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Mean-field Langevin System, Optimal
Control and Deep Neural Networks

Kaitong HU ∗ Anna KAZEYKINA † Zhenjie REN‡

Abstract

In this paper, we study a regularised relaxed optimal control problem and, in particular,
we are concerned with the case where the control variable is of large dimension. We introduce
a system of mean-field Langevin equations, the invariant measure of which is shown to be
the optimal control of the initial problem under mild conditions. Therefore, this system
of processes can be viewed as a continuous-time numerical algorithm for computing the
optimal control. As an application, this result endorses the solvability of the stochastic
gradient descent algorithm for a wide class of deep neural networks.
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1 Introduction

This paper revisits the classical optimal control problem, that is,

inf
α
V 0(α), where V 0(α) :=

∫ T

0
L(t,Xα

t , αt)dt+G(Xα
T ) and Xt = x0 +

∫ t

0
φ(r,Xα

r , αr)dr.(1.1)

In particular, we aim at providing a feasible algorithm for solving such problem (indeed, its
regularized version) when the dimensions of the state X and of the control α are both large.

It has been more than half a century since the discovery of Pontryagin’s maximum principle
[1], which states that in order to be an optimal control to the problem (1.1), α∗ needs to satisfy
the forward-backward ODE system:

α∗t = argminaH(t,X∗t , a, P
∗
t ), where H(t, x, a, p) := L(t, x, a) + p · φ(t, x, a),

X∗t = x0 +
∫ t

0 φ(r,X∗r , α
∗
r)dr,

P ∗t = ∇xG(X∗T ) +
∫ t

0 ∇xH(r,X∗r , α
∗
r , P

∗
r )dr.

(1.2)

It is worth mentioning that this necessary condition becomes sufficient if one imposes convexity
condition on the coefficients. To solve the forward-backward system, the most naive way is to
follow a fixed-point algorithm, that is, starting with an arbitrary control α, evaluate the forward
equation and then the backward one, and eventually compute a new control α̃ by solving the
optimization problem on the top line. Under some mild conditions, one may show that this
mapping α 7→ α̃ is a contraction at least on short horizon (i.e. for small T ), see e.g. [22] for a
discussion on a more general setting where the dynamics of X and P are allowed to be SDE.
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However, this algorithm has a major drawback, that is, the optimization on the top line is hard
to solve in high dimension (unless in some special cases when the optimizers have analytic forms).
That is why after the discovery of Pontryagin’s maximum principle, people have studied and
widely applied the related gradient descent algorithm, see e.g. [2,25]. In such iterative algorithm
at each step we update the value of the control variable along the direction opposite to that of
∇aH, that is,

αi+1 := αi − η∇aH(t,Xi
t , a, P

i
t ),

where η is the learning rate and Xi, P i are the forward and backward processes evaluated with
αi. In order to look into the convergence of such iteration, let us consider the continuous version
of this gradient descent algorithm, governed by the following system of ODEs on the infinite
horizon: 

dαst
ds = −∇aH(t,Xs

t , a
s
t , P

s
t ) on {s ≥ 0} for all t ∈ [0, T ],

Xs
t = x0 +

∫ t
0 φ(r,Xs

r , α
s
r)dr,

P st = ∇xG(Xs
T ) +

∫ t
0 ∇xH(r,Xs

r , α
s
r, P

s
r )dr.

(1.3)

Curiously, after some careful calculus, one may verify that

dV 0(αs)

ds
= −

∫ T

0

∣∣∣∇aH(r,Xs
r , a

s
r, P

s
r )
∣∣∣2dr.

Therefore V 0 is a natural Lyapunov function for the process (αs), and in order for the equality
dV 0(α)
ds = 0 to be true, the control α must satisfy the forward-backward system (1.2). This

analysis (though not completely rigorous) reflects why this algorithm would converge. However,
like other gradient-descent type algorithms, it would converge to a local minimizer, since Pon-
tryagin’s maximum principle is only a necessary first-order condition. One may attempt to put
a convexity condition on the coefficients in order to ensure the local minimizer to be the global
one. However, this usually urges X to be linear in α (so the function φ needs to be linear in
(x, a)), which largely limits the application of this method.

In order to go beyond the convex case for the optimal control problem, it is natural to recall
how the Langevin equation helps to approximate the solution of the non-convex optimization
on the real space. Given a function F not necessarily convex, we know that under some mild
conditions the unique invariant measure of the following Langevin equation

dΘs = −Ḟ (Θs)ds+ σdWs (1.4)

is the global minimizer of the regularized optimization:

min
ν∈P

∫
Rm

F (a)ν(da) +
σ2

2
Ent(ν), (1.5)

where W is the Brownian motion, P is the space of probability measures and the regularizer
Ent is the relative entropy with respect to the Lebesgue measure, see e.g. [17]. Moreover, the
marginal law of the process (1.4) converges to its invariant measure. As analyzed in the recent
paper [16], this result is basically due to the fact that the function ν 7→

∫
F (a)ν(da) is convex

(indeed linear). In the present paper we wish to apply a similar regularization to the optimal
control problem. In order to do that we first recall the relaxed formulation of the control problem
(1.1). Instead of controlling the process α, we will control the flow of laws (νt)t∈[0,T ]. Then the
controlled process reads

Xt = x0 +

∫ t

0

∫
Rm

φ(r,Xr, a)νr(da)dr,
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and we aim at minimizing

inf
ν
V (ν), where V (ν) :=

∫ T

0

∫
L(t,Xt, a)νt(da)dt+G(XT ).

Comparing it to the original control problem (1.1), we obtain that infν V (ν) ≤ infα V
0(α).

Indeed, due to the classical results in [9, 10], under some mild conditions the values of the
minimums of the two formulations remain the same. Further we add the relative entropy as a
regularizer, as in (1.5), and focus on the regularized optimization:

inf
ν
V σ(ν), where V σ(ν) := V (ν) +

σ2

2

∫ T

0
Ent(νt)dt. (1.6)

We will show that the global minimizer of this regularized control problem is again characterized
by the invariant measure of Langevin-type dynamics, however, not a single Langevin equation
as in (1.4), but a system of mean-field Langevin equations in the spirit of (1.3), that is,


dΘs

t = −∇aH(t,Xs
t ,Θ

s
t , P

s
t )ds+ σdWs, for s ∈ R+, for t ∈ [0, T ], where

Xs
t = X0 +

∫ t
0

∫
Rm φ(r,Xs

r , a)νsr (da)dr, with νsr := Law(Θs
r),

P st = ∇xG(Xs
T ) +

∫ T
t

∫
Rm ∇xH(r,Xs

r , a, P
s
t )νsr (da)dr,

(1.7)

The name ‘mean-field’ reflects the fact that the different equations in the system are coupled
through (and only through) the marginal laws (νst )t∈[0,T ],s∈R+. Moreover, we shall show that
this characterization holds true not only when V is convex in ν (which is still a quite restrictive
case), but also under a set of milder conditions on the coefficients. Also, we prove in both
cases that the marginal laws of the system (1.7) converge to its unique invariant measure. In
particular, in the latter case we may quantitively compute the convergence rate.

One concrete motivation of this work is to shed some light on the solvability of the gradient
descent method for the deep neural networks. Our work can be viewed as a natural extension
to the recent works [16, 23, 24] in which the authors endorse the solvability of the two-layer
(i.e. with one hidden layer) neural networks using the mean-field Langevin equations. It has
been proposed in the recent papers [3, 4, 6, 21] among others, as well as in the course of P.-L.
Lions in Collège de France (indeed similar ideas can be dated back to [19, 27], see also the
very recent review on this topic [20]), that one may use the continuous-time optimal control
problem as a model to study the deep neural networks. However, to our knowledge, there is no
existing literature which succeeds in explaining why the stochastic gradient descent algorithm
may approach the global optimum of the deep neural network under mild conditions. Our
system of mean-field Langevin equations (1.7) and its relation to the regularized optimization
(1.6) show a clear clue to how numerically compute the optimal control. Meanwhile, it is curious
to observe that the standard discretization scheme (explicite Euler scheme) for the dynamics
(1.7) is equivalent to the (noised) stochastic gradient descent algorithm for a class of deep neural
networks, such as residual networks, convolutional networks, recurrent networks and so on.

The rest of the paper is organised in the following way. In Section 2, we define the relaxed
optimal control problem under study and the corresponding system of mean-field Langevin
equations. In Section 3 we announce the main results of the paper, namely, the wellposedness
of the system of mean-field Langevin equations and the convergence of the marginal laws of the
system towards the optimal control, both in the convex case and in a contraction case. Before
giving detailed proofs for the theoretical results, we introduce the application to deep neural
networks in Section 4. Then in Sections 5, 6 and 7 we provide the proofs of the main results.
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2 Preliminaries

2.1 Regularized Relaxed Optimal Control

In this paper we aim to solve the optimal control problems in large dimension (in particular,
the control variable is of large dimension). We shall allow the player to apply a mixed strategy,
namely, a probability measure ν of which the marginal law on the time dimension is the Lebesgue
measure, i.e.

ν ∈ V :=
{
ν ∈M([0, T ]× Rm) : ν(dt, da) = νt(da)dt, for some νt ∈ P(Rm)

}
,

where we denote by M the space of measures. The controlled process X reads:

Xt = X0 +

∫ t

0

∫
Rm

φ(r,Xr, a, Z)νr(da)dr, for t ∈ [0, T ],

where Z is an exogenous random variable taking values in a set Z. In particular, in the
application to the neural networks, Z would represent the input data. Denote G := σ(Z) and
assume that X0 is a bounded G-measurable random variable. We use the notation E as the
expectation of random variables on G. The relaxed control problem writes:

inf
ν
V (ν), where V (ν) := E

[∫ T

0

∫
Rm

L(t,Xt, a, Z)νt(da)dt+G(XT , Z)

]
. (2.1)

Further in this paper, instead of addressing the optimal control problem itself, we introduce the
following regularized version:

inf
ν
V σ(ν), where V σ(ν) := V (ν) +

σ2

2

∫ T

0
Ent(νt)dt, (2.2)

where Ent is the relative entropy with respect to the Lebesgue measure on Rm. It is noteworthy
that

∫ T
0 Ent(νt)dt is equal to the relative entropy of ν with respect to the Lebesgue measure on

[0, T ]× Rm.

