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Introduction

In classical 3D Linear Elasticity, plane symmetries are of primary importance either to characterize symmetry classes [START_REF] Chadwick | A new proof that the number of linear elastic symmetries is eight[END_REF] or to determine the propagation axes of longitudinal waves [START_REF] Norris | On the acoustic determination of the elastic moduli of anisotropic solids and acoustic conditions for the existence of symmetry planes[END_REF][START_REF] Geymonat | On the existence of longitudinal plane waves in general elastic anisotropic media[END_REF]. Underlying these mechanical properties is the linear representation ρ [START_REF] Golubitsky | Singularities and groups in bifurcation theory[END_REF][START_REF] Fulton | Representation theory: a first course[END_REF] of the orthogonal group O(3) on the space of Elasticity tensors Ela [START_REF] Forte | Symmetry classes for elasticity tensors[END_REF], and we write

C = ρ(g)C, g ∈ O(3), C ∈ Ela.
A symmetry plane of an Elasticity tensor C corresponds to the symmetry g = s(ν ν ν) with respect to the plane ν ν ν ⊥ , where s(ν ν ν) := I -2ν ν ν ⊗ ν ν ν, ν ν ν = 1, det s(ν ν ν) = -1.

If ν ν ν = (x, y, z) ∈ R 3 in some basis of R 3 , the equation ρ(s(ν ν ν))C = C, recasts into 21 homogeneous polynomial equations of degree 8 in the components (x, y, z) of ν ν ν. The number of solutions of these equations, as well as their respective angles, provide direct information on the symmetry group of the given tensor, and therefore of its symmetry class. Besides, each solution gives rise to a direction of propagation of a longitudinal wave. Therefore, two natural questions arise from these considerations, which are still meaningful for higher order tensors. The first one concerns the explicit determination of the symmetry group of a given tensor (and thus of its symmetry class). The second one concerns the determination of the directions of longitudinal wave propagation.

To determine the symmetry group of an elasticity tensor, some authors have used Kelvin's representation, its spectral decomposition and its eigenstrains. Unfortunately, this approach introduces many cases related to multiplicity of eigenvalues and does not give necessary and sufficient conditions for the characterisation of its symmetry class. Another approach has been considered by François and al [START_REF] Francois | Determination of the symmetries of an experimentally determined stiffness tensor: application to acoustic measurements[END_REF]. They used a distance function to characterize symmetry planes and produced pole figures to characterize each class. However, extending such an approach to nth-order tensors requires solving equations of degree 2n in ν ν ν.

Many studies have focused on the calculation of the directions of wave propagation, either in Elasticity [START_REF] Khatkevich | The acoustic axis in crystals[END_REF][START_REF] Fedorov | Theory of Elastic Waves in Crystals[END_REF][START_REF] Boulanger | Acoustic axes for elastic waves in crystals: theory and applications[END_REF] or in the case of coupled phenomena, such as Piezo-electricity or Piezomagnetism [START_REF] Auld | Wave propagation and resonance in piezoelectric materials[END_REF][START_REF] Bin | Wave propagation in non-homogeneous magneto-electro-elastic plates[END_REF][START_REF] Pang | Wave propagation in piezoelectric/piezomagnetic layered periodic composites[END_REF]. Indeed, any symmetry plane ν ν ν ⊥ of an Elasticity tensor C gives rise to a propagation direction ν ν ν of a longitudinal wave [START_REF] Stippes | Steady state waves in anisotropic media[END_REF][START_REF] Kolodner | Existence of longitudinal waves in anisotropic media[END_REF][START_REF] Fedorov | Theory of Elastic Waves in Crystals[END_REF][START_REF] Norris | On the acoustic determination of the elastic moduli of anisotropic solids and acoustic conditions for the existence of symmetry planes[END_REF], also called an acoustic axis.

Among these studies stand out the famous Cowin-Mehrabadi conditions [START_REF] Cowin | On the identification of material symmetry for anisotropic elastic materials[END_REF][START_REF] Cowin | Properties of the anisotropic elasticity tensor[END_REF] for the existence of a symmetry plane of an Elasticity tensor, i.e. a fourth-order tensor C, with index symmetries C ijkl = C jikl = C klij . These conditions were first expressed by introducing the two independent traces of C, the dilatation tensor d and Voigt's tensor v:

d := tr 12 C (d ij = C ppij ), v := tr 13 C (v ij = C pipj ),
which are symmetric second-order tensors.

Theorem 1.1 [START_REF] Cowin | On the identification of material symmetry for anisotropic elastic materials[END_REF]). Let ν ν ν be a unit vector. Then ν ν ν ⊥ is a symmetry plane of an Elasticity tensor C ∈ Ela if and only if

[(ν ν ν • C • ν ν ν) ν ν ν] × ν ν ν = 0 (1.1) [(τ τ τ • C • τ τ τ ) ν ν ν] × ν ν ν = 0 (1.2) (d ν ν ν) × ν ν ν = 0 (1.3) (v ν ν ν) × ν ν ν = 0 (1.4)
for all unit vectors τ τ τ perpendicular to ν ν ν.

It appeared later that the third and fourth conditions in theorem 1.1 are in fact consequences of the first two ones [START_REF] Cowin | Properties of the anisotropic elasticity tensor[END_REF][START_REF] Norris | On the acoustic determination of the elastic moduli of anisotropic solids and acoustic conditions for the existence of symmetry planes[END_REF]. Nevertheless, when non trivially satisfied, conditions (1.3) and (1.4) give candidates -the common eigenvectors of d and v -to be normals defining the symmetry planes of C. On the other side, the fact that (1.2) needs to be checked for an infinity of τ τ τ ⊥ ν ν ν, makes this criteria not really constructive. For instance, for a cubic tensor C ∈ Ela, both d and v are spherical, so that (1.3) and (1.4) are trivially satisfied and theorem 1.1 is not very useful, in that case. Such a drawback is also present in the equivalent forms used by [START_REF] Norris | On the acoustic determination of the elastic moduli of anisotropic solids and acoustic conditions for the existence of symmetry planes[END_REF][START_REF] Jaric | On the condition for the existence of a plane of symmetry for anisotropic material[END_REF] and in the generalized Cowin-Mehrabadi theorems [START_REF] Ting | Generalized cowin-mehrabadi theorems and a direct proof that the number of linear elastic symmetries is eight[END_REF].

Note also the following fact. The direct necessary and sufficient condition

ρ(s(ν ν ν))C = C
for the existence of a symmetry plane ν ν ν ⊥ are polynomial equations of degree 8 in the components of ν ν ν, whereas Cowin-Mehrabadi's conditions are of degree at most 4 in ν ν ν and for these reasons could be called reduced equations.

In the present work, we propose to overcome these difficulties by formulating new reduced algebraic equations which are necessary and sufficient conditions for a unit vector ν ν ν to define a symmetry plane of a tensor of any order. This new approach is also constructive, and does not involve vectors τ τ τ orthogonal to ν ν ν.

To illustrate our approach, consider a symmetric second-order tensor a (order n = 2). In this case, the direct approach -considering a unchanged by the action of s(ν ν ν), i.e. solving ρ(s(ν ν ν))a = a (see equation (4.2) in section 4) -leads to 6 algebraic equations of degree 4 (= 2n) in ν ν ν. But one can notice that ν ν ν ⊥ is a symmetry plane if and only if ν ν ν is an eigenvector of a, which writes as (a ν ν ν) × ν ν ν = 0, and leads thus to 3 algebraic equations of degree 2 (the order of the tensor). In short, the present work is a generalization of this simple observation.

