whether the handshake is passive or

active. Coupling the two joints together prevents the

amplitude from decreasing, which has been observed

with the Matsuoka oscillator by Kasuga and Hashimoto

(2005). The output is considered as an angular velocity

command.

In this system, the torque is applied by the ball to

the gripper, which in turns entrains the robot joints and

thus provides the CPG inputs. Because of the mechan-

ical coupling, they form a closed loop with the human

partner.

In order to integrate the oscillators into the Kasuga

architecture for joints i and j, the cells equations be-

come:

• Matsuoka model

ẋi{E,F} =
1

T
(−xi{E,F} −W · yi{F,E} − b · vi{E,F} + c)

+ Li2Fi{E,F} + Li1|Fi{E,F} |+
Ki{E,F}(yjE − yjF )

(13a)

v̇i{E,F} =
1

τ
(−vi{E,F} + yi{E,F}) (13b)

yi{E,F} = max(xi{E,F} , 0) (13c)

With FiE = −FiF , KiE = −KiF and j the other joint.

• Hopf model

ẋi{E,F} = (µ− (x2i{E,F}
+ y2i{E,F}

))xi{E,F}

− tanh(xi{F,E})− θiyi{E,F}+

Li2Fi{E,F} + Li1|Fi{E,F} |+
Ki{E,F}(xjE − xjF )

(14a)

ẏi{E,F} =(µ− (x2i{E,F}
+ y2i{E,F}

))yi{E,F}+

θixi{E,F}

(14b)

• Rowat-Selverston model

V̇i{E,F} =yi{E,F} −W
yi{E,F}

1 + e
−4yi{F,E}

+

· Li2Fi{E,F} + Li1|Fi{E,F} |+
Ki{E,F}(VjE − VjF )

(15a)

ẏi{E,F} =
1

τm

(
σf −

τm
τs
− 1−

σf tanh2

(
σf
Afi

Vi{E,F}

))
yi{E,F}−

1 + σs
τsτm

Vi{E,F}+

Afi{E,F}

τsτm
tanh

(
σf

Afi{E,F}

Vi{E,F}

)
(15b)

Unless stated otherwise, the various gains are: Oi = 0.2,

Ki = 0.5, Li2 = 0.4, Li1 = 0.5 for Rowat-Selverston

and Hopf oscillators. For the Matsuoka oscillator, the

input gains differ: Li2 = 0.02, Li1 = 0.035. Those values

were obtained empirically. One important criterion was

that the ball should stay inside the gripper. Indeed,

some parameters created instability and unpredictable

behavior from the robot. Then, the parameters were

fine-tuned to try and get the best possible performance.

L1 C1E

C1F

|torque1|

C1
torque1

L2 C2E

C2F

|torque2|

C2
torque2

K1

K2

O1

O2

output1

output2

+
+
+

+
-

-

+

+
+

+
-

-

+

+

-

-

Fig. 2 Oscillatory cells integrated to the generalized Kasuga
architecture. Ci, Li, Ki, Oi are gains and Ci{E,F} the neu-
ron cell for the joint i controlling the extensor or flexor

2.3 Evaluation of coordination: Phase Locking Value

Introduced by Lachaux et al (1999) to measure coordi-

nation in brain signals, the Phase Locking Value (PLV)

assumes that the two signals are locked with a constant

phase difference. Allowing for deviations, it evaluates
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this spread: from 0 (no coordination) to 1 (perfect co-

ordination). We use a variation of the original imple-

mentation. First, one has to obtain the instantaneous

phase φ with the Hilbert transform, then the instanta-

neous PLV can be computed:

PLV (t) =
1

N

∣∣∣∣∣
N∑
i=0

ej(φ1(i)−φ2(i))

∣∣∣∣∣ (16)

with N the sliding window size, j =
√
−1, φk the in-

stantaneous phase of signal k.

3 Results: Comparison between three oscillator

models

The three oscillators are evaluated according to their

entrainment range and their synchronization capacity

during a handshaking simulation inspired by Kasuga

and Hashimoto (2005). Then Hebbian plasticity is in-

tegrated to the Hopf and Rowat-Selverston models and

the impact on the energetic cost is observed. We also

implement a constants adaptation mechanism for Mat-

suoka.