2.2 System of Mean-Field Langevin Equations

The following remark establishes a link between the control problem (2.2) and the mean-field
Langevin equation.

Remark 2.1. Let us consider a simple example of a control problem with the following coeffi-
cients: X0 ≡ 0, L(a) = λ|a|2 and φ(t, x, a) = φ̂(a), that is, we aim to minimize

inf
ν

E
[
G
(∫ T

0

∫
Rm

φ̂(a, Z)νt(da)dt
)]

+

∫ T

0

∫
Rm

λ|a|2νt(da)dt+
σ2

2

∫ T

0
Ent(νt)dt.

Clearly, (νt)t∈[0,T ] are exchangeable, so the optimal control ν∗ must satisfy ν∗0 = ν∗t for any
t ∈ [0, T ]. Therefore it is equivalent to minimize

inf
ν0

E
[
G
(
T

∫
Rm

φ̂(a, Z)ν0(da)
)]

+ T

∫
Rm

λ|a|2ν0(da) +
σ2T

2
Ent(ν0).

Given a convex function G, this minimization problem is studied in the recent paper [16], where
the authors prove that the marginal laws of the corresponding mean-field Langevin equation
converge to the global minimizer. In the present paper we are going to generalize this result.
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For the general control problem (2.2), we assume that all the coefficients are smooth enough.
Let (Ω,F ,P) be a probability space and W an m-dimensional Brownian motion on it. Introduce
the following system of mean-field Langevin equations:

dΘs
t = −E

[
∇aH(t,Xs

t ,Θ
s
t , P

s
t , Z)

]
ds+ σdWs, for s ∈ R+, for t ∈ [0, T ],

where Xs
t = X0 +

∫ t
0

∫
Rm φ(r,Xs

r , a, Z)νsr (da)dr, with νsr := Law(Θs
r),

P st = ∇xG(Xs
T , Z) +

∫ T
t

∫
Rm ∇xH(r,Xs

r , a, P
s
t , Z)νsr (da)dr,

(2.3)

and H is the Hamiltonian function:

H(t, x, a, p, z) := L(t, x, a, z) + p · φ(t, x, a, z) for (t, x, a, p) ∈ [0, T ]× Rd × Rm × Rd.

For the readers familiar with the variational calculus of optimal control (Pontryagin’s maximum
principle), we note that the process (P st )t∈[0,T ],s∈R+ has an obvious link to the adjoint process
in the maximum principle. This connection will be made clear in the discussion of Section 6.
We are going to prove that under reasonable assumptions the system of mean-field Langevin
equations has a unique solution, and the marginal distribution (νst )t∈[0,T ] converges to the global
minimizer of the control problem (2.2) as s→∞.

2.3 Notations

Let (Ω,F ,P) be a probability space. Denote by E the expectation under the probability P, or
roughly speaking, the expectation of the randomness produced by the Brownian motion W . In
particular, note the difference between the notations E and E.

In the present paper we will use several different metrics on the measure space. First, recall
the p-Wasserstein distance (p ≥ 1) on the probability space P(Rm):

Wp(µ0, ν0)p := inf

{∫
Rm
|x− y|pπ(dx, dy) : where π is a coupling of µ0, ν0 ∈ P(Rm)

}
.

Further, for µ, ν ∈ V we define the metric

WT
p (µ, ν) :=

(∫ T

0
Wp(µt, νt)

pdt
)1/p

.

In some part of the paper, in particular during the discussion of the convex case (see Section 3.2
and 6), we shall use the following generalized p-Wasserstein distance on V (by abuse of notation,
we still denote it by Wp):

Wp(µ, ν) := T 1/pWp

(µ
T
,
ν

T

)
for µ, ν ∈ V. (2.4)

Comparing the above definitions, we clearly see that Wp(µ, ν) ≤ WT
p (µ, ν) for any µ, ν ∈ V.

In the proofs the constant C can vary from line to line. Without further specification C is
always positive.

3 Main Results

In this section we announce the main results. Their proofs are given in Sections 5, 6 and 7.
Throughout the paper we assume that the Hamiltonian function H and the terminal cost G

are continuously differentiable in the variables (x, a), and the coefficients

φ,∇xG,∇xL,∇xφ exist and are all bounded.

Therefore (Xs
t , P

s
t ) lives in a compact set Kx × Kp. From now on we treat (t, x, a, p, z) 7→

H(t, x, a, p, z) as a function defined on [0, T ]×Kx × Rm ×Kp × Z. In particular, whenever we
claim that H satisfies a property (e.g. Lipschitz continuity) globally, it is meant to be true on
this set instead of the whole space.
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3.1 Wellposedness of the System of Mean-Field Langevin Equation

Assumption 3.1. Assume that the coefficients φ,L,G are continuously differentiable in the
variables (x, a) and

• ∇aφ,∇aL,∇xφ,∇xL,∇xG,φ are uniformly Lipschitz continuous in the variables (x, a, p);

• the coefficients H,∇aH satisfy

sup
t,z
|H(t, 0, 0, 0, z)| <∞, sup

t,z
|∇aH(t, 0, 0, 0, z)| <∞. (3.1)

Define the space of the continuous measure flows on the horizon [0, S]:

Cp
(
[0, S],V

)
:=

{
µ = (µs)s∈[0,S] : µs ∈ V and lim

s′→s
WT

p (µs
′
, µs) = 0 for all s ∈ [0, S]

}
.

Theorem 3.2. Let Assumption 3.1 hold true. Given (Θ0
t )t∈[0,T ] such that

∫ T

0
E[|Θ0

t |p]dt <∞, for some p ≥ 1, (3.2)

the system of SDE (2.3) has a unique solution. In particular, the law of the solution (νs) ∈
Cp
(
R+,V

)
.

One of our main contributions is to observe the decrease of energy along the flow of the
solution to the system of mean-field Langevin equation (2.3).

Assumption 3.3. We further assume that

• the coefficients φ,L are second-order continuously differentiable in a;

• there is ε > 0 such that

a · ∇aH(t, x, a, p, z) ≥ ε|a|2, for |a| big enough; (3.3)

• for fixed (t, x, p) the mapping a 7→ E
[
∇aH(t, x, a, p, Z)

]
belongs to C∞.

Theorem 3.4 (Gradient flow). Let Assumptions 3.1 and 3.3 hold true, and assume that∫ T

0
E
[
|Θ0

t |p
]
dt <∞ for some p ≥ 2. (3.4)

Recall the function V σ defined in (2.2). Let (νst ) be the marginal laws of the solution to the
system of mean-field Langevin equations (2.3). Then, for each s > 0, t ∈ [0, T ] the law νst
admits a density, and for s′ > s > 0 we have

V σ(νs
′
)− V σ(νs) = −

∫ s′

s

∫ T

0

∫
Rm

∣∣∣E[∇aH(t,Xr
t , a, P

r
t , Z)

]
+
σ2

2
∇a ln νrt (a)

∣∣∣2νrt (a)dadtdr.(3.5)
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3.2 Convex Case

We first consider the case where the objective function V , defined in (2.1), is convex in ν. More
precisely, we assume the following.

Assumption 3.5. Let the controlled process X be linear in ν, i.e.

Xt = X0 +

∫ t

0

∫
Rm

φ(s, a, Z)νs(da)ds, (3.6)

and the dependence on the variables (x, a) of the function L is seperated, i.e.

L(t, x, a, z) = `(t, x, z) + c(t, a, z).

Further we assume that

• for all t ∈ [0, T ] the functions `,G are convex in x;

• the functions φ,∇xH,∇aH are globally Lipschitz continuous in t;

• the Hamiltonian H is continuously differentiable in t and ∂tH is globally Lipschitz con-
tinuous in (t, a).

Remark 3.6. In the present section concerning the convex case we add the regularity assump-
tions on the coefficients with respect to the variable t. That is due to the fact that in this part
of the paper we will apply the metric Wp (defined in (2.4)) on the space V instead of the usual

one WT
p .

Under the above assumptions, it is clear that there exists at least one global minimizer of V σ.
Moreover, the function V is convex in ν, and thus V σ is strictly convex in ν for any σ > 0,
so there is one unique global minimizer. By standard variational calculus, we shall show the
following sufficient condition for being the unique global minimizer of the control problem.

Theorem 3.7 (Sufficient first order condition). Let Assumption 3.5 hold true. If ν∗ ∈ V,
equivalent to the Lebesgue measure, satisfies

E
[
∇aH(t,X∗t , ·, P ∗t , Z)

]
+
σ2

2
∇a ln

(
ν∗t
)

= 0 (3.7)

for Leb-a.s. t, where X∗ is the controlled process with the control ν∗ as in (3.6) and P is the
following adjoint process

P ∗t := ∇xG(X∗T , Z) +

∫ T

t
∇x`(r,X∗r , Z)dr, (3.8)

then ν∗ is an optimal control of the regularized control problem (2.2).

Combining the sufficient condition above and Theorem 3.4, we can prove the following main
result in the convex case.