We shall first solve the problem for a totally symmetric tensor or pseudo-tensor of any order n, and then for any tensor using the harmonic decomposition. Our main result, theorem 4.3 states necessary and sufficient conditions for the existence of a symmetry plane or an order-two axial symmetry for a given totally symmetric tensor or pseudo-tensor of order n. Moreover, these conditions are algebraic equations of degree n in ν ν ν, instead of degree 2n in the direct approach. Our work is based on a strong link between harmonic tensors on R 3 and threevariable harmonic polynomials [START_REF] Baerheim | Harmonic decomposition of the anisotropic elasticity tensor[END_REF], i.e. homogeneous three-variable polynomials with vanishing Laplacian. It involves some covariant operations, such as the generalized cross product as defined in [START_REF] Olive | Harmonic factorization and reconstruction of the elasticity tensor[END_REF], and allows us to obtain particularly condensed equations, as illustrated by the condition (a ν ν ν) × ν ν ν = 0 for second-order symmetric tensors.

To illustrate the strength and the generality of this approach, we finally apply it to several important mechanical situations: to Elasticity tensors (section 6), to Piezo-electricity tensors (section 7) and to Piezo-magnetism pseudo-tensors (section 8). Some applications are also provided to fabric tensors (section 5), which are used in continuum mechanics for the descriptions of crack density [START_REF] Onat | Effective properties of elastic materials that contain penny shaped voids[END_REF], of anisotropic contacts and grains orientations within granular materials [START_REF] Oda | Fabric tensor for discontinuous geological materials[END_REF], of the anisotropy of biological tissues and bones [START_REF] Jemiolo | Fabric tensors in bone mechanics[END_REF] and of the tensorial representation of the rafting phenomenon in single crystal superalloys at high temperature [START_REF] Caccuri | Tensorial nature of γ ′ -rafting evolution in nickel-based single crystal superalloys[END_REF].

The outline of the paper is the following. In section 2, we fix notations and recall mathematical/geometrical backgrounds. Our main result, theorem 4.3 is stated and proved in section 4. Finally, applications are provided to fabric tensors in section 5, Elasticity in section 6, Piezoelectricity in section 7 and Piezo-magnetism in section 8.

Notations and geometrical backgrounds

We define T n (R 3 ) := ⊗ n (R 3 ) as the vector space of nth-order tensors of the Euclidean space R 3 , S n (R 3 ) as the subspace of T n (R 3 ) of totally symmetric tensors of order n and Λ n (R 3 ) as the subspace of T n (R 3 ) of alternate nth-order tensors. Note that Λ n (R 3 ) = {0}, if n > 3, and that Λ 3 (R 3 ) is one-dimensional. The third-order Levi-Civita tensor ε ε ε is a basis of Λ 3 (R 3 ) and, in an orthonormal basis (e e e i ), its components are

ε ε ε = (ε ijk ), ε ijk = det(e e e i
, e e e j , e e e k ).

2.1. Natural and twisted tensorial representations. The canonical action of the orthogonal group O(3) on R 3 induces a linear action (also called a linear representation in mathematics) ρ n on the vector space T n (R 3 ) of nth-order tensors. This representation is defined as follows

(ρ n (g)T)(x x x 1 , . . . , x x x n ) := T(g -1 x x x 1 , . . . , g -1 x x x n ), g ∈ O(3), T ∈ T n (R 3 ),
or in components as (ρ n (g)T)

i 1 i 2 •••in = g j 1 i 1 g j 2 i 2 • • • g jn in T j 1 j 2 •••jn . It is called the natural tensorial representation of O(3) on T n (R 3 ).
If V is a subspace of T n (R 3 ) which is stable under O(3), which means that

ρ n (g)(V) ⊂ V, ∀g ∈ O(3),
the restriction of ρ n to V induces a representation of O(3) on V that we will still denote by ρ n . This applies in particular to V = S n (R 3 ) and V = Λ n (R 3 ).

Example 2.1. For instance, ρ 3 induces a representation of O(3) on Λ 3 (R 3 ), the one-dimensional subspace of T 3 (R 3 ) of alternate third-order tensors. This induced representation is given by

ρ 3 (g)µ µ µ = (det g) µ µ µ, µ µ µ ∈ Λ 3 (R 3 ).
Given a linear representation ρ of O(3) on V, one can build a new one on Λ 3 (R 3 ) V, defined as

(ρ 3 ⊗ ρ)(g) µ µ µ ⊗ T := (ρ 3 (g)µ µ µ) ⊗ (ρ(g)T) = (det g) µ µ µ ⊗ (ρ(g)T), µ µ µ ∈ Λ 3 (R 3 ), T ∈ V.
Moreover, Λ 3 (R 3 ) V and V have the same dimension and are isomorphic (after the choice of an oriented euclidean structure on R 3 ). Hence, we may think of this new representation, that we will denote by ρ, as a representation of O(3) on V itself:

(2.1) ρ(g)T := (det g) ρ(g)T, T ∈ V.

The representation ρ will be called the twisted tensorial representation. Note that when restricted to SO(3), the two representations ρ and ρ are the same:

ρ(g)T = ρ(g)T ∀ g ∈ SO(3), ∀T ∈ V.
Remark 2.2. The distinction between the tensorial representations ρ n and ρn is illustrated by the action of the central symmetry -I ∈ O(3), where I the identity, as we have ρ(-I)T = (-1) n T, ρ(-I)T = (-1) n+1 T, T ∈ T n (R 3 ).

In particular:

• if T ∈ T 2p , ρ 2p (-I)T = T and the natural O(3) representation reduces to the SO(3) representation on even-order tensors; • if T ∈ T 2p+1 , ρ2p+1 (-I)T = T and the O(3) twisted representation reduces to the SO [START_REF] Baerheim | Harmonic decomposition of the anisotropic elasticity tensor[END_REF] representation on odd-order pseudo-tensors.

Example 2.3. There is a well-known O(3)-equivariant isomorphism between the natural representation ρ 2 on the space of skew-symmetric second-order tensors Λ 2 (R 3 ) and the twisted representation ρ1 on R 3 . It is given by

ω ω ω → ε ε ε : ω ω ω, Λ 2 (R 3 ) → R 3 .
where ε ε ε = (ǫ ijk ) is the Levi-Civita tensor (i.e the determinant in the canonical basis) and the contraction ε ε ε : ω ω ω is defined by

(ε ε ε : ω ω ω) i = ε ijk ω jk .
Remark 2.4. It is necessary to construct mathematical objects that allow to translate the fact that some physical phenomenon indeed depend on the orientation of space. It is therefore natural to consider tensors that are changed in a non-standard way when the orientation of space changes. These tensors are usually called pseudo-tensors or axial-tensors [START_REF] Borisenko | Vector and tensor analysis with applications[END_REF]. They correspond to the twisted representations ρn on T n (R 3 ). Examples of such objects are the magnetic field H H H, the magnetization M M M which correspond to the representation ρ1 on R 3 and the Piezo-magnetism pseudo-tensor Π Π Π which corresponds to the representation ρ3 on T 3 (R 3 ) (see Section 8).

In the following, when we do not want to specify which tensorial representation is considered we will use the generic notation ̺ to design either ρ or ρ.

Totally symmetric tensors and homogeneous polynomials.

There is a well-known isomorphism between the space S n (R 3 ) of totally symmetric tensors and the space P n (R 3 ) of nth degree homogeneous polynomials

ϕ : S n (R 3 ) → P n (R 3 ), S → p(x x x) := S(x x x, . . . , x x x).
In any basis (e e e i ), we have

ϕ(S)(x x x) = S i 1 i 2 ...in x i 1 x i 2 • • • x in , x x x := (x 1 , x 2 , x 3 ) ∈ R 3 . The inverse operation S = ϕ -1 (p) ∈ S n (R 3
) is obtained explicitly by polarization (see [START_REF] Gorodentsev | Algebra II: Textbook for Students of Mathematics[END_REF][START_REF] Olive | Harmonic factorization and reconstruction of the elasticity tensor[END_REF], or [START_REF] Baerheim | Harmonic decomposition of the anisotropic elasticity tensor[END_REF]).