3.1 Entrainment Performance

In order to determine their entrainment range, each os-

cillator model is subjected to various input frequencies

for 100 s. At the beginning, the input frequency is low
at 0.1 Hz and increases by 0.1 every 100 s. At each fre-

quency change, the average PLV is computed between

the input and output values of the oscillator, taking

only the last 100 s into account. If this value is be-

low 0.95, the input frequency is considered outside the

bandwidth of the oscillator.

The process is repeated for several intrinsic frequen-

cies of the oscillators. Since the intrinsic frequency de-

pends on the parameters, they are tuned in order to get

matching frequencies: σs, θ and b for Rowat-Selverston,

Hopf and Matsuoka respectively.

Table 1 shows the entrainment range of each model

for various intrinsic frequencies. We can clearly observe

that the Matsuoka model is very limited and is not

able to synchronize if the input frequency differs too

much from its own. Besides, Rowat-Selverston cannot

synchronize if the input frequency is too low, contrary

to Hopf, but its frequency range is considerably larger.

Note that the entrainment capacity ∆ω of Hopf is

highly dependent on the value of ε. The stronger the

coupling, i.e the higher ε, the better the oscillator syn-

chronizes. On the contrary, ε has to be small for Mat-

suoka and neither too small, nor too big for Rowat-

Selverston. Due to those discrepancies, we did not em-

ploy the same ε value for the oscillators but rather chose

to put them all in the best possible synchronization con-

ditions which were determined by running simulations

with an extensive range of values of ε, we then selected

the value of ε which yielded the higher PLV score.

Table 1 The entrainment range where PLV ≥ 0.95 for each
oscillator with following parameters: Rowat-Selverston pa-
rameters: τm = 0.35, τs = 3.5, σf = 1.0, W = 0.05, ε = 0.1,
Af = 0.5. Hopf parameters: µ = 0.5, ε = 1.0. Matsuoka pa-
rameters: τ = 0.5, T = 0.25, ε = 0.001, c = 0.1, A = 3. ωintr

is the intrinsic frequency of the neuron determined by σs, θ
and b respectively

Model ωintr ωmin ωmax ∆ω =
[Hz] [Hz] [Hz] ωmax − ωmin

σs
13 0.5 0.1 13.8 13.7
50 1.0 0.1 18.3 18.2

Rowat- 120 1.5 0.2 23.7 23.5
Selverston 200 2.0 0.2 28.9 28.7

340 2.5 0.3 36.9 36.6
490 3.0 0.3 45.5 45.2

θ
3.5 0.5 0.1 9.5 9.4
7 1.0 0.1 9.8 9.7

Hopf 10 1.5 0.1 10.0 9.9
14 2.0 0.1 10.3 10.2
16 2.5 0.1 10.5 10.4
20 3.0 0.1 10.8 10.7

b
3.5 0.5 0.4 0.7 0.3

Matsuoka 8 1.0 0.9 1.2 0.3
13 1.5 1.3 1.6 0.3

3.2 Synchronization Evaluation in Simulated

Handshaking

In this section, in order to evaluate the three oscillators,

they are placed into the version of the Kasuga architec-

ture introduced previously in section 2.2.2, which has

been generalized such that any oscillator can be inte-

grated.

The simulations have been conducted with the Ki-

nova Mico robot in the V-REP simulator. Since grasp-

ing cannot accurately be simulated, we realize a over-

simplified handshake with a static collidable ball in-

stead of the human hand. The ball is animated with an

up and down motion of amplitude 0.16 m and frequency

2 Hz, unless stated otherwise. The 2 Hz frequency was

found appropriate for handshaking (Tagne et al, 2016).

The moving ball forces the arm to move along, by ex-
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erting a force on the fingers of the robot (see Figure

3).

Fig. 3 Simulated robotic arm with the static ball inside its
gripper. We control the ball kinematics. We consider a rigid
mechanical link because we want to impose a force on the
robot which cannot be influenced. We set the ball position
repeatedly according to a sinusoidal signal. The time step is
small enough so that the motion appears smooth

The Mico arm has six degrees of freedom, but in

the current setup, inspired by Kasuga and Hashimoto

(2005), two joints, only the shoulder and elbow (joints

2 and 3 of the Mico robot) are controlled, the four other

joints are locked. At the beginning of the simulation, the

robot is not subjected to any external force (other than

gravity). Then, the ball moves in the vertical plane,

applying a perturbation to the robotic arm. Finally,

the interaction stops and the ball is released.