Theorem 3.8. Assume that Assumptions 3.1, 3.3 and 3.5 hold true and (Θ0
t )t∈[0,T ] satisfies

(3.4) with p > 2. Further assume that V is W2-continuous and bounded from below. Denote

(νst )
s∈R+

t∈[0,T ] the flow of marginal laws of the solution to (2.3). Then there exists an invariant

measure of (2.3) equal to (ν∗t )t∈[0,T ] := argminν V
σ(ν), and (νst )t∈[0,T ] converges to (ν∗t )t∈[0,T ].
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3.3 Contraction Case

Clearly, the previous convex case has restrictive requirements on the structure of the coefficients.
In particular, these requirements cannot be all satisfied in the application to the deep neural
networks. That drives us to look for another setting in which the system of mean-field Langevin
equations leads us to the optimal control of (2.2).

Proposition 3.9 (Necessary first order condition). Let Assumptions 3.1, 3.3 hold true and
assume that the function V is bounded from below. Let ν∗ be an optimal control of V σ such that
V σ(ν∗) <∞. Then ν∗ is equivalent to the Lebesgue measure and satisfies

E
[
∇aH(t,X∗t , ·, P ∗t , Z)

]
+
σ2

2
∇a ln

(
ν∗t
)

= 0, for Leb-a.s. t ∈ [0, T ], (3.9)

where (X∗, P ∗) is the solution of the following ODE

X∗t = X0 +

∫ t

0

∫
Rm

φ(r,X∗r , a, Z)ν∗r (da)dr, (3.10)

P ∗t = ∇xG(X∗T , Z) +

∫ T

t

∫
Rm
∇xH(r,X∗r , a, P

∗
t , Z)ν∗r (da)dr. (3.11)

In particular, for a.s. t, the probability measure ν∗t admits a continuous density such that

−C(1 + |a|2) ≤ ln
(
ν∗t (a)

)
≤ C − C ′|a|2, for some C ≥ C ′ > 0 independent of t, (3.12)

and thus ν∗ has finite p-moment for all p ≥ 1.

Corollary 3.10. Let Assumptions 3.1 and 3.3 hold true, and assume that V is W2-continuous,
bounded from below. Then any optimal control ν∗ of V σ, such that V σ(ν∗) <∞, is an invariant
measure of the system (2.3).

Assume that the control problem (2.2) admits at least one optimal control. The corollary above
implies that once we ensure the convergence of the marginal laws of the system (2.3) towards
the unique invariant measure, then the limit measure is an (indeed the unique) optimal control
of (2.2).

Next we find a sufficient condition for the existence of the unique invariant measure for the
system of mean-field Langevin equations. In particular, the convergent rate towards the limit
measure is computed explicitly.

Assumption 3.11. Assume that there exists a continuous function κ : (0,+∞)→ R such that∫ 1
0 rκ(r)dr < +∞, lim

r→+∞
κ(r) < 0 and for any (t, x, p, z) we have

(a−ã)·
(
−∇aH(t, x, a, p, z)+∇aH(t, x, ã, p, z)

)
≤ κ (|a− ã|) |a− ã|2 for all a, ã ∈ Rm, a 6= ã.

Theorem 3.12 (Contraction towards the unique invariant measure). Assume that Assumptions
3.1, 3.3 and 3.11 hold true. Let (Θ0

t )t∈[0,T ], resp. (Θ̃0
t )t∈[0,T ], satisfy (3.2) and denote νs, resp.

ν̃s, the marginal law of the solution of the mean-field Langevin system (2.3). Then there exist
constants c, γ ∈ (0,∞) such that for any s ≥ 0, we have

WT
1 (νs, ν̃s) ≤ e

(
2γT
ϕ(R1)

−cσ2
)
s 2

ϕ(R1)
WT

1 (ν0, ν̃0). (3.13)

The constants are explicitly given by

ϕ(r) = exp

(
−1

2

∫ r

0

uκ+(u)

σ2
du

)
, Φ(r) =

∫ r

0
ϕ(s)ds,
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c−1 =

∫ R2

0
Φ(s)ϕ(s)−1ds and γ = K2(1 +K) exp(2KT ),

where K is a common Lipschitz coefficient of ∇aH, ∇xH, ∇xG and φ, and

R1 := inf{R ≥ 0 : κ(r) ≤ 0 for all r ≥ R}

R2 := inf{R ≥ R1 : κ(r)R(R−R1) ≤ −4σ2 for all r ≥ R}.

In particular, if 2γT
ϕ(R1) < cσ2, there is a unique invariant measure with finite 1-moment.

Remark 3.13. The result and the proof of Theorem 3.12 reveal the importance of considering
the relaxed formulation of the control problem instead of the strict one (1.1). As discussed
in the introduction, in the setting of the strict formulation, one may let the control (αt)t∈[0,T ]

evolve along the gradient as in (1.3). In this case the limit lims→∞(ast )t∈[0,T ], if exists, in
general depends on the initial value (α0

t )t∈[0,T ], so it is unlikely to be the optimal control. On
the contrary, Theorem 3.12 ensures that the gradient flow (2.3) for the relaxed formulation
converges to a unique invariant measure independent of the initialization ν0.

In order to link the unique invariant measure to the optimal control of (2.2), we need an
additional assumption.

Assumption 3.14. Assume that

• the functional V is W2-continuous and bounded from below,

• V σ has at least an optimal control ν∗ such that V σ(ν∗) <∞.

In particular, we will see a sufficient condition for the existence of optimal control in Lemma
7.1. Finally, combining the results in Corollary 3.10 and Theorem 3.12, we may conclude:

Corollary 3.15. Let Assumption 3.1, 3.3, 3.11 and 3.14 hold true. Recall the constants defined
in Theorem 3.12. If 2γT

ϕ(R1) < cσ2, then the unique invariant measure is the optimal control of

(2.2).

4 Application to Deep Neural Networks

In this section, we apply the previous theoretical results, in particular the results of Section 3.3,
to show the solvability of the stochastic gradient descent algorithm for optimizing the weights
of a deep neural network.

Let the data Z take value in a compact subset Z of RD, and denote by Y = f(Z) the label
of the data. The function f is unknown, and we want to approximate it using the parametrized
function generated by a deep neural network. Here we shall model the deep neural network
using a controlled dynamic.

More precisely, consider the following choice of coefficients of the control problem (2.2): for
x ∈ Rd, β ∈ Rd × Rd, A ∈ Rd × Rd, A′ ∈ Rd × RD, k ∈ Rd, a = (β,A,A′, k) ∈ Rm, z ∈ Z

φ(x, a, z) := `(β)ϕ
(
`(A)x+A′z + k

)
, L(a) := λ|a|2, G(x, z) := g

(
Tf(z)− x

)
(4.1)

where λ > 0 is a constant, ϕ is a nonlinear activation function, ` is a bounded truncation
function and g is a cost function.

Assume that the coefficients satisfy all the assumptions needed for Corollary 3.15. Recall
that the terminal value of the controlled process is equal to

XT = X0 +

∫ T

0

∫
Rm

φ(Xt, a, Z)νt(da)dt,

9



so it is a parametrized function of Z, where (νt)t∈[0,T ] is the parameter process. As we solve
the regularized relaxed optimal control problem (2.2), we find the optimal parameter ν so as
to minimize the (regularized) statistic error between the label Y and the output 1

TXT . Once
we discretize the equation using the explicit Euler scheme and introduce random variables
(Θj

t )j=1,··· ,nt , which are independent copies following the law νt, we find

Xti+1 ≈ Xti +
δt

nti+1

nti+1∑
j=1

φ(Xti ,Θ
j
ti+1

, Z), where δt := ti+1 − ti. (4.2)

This discrete dynamics characterizes a type of structure of deep neural networks, and can be
equivalently represented by the scheme of the figure below.

Z X0

Θ1
t1

Θ2
t1

Θ3
t1

Θ
nt1
t1

Xt1

Θ1
t2

Θ2
t2

Θ3
t2

Θ
nt2
t2

Xt2 XtN−1

Θ1
tN

Θ2
tN

Θ3
tN

Θ
ntN
tN

XT

Input Layer t1 Layer t2 Layer tN Output

Neural network corresponding to the relaxed controlled process

This structure can describe a class of widely (and successfully) applied deep neural networks.
Here are some examples:

• the process X can be viewed as the outputs of intermediate layers in a Residual Neural
Network, see [12];

• (Xti) can also be interpreted as recurrent neurones in a Recurrent Neural Network or an
LSTM Neural Network, see [14];

• once we take the function ϕ to be a convolutional-type activation function, the structure
forms a Convolutional Neural Network with average pooling, see [18].

The most significant feature of this structure is the average pooling (averaging the outputs of
the nonlinear activation ϕ as in (4.2)) on each layer, and it is due to the adoption of the relaxed
formulation in our model of controlled process.

Given the structure of the neural network, or the scheme of the forward propagation (4.2), it
is conventional to optimize the parameters (Θj

ti
) using the stochastic gradient descent algorithm.

The gradients of the parameters are easy to compute, due to the chain rule (or backward
propagation):

Θ
sj+1

t = Θ
sj
t − δsE

[
∇aH(t,X

sj
t ,Θ

sj
t , P

sj
t , Z)

]
+ σδWsj , with δs = sj+1 − sj ,

where P sti−1
= P sti − δt

nti+1∑
j=1

∇xH
(
ti, X

s
ti ,Θ

j,s
ti
, P sti , Z

)
, P sT = ∇xG(Xs

T , Z),
(4.3)
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where (δWsj ) are independent copies ofN (0, δs). In the conventional gradient descent algorithm
σ is set to be 0, wheras we add a (small) positive volatility in our model of the regularized optimal
control problem. It is important to observe that the continuous-time version of the noised
gradient descent algorithm follows exactly the dynamics of the system of mean-field Langevin
equations (2.3), where the horizon s ∈ R+ represents the iterations of gradient descents.