Example 2.5. If a = (a ij ) is a symmetric second-order tensor, we get

ϕ(a)(x x x) = a 11 x 2 1 + a 22 x 2 2 + a 33 x 2 3 + 2a 12 x 1 x 2 + 2a 13 x 1 x 3 + 2a 23 x 2 x 3
Remark 2.6. If one introduces the following actions of O(3) on P n (R 3 ):

(ρ(g)p)(x x x) := p(g -1 x x x), (ρ(g)p)(x x x) := det(g)p(g -1 x x x),
where p ∈ P n (R 3 ), then, ϕ becomes an equivariant isomorphism with respect to both actions. In other words:

ϕ(ρ(g)S) = ρ(g)ϕ(S), ϕ(ρ(g)S) = ρ(g)ϕ(S),
for all g ∈ O(3) and S ∈ S n (R 3 ).

Harmonic decomposition.

Definition 2.7. An n-th order totally symmetric and traceless tensor will be called an harmonic tensor and the subspace of S n (R 3 ) of harmonic tensors will be denoted by H n (R 3 ) (or simply H n , if there is no ambiguity).

Remark 2.8. In the correspondence between totally symmetric tensors and homogeneous polynomials, a traceless totally symmetric tensor H corresponds to an harmonic polynomial h (i.e. with vanishing Laplacian: △h = 0) and this justifies the appellation of harmonic tensor. The space of homogeneous harmonic polynomials of degree n will be denoted by H n (R 3 ).

The subspace H n (R 3 ) of T n (R 3 ) is stable under both linear representations ρ n and ρn and moreover irreducible (its only invariant subspaces are itself and the null space). In the case of a symmetric second-order tensor, this decomposition corresponds to the usual decomposition into a deviator and a spherical tensor and we have an equivariant isomorphism between S 2 (R 3 ) and

H 2 (R 3 ) ⊕ H 0 (R 3 )
, where H 2 (R 3 ) corresponds to the deviatoric part and H 0 (R 3 ), to the spherical part (of scalar component the trace of considered tensor). More precisely we have the following result (see also [START_REF] Schouten | Tensor Analysis for Physicists[END_REF][START_REF] Spencer | A note on the decomposition of tensors into traceless symmetric tensors[END_REF][START_REF] Jerphagnon | The description of the physical properties of condensed matter using irreducible tensors[END_REF]). Theorem 2.9 (Harmonic decomposition). Every finite dimensional representation V of the orthogonal group O(3) can be decomposed into a direct sum of irreducible representations, each of them being isomorphic to either ρ n or ρn on H n (R 3 ), by an equivariant isomorphism.

Covariant operations on tensors.

Given T ∈ T n (R 3 ), we define the total symmetrization of T, noted T s ∈ S n (R 3 ), as

T s (x x x 1 , . . . , x x x n ) := 1 n! σ∈Sn T(x x x σ(1) , . . . , x x x σ(n) ).
This operation is covariant for both the natural and the twisted representations, which means that (̺(g)T) s = ̺(g)(T s ), ∀g ∈ O(3), ̺ = ρ or ρ. The symmetric tensor product between two symmetric tensors S 1 ∈ S p (R 3 ) and

S 2 ∈ S q (R 3 ) is S 1 ⊙ S 2 := (S 1 ⊗ S 2 ) s ∈ S p+q (R 3
). This operation is covariant for the natural representation, but not for the twisted one. For any g ∈ O(3), we get indeed:

(ρ(g)S 1 ) ⊙ (ρ(g)S 2 ) = ρ(g)(S 1 ⊙ S 2 ), (ρ(g)S 1 ) ⊙ (ρ(g)S 2 ) = ρ(g)(S 1 ⊙ S 2 ).
The r-contraction between totally symmetric tensors S 1 ∈ S p (R 3 ) and S 2 ∈ S q (R 3 ) is defined in any orthonormal basis as

(S 1 (r) • S 2 ) i 1 •••i p-r j r+1 •••jq = S 1 i 1 •••i p-r k 1 •••kr S 2 k 1 •••krj r+1 •••jq , if r ≤ min(p, q)
and is zero otherwise, where the summation convention on repeated indices is used.

This operation is covariant for the natural representation, but not for the twisted one. For any g ∈ O(3), we get indeed:

(ρ(g)S 1 ) (r) • (ρ(g)S 2 ) = ρ(g)(S 1 (r) • S 2 ), (ρ(g)S 1 ) (r) • (ρ(g)S 2 ) = ρ(g)(S 1 (r) • S 2 ).
For a given vector w w w ∈ R 3 , we set

w w w k := w w w ⊗ w w w ⊗ • • • ⊗ w w w k times , with components w w w k i 1 i 2 ...i k = w i 1 w i 2 .
. . w i k , so that the r-contraction between a nth-order symmetric tensor S ∈ S n (R 3 ) and w w w r (where r ≤ n) reads (S (r)

• w w w r ) i 1 i 2 ...i n-r = S i 1 i 2 ...i n-r j 1 ...jr w j 1 . . . w jr , S (r) 
• w w w r ∈ S n-r .

The tensorial operation (S, w w w) → S (r)

• w w w r (r-contraction with w w w r = w w w⊗. . .⊗w w w) is SO(3)-covariant but not always O(3)-covariant since (ρ(g)w w w) r = (det(g)) r ρ(g)(w w w r ) and thus (ρ(g)S)

(r)

• (ρ(g)w w w) r = (det(g)) r+1 ρ(g)(S (r)

• w w w r ).

The generalized cross product between two totally symmetric tensors S 1 ∈ S p (R 3 ) and S 2 ∈ S q (R 3 ) is defined as [START_REF] Olive | Characterization of the symmetry class of an elasticity tensor using polynomial covariants[END_REF] (2.2)

S 1 × S 2 := -S 1 • ε ε ε • S 2 s ∈ S p+q-1 (R 3 ).
In any orthonormal basis, it writes as

(S 1 × S 2 ) i 1 •••i p+q-1 := (ε i 1 jk S 1 ji 2 •••ip S 2 ki p+1 •••i p+q-1 ) s .
This operation is covariant for the special orthogonal group SO(3), but not for the full orthogonal group O(3). In that case, for any g ∈ O(3) we have:

(ρ(g)S 1 ) × (ρ(g)S 2 ) = ρ(g) S 1 × S 2 , (ρ(g)S 1 ) × (ρ(g)S 2 ) = ρ(g) S 1 × S 2 .
2.5. Covariant operations on polynomials. Each covariant tensorial operation between totally symmetric tensors has its covariant polynomial counterpart (see [START_REF] Olive | Characterization of the symmetry class of an elasticity tensor using polynomial covariants[END_REF]). Let S 1 , S 2 be two totally symmetric tensors of respective order p, q and let p 1 , p 2 be their respective polynomial counter-part.

(1) The symmetric tensor product translates into the ordinary product between polynomials

ϕ(S 1 ⊙ S 2 ) = p 1 p 2 .
(2) The generalized cross product translates into Lie-Poisson bracket of p 1 and p 2

ϕ(S 1 × S 2 ) = 1 pq {p 1 , p 2 } LP
where

{p 1 , p 2 } LP := det(x x x, ∇p 1 , ∇p 2 ),
and ∇p is the gradient of p; (3) The symmetric r-contraction translates into the Euclidean transvectant of order r ϕ((S 1 (r) •

S 2 ) s ) = (p -r)! p! (q -r)! q! {p 1 , p 2 } r
where

{p 1 , p 2 } r := k 1 +k 2 +k 3 =r r! k 1 !k 2 !k 3 ! ∂ r p 1 ∂x k 1 ∂y k 2 ∂z k 3 ∂ r p 2 ∂x k 1 ∂y k 2 ∂z k 3 .
(4) Let ν ν ν be a vector. The symmetric q-contraction (S (q)

• ν ν ν q ) s = S (q)

• ν ν ν q between S 1 = S and

S 2 = ν ν ν q = ν ν ν ⊗ ν ν ν ⊗ • • • ⊗ ν ν ν q times translates into ϕ(S (q) • ν ν ν q ) = (p -q)! p!q! {p, (ν ν ν • x x x) q } q .
where p 1 = p = ϕ(S) and p 2 = (ν ν ν • x x x) q .