In order to evaluate how the oscillators react when

subjected to various frequency changes, the input signal

applied to the ball varies across time: from t = 0 s to t

= 20 s, 0.5 Hz; from t = 20 s to t = 40 s, 1.0 Hz; from
t = 40 s to t = 60 s, 1.5 Hz; from t = 60 s to t = 80

s, 2.0 Hz, from t = 80 s to t = 100 s, 1.5 Hz; at t =

100 s, the ball is released and until t = 110 s, no force

is applied.

3.2.1 Results without any Plasticity Mechanisms

At the beginning of the interaction, the intrinsic fre-

quency of each oscillator is 1 Hz. See Table 2 for the

parameters used in the simulations.

Table 2 Oscillator parameters.

Model Parameters
Matsuoka τ = 0.5, T = 0.25, c = 0.1,

W = 4.0, b = 10.0
Rowat- τm = 0.2, τs = 2.0, σf = 1.0, W = 0.05,

Selverston Af2
= 0.5, Af3

= 0.9, σs = 20
Hopf µ = 0.5, θ = 7.0

Figures 4, 5 and 6 represent the CPG input and

output over 3 s for each frequency range. Matsuoka

appears unable to synchronize at 0.5 Hz and the mo-

tion is irregular during the whole simulation (Figure 4).

Kasuga and Hashimoto (2005)’s results had a smooth

and regular motion because the oscillator was put in

a non-oscillating mode where the Matsuoka oscillator

synchronizes better. Hopf and Rowat-Selverston, how-

ever, have satisfactory frequency entrainment and the

motion is regular, except for 0.5 Hz where Hopf strug-

gles to synchronize (Figure 5). For the three oscillators,

we can also observe that the input signal slightly pre-

cedes the output signal.

The PLV, represented on Figure 7 is used to evalu-

ate the coordination between the force exerted on the

joints and each neural oscillator model. This confirms

what we previously observed: while the Matsuoka PLV

(mean PLV: 0.91, 0.86) appears satisfactory, it actu-

ally never reaches 1.0 and is highly irregular for 0.5 Hz.

This can be explained by the fact that the PLV quality

and accuracy decrease when the signals are not per-

fectly sinusoidal. The PLV of Rowat-Selverston (0.93,

0.93) is more regular than Hopf (0.91, 0.9) for 0.5 Hz,

their performances are similar for the rest of the sim-

ulation, though the transitions are more noticeable for

Rowat-Selverston.

3.2.2 Results with Plasticity Mechanisms

In this section, Hebbian plasticity mechanisms are inte-

grated to Hopf and Rowat-Selverston in order to have

more adaptable and versatile systems. For Matsuoka, a

time constants adaptation mechanism is implemented.

Then, the oscillators are once more evaluated.

Simulations were run with the same parameters

as previously. Additionally, for Rowat-Selverston,

λ = 0.005, µ = 5e−6; ε2 = 0.2, ε3 = 0.3 and for Hopf,

η2 = 0.2, η3 = 0.25. Besides, plasticity could not be

applied with the previous Kasuga parameters, Li1
had to be set to zero. For Matsuoka, Ci = 0.08 and

Ki = 0.1.

Figures 8, 9, 10 and 11 represent the CPG input

and output over 3 s for each frequency range. Plasticity

has little effect on the PLV (see Figure 12). The Mat-

suoka PLV (mean PLV: 0.86, 0.84) still never reaches

1.0 and is highly irregular for 0.5 Hz and 1 Hz. Rowat-

Selverston with frequency learning (0.93, 0.92) and all

plasticities (0.92, 0.89) is similar to Hopf (0.90, 0.89)

overall. The PLV appears to decrease for joint 3 with

Rowat-Selverston with plasticities, however, this can be

explained by the fact that the force decreases so much,

it becomes mostly noise, which the PLV does not handle

well.
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Figure 4 Response of the Matsuoka oscillator. In gray: CPG input, in black: CPG output for both joints
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Figure 5 Response of the Hopf oscillator. In gray: CPG input, in black: CPG output for both joints

However, plasticity slightly extends the entrain-

ment range (see Table 3), especially for Matsuoka

which now has an entrainment range similar to Hopf.