We remark that the evaluation of the parameters Θ·t on a given layer t does not depend
directly on the values of Θ·t′ on the other layers (t′ 6= t), but only through the (empirical) law
of Θ·t′ . This ‘mean-field’ dependence between the parameters is due to the average pooling on
each layer in this particular structure, and is the starting point of our theoretical investigation.

Recall that we showed in Section 3.3 that under a set of mild assumptions on the coefficients
the marginal laws (νs) of (2.3) converge to the optimal control of (2.2). It approximately implies
that the stochastic gradient descent algorithm converges to the global minimizer. One of the
main insights provided by this theory is the quantitative convergence rate. In particular, the
theory ensures the exponential convergence once the coefficients satisfy σ2

T > 2γ
cϕ(R1) . Hopefully,

it could shed some light on how to tune the coefficients in practice.

Further it remains crucial to justify that the output 1
TX

∗
T given by the optimal parameter

ν∗ is a good approximation to the label Y = f(Z). In order for the contraction result to hold

true we consider the horizon Tσ := cϕ(R1)σ2

4γ . Assume that the cost function g is such that

c|ζ| ≤ g(ζ) ≤ c|ζ|+ εσ2

for some small constant ε > 0, c ≥ c > 0. Then we have

E
∣∣∣f(Z)− 1

Tσ
X∗Tσ

∣∣∣ ≤ 1

Tσ
E
∣∣∣Tσf(Z)−X∗Tσ

∣∣∣ ≤ 1

cTσ
V σ(ν∗) =

1

cTσ
inf
ν∈V

V σ(ν). (4.4)

Now consider the particular controls in the set A :=
{
ν ∈ V : `(A) = 0, ν-a.s.

}
where `(A) is

the coefficient in front of x in the activation function (see (4.1)). The optimization over the set
A is equivalent to the optimization concerning the controlled process

dX̃t =

∫
Rm

φ(0, a, Z)νt(da)dt.

Together with the observation in Remark 2.1, we obtain

1

Tσ
inf
ν∈V

V σ(ν) ≤ 1

Tσ
inf
ν∈A

V σ(ν)

≤ εσ2

Tσ
+

1

Tσ
inf
ν∈A

(
cE
∣∣∣Tσf(Z)−XTσ

∣∣∣+

∫ Tσ

0

∫
Rm

λ|a|2νt(da)dt+
σ2

2

∫ Tσ

0
Ent(νt)dt

)
=

4γ

cϕ(R1)
ε+ inf

ν0

(
cE
∣∣∣f(Z)−

∫
Rm

φ(0, a, Z)ν0(da)
∣∣∣+

∫
Rm

λ|a|2ν0(da) +
σ2

2
Ent(ν0)

)
−→ 4γ

cϕ(R1)
ε+ c inf

ν0
E
∣∣∣f(Z)−

∫
Rm

φ(0, a, Z)ν0(da)
∣∣∣, as σ, λ→ 0.

The last convergence is due to Proposition 2.3 of [16]. Together with (4.4) we have

lim
σ,λ→0

E
∣∣∣f(Z)− 1

Tσ
X∗Tσ

∣∣∣ ≤ 4γ

cϕ(R1)
ε+

c

c
inf
ν0

E
∣∣∣f(Z)−

∫
Rm

φ(0, a, Z)ν0(da)
∣∣∣.

If one ignores the truncation function ` in (4.1), the universal representation theorem (see
Theorem 1 of [15]) ensures that the value of the infimum on the right hand side is equal to
0. Therefore we have shown that 1

Tσ
X∗Tσ is an appropriate parametrized approximation for the

label f(Z).
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5 Wellposedness of the system of mean-field Langevin equations

5.1 Wellposedness of the System

Proof of Theorem 3.2: Let S > 0. Given any process (µs)s∈[0,S] ∈ Cp
(
[0, S],V

)
, we can

define for any t ∈ [0, T ] the process (Θs
t )s∈[0,S] as the solution of the classical SDE:

dΘs
t = −E

[
∇aH(t,Xs

t (µ),Θs
t , P

s
t (µ), Z)

]
ds+ σdWs, for s ∈ [0, S],

where Xs
t (µ) = X0 +

∫ t
0

∫
Rm φ(r,Xs

r (µ), a, Z)µsr(da)dr,

P st (µ) = ∇xG(Xs
T , Z) +

∫ T
t

∫
Rm ∇xH

(
r,Xs

r (µ), a, P st (µ), Z
)
µsr(da)dr, for t ∈ [0, T ],

(5.1)

We are going to show that the mapping (µs)s∈[0,S] 7→
(
dt × Law(Θs

t )
)
s∈[0,S]

=: (νs)s∈[0,S] is a

contraction in the space Cp
(
[0, S],V

)
for small enough S with the following metric:

dT,Sp (ν, µ) := sup
s≤S
WT

p (νs, µs),

and thus has a fixed point. Then the existence of a unique solution to the system (2.3) follows.

Step 1. First we will show the following property for the image of the mapping: (νs)s∈[0,S] ∈
Cp
(
[0, S],V

)
. It suffices to show that

lim
s′→s

∫ T

0
E
[
|Θs′

t −Θs
t |p
]
dt = 0 for all s ∈ [0, S]. (5.2)

Since φ,∇xH,∇xG are all bounded, the processes (Xs
t ), (P st ) are both uniformly bounded.

Further, by the assumption (3.1), the drift terms of the SDEs (5.1) are of linear growth uniformly
in t. Then it follows from the standard estimate of SDE that

E
[

sup
s∈[0,S]

|Θs
t |p
]
≤ C

(
E
[
|Θ0

t |p
]

+ 1
)

for all t ∈ [0, T ],

where C is a constant independent of t. By the assumption (3.2), we have for any s ∈ [0, S]:∫ T

0
E
[

sup
s′∈[0,S]

|Θs′
t −Θs

t |p
]
dt <∞.

Then (5.2) follows from the dominated convergence theorem.

Step 2. Let (µs)s∈[0,S], (µ̃
s)s∈[0,S] ∈ Cp

(
[0, S],V

)
and denote (Θs

t )s∈[0,S] and (Θ̃s
t )s∈[0,S] the

corresponding solution of the SDEs defined above, respectively. Denote νst := Law(Θs
t ) and

ν̃st := Law(Θ̃s
t ). Denote K a common Lipschitz coefficient of ∇aH, ∇xH, ∇xG and φ. We have

|δXs
t | := |Xs

t (µ)−Xs
t (µ̃)| ≤

∫ t

0
K (|Xs

r (µ)−Xs
r (µ̃)|+W1(µsr, µ̃

s
r)) dr,

and thus |δXs
t | ≤ KeKtW

t
1(µs, µ̃s) ≤ KeKtWT

p (µs, µ̃s). (5.3)

Similarly, we obtain

|δP st | ≤ |∇xG(Xs
T (µ))−∇aG(Xs

T (µ̃))|+
∫ t

0
KW1(µsr, µ̃

s
r)dr +

∫ t

0
K (|δXs

r |+ |δP sr |) dr

≤ (K2eKT +K)WT
p (µs, µ̃s) +K2

(∫ t

0
eKrdr

)
WT

p (µs, µ̃s) +

∫ t

0
K|δP sr |dr

≤ K(1 +K)eKTWT
p (µs, µ̃s) +

∫ t

0
K|δP sr |dr,

and thus |δP st | ≤ K(1 +K)e2KTWT
p (µs, µ̃s). (5.4)

12



Then define δΘs
t := Θs

t − Θ̃s
t , and we can similarly estimate∫ T

0
|δΘs

t |pdt ≤ eKsK

∫ T

0

∫ s

0

(
|δXr

t |p + |δP rt |p
)

drdt

≤ K2(1 +K)TeKs+2KT

∫ s

0
WT

p (µr, µ̃r)pdr.

By taking the expectation on both sides we get

WT
p (νs, ν̃s)p ≤ K2(1 +K)STeKS+2KTdT,Sp (µ, µ̃)p for s ∈ [0, S].

Therefore, for S small enough, the mapping (µs)s∈[0,S] 7→ (νs)s∈[0,S] is a contraction.

Next we provide some useful estimates for the solution to the system (2.3).

Lemma 5.1. Let Assumption 3.1 hold true. Let (Θ0
t ), (Θ̃

0
t ) be two initial values satisfying (3.2),

and denote by (νst ), (ν̃
s
t ) the marginal laws of the solutions to the systems (2.3), respectively.

Then

WT
p (νs, ν̃s) ≤ CWT

p (ν0, ν̃0),

for some constant C possibly depending on s. Moreover, if we further assume that the functions
φ,∇xH are globally Lipschitz continuous in t, then we have

Wp(ν
s, ν̃s) ≤ CWp(ν

0, ν̃0).

Proof This first result is a direct result of an elementary estimate of SDE. As for the second
one, it is enough to note that under the additional assumption, for each s ∈ R+ the map-
pings (t, a) 7→ φ(t,Xs

t , a, Z) and (t, a) 7→ ∇xH(t,Xs
t , a, P

s
t , Z) are both uniformly Lipschitz

continuous, and thus

|Xs
t − X̃s

t | ≤ CW1(νs, ν̃s) as well as |P st − P̃ st | ≤ CW1(νs, ν̃s).

The rest follows again from the standard estimate of SDE.

Lemma 5.2. Let Assumptions 3.1 and 3.3 hold true. Further assume that (Θ0
t )t∈[0,T ] satisfies

(3.4). Then we have ∫ T
0 E

[
sups∈[0,S] |Θs

t |p
]
dt <∞ for any S ∈ R+, (5.5)

as well as
∫ T

0 sups∈R+ E
[
|Θs

t |p
]
dt <∞. (5.6)

Proof The result (5.5) follows from the standard SDE estimate, so its proof is omitted. By
the Itô formula, we have

d|Θs
t |p = |Θs

t |p−2
(
− pΘs

t · E
[
∇aH(t,Xs

t ,Θ
s
t , P

s
t , Z)

]
+
σ2

2
p(p− 1)

)
ds+ σ|Θs

t |p−2Θs
t · dWs.