Symmetry group and order-two symmetries

Given any representation ̺ of O(3) on V, the isotropy group (or symmetry group) of a tensor T ∈ V is the subgroup G T := {g ∈ O(3), ̺(g)T = T} . In the present work, we focus on order-two symmetries, that is on symmetries g ∈ G T such that

g = I, g 2 = I.
It is thus useful to recall that there are three types of order-two elements in the group O(3):

(1) the central symmetry -I;

(2) plane symmetries, which are characterized by a unit vector ν ν ν. The symmetry with respect to the plane ν ν ν ⊥ is the orthogonal transformation s(ν ν ν) := I -2ν ν ν ⊗ ν ν ν; (3) order-two rotational symmetries (axial symmetries), which are rotations by angle π around some axis ν ν ν . Note that r(ν ν ν, π) := -s(ν ν ν). t Definition 3.1 (Order-two symmetries). Let ̺ be a representation of O(3) on V, ν ν ν be a unit vector in R 3 and

T ∈ V. Then ν ν ν ⊥ is a symmetry plane of T if (3.1) ̺(s(ν ν ν))T = T,
and the axis ν ν ν is a symmetry axis of T if

(3.2) ̺(r(ν ν ν, π))T = T. Remark 3.2. Note that for any g ∈ O(3), G ̺(g)T = gG T g -1 .
In particular, given a unit vector ν ν ν, we can choose g ∈ SO(3) such that gν ν ν = e e e 3 . Then ν ν ν ⊥ is a symmetry plane of T if and only if e e e ⊥ 3 is a symmetry plane of ̺(g)T. Similarly, ν ν ν is a symmetry axis of T if and only if e e e 3 is a symmetry axis of ̺(g)T.

The equations for the existence of an axial symmetry for the natural representation or a plane/axial symmetry for the twisted representation of a tensor T ∈ T n (R 3 ) can be reduced to a condition on ρ n (s(ν ν ν))T. These conditions are given in Table 1 and are deduced from ρ n (s(ν ν ν))T = -ρ n (s(ν ν ν))T = (-1) n ρ n (r(ν ν ν, π))T = (-1) n ρn (r(ν ν ν, π))T.

Natural representation ρ

Twisted representation ρ

n even ρ n (r(ν ν ν, π))T = T ⇐⇒ ρ n (s(ν ν ν))T = T ρn (s(ν ν ν))T = T ⇐⇒ ρ n (s(ν ν ν))T = -T ρn (r(ν ν ν, π))T = T ⇐⇒ ρ n (s(ν ν ν))T = T n odd ρ n (r(ν ν ν, π))T = T ⇐⇒ ρ n (s(ν ν ν))T = -T ρn (s(ν ν ν))T = T ⇐⇒ ρ n (s(ν ν ν))T = -T ρn (r(ν ν ν, π))T = T ⇐⇒ ρ n (s(ν ν ν))T = -T Table 1. Order-two symmetries Example 3.3.
Let a be a symmetric second-order tensor with three distinct eigenvalues. In some orthonormal basis (e e e i ) we have:

a =   λ 1 0 0 0 λ 2 0 0 0 λ 3   , λ i = λ j for i = j.
Under the representation ρ 2 , it has three symmetry planes whose normals ν ν ν = e e e i (i = 1, 2, 3) are also symmetry axes and a is said to be orthotropic.

Under the representation ρ2 , the situation is more subtle:

• If λ 1 λ 2 λ 3 = 0 or Π i =j (λ i +λ j ) = 0 then a has three symmetry axes ν ν ν = e e e i (i = 1, 2, 3) but no symmetry plane;

• If λ i = 0 for some i and λ j + λ k = 0 with λ j = 0 and j, k = i, then a has also two symmetry planes, of normals (e e e j ± e e e k )/ √ 2.

Reduced algebraic equations for second-order symmetries

Let ν ν ν be a unit vector and s(ν ν ν) = I -2ν ν ν ⊗ν ν ν be the corresponding plane symmetry. The action of s(ν ν ν) on a tensor S ∈ (S n (R 3 ), ρ n ) writes as

ρ n (s(ν ν ν))S = n k=0 (-2) k n k ν ν ν k ⊙ S (k) • ν ν ν k
and thus, the equation ρ n (s(ν ν ν))S = S leads to a system of (n + 1)(n + 2)/2 polynomial equations in ν ν ν, each of them being homogeneous of degree 2n. For instance, when S = a ∈ (S 2 (R 3 ), ρ 2 ) is of order 2, the equations

(4.1) ρ 2 (s(ν ν ν))a = a, leads to (4.2) a -4ν ν ν ⊙ (a • ν ν ν) + 4(ν ν ν • a • ν ν ν) ν ν ν ⊗ ν ν ν = a,
which is a system of six polynomial equations in ν ν ν = (x, y, z), each of them being of degree 4. Now, one can recast the problem (4.1) in a different way by observing that ν ν ν ⊥ is a symmetry plane of a if and only if ν ν ν is an eigenvector of a. In other words

ρ 2 (s(ν ν ν))a = a ⇐⇒ a • ν ν ν = λν ν ν ⇐⇒ (a • ν ν ν) × ν ν ν = 0,
where × stands here for the standard cross product between vectors. In this reformulation of the problem, one obtains, however three polynomial equations in ν ν ν, each of them being of degree 2. One has therefore divided the degree of the equations by 2, compared to (4.1).

Theorem 4.3 is a generalization of this simple observation to any totally symmetric nth-order tensor or pseudo-tensor. The extension to any (pseudo-)tensors and, more generally, to any finite dimensional representation ̺ of the orthogonal group O(3) follows, using the harmonic decomposition, and will be illustrated in the next sections.

To formulate our result, we introduce the following notations. Given a unit vector ν ν ν, we define

ν ν ν k := ν ν ν ⊗ ν ν ν ⊗ • • • ⊗ ν ν ν k times ∈ S k (R 3 )
as the tensorial product of k copies of the vector ν ν ν. Given n ≥ 1, we set r := ⌊n/2⌋, q := ⌊(n + 1)/2⌋, and define the (n + 1) × (n + 1) matrix B n by

(4.3) (B n ) ij :=      (i)! (i -j)! if i -j ≥ 0, 0 otherwise,
where i, j ∈ [0, n]. We denote by B 1 n the q × q matrix obtained from B n by deleting columns 0, q + 1, q + 2, . . . , n, and rows 0, 1, 3, . . . 2r -1, and by B1 n the (r + 1) × (r + 1) matrix obtained from B n by deleting columns r + 1, r + 2, . . . , n, and rows 0, 2, 4, . . . , 2q -2. Finally, we set

λ (n) j := (B 1 n ) -1 jq (j ∈ [1, q]
), and µ

(n) j := ( B1 n ) -1 jr (j ∈ [0, r]).
The subscripts i and j of the matrix B 1 n = ((B 1 n ) ij ) and the vector λ (n) = (λ (n) j ) varies from 1 to q. For matrix B1 n = (( B1 n ) ij ) and vector µ (n) = (µ (n) j ), i varies from 1 to r + 1 and j from 0 to r.

Example 4.1. For n = 3 we get r = 1, q = 2 and

B 3 =     1 0 0 0 1 1 0 0 1 2 2 0 1 3 6 6     ,            B 1 3 = 2 2 3 6 , λ (3) 1 = -λ (3) 2 = -1 3 . B1 3 = 1 1 1 3 , µ (3) 0 = -µ (3) 1 = -1 2 .
Example 4.2. For n = 4 we get r = q = 2 and

B 4 =      
1 0 0 0 0 1 1 0 0 0 1 2 2 0 0 1 3 6 6 0 1 4 12 24 24

      ,                  B 1 4 = 2 2 4 12 , λ (4) 1 = -λ (3) 2 = -1 8 . B1 4 =     1 1 0 1 3 6 1 4 12     , µ (4) 0 = -µ (4) 1 = 1, µ (4) 2 = 1 3 .
Theorem 4.3. Let S n (R 3 ) be the vector space of totally symmetric tensors of order n, and

r := n 2 , q := n + 1 2 .
so that q = r, if n is even and q = r + 1, if n is odd.