Furthermore it particularly improves the energetic

impact of the oscillator. Indeed, if the intrinsic prop-

erties (amplitude, intrinsic frequency) of the oscillator

are able to adapt to a varying input by learning

more suitable parameters, the ball will be able to

anticipate the input signal and will not exert so much

force on the robotic arm and hence the amplitude

of the force applied would be less important. This

anticipation is evidenced by the fact that the delay

between the input and output has now disappeared for

Hopf and Rowat-Selverston. It is however still present

for Matsuoka. Table 4 shows that frequency learning

already leads to a significant decrease of the average

power consumed by the robot for all three oscillators.

Furthermore, Af and ε learning for Rowat-Selverston

decrease this consumption further.
Comparing with the simulations without plasticity,

we see that the force applied on the joints for the

three oscillators without plasticity never decreased.

This shows that while the oscillator seems to adapt, it

merely moves along, entrained by the ball, hence the

delay between the input and output. This is further

illustrated by the fact that once the interaction is

over, the oscillator does not retain the ball frequency

but returns to its own. On the other hand, for the

oscillators endowed with plasticity, once they adapt



Comparative Study of Oscillators 9

−
20

0
−

10
0

0
10

0
20

0

out$t

ou
t$

F
2

F
2 

(N
.m

)

out$t

ou
t$

F
2

out$t

ou
t$

F
2

out$t

ou
t$

F
2

out$t

ou
t$

F
2

s2
 (

ra
d/

s)
−

3
−

2
−

1
0

1
2

3

5.0 6.0 7.0 8.0

−
20

0
−

10
0

0
10

0
20

0

ou
t$

F
3

F
3 

(N
.m

)

25.0 26.0 27.0 28.0

ou
t$

F
3

45.0 46.0 47.0 48.0

ou
t$

F
3

time (s)
65.0 66.0 67.0 68.0

ou
t$

F
3

85.0 86.0 87.0 88.0

ou
t$

F
3

s3
 (

ra
d/

s)
−

3
−

2
−

1
0

1
2

3

Figure 6 Response of the Rowat-Selverston oscillator. In gray: CPG input, in black: CPG output for both joints
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indicates the reference for perfect coordination at 1.0

(new frequency learned), the delay disappears and a

decrease in force can be observed, even more so for the

Rowat-Selverston oscillator with all plasticities.

4 Discussion

In this paper, we compared three oscillators often

used in CPG modeling: Matsuoka, Hopf and Rowat-

Selverston. These oscillators were evaluated firstly on

their entrainment range. Then they were integrated

into a simple control architecture and we compared

their synchronization and power consumption perfor-

mance with and without plasticity using a handshaking

simulation.

We showed that integrating plasticity mechanisms

into the three oscillators has no real impact on co-

ordination performance but can lead to a significant

power consumption decrease and an extended entrain-

ment range.

With a cumbersome parameter tuning process, a

very limited entrainment range, the Matsuoka oscillator

is not the best choice for the adaptive control of a robot

confronted to unpredictable feedbacks. Indeed, one has

to bear in mind that CPG use is not restricted to human

handshaking. To get good performance with the Mat-

suoka oscillator one has to have a rather accurate idea of

the input (frequency, amplitude) beforehand. However,

the time constants adaptation mechanism significantly

improves the entrainment of this oscillator and even the

power consumption.
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Figure 8 Response of the Matsuoka oscillator with time constants adaptation. In gray: CPG input, in black: CPG output
for both joints
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Figure 9 Response of the Hopf oscillator with Frequency Learning. In gray: CPG input, in black: CPG output for both joints

Comparing Hopf and Rowat-Selverston is however

less straightforward. While Hopf synchronizes as well

(sometimes better) as Rowat-Selverston and appears

easier to control, this simplicity makes it less than

obvious to render Hopf more adaptive by integrating

new plasticity rules. Its entrainment range is noticeably

smaller, even with frequency learning and its power

consumption greater than Rowat-Selverston. It could

probably benefit from amplitude learning however,

amplitude setting is done in such a way that we fail to

see how it could possibly be learned.

On the other hand, Rowat-Selverston is obviously

more complex with more parameters to handle but it

offers more flexibility and versatility, making it possible

to design plasticity mechanisms allowing the system to

truly adapt and not only offer a wide entrainment range

but also a significantly lower power consumption.