Now recall the assumptions (3.1) and (3.3) on ∇aH. We obtain:

d|Θs
t |p ≤ |Θs

t |p−2
(
C − ε|Θs

t |21{|Θst |≥M}

)
ds+ σ|Θs

t |p−2Θs
t · dWs for some M > 0,

≤ |Θs
t |p−2

(
(C + εM2)− ε|Θs

t |2
)
ds+ σ|Θs

t |p−2Θs
t · dWs,

where C does not depend on t. In the case p = 2, it clearly leads to sups∈R+ E[|Θs
t |2] ≤

C(1 + E[|Θ0
t |2]), due to the Gronwall inequality. Then (5.6) follows. For general p > 2, the

result (5.6) is due to a simple induction.
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Lemma 5.3. Under the assumptions of Lemma 5.2, for each t ∈ [0, T ] the process (Xs
t )s∈R+ in

the system (2.3) is Lipschitz continuous in s.

Proof Let s′ > s ≥ 0. Since the function φ is Lipschitz continuous in (x, a), we have

|δXt| := |Xs′
t −Xs

t | =
∣∣∣ ∫ t

0

(
E
[
φ(r,Xs′

r ,Θ
s′
r , Z)

]
− E

[
φ(r,Xs

r ,Θ
s
r, Z)

])
dr
∣∣∣

≤
∫ t

0

(
C|δXr|+

∣∣∣E[φ(r,Xs
r ,Θ

s′
r , Z)− φ(r,Xs

r ,Θ
s
r, Z)

]∣∣∣)dr.
Further, by the Itô formula, we have∣∣∣E[φ(r,Xs

r ,Θ
s′
r , Z)− φ(r,Xs

r ,Θ
s
r, Z)

]∣∣∣
=

∣∣∣E[ ∫ s′

s

(
−∇aφ(r,Xs

r ,Θ
u
r , Z) · E

[
∇aH(r,Xu

r ,Θ
u
r , P

u
r , Z)

]
+
σ2

2
∆aaφ(r,Xs

r ,Θ
u
r , Z)

)
du
]∣∣∣

≤ C(s′ − s)
(

1 + sup
u∈[s,s′]

E
[
|Θu

r |
])
.

The last inequality is due to the boundedness of ∇aφ,∆aaφ and the uniform linear growth of
∇aH in a. Finally, it follows from Lemma 5.2 and the Gronwall inequality that |δXt| ≤ C(s′−s).

Given a solution to the system of mean-field Langevin equations (2.3), define

bt(s, a) := −E
[
∇aH(t,Xs

t , a, P
s
t , Z)

]
. (5.7)

It is easy to verify that under Assumptions 3.1 and 3.3, the function bt is continuous in (s, a)
and smooth in a for all t ∈ [0, T ]. Due to a classical regularity result in the theory of linear
PDEs (see e.g. [17, p.14-15]), we obtain the following result.

Lemma 5.4. Let Assumptions 3.1 and 3.3 hold true. The marginal laws (νst ) of the solution
to (2.3) are weakly continuous solutions to the Fokker-Planck equations:

∂sν = ∇a · (−btν +
σ2

2
∇aν) for t ∈ [0, T ]. (5.8)

In particular, we have that (s, a) 7→ νst (a) belongs to C1,2
(
(0,∞)× Rm)

)
.

Lemma 5.5. For t ∈ [0, T ], if we assume that ν0
t admits a continuous density such that −C(1+

|a|2) ≤ ln
(
ν0
t (a)

)
≤ C for some C ≥ 0, then the solution (s, a) 7→ νst (a) to (5.8) is continuous

on [0,∞)× Rm and we have

−C(1 + |a|2)− βs ≤ ln
(
νst (a)

)
≤ C + βs for some C,C ≥ 0 and β, β ≥ 0. (5.9)

Proof We shall apply the comparison result of PDE. Under the upholding assumption we have
|bt| ≤ C0(1 + |a|) and |∇a · bt| ≤ C0. On the one hand, it is easy to verify that ν(s, a) := eC+βs,
with C ≥ supa ln

(
ν0
t (a)

)
and β ≥ C0, is a supersolution of (5.8). On the other hand, define

ν(s, a) := e−C(1+|a|2)−βs with β ≥ (C0C)2

2σ2C2−2C0C
+ C0 + σ2C, and note that for C > C0

σ2 and any

a ∈ Rm we have

∇a ·
(
btν +

σ2

2
∇aν

)
≥ e−C(1+|a|2)−βs (−C0 − 2C0C(1 + |a|)|a|+ 2σ2C2|a|2 − σ2C

)
≥ −e−C(1+|a|2)−βsβ = ∂sν.

Therefore ν is a subsolution to (5.8). Since we assume that −C(1 + |x|2) ≤ ln ν0
t (x) ≤ C, it

follows from the comparison result of the PDE (5.8) that ν(s, a) ≤ νst (a) ≤ ν(s, a) on [0,∞)×Rm.
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5.2 Gradient Flow

We first provide an estimate of the value ∇a ln(νst ). First, the following result ensures that
ln(νst ) is well defined.

Lemma 5.6. Assume that Assumption 3.1 and Assumption 3.3 hold true and ν0
t ∈ P2(Rm) for

some t ∈ [0, T ]. Denote by Qσ
t the scaled Wiener measure1 with initial distribution ν0

t and by
(Fs)s∈R+ the canonical filtration of the Wiener space. Then

i) for any finite horizon S > 0, the law of the solution to (2.3), νt := Law
(
(Θs

t )s∈R+

)
, is

equivalent to Qσ
t on FS and the relative entropy∫

ln
( dνt

dQσ
t

∣∣∣
FS

)
dνt = E

[ ∫ S

0

∣∣bt(s,Θs
t )
∣∣2ds] < +∞. (5.10)

ii) the marginal law νst admits a density such that νst > 0 and Ent(νst ) < +∞.

The proof of these results is based on the Girsanov theorem and some simple moment estimates.
It is similar to the proof of Lemma 6.1 in [16] and thus omitted. Further we have the following
regularity result.

Lemma 5.7. For t ∈ [0, T ] and (νst )s∈R+ the marginal laws of the solution to (2.3), under the
same assumptions as in Lemma 5.6, we have

∇a ln(νst (a)) = − 1

s0
E
[∫ s0

0

(
1− r∇abt(r,Θs−s0+r

t )
)
dW s−s0

r

∣∣∣Θs
t = a

]
for s0 ∈ (0, s], (5.11)

where W s−s0
r := Ws−s0+r −Ws−s0. In particular, for any s > 0 we have

C := sup
r∈[s,∞)

∫
Rm

∣∣∇ ln(νrt )
∣∣2νrt (a)da < +∞,

and C only depends on the Lipschitz constant of ∇aH with respect to a.

Proof The equality (5.11) is shown in Lemma 6.2 in [16]. The proof is based on Lemma 10.2
of the same paper and [11, Theorem 4.7 & Remark 4.13]. Further, we have for all r ∈ [s, s′]:

sup
a∈Rm

∣∣∇a ln(νrt (a))
∣∣2 ≤ inf

s0∈(0,s)

1

s2
0

E
[ ∫ s0

0

∣∣1− r∇abt(r,Θs−s0+r
t )

∣∣2dr
]
.

Finally it is enough to note that ∇abt is bounded under the assumptions of the present Lemma.

Lemma 5.8. Assume that Assumption 3.1 and Assumption 3.3 hold true. We have∫
Rm |∇aν

s
t (a)|da < +∞,

∫
Rm |a · ∇aν

s
t (a)|da < +∞ for all s > 0,

and
∫ s′
s

∫
Rm |∆aaν

r
t (a)|dadr < +∞ for all s′ > s > 0.

Proof By the Young inequality, we have

|∇aνst (a)| ≤ νst (a) +

∣∣∣∣∇aνst (a)

νst (a)

∣∣∣∣2 νst (a) and |a · ∇aνst (a)| ≤ a2νst (a) +

∣∣∣∣∇aνst (a)

νst (a)

∣∣∣∣2 νst (a).

1Let B be the canonical process of the Wiener space and Q be the Wiener measure, then the scaled Wiener
measure Qσ := Q ◦ (σB)−1.
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Since all the terms on the right hand sides are integrable, due to Lemma 5.7, therefore so are
∇aνst and a · ∇aνst . Next, in order to prove the integrability of ∆aaν

s
t , we apply Itô’s formula:

d ln(νst (Θ
s
t )) =

(
∂tν

s
t (Θ

s
t )

νst (Θ
s
t )

+
∇aνst (Θs

t )

νst (Θ
s
t )
· bt(s,Θs

t ) +
σ2

2
∆aa(ln(νst (Θ

s
t )))

)
ds+ σ

∇aνst (Θs
t )

νst (Θ
s
t )

dWs.

Together with the Fokker-Planck equation (5.8), we have

d ln(νst (Θ
s
t )) =

(
σ2 ∆aaν

s
t (Θ

s
t )

νst (Θ
s
t )
−∇a · bt(s,Θs

t )−
σ2

2

|∇aνst (Θs
t )|

2

νst (Θ
s
t )

)
ds+ σ

∇aνst (Θs
t )

νst (Θ
s
t )

dWs.

(5.12)

By Lemma 5.7, we have E
[∫ s′
s
∇aνrt (Θrt )
νrt (Θrt )

dWr

]
= 0. Also recall that ∇a · bt(s,Θs

t ) is bounded.