(1) A unit vector ν ν ν defines a plane/axial symmetry of S ∈ S 2r (R 3 ) for the representation ρ 2r or an axial symmetry of S ∈ S 2r (R 3 ) for the representation ρ2r if and only if

(4.4) q k=1 n! (n -k)! λ (n) k ν ν ν k-1 ⊙ S (k) • ν ν ν k × ν ν ν = 0, n = 2r.
(2) A unit vector ν ν ν defines a plane symmetry of S ∈ S 2r (R 3 ) for the representation ρ2r if and only if

(4.5) r k=0 n! (n -k)! µ (n) k ν ν ν k ⊙ S (k) 
• ν ν ν k = 0, n = 2r.

(3) A unit vector ν ν ν define a plane/axial symmetry of S ∈ S 2r+1 (R 3 ) for the representation ρ2r+1 , or an axial symmetry of S ∈ S 2r+1 (R 3 ) for the representation ρ 2r+1 if and only if

(4.6) r k=0 n! (n -k)! µ (n) k ν ν ν k ⊙ S (k) • ν ν ν k × ν ν ν = 0, n = 2r + 1.
(4) A unit vector ν ν ν defines a plane symmetry of S ∈ S 2r+1 (R 3 ) for the representation ρ 2r+1 if and only if

(4.7) q k=1 n! (n -k)! λ (n) k ν ν ν k-1 ⊙ S (k) • ν ν ν k = 0, n = 2r + 1.
The following Table 2 recapitulates all these conditions. and

K ν ν ν n (p) := r k=0 1 k! µ (n) k (ν ν ν • x x x) k p, (ν ν ν • x x x) k k
which allows us to formulate conditions which are independent of the particular choice of an orthonormal basis.

If n is even, then:

ρ(s(ν ν ν))p = p ⇐⇒ {L ν ν ν n (p), (ν ν ν • x x x)} LP = 0, ρ(s(ν ν ν))p = -p ⇐⇒ K ν ν ν n (p) = 0.
If n is odd, then:

ρ(s(ν ν ν))p = p ⇐⇒ L ν ν ν n (p) = 0, ρ(s(ν ν ν))p = -p ⇐⇒ {K ν ν ν n (p), (ν ν ν • x x x)} LP = 0.
Now, to obtain these criteria in tensorial notations, we use the tensorial counterparts defined in subsection 2.5 and check that L ν ν ν n (p) translate as

L ν ν ν n (S) := q k=1 n! (n -k)! λ (n) k ν ν ν k-1 ⊙ S (k)
• ν ν ν k , and K ν ν ν n (p) as

K ν ν ν n (S) := r k=0 n! (n -k)! µ (n) k ν ν ν k ⊙ S (k) • ν ν ν k .
Finally, to achieve the proof, we use the formulas in Table 1.

Application to fabric tensors of directional data

A directional density D(n n n), related to any possible 3D direction n n n, refers to a scalar property defined directionally in a continuous manner at the Representative Volume Element scale of continuum mechanics. For example D(n n n) may represent the directional density of spatial contacts and grains orientations within granular materials [START_REF] Oda | Fabric tensor for discontinuous geological materials[END_REF][START_REF] Rahmoun | A 3d fourth order fabric tensor approach of anisotropy in granular media[END_REF][START_REF] Radjai | Fabric evolution and accessible geometrical states in granular materials[END_REF][START_REF] Li | Dissipation consistent fabric tensor definition from dem to continuum for granular media[END_REF][START_REF] Kruyt | A micromechanical study of dilatancy of granular materials[END_REF]. It may represent the directional description of crack density (representative of spatial arrangement, orientation and geometry of the cracks present at the microscale [START_REF] Ladevèze | Sur une théorie de l'endommagement anisotrope[END_REF][START_REF] Ladevèze | Modeling and simulation of the mechanical behavior of cmcs[END_REF][START_REF] Kanatani | Distribution of directional data and fabric tensors[END_REF][START_REF] Onat | Effective properties of elastic materials that contain penny shaped voids[END_REF][START_REF] Lubarda | Damage tensors and the crack density distribution[END_REF][START_REF] Kachanov | Elastic solids with many cracks and related problems[END_REF][START_REF] Tikhomirov | On three-dimensional microcrack density distribution[END_REF][START_REF] Cormery | A stress-based macroscopic approach for microcracks unilateral effect[END_REF]). It may also represent the directional (tensorial) description of microstructure degradation by rafting in single crystal superalloys at high temperature [START_REF] Desmorat | A tensorial thermodynamic framework to account for the γ ′ rafting in nickel-based single crystal superalloys[END_REF][START_REF] Caccuri | Tensorial nature of γ ′ -rafting evolution in nickel-based single crystal superalloys[END_REF]. Comprehensive descriptions of rafting phenomenon can be found in [START_REF] Kamaraj | Influence of stress state on thekinetics of γ-channel widening during high temperature and low stress creep of the single crystal superalloy cmsx-4[END_REF][START_REF] Ichitsubo | Rafting mechanism for ni-base superalloy under external stress: elastic or elastic-plastic phenomena[END_REF].

A model for directional density is given by a homogeneous polynomial D(n n n) of even order n = 2r (as we must have D(n n n) = D(-n n n) over a Representative Volume Element). This homogeneous polynomial in n n n corresponds to a totally symmetric tensor F -a so-called fabric tensor [START_REF] Kanatani | Distribution of directional data and fabric tensors[END_REF] of even order n = 2r, and conversely (see subsection 2.2):

(5.1)

D(n n n) = F(n n n, n n n, . . . , n n n) = F (n) • n n n n , n n n = 1,
where the contraction F

(n)

• n n n n is the scalar product between the two n th order symmetric tensors F and n n n n = n n n ⊗ n n n . . . ⊗ n n n.

The fabric tensor F can be determined from the least square error approximation of an experimental (measured) density distribution D exp (n n n). As F is totally symmetric, equation (4.4) in theorem 4.3 determining the unit normals ν ν ν to all symmetry planes directly applies to fabric tensors of any order n = 2r with S = F ∈ S 2r and representation ρ 2r (see Example 4.4 for the cases n = 2 to 10).

Application to Elasticity tensors

In Linear Elasticity theory, we have the relationship

σ σ σ = C : ǫ ǫ ǫ, σ ij = C ijkl ǫ kl
between symmetric stress and strain tensors σ σ σ, ǫ ǫ ǫ ∈ S 2 (R 3 ) equipped with the representation ρ 2 .

The Elasticity tensor C ∈ Ela has the index symmetries C ijkl = C ijlk = C klij and has thus two independent traces, the dilatation tensor d and Voigt's tensor v:

d := tr 12 C = C : I (d ij = C ppij = C ijpp ), v := tr 13 C (v ij = C pipj ),
which are symmetric second-order tensors.