Furthermore, the three oscillators are all non-linear

systems, however the degree of non-linearity can be

modified more easily for Rowat-Selverston and Hopf

than Matsuoka. Rowat-Selverston also has a discrete

mode where it behaves like a PID controller (Jouaiti

and Henaff, 2018). This, however, does not seem to be

possible for Hopf and Matsuoka.

We feel that this study can help understand these

oscillators better and for which purpose they are better
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Figure 10 Response of the Rowat-Selverston oscillator with Frequency Learning. In gray: CPG input, in black: CPG output
for both joints
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Figure 11 Response of the Rowat-Selverston oscillator with all the plasticity mechanisms. In gray: CPG input, in black:
CPG output for both joints

suited. Very few works undertook the oscillator com-

parison endeavour (Collins and Richmond, 1994). We,

however, think that this is an important question as

many models are available but each has its own strength

and weaknesses and they may be suitable for different

purposes. In this work, we arbitrarily chose the Mat-

suoka, Hopf and Rowat-Selverston models because we

see them as complementary. Nevertheless, this work

could be extended by integrating other models into the

comparison, and also by testing other applications such

as locomotion, rhythmic work tasks, rhythmic move-

ments with no physical interaction and so on and so

forth. In future works, it would also be interesting to

evaluate the impact of impedance control on the os-

cillators and particularly the feel of the interaction in

human-robot physical interactions. We also expect the

stiffness to influence the learning mechanisms, espe-

cially the adaptation speed.
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0.

0
0.

4
0.

8

out$t

ou
t$

pl
v2

m
M

at
su

ok
a

0.
0

0.
4

0.
8

out$t

ou
t$

pl
v2

h
H

op
f

0.
0

0.
4

0.
8

out$t

ou
t$

pl
v2

rs
R

S_
FL

0 20 40 60 80 100

0.
0

0.
4

0.
8

out$t

ou
t$

pl
v2

rs
p

R
S_

P

time (s)
0.

0
0.

4
0.

8

out$t

ou
t$

pl
v3

m
M

at
su

ok
a

0.
0

0.
4

0.
8

out$t

ou
t$

pl
v3

h
H

op
f

0.
0

0.
4

0.
8

out$t

ou
t$

pl
v3

rs
R

S_
FL

0 20 40 60 80 100

0.
0

0.
4

0.
8

out$t

ou
t$

pl
v3

rs
p

R
S_

P
time (s)

Figure 12 PLV for joint 2 (left), joint 3 (right). The vertical grey lines delimit each frequency range. The horizontal line
indicates the reference for perfect coordination at 1.0

Table 3 Synchrony frequency range where PLV ≥ 0.95
for each oscillator with plasticity. ∆ω1 and ∆ω2 define the
frequency entrainment with plasticity and without plasticity

Model ωintr ωmin ωmax ∆ω1 ∆ω2

[Hz] [Hz] [Hz]

σs
13 0.5 0.1 14.1 14 13.7

Rowat- 50 1.0 0.1 18.6 18.5 18.2
Selverston 120 1.5 0.1 24.1 24 23.5
Frequency 200 2.0 0.1 29.2 29.1 28.7
Learning 340 2.5 0.1 37.5 37.4 36.6

490 3.0 0.1 46.6 46.5 45.2

θ
3.5 0.5 0.1 13.6 13.5 9.4
7 1.0 0.1 14.0 13.9 9.7

Hopf 10 1.5 0.1 14.2 14.1 9.9
Frequency 14 2.0 0.1 14.7 14.6 10.2
Learning 16 2.5 0.1 14.9 14.8 10.4

20 3.0 0.1 15.5 15.4 10.7

b
Matsuoka 3.5 0.5 0.1 10.1 10.0 0.3
T , τ 8 1.0 0.2 14.9 13.7 0.3

Adaptation 13 1.5 0.3 13.6 13.3 0.3

Table 4 Average power 1
Tmax

∑
|Fi(t) · vel(t)| (Watt) ap-

plied to both joints using the various neural oscillators

Model Joint 2 Joint 3
Rowat-Selverston 2.15 1.41

Rowat-Selverston - σs Learning 0.33 0.20
Rowat-Selverston - σs, Af , ε Learning 0.23 0.10

Hopf 1.12 1.07
Hopf - θ Learning 0.34 0.24

Matsuoka 1.16 0.27
Matsuoka - Time constants adaptation 0.54 0.1
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