Taking expectation on both side of (5.12), we obtain

σ2

∫ s′

s

∫
Rm
|∆aaν

r
t (a)|dadr = E

[∫ s′

s
σ2 ∆aaν

r
t (Θr

t )

νst (Θ
s
t )

dr

]

≤ Ent(νs
′
t )− Ent(νst ) + CE

[∫ s′

s

(
1 +
|∇aνrt (Θr

t )|
2

νrt (Θr
t )

)
ds

]
.

By Lemma 5.6 and 5.7, the right hand side is finite.

Based on the previous integrability results, the next lemma follows from the integration by
parts.

Lemma 5.9. Under Assumption 3.1 and Assumption 3.3, we have for s > 0∫
Rm ∆aaH(t,Xs

t , a, P
s
t , Z)νst (a)da = −

∫
Rm ∇aH(t,Xs

t , a, P
s
t , Z) · ∇aνst (a)da for all s > 0,∫ s′

s

∫
Rm ∆aa

(
ln νst (a)

)
νrt (a)dadr = −

∫ s′
s

∫
Rm |∇a ln νst (a)|2 νst (a)dadr for all s′ > s > 0.

Proof of Theorem 3.4. It follows from Lemma 5.3 that there exists a bounded process (U st )
such that dXs

t = U st ds. On the other hand, note that

Xs
t = X0 +

∫ t

0
E
[
φ(r,Xs

r ,Θ
s
r, Z)

]
dr.

By the Itô formula, we get

dXs
t

ds
=

∫ t

0

∫
Rm

(
∇aφ(r,Xs

r , a, Z)br(s,Xs
r )

+∇xφ(r,Xs
r , a, Z)U sr +

σ2

2
∆aaφ(r,Xs

r , a, Z)
)
νsr (da)dr,

where br, defined as in (5.7), is the drift term of the diffusion (Θs
r)s∈R+ . In particular, we have

dU st
dt

=

∫
Rm

(
∇aφ(t,Xs

t , a, Z)bt(s,Xs
t ) +∇xφ(t,Xs

t , a, Z)U st +
σ2

2
∆aaφ(t,Xs

t , a, Z)
)
νst (da).(5.13)

Then note that

V (νs) = E

[∫ T

0
E
[
L(t,Xs

t ,Θ
s
t , Z)

]
dt+G(Xs

T , Z)

]
.

Again by the Itô formula, we have

dV (νs)

ds
= E

[ ∫ T

0

∫
Rm

(
∇aL(t,Xs

t , a, Z) · bt(s, a) +
σ2

2
∆aaL(t,Xs

t , a, Z)

+∇xL(t,Xs
t , a, Z) · U st

)
νst (da)dt+∇xG(Xs

T , Z) · U sT
]
. (5.14)
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Recall (5.13) and the dynamic of (P st )t∈[0,T ] in (2.3). By integration by parts, we have

∇xG(Xs
T , Z) · U sT =

∫ T

0

∫
Rm

(
− U st · ∇xH(t,Xs

t , a, P
s
t , Z) + P st · ∇xφ(t,Xs

t , a, Z)U st

+P st · ∇aφ(t,Xs
t , a, Z)bt(s, a) + P st ·

σ2

2
∆aaφ(t,Xs

t , a, Z)
)
νst (da)dt

=

∫ T

0

∫
Rm

(
− U st · ∇xL(t,Xs

t , a, Z)

+P st · ∇aφ(t,Xs
t , a, Z)bt(s, a) + P st ·

σ2

2
∆aaφ(t,Xs

t , a, Z)
)
νst (da)dt.

Together with (5.14), we obtain

dV (νs)

ds
= E

[ ∫ T

0

∫
Rm

(
bt(s, a) · ∇aH(t,Xs

t , a, P
s
t , Z) +

σ2

2
∆aaH(t,Xs

t , a, P
s
t , Z)

)
νst (da)dt

]
=

∫ T

0

∫
Rm

(
−
∣∣bt(s, a)

∣∣2 + E
[σ2

2
∆aaH(t,Xs

t , a, P
s
t , Z)

])
νst (da)dt.

Further by Lemma 5.9, we have for s > 0

dV (νs)

ds
=

∫ T

0

∫
Rm

(
−
∣∣bt(s, a)

∣∣2 +
σ2

2
bt(s, a) · ∇a ln νst (a)

)
νst (da)dt. (5.15)

On the other hand, by Itô formula, we get

d ln νst (Θ
s
t ) =

(
∇a ln νst (Θ

s
t ) · bt(s,Θs

t ) +
σ2

2
∆aa

(
ln νst (Θ

s
t )
))

ds+∇a ln νst (Θ
s
t ) · σdWs.

It follows from Lemma 5.7 that the stochastic integral above is a martingale on any interval
away from the origin. By taking expectation on both sides and applying Lemma 5.9, we obtain
for any s > 0:

d
(
σ2

2

∫ T
0 Ent(νst )dt

)
ds

=

∫ T

0

∫
Rm

(
σ2

2
∇a ln νst (a) · bt(s, a)− σ4

4

∣∣∇a ln νst (a)
∣∣2) νst (da)dt. (5.16)

Summing up (5.15) and (5.16), we finally obtain (3.5).

6 Proof for the Convex Case

6.1 Sufficient First Order Condition

We are going to apply a standard variational calculus argument in order to derive the sufficient
condition for being the optimal control of (2.2).

Proof of Theorem 3.7. Take a ν ∈ V such that ν is equivalent to the Lebesgue measure
(otherwise

∫ T
0 Ent(νt)dt = +∞), and thus equivalent to the measure ν∗. Denote X∗ and X the

controlled processes with ν∗ and ν, respectively, and define δX := X −X∗ and δν := ν − ν∗.
By the assumption on convexity of the coefficients, we have

δV := E

[∫ T

0

∫
Rm

(
L(t,Xt, a, Z)νt(da)− L(t,X∗t , a, Z)

)
ν∗t (da)dt+G(XT , Z)−G(X∗T , Z)

]
≥ E

[ ∫ T

0

(
∇x`(t,X∗t , Z) · δXt +

∫
Rm

L(t,X∗t , a, Z)δνt(da)
)
dt+∇xG(X∗T , Z) · δXT

]
.(6.1)
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Recall the adjoint process P ∗ defined in (3.8). By integration by parts, we have

∇xG(X∗T ) · δXT = P ∗T · δXT =

∫ T

0

(∫
Rm

P ∗s · φ(s, a)δνs(da)−∇x`(s,X∗s , Z) · δXs

)
ds.

Together with (6.1), it leads to

δV ≥ E

[∫ T

0

∫
Rm

(
P ∗t · φ(t, a) + L(t,X∗t , a, Z)

)
δνt(da)dt

]
.

Further, we are going to compute the difference of the relative entropies. Since ν and ν∗ are
equivalent, we may define ft := νt

ν∗t
. Denote h(x) = x ln(x) and note that h(x) ≥ x − 1 for all

x ∈ R+. We have

Ent(νt)− Ent(ν∗t ) =

∫
Rd

(
νt ln νt − ν∗t ln ν∗t

)
dx

=

∫
Rd

(νt − ν∗t ) ln ν∗t dx+

∫
Rd
νt

(
ln νt − ln ν∗t

)
dx

=

∫
Rd

(ft − 1)ν∗t ln ν∗t dx+

∫
Rd
h(ft)ν

∗
t dx

≥
∫
Rd

(ft − 1)ν∗t ln ν∗t dx+

∫
Rd

(ft − 1)ν∗t dx

=

∫
Rm

ln(ν∗t (a))δνt(da).

The last equality is due to
∫
Rd(ft − 1)ν∗t dx =

∫
Rd(νt − ν

∗
t ) dx = 0. Finally, by (3.7) we have

V σ(ν)− V σ(ν∗) ≥ E

[∫ T

0

∫
Rm

(
P ∗t · φ(t, a) + L(t,X∗t , a, Z) +

σ2

2
ln(ν∗t (a))

)
δνt(da)dt

]
= E

[∫ T

0

∫
Rm

(
H(t,X∗t , a, P

∗
t , Z) +

σ2

2
ln(ν∗t (a))

)
δνt(da)dt

]
= 0

6.2 Convergence Towards the Invariant Measure

In order to prove that there exists an invariant measure of (2.3) equal to the minimizer of V σ,
we follow the same strategy as in [16]. For readers’ convenience, we shall provide a brief proof.
The main ingredients of the proof are LaSalle’s invariance principle (see e.g. [13, Theorem 4.3.3])
and the HWI inequality (see [26, Theorem 3]). Let (νs)s∈R+ be the flow of marginal laws of the
solution of (2.3), given an initial law ν0. Define a dynamic system S(s)

[
ν0
]

:= νs. We shall
consider the following ω-limit set:

ω(ν0) :=
{
ν ∈ V : there exists sn → +∞ such that W2

(
S(sn)

[
ν0
]
, ν
)
→ 0

}
.

Proposition 6.1 (Invariance Principle). Assume that Assumption 3.1 and Assumption 3.3
hold true and ν0 satisfies (3.4) for some p > 2. Then the set ω(ν0) is non-empty, compact and
invariant, that is

i) for any ν ∈ ω(ν0), we have S(s) [ν] ∈ ω(ν0) for all s ∈ R+;

ii) for any ν ∈ ω(ν0) and all s ∈ R+, there exists ν ′ ∈ ω(ν0) such that S(s) [ν ′] = ν.

Proof It is important to note that
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• the mapping ν0 7→ S(s)
[
ν0
]

is W2-continuous, due to Lemma 5.1;

• the mapping s 7→ S(s)
[
ν0
]

belongs to C2

(
R+,V

)
, due to Theorem 3.2;

• the set
{
S(s)[ν0], s ∈ R+

}
belongs to a W2-compact set, due to Lemma 5.2.