The reduced equations determining the symmetry planes of a given Elasticity tensor are presented in the following theorem 6.1. Its proof relies on its harmonic decomposition (see subsection 2.3). More precisely, let C s be the totally symmetric part of C dv). We have then

(C s ) ijkl = 1 3 (C ijkl + C ikjl + C iljk ), b ′ = b -
C = C s + I ⊗ (2,2) b ′ + β I ⊗ (2,2) I,
where the Young-symmetrized tensor product ⊗ (2,2) of two symmetric second-order tensors y, z is defined as

y ⊗ (2,2) z = 1 3 y ⊗ z + z ⊗ y -y ⊗ z -z ⊗ y , (y ⊗ z) ijkl := 1 2 (y ik z jl + y il z jk ).
This decomposition

(6.1) C → (C s , b ′ , β) ∈ S 4 (R 3 ) ⊕ H 2 (R 3 ) ⊕ H 0 (R 3 )
is equivariant [START_REF] Backus | A geometrical picture of anisotropic elastic tensors[END_REF], where S 4 (R 3 ), H 2 (R 3 ) and H 0 (R 3 ) are respectively equipped with the representations ρ 4 , ρ 2 and ρ 0 . We have the following result. The following conditions are equivalent:

(1) the plane ν ν ν ⊥ is a symmetry plane of C;

(2) the axis ν ν ν is a symmetry axis of C;

(3) the following equations are satisfied

[C s • ν ν ν -3ν ν ν ⊙ (ν ν ν • C s • ν ν ν)] × ν ν ν = 0 and (b • ν ν ν) × ν ν ν = 0;
(4) the following equations are satisfied

[C s • ν ν ν -3ν ν ν ⊙ (ν ν ν • C s • ν ν ν)] × ν ν ν = 0 and (d • ν ν ν) × ν ν ν = 0.
Proof. We will prove that (1) =⇒ ( 2) =⇒ ( 3) =⇒ ( 4) =⇒ ( 1).

(1) =⇒ ( 2) follows directly from remark 2.2 (or Table 1) with n = 4 and standard action ρ 4 .

(2) =⇒ ( 3): since (6.1) is equivariant, we have

ρ 4 (g)C = C ⇐⇒ ρ(g)(C s , b ′ , β) = (ρ 4 (g)C s , ρ 2 (g)b ′ , β) = (C s , b ′ , β).
Hence, ν ν ν ⊥ is a symmetry plane of C if and only if ν ν ν ⊥ is a symmetry plane of C s and b and the result follows from equations (4.4) in theorem 4.3.

(3) =⇒ ( 4): if the first equation in ( 3) is satisfied, then ν ν ν ⊥ is a symmetry plane of C s by theorem 4.3. Hence, ν ν ν ⊥ is a symmetry plane of its second-order covariant tr(C s ) and thus

tr(C s ) × ν ν ν = 0. But tr(C s ) = 1 3 (d + 2v) = d - 1 3 b,
and we deduce that d × ν ν ν = 0. By (6.1), we deduce then that ν ν ν ⊥ is a symmetry plane of C. Theorem 6.1 is an important improvement to Cowin's theorem 1.1. It determines the normals to all the symmetry planes of an Elasticity tensor C and this for any symmetry class. It is moreover constructive.

• The first equation

[C s • ν ν ν -3ν ν ν ⊙ (ν ν ν • C s • ν ν ν)] × ν ν ν = 0 is polynomial of degree 4 in ν ν ν. It is stored in a third-order tensor; • The second equation [d • ν ν ν] × ν ν ν = 0 (or [b • ν ν ν] × ν ν ν = 0) is polynomial of degree 2 in ν ν ν
and is stored in a vector. Note finally that, in contrast with Cowin-Mehrabadi theorem, these equations are still useful in the cubic class, for which d ′ = (C : I) ′ = 0, v ′ = 0.

Application to Piezo-electricity tensors

In linear Piezo-electricity, an electric field represented by a vector E E E ∈ T 1 (R 3 ) (with representation ρ 1 ) generates a strain, represented by a symmetric second-order tensor ǫ ǫ ǫ ∈ S 2 (R 3 ) (with representation ρ 2 ). At vanishing stress, the linear relationship

ǫ ǫ ǫ = P • E E E, ǫ ij = P ijk E k
defines the Piezo-electricity third-order tensor P ∈ Piez ⊂ T 3 (R 3 ) (with representation ρ 3 ) [START_REF] Eringen | Electrodynamics of Continua , tomes I et II[END_REF], with index symmetry P ijk = P jik . As in the preceding section, to apply theorem 4.3, we need to decompose the vector space Piez into totally symmetric tensor spaces in an equivariant manner [START_REF] Jerphagnon | The description of the physical properties of condensed matter using irreducible tensors[END_REF][START_REF] Geymonat | Symmetry classes of piezoelectric solids[END_REF]. We will write

P = P s + I ⊗ w w w -I ⊙ w w w + 1 3 a • ε ε ε + t (a • ε ε ε) ,
where P s is totally symmetric part of P,

(P s ) ijk = 1 3 (P ijk + P ikj + P kji ),
w w w := 3 4 (tr 12 Ptr(P s )) , a := (P : ε ε ε) s , and the transpose t T is on the left two subscripts ( t T ijk := T jik ). This decomposition induces an equivariant isomorphism

P ∈ Piez → (P s , a, w w w) ∈ S 3 (R 3 ) ⊕ H 2 (R 3 ) ⊕ H 1 (R 3 ),
where S 3 (R 3 ), H 2 (R 3 ) and H 1 (R 3 ) are respectively equipped with the representations ρ 3 , ρ2 and ρ 1 . Following the same proof as for theorem 6.1 (with the use of reduced equations in theorem 4.3 for third-order tensor P s , second-order pseudo-tensor a and first order tensor w w w), we obtain reduced equations for the existence of second-order symmetries of Piezo-electricity tensors. Theorem 7.1. Let P ∈ Piez be a Piezo-electricity tensor, P s its totally symmetric part, w w w := 3 4 (tr 12 Ptr P s ) , and a := (P :

ε ε ε) s ,
where ε ε ε is the Levi-Civita tensor. Let ν ν ν be a unit vector.

(1) The plane ν ν ν ⊥ is a symmetry plane of P if and only if

(7.1)        P s • ν ν ν -2ν ν ν ⊙ (ν ν ν • P s • ν ν ν) = 0, a -2ν ν ν ⊙ (a • ν ν ν) = 0, w w w • ν ν ν = 0.
(2) The axis ν ν ν is a symmetry axis of P if and only if

(7.2)        [P s -3ν ν ν ⊙ (P s • ν ν ν)] × ν ν ν = 0, [a • ν ν ν] × ν ν ν = 0, w w w × ν ν ν = 0.
Theorem 7.1 is constructive. The sets of equations (7.1) and (7.2) determine all second-order symmetries of a Piezo-electricity tensor P, independently of their symmetry class. In both (7.1) and (7.2), the first equation is polynomial of degree 3 in ν ν ν (stored in a third-order tensor), the second eqaution is polynomial of degree 2 in ν ν ν (stored in a second-order tensor) and the third one is linear in ν ν ν (stored in a vector).

Application to Piezo-magnetism tensors

In linear Piezo-magnetism, a magnetization represented by a pseudo-vector M M M ∈ T 1 (R 3 ) (with representation ρ1 ) generates a strain (a symmetric second-order tensor ǫ ǫ ǫ ∈ S 2 (R 3 ) with representation ρ 2 ) through a linear relation. At vanishing stress and around initial magnetization M M M 0 , this writes

ǫ ǫ ǫ = Π Π Π • (M M M -M M M 0 ), ǫ ij = Π ijk (M k -M 0 k ), Π ijk = Π jik
where Π Π Π ∈ Magn ⊂ T 3 (R 3 ) with representation ρ3 is the Piezo-magnetism third-order pseudotensor.