The rest follows the standard argument for LaSalle’s invariance principle (see e.g. [13, Theorem
4.3.3] or [16, Proposition 6.5]).

Proof of Theorem 3.8. As in the Step 1 of the proof to [16, Theorem 2.10], using the
invariance principle we can prove the existence of a convergent subsequence of the measure flow
(νsn)n∈N such that W2

(
νsn , ν∗

)
→ 0, where ν∗ = arg minν V

σ(ν) and satisfies

ν∗(t, a) = C exp
(
− 2

σ2
H(t,X∗t , a, P

∗
t , Z)

)
.

In particular, ν∗ is log-semiconcave, because one may easily verify that the gradient of the
mapping (t, a) 7→ H(t,X∗t , a, P

∗
t , Z) is Lipschitz continuous. By the HWI inequality we have∫ (

ln νsn − ln ν∗
)
νsn(dt, da) ≤ W2

(
νsn , ν∗

) (√
In + CW2

(
νsn , ν∗

))
,

where In is the relative Fisher information defined as

In :=

∫ ∣∣∣∇a ln νsn −∇a ln ν∗
∣∣∣2νsn(dt, da)

=

∫ ∣∣∣∇a ln νsn +
2

σ2
∇aH(t,X∗t , a, P

∗
t , Z)

∣∣∣2νsn(dt, da)

≤ 2

∫ ∣∣∇a ln νsn
∣∣2νsn(dt, da) + C

(
1 +

∫
|a|2νsn(dt, da)

)
.

Then it follows from Lemma 5.7 and 5.2 that supn In < ∞. Together with the fact that
W2

(
νsn , ν∗

)
→ 0, we have

lim
n→∞

Ent(νsn)− Ent(ν∗) = lim
n→∞

∫ (
ln νsn − ln ν∗

)
νsn(dt, da) ≤ 0.

Since Ent isW2-lower-semicontinuous, we have lim
n→∞

Ent(νsn) = Ent(ν∗), and thus lim
s→∞

V σ(νs) =

V σ(ν∗). Till now, we have proved that V σ is a continuous Lyapunov function along the trajec-
tory of (νs). Further we can conclude the proof using the standard argument (see e.g. Step 3
of the proof of Theorem 2.10 [16]).

7 Proofs for the Contraction Case

We first provide a sufficient condition for the regularized control problem (2.2) to have at least
one optimal control.

Lemma 7.1. Assume that there exists ν ∈ V such that V σ(ν) <∞, and that there is a function

U : Rm → R such that
∫
Rm e

−U(a)da < ∞ and V̄ (ν) := V (ν) − σ2

2

∫ T
0

∫
Rm U(a)νt(da)dt is

bounded from below and weakly lower-semicontinuous. Then argmin
ν

V σ(ν) 6= ∅.

Proof Let ν̄ ∈ V such that V σ(ν̄) < ∞. Denote C0 := infν V̄ (ν) and C̄ := V σ(ν̄) − C0.
Recall that

V σ = V̄ +
σ2

2

∫ T

0

(
Ent(νt) +

∫
Rm

U(a)νt(da)
)
dt = V̄ +

σ2

2
I(ν),

where I(ν) :=

∫ T

0

∫
Rm

ln

(
νt(a)

e−U(a)

)
νt(da)dt.
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Note that I(ν) is the relative entropy of ν with respect to the measure dt×e−U(a)da. Therefore,
I is weakly lower-semicontinuous (so is V σ) and the sublevel set K :=

{
ν ∈ V : I(ν) ≤ C̄

}
is

weakly compact (see e.g. [5, Lemma 1.4.3]). Further note that
{
ν ∈ V : V σ(ν) ≤ V σ(ν̄)

}
⊂ K,

so

inf
ν∈V

V σ(ν) = inf
ν∈K

V σ(ν).

Since V σ is weakly lower-semicontinuous and K is weakly compact, there exists a global mini-
mizer in K.

Next we prove the necessary condition of being an optimal control.

Proof of Proposition 3.9. Since V σ(ν∗) < ∞ and V is bounded from below, we know

that
∫ T

0 Ent(ν∗t )dt <∞. In particular, ν∗ is absolutely continuous with respect to the Lebesgue
measure.

Step 1. Let ν ∈ V be a measure such that
∫ T

0 Ent(νt)dt < ∞, in particular, it is absolutely
continuous with respect to the Lebesgue measure. Define νε := (1 − ε)ν∗ + εν for ε > 0. By
standard variational calculus we have

lim
ε→0

V (νε)− V (ν∗)

ε
=

∫ T

0

∫
Rm

E
[
H(t,X∗t , a, P

∗
t , Z)

](
ν(da)− ν∗t (da)

)
dt.

Further, define the function h(x) := x lnx. We have

1

ε

∫ T

0
(Ent(νεt )− Ent(ν∗t )) dt =

1

ε

∫ T

0

∫
Rm

(
h (νεt (a))− h (ν∗t (a))

)
dadt

Since the function h is convex, we note that

1

ε

(
h (νεt (a))− h (ν∗t (a))

)
≤ h(νt(a))− h(ν∗t (a)) for all ε ∈ (0, 1).

The right hand side of the inequality above is integrable because both
∫ T

0 Ent(νt)dt and
∫ T

0 Ent(ν∗t )dt
are finite. Therefore, by Fatou’s lemma we obtain

0 ≤ lim
ε→0

V σ(νε)− V σ(ν∗)

ε

≤
∫ T

0

∫
Rm

(
E
[
H(t,X∗t , a, P

∗
t , Z)

]
+
σ2

2
ln
(
ν∗t (a)

)) (
νt(da)− ν∗t (da)

)
dt. (7.1)

Step 2. We are going to show that for Leb-a.s. t

Σt(a) := E
[
H(t,X∗t , a, P

∗
t , Z)

]
+
σ2

2
ln
(
ν∗t (a)

)
is equal to a constant ν∗t -a.s. (7.2)

Define the mean value ct :=
∫
Rm Σt(a)ν∗t (da) and let ε, ε′ > 0. Consider the measure ν ∈ V

absolutely continuous with respect to ν∗ such that νt = ν∗t if ν∗t [Σt ≤ ct − ε] < ε′, otherwise

dνt
dν∗t

=
1Σt≤ct−ε

ν∗t [Σt ≤ ct − ε]
.

Note that Σt ≤ ct − ε, νt-a.s. for t such that ν∗t [Σt ≤ ct − ε] ≥ ε′. Then we have∫ T

0

∫
Rm

Σt(a)
(
νt(da)− ν∗t (da)

)
dt ≤ −ε

∫ T

0
1ν∗t [Σt≤ct−ε]≥ε′dt.
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Together with (7.1), we conclude

ν∗t [Σt ≤ ct − ε] < ε′, for Leb-a.s. t ∈ [0, T ].

Since this holds true for arbitrary ε′, ε > 0, we obtain (7.2).

Step 3. We are going to show that ν∗ is equivalent to the Lebesgue measure. First we provide
an estimate for the constant ct above. Since ν∗t is a probability measure, we have

∫
Rm

exp

2
(
ct − E

[
H(t,X∗t , a, P

∗
t , Z)

])
σ2

 da = 1. (7.3)

Moreover, since (t, z) 7→ H(t, 0, 0, 0, z) is bounded and a 7→ ∇aH(t, x, a, p, z) is uniformly Lips-
chitz continuous, we have

sup
t,z

∣∣H(t,X∗t , a, P
∗
t , z)

∣∣ ≤ C(1 + |a|2). (7.4)

On the other hand, following the dissipative assumption (3.3), we may easily prove that there
are constants C,C ′ > 0 such that for all (t, a)

H(t,X∗t , a, P
∗
t , z) ≥ −C + C ′|a|2. (7.5)

Together with (7.3) and (7.4), we prove that (ct)t∈[0,T ] is bounded.

Now suppose that ν∗ is not equivalent to the Lebesgue measure. Then there is a set K ∈
[0, T ] × Rm such that ν∗(K) = 0 (so ln ν∗ = −∞ on K) and Leb[K] > 0. It follows from (7.1)
that

0 ≤ C −
∫
K
∞dν.

Since we may choose ν having positive mass on K, it is a contradiction. Therefore ν∗ must be
equivalent to the Lebesgue measure.

Step 4. Since ν∗ is equivalent to the Lebesgue measure, together with (7.2) we obtain (3.9).
The bounds in (3.12) are obtained from the estimates (7.4) and (7.5).

We are going to show that Corollary 3.10 is a direct result of Theorem 3.4.

Proof of Corollary 3.10. Let ν∗ ∈ V be an optimal control of V σ. Denote by (νs)s∈R+

the marginal laws of the solution to the system of mean-field Langevin equations (2.3) given
ν0 = ν∗.

Step 1. We are going to prove that given ν0 = ν∗ the process s 7→ V σ(νs) is continuous at
0. First note that under the assumptions of the present Corollary, (3.12) holds true. Together
with Lemma 5.5, we obtain that the function (s, a) 7→ νst (a) is continuous on [0,∞)× Rm and
we have the estimate (5.9). Recall that by Proposition 3.9, the optimal control ν∗ has finite
2-moment. So, by Lemma 5.2 we have (5.5) for p = 2. Then, by the dominated convergence
theorem, we obtain

lim
s→0

∫ T

0
Ent(νst )dt = lim

s→0

∫ T

0
E
[

ln νst (Θ
s
t )
]
dt =

∫ T

0
E
[

ln ν∗t (Θ0
t )
]
dt =

∫ T

0
Ent(ν∗t )dt.

Finally, since s 7→ V (νs) is continuous, we conclude that s 7→ V σ(νs) is continuous at 0. In
particular, the dynamics (3.5) holds true for s′ > s ≥ 0 (s no longer needs to be strictly positive).
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Step 2. Since ν∗ is an optimal control of V σ, we have V σ(νs) ≥ V σ(ν∗) for s ≥ 0. Since
s 7→ V σ(νs) is non-increasing on [0,∞) (due to the result of Step 1), we have V σ(νs) = V σ(ν∗)
for all s ≥ 0. Due to Theorem 3.4, it leads to

− bt(s, a) +
σ2

2
∇a ln

(
νst (a)

)
= E

[
∇aH(t,Xs

t , a, P
s
t , Z)

]
+
σ2

2
∇a ln

(
νst (a)

)
= 0, for all s > 0, for t-a.s. in [0, T ],

where we recall the function bt defined as in (5.7). Moreover, for such t ∈ [0, T ], it follows from
Lemma 5.4 that (νst )s>0 is a solution to the Fokker-Planck equation, so we have

∂sνt = ∇a · (−btνt +
σ2

2
∇aνt) = ∇a ·

(
νt(−bt +

σ2

2
∇a ln νt)

)
= 0.

Therefore, for t-a.s. in [0, T ], we have νst = νs
′
t for all s, s′ > 0, and thus νst = ν∗t for all s ≥ 0,

i.e. ν∗ is an invariant measure to the system of mean-field Langevin equations (2.3).

In order to prove the main Theorem 3.12, we are going to use some coupling technique.
The main ingredient is the reflection coupling in Eberle [7]. For the mean-field system, we shall
adopt the reflection-synchronous coupling similar to [8].

We fix a parameter ε > 0. Introduce the Lipschitz functions rc : Rm × Rm → [0, 1] and
sc : Rm × Rm → [0, 1] satisfying

sc2(x, y) + rc2(x, y) = 1, rc(x, y) = 1 for |x− y| ≥ ε, rc(x, y) = 0 for |x− y| ≤ ε/2.

Let (ν0
t )t∈[0,T ] and (ν̃0

t )t∈[0,T ] be two initial measures, and (W 1
s ), (W 2

s ) be two independent

Brownian motions. For the given (ν0
t ), (ν̃0

t ) we construct the drift coefficients (bt), (b̃t) as in
(5.7), respectively. Further, for a fixed2 t ∈ [0, T ], define the coupling Σt = (Θt, Θ̃t) as the
solution to the standard SDE

dΘs
t = bt(s,Θs

t )ds+ rc(Σs
t )σdW

1
s + sc(Σs

t )σdW
2
s ,

dΘ̃s
t = b̃t(s, Θ̃s

t )ds+ rc(Σs
t )
(
Id− 2es〈es, ·〉

)
σdW 1

s + sc(Σs
t )σdW

2
s ,

where es :=
Θst−Θ̃st
|Θst−Θ̃st |

for Θs
t 6= Θ̃s

t , otherwise es := ê some arbitrary fixed unit vector in Rm.

Next, we construct a concave increasing function f as in the proof of [8, Theorem 2.3]. Let

f(r) :=

∫ r

0
ϕ(s)g(s ∧R2)ds, where g(r) := 1− c

2

∫ r

0
Φ(s)ϕ(s)−1ds,

and the function ϕ and the constant R2 are defined as in the statement of Theorem 3.12. Note
that by definition κ+(r) = 0 for any r ≥ R1, so (ϕ(r))r≥R1 is a constant and the function f is
linear on [R2,∞). Furthermore, f is twice continuously differentiable on (0, R2) and

2σ2f ′′(r) = −rκ+(r)f ′(r)− cσ2Φ(r) ≤ −rκ+(r)f ′(r)− cσ2f(r) ≤ 0, (7.6)

rϕ(R1) ≤ Φ(r) ≤ 2f(r) ≤ 2Φ(r) ≤ 2r. (7.7)

We next prove that an inequality similar to (7.6) holds for r ∈ (R2,∞). Recall that (ϕ(r))r≥R1

is a constant and thus we have Φ(r) = Φ(R1) + ϕ(R1)(r − R1). Since Φ(R1) ≥ ϕ(R1)R1, we
have

Φ(r)

Φ(R2)
=

Φ(R1)− ϕ(R1)R1 + ϕ(R1)r

Φ(R1)− ϕ(R1)R1 + ϕ(R1)R2
≤ r

R2
, for r ≥ R2. (7.8)

2We are not defining the coupling for the system of SDE’s, but for a single SDE with the fixed label t.

22



Furthermore, it is easy to verify that

c−1 ≥
∫ R2

R1

Φ(s)ϕ−1(s)ds ≥ ϕ−1(R1)Φ(R2)(R2 −R1)

2
. (7.9)

Also note that g(R2) = 1
2 due to the definition of c, and thus f ′(r) = ϕ(R1)

2 for r ≥ R2. Together
with (7.8), (7.9) and the definition of R2, we have

rκ(r)f ′(r) ≤ −2σ2 rϕ(R1)

(R2 −R1)R2
≤ −2σ2 Φ(r)ϕ(R1)

(R2 −R1)Φ(R2)
≤ −cσ2Φ(r) ≤ −cσ2f(r).

Since on (R2,∞) the function f is linear, i.e. f ′′ = 0, the inequality (7.6) holds true on (R2,∞).

Proof of Theorem 3.12. Step 1. We first use an argument similar to that of the proof of
Theorem 2.3 in [8] to obtain some estimates concerning the coupling. As usual in the contraction
result, we assume

W1(ν0
t , ν̃

0
t ) = E

[
|Θ0

t − Θ̃0
t |
]
≥ E

[
f
(
|Θ0

t − Θ̃0
t |
)]
. (7.10)

The last inequality is due to (7.7). On the other hand, for all s ≥ 0 we have

W1(νst , ν̃
s
t ) ≤ E

[
|Θs

t − Θ̃s
t |
]
≤ 2

ϕ(R1)
E
[
f
(
|Θs

t − Θ̃s
t |
)]
. (7.11)

Denote δΘs
t := Θs

t − Θ̃s
t . By the definition of the coupling above, we have

dδΘs
t =

(
bt(s,Θs

t )− b̃t(s, Θ̃s
t )
)
ds+ 2rc(Σs

t )σdW̄s,

where W̄s :=
∫ s

0 er · dW
1
r is a one-dimensional Brownian motion. Denote rs := |δΘs

t | and note
that by the definition of rc we have rc(U st ) = 0 whenever rs ≤ ε/2. Therefore, one may show
that

drs = es ·
(
bt(s,Θs

t )− b̃t(s, Θ̃s
t )
)
ds+ 2rc(Σs

t )σdW̄s.

Define Lxs as the right-continuous local time of (rs) and µf as the nonpositive measure repre-
senting the second derivative of f . Then it follows from the Itô-Tanaka formula that

f(rs)− f(r0)

=

∫ s

0
f ′(ru)eu ·

(
bt(u,Θu

t )− b̃t(u, Θ̃u
t )
)
du+

1

2

∫
R
Lxsµf (dx) +Ms,

≤
∫ s

0

(
f ′(ru)eu ·

(
bt(u,Θu

t )− b̃t(u, Θ̃u
t )
)

+ 2rc(Σu
t )2σ2f ′′(ru)

)
du+Ms,

where Ms := 2
∫ s

0 rc(Σu
t )f ′(ru)σdW̄u is a martingale, and the last inequality is due to the

concavity of f . Now it is important to note that under the assumptions of the present Theorem
we have

es ·
(
bt(s,Θs

t )− b̃t(s, Θ̃s
t )
)
≤ 1{rs≥ε}rsκ(rs) + 1{rs<ε}γε+ γWT

1 (νs, ν̃s),

where γ := K2(1 + K) exp(2KT ) with K a common Lipschitz coefficient of ∇aH, ∇xH, ∇xG
and φ, which is computed explicitly in the proof of Theorem 3.2. Further, since f ′′ ≤ 0 and
rc(Σs

t ) = 1 whenever rs ≥ ε and f ′ ≤ 1, we have

f(rs)− f(r0) ≤
∫ s

0

(
1{ru≥ε}

(
f ′(ru)ruκ(ru) + 2σ2f ′′(ru)

)
+ 1{ru<ε}γε+ γWT

1 (νu, ν̃u)
)
du+Ms

≤
∫ s

0

(
− 1{ru≥ε}cσ

2f(ru) + 1{ru<ε}γε+ γWT
1 (νu, ν̃u)

)
du+Ms.
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The last inequality is due to (7.6). It clearly leads to

E
[
ecσ

2sf(rs)− f(r0)
]
≤ γ

∫ s

0
ecσ

2u
(
ε+WT

1 (νu, ν̃u)
)
du.

Recall (7.10) and (7.11). Together with the estimate above, we obtain

ϕ(R1)

2
ecσ

2sW1(νst , ν̃
s
t )−W1(ν0

t , ν̃
0
t ) ≤ γ

∫ s

0
ecσ

2u
(
ε+WT

1 (νu, ν̃u)
)
du. (7.12)

Step 2. Since for each t ∈ [0, T ] one may obtain the estimate (7.12) through the previous
coupling argument, we have

ϕ(R1)

2
ecσ

2sWT
1 (νs, ν̃s)−WT

1 (ν0, ν̃0) ≤ γT
∫ s

0
ecσ

2u
(
ε+WT

1 (νu, ν̃u)
)
du.

By the Gronwall inequality, we have

WT
1 (νs, ν̃s) ≤ e

(
2γT
ϕ(R1)

−cσ2
)
s 2

ϕ(R1)
WT

1 (ν0, ν̃0) +
2γT

ϕ(R1)
e

2γT
ϕ(R1)

s
ε.

This holds true for all ε > 0, so finally we obtain (3.13).
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