The subtlety here is that the correct geometry of the piezo-magnestism tensor (and this stands also for the piezo-electricity tensor) is not the full orthogonal group O(3) but the full Lorentz group O [START_REF] Auld | Wave propagation and resonance in piezoelectric materials[END_REF][START_REF] Baerheim | Harmonic decomposition of the anisotropic elasticity tensor[END_REF]. In particular the time-reversal symmetry plays an important role for the piezomagnetism tensor, which changes sign when a time-reversal symmetry is applied (see [START_REF] Eringen | Electrodynamics of Continua , tomes I et II[END_REF][START_REF] Kiral | Constitutive equations of nonlinear electromagnetic-elastic crystals[END_REF][START_REF] Weller | Piezomagnetic tensors symmetries: an unifying tentative approach[END_REF]). Thus it may be useful, not only to look for plane/axial symmetries of Π Π Π, but also for combination of a symmetry plane with the central symmetry -I (which acts as the time-reversal symmetry on Π Π Π). Combined with observations in Table 1, and in particular the fact that ρ3 (s(ν ν ν)) = ρ3 (r(ν ν ν)), we are lead to state the following result which is a consequence of theorem 4.3. where ε ε ε is the Levi-Civita tensor. Let ν ν ν be a unit vector. Then (1) ρ3 (s(ν ν ν))Π Π Π = Π Π Π if and only if

(8.1)        [Π Π Π s -3ν ν ν ⊙ (Π Π Π s • ν ν ν)] × ν ν ν = 0, [a • ν ν ν] × ν ν ν = 0, w w w × ν ν ν = 0. (2) ρ3 (s(ν ν ν))Π Π Π = -Π Π Π if and only if (8.2)        Π Π Π s • ν ν ν -2ν ν ν ⊙ (ν ν ν • Π Π Π s • ν ν ν) = 0, a -2ν ν ν ⊙ (a • ν ν ν) = 0, w w w • ν ν ν = 0.

Conclusion

By exploiting the link between tensorial and polynomial representations of the orthogonal group O(3), we have formulated necessary and sufficient conditions which characterize plane and axial symmetries of any totally symmetric (pseudo-)tensors of order n ≥ 1. These results are stated in theorem 4.3 and detailed for orders n ≤ 10 in examples 4.4 to 4.7.

The proofs of these results, emphasize the practical interest -in terms of effective calculus -of explicit translations between covariant operations on totally symmetric tensors and those on homogeneous polynomials. Among them, in particular, the generalized cross product (2.2), which generalizes the vector product in R 3 for totally symmetric tensors of any order.

These results are then extended to any tensor T, using the harmonic decomposition [START_REF] Schouten | Tensor Analysis for Physicists[END_REF][START_REF] Spencer | A note on the decomposition of tensors into traceless symmetric tensors[END_REF]. This decomposition being equivariant, a symmetry of the full tensor has to be checked on each factor. This is done using theorem 4.3 for each component of the harmonic decomposition, which is a symmetric tensor. The specific cases of Elasticity tensors, Piezo-electricity tensors and Piezo-magnetism pseudo-tensors have been detailed.

Necessary and sufficient conditions for the existence of order-two symmetries of a given tensor constitute an important first step towards the effective determination of the tensor full symmetry group. These equations solve the problem for any Elasticity tensor [START_REF] Chadwick | A new proof that the number of linear elastic symmetries is eight[END_REF]. But, as pointed out in [START_REF] Chadwick | A new proof that the number of linear elastic symmetries is eight[END_REF], this is only a first step, as the symmetry group of an odd-order tensor is not generated by its order-two symmetries, in general (this applies, in particular to the Piezo-electricity tensor).

Appendix A. Homogeneous polynomials even or odd in one variable

In this appendix, we will formulate necessary and sufficient conditions for an homogeneous polynomial p of degree n in three variables (x, y, z) to be even or odd in z. To do so, we introduce, for k ≥ 1, the following differential operator

D k := z k-1 ∂ z k . Then, if p = a 0 (x, y) + a 1 (x, y)z + • • • + a n (x, y)z n , we get D k (p) = k! a k (x, y)z k-1 + • • • + n! (n -k)! a n (x, y)z n-1 .
We will first look for a necessary and sufficient condition for a polynomial p to be z-even. In order to achieve this goal, we will start by showing that we can find a linear combination of the D k (p) which cancels all the even coefficients a 2i but not the odd coefficients a 2i-1 .

Lemma A.1. Let n ≥ 1 and set q = ⌊ n + 1 2 ⌋, r = ⌊ n 2 ⌋, so that q = r, if n is even and q = r + 1,

if n is odd. Then, there exists a unique q-tuple (λ

(n) 1 , . . . , λ (n)
q ) of rational numbers, solution of the equations (in the unknowns (λ 1 , . . . , λ q ))

(A.1) 2i k=1 (2i)! (2i -k)! λ k = 0, for i = 1, . . . , q -1 and q k=1 n! (n -k)! λ k = 1.
Moreover, if we define the linear operator

(A.2) L n := q k=1 λ (n) k D k ,
then, for every homogeneous polynomial p of degree ≤ n, we have

L n (p) = r i=1 α (n) i a 2i-1 (x, y)z 2i-2 + a n z n-1 , where α (n) i = 2i-1 k=1 (2i -1)! (2i -1 -k)! λ (n) k = 0, 1 ≤ i ≤ r.
Example A.2.

• For n = 1, we have r = 0, q = 1 and

L 1 (p) = ∂ z p = a 1 .
• For n = 2, we have r = 1, q = 1 and

L 2 (p) = 1 2 ∂ z p = 1 2 a 1 + a 2 z.
• For n = 3, we have r = 1, q = 2 and

L 3 (p) = - 1 3 ∂ z p + 1 3 z∂ z 2 p = - 1 3 a 1 + a 3 z 2 .
• For n = 4, we have r = 2, q = 2 and

L 4 (p) = - 1 8 ∂ z p + 1 8 z∂ z 2 p = - 1 8 a 1 + 3 8 a 3 z 2 + a 4 z 3 .
• For n = 5, we have r = 2, q = 3 and

L 5 (p) = 1 5 ∂ z p - 1 5 z∂ z 2 p + 1 15 z 2 ∂ z 3 p = 1 5 a 1 - 1 5 a 3 z 2 + a 5 z 4 .
• For n = 6, we have r = 3, q = 3 and

L 6 (p) = 1 16 ∂ z p - 1 16 z∂ z 2 p + 1 48 z 2 ∂ z 3 p = 1 16 a 1 - 1 16 a 3 z 2 + 5 16 a 5 z 4 + a 6 z 5 .
In order to prove lemma A.1, we introduce the following notations. Given an infinite matrix M = (M ij ) i,j≥0 , and two subsets I := {i 1 , . . . , i p }, J := {j 1 , . . . , j p } of N, where i

1 < • • • < i p and j 1 < • • • < j p , we define the square matrix M (I, J) of size p M (I, J) kl = M i k j l . Besides, if D is an infinite diagonal matrix (λ 0 λ 1 • • • ), we define D(I) as the diagonal matrix (λ i 1 λ i 2 • • • λ ip ) of size p .
The following result was proved in [18, Corollary 2]. If A = (A ij ) i,j≥0 is the binomial matrix, where

A ij :=      i j , if i ≥ j, 0, otherwise, then det A(I, J) > 0, provided that j k ≤ i k , for 1 ≤ k ≤ p. Now, let B = (B ij ) i,
j≥0 be the infinite matrix defined by

B ij :=      i! (i -j)! , if i ≥ j, 0, otherwise.
and let D be the infinite diagonal matrix (0! 1! 2! • • • ). Since

B(I, J) = A(I, J)D(J),

we get the following result.

Lemma A.3. Let I := {i 1 , . . . , i p } and J := {j 1 , . . . , j p } be two subsets of N, with i

1 < • • • < i p and j 1 < • • • < j p . If j k ≤ i k , for 1 ≤ k ≤ p, then det B(I, J) > 0.
Proof of lemma A.1. We look for a solution (λ 1 , . . . , λ q ) of (A.1). Set X := (λ 1 , . . . , λ q ) t , I 1 := {2, 4, . . . , 2(q -1), n} , J := {1, 2, . . . , q} and B 1 := B(I 1 , J).

Then, (A.1) rewrites as B 1 X = (0, . . . , 0, 1) t , which has a unique solution (λ

(n) 1 , . . . , λ (n)
q ) of rational numbers, because B(I 1 , J) is an integer matrix, which is invertible by lemma A.3. Now, if L n is defined by (A.2) and p = a 0 (x, y) + a 1 (x, y)z

+ • • • + a n (x, y)z n , we have L n (p) = r i=1 α (n) i a 2i-1 (x, y)z 2i-2 + a n z n-1 , where α (n) i = 2i-1 k=1 (2i -1)! (2i -1 -k)! λ (n) k , 1 ≤ i ≤ r.
Hence, if we set Y := (α

(n) 1 , . . . , α (n)
q ) t (where α (n) q = 1 if n is odd), I 2 := {1, 3, . . . , 2q -1} and B 2 := B(I 2 , J), we get Y = B 2 X. Therefore

α (n) i = q k=1 B 2 ik λ (n) k
where λ

(n) k = 1 det B 1 (-1) k+q ∆ 1
qk , and ∆ 1 qk is the (q, k) minor of B 1 . We have thus

α (n) i = 1 det B 1 q k=1 (-1) k+q B 2 ik ∆ 1 qk = det C i det B 1 ,
where C i is the q × q matrix obtained from B 1 by substituting its last row

(B 1 q1 B 1 q2 • • • B 1 qq ) by the i-th row of B 2 (B 2 i1 B 2 i2 • • • B 2 iq
). For n = 1, we have α 1 = 1/2 (see example A.2). Hence the theorem is true for n = 1, 2. If n ≥ 3, we have q ≥ 2 and, if necessary, by a circular permutation of signature qi, we can uprise this last row so that the new matrix corresponds to B(K i , J), where K i := {2, 4, . . . , 2i -2, 2i -1, 2i, . . . , 2(q -1)} . We get finally that det C i = (-1) q-i det B(K i , J), which doe not vanish by lemma A.3, because q ≥ 2. This achieves the proof.

We are now ready to state a necessary and sufficient condition for a homogeneous polynomial of degree n ≥ 1 to be even in z. In the next theorem, we use the Lie-Poisson bracket {f, g} LP (x x x) := det(x x x, ∇f, ∇g).

Theorem A.4. Let p ∈ P n (R 3 ) be a homogeneous polynomial of degree n ≥ 1 and let L n be the differential operator defined by (A.2) with λ (n) k = (B 1 ) -1 qk . We have the following results. (1) If n is odd, then, p is z-even iff L n (p) = 0.

(2) If n is even, then, p is z-even iff {L n (p), z} LP = 0.

For the proof of theorem A.4, the following result will be useful.

Lemma A.5. Let a(x, y) be an odd homogeneous polynomial in (x, y). Then {a(x, y), z} LP = 0 ⇐⇒ a = 0.

Proof. If a vanishes identically, then {a(x, y), z} LP = 0. Conversely, observe that {a(x, y), z} LP = x∂ y a -y∂ x a = ∂ θ a, using polar coordinates (r, θ). But, a(x, y) writes as r 2p+1 f p (θ). Hence, if {a(x, y), z} LP = 0, then, a = Cr 2p+1 for some constant C and since r = x 2 + y 2 , this leads to a = 0.

We will also make use of the following two properties of the Lie-Poisson bracket, which result from iteration of the Leibniz rule:

(1) z k , z LP = 0, for every k ∈ N;

(2) f z k , z LP = {f, z} LP z k , for every function f and every k ∈ N.

We get thus

β (n) i = 1 det B1 r k=0 (-1) k+r+1 B2 i,k ∆1 r+1,k = det Ci det B1 , 0 ≤ i ≤ q -1,
where ∆1 r+1,k is the (r + 1, k) minor of B1 and Ci is the (r + 1) × (r + 1) matrix obtained from B1 by substituting its last row by the i-th row of B2 . As in lemma A.1, we can show that det Ci = 0. We get therefore the following result, which proof is similar to that of theorem A.4 and will be omitted Theorem A.7. Let p ∈ P n (R 3 ) be a homogeneous polynomial of degree n ≥ 1, r = ⌊ n 2 ⌋ and q = ⌊ n + 1 2 ⌋. Let K n be the differential operator defined by (A.3) with µ

(n) k = ( B1 ) -1 1k . We have the following results.

(1) If n is even, then, p is z-odd iff K n (p) = 0.

(2) If n is odd, then, p is z-odd iff {K n (p), z} LP = 0.

Example A.8.

• For n = 1, we have r = 0, q = 1 and K 1 (p) = p = a 0 + a 1 z.

• For n = 2, we have r = q = 1 and K 2 (p) = -p + z∂ z p = -a 0 + a 2 z 2 .

• For n = 3, we have r = 1, q = 2 and

K 3 (p) = - 1 2 p + 1 2 z∂ z p = - 1 2 a 0 + 1 2 a 2 z 2 + a 3 z 3 .
• For n = 4, we have r = q = 2 and • For n = 6, we have r = q = 3 and 
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 1 tr b I be the deviatoric part of the second-order symmetric tensor b = 2(dv) and β = 1 6 tr(
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 61 Let C be an Elasticity tensor, C s its totally symmetric part and b = 2(dv).

( 4 )

 4 =⇒ (1): if the equations in (4) are satisfied, then, ν ν ν ⊥ is a symmetry plane of both C s and d by theorem 4.3. It is thus a symmetry plane of b (and of b ′ ) since b = 3(dtr(C s )).
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 81 Let Π Π Π ∈ Magn ⊂ T 3 (R 3 ) with representation ρ3 be a Piezo-magnetism tensor, Π Π Π s its totally symmetric part, w w w := 3 4 (tr 12 Π Π Πtr Π Π Π s ) , and a := (Π Π Π : ε ε ε) s .

  for n = 2, we have α[START_REF] Backus | A geometrical picture of anisotropic elastic tensors[END_REF] 

K 4 ( 3 z 2 ∂ z 2 p = a 0 - 1 3 a 2 z 2 + a 4 z 4 .•K 5 (a 4 z 4 +

 4322454 p) = p -z∂ z p + 1 For n = 5, we have r = 2, q = 3 and a 5 z 5 .

K 6 a 4 z 4 +

 64 (p) = -p + z∂ z pa 6 z 6 .

Natural representation

Twisted representation n even ρ n (s(ν ν ν))S = S ⇔ ρ n (r(ν ν ν, π))S = S Eq. (4.4)

• Plane: ρn (s(ν ν ν))S = S ⇔Eq. Table 2. Reduced algebraic equations for second-order symmetries.

Before providing a proof of theorem 4.3, we explicit these conditions in certain cases.

Example 4.4. Equation (4.4) defining a plane/axial symmetry of a totally symmetric tensor or an axial symmetry of a totally symmetric pseudo-tensor writes, for orders n = 2r ≤ 10,

• ν ν ν 3 × ν ν ν = 0; n = 8:

•

• ν ν ν 4 × ν ν ν = 0; n = 10:

• ν ν ν 3

• ν ν ν 4 + 144 5 ν ν ν 4 ⊙ S

• ν ν ν 5 × ν ν ν = 0.

Example 4.5. Equation (4.5) defining a plane symmetry of a totally symmetric pseudo-tensor writes, for orders n = 2r ≤ 10, n = 2:

• ν ν ν 5 = 0. Example 4.6. Equation (4.6) defining a plane/axial symmetry of a totally symmetric pseudotensor or an axial symmetry of a totally symmetric tensor writes, for orders n = 2r + 1 < 10,

• ν ν ν 2 -14 ν ν ν 3 ⊙ S

• ν ν ν 3 × ν ν ν = 0; n = 9:

• ν ν ν 2 -48 ν ν ν 3 ⊙ S

(3)

• ν ν ν 4 × ν ν ν = 0.

Example 4.7. Equation (4.7) defining a plane symmetry of a totally symmetric tensor writes, for orders n = 2r + 1 < 10, n = 1:

• ν ν ν 4 + 16 ν ν ν 4 ⊙ S [START_REF] Borisenko | Vector and tensor analysis with applications[END_REF] • ν ν ν 5 = 0.

Proof of theorem 4.3. Let S ∈ S n (R 3 ) be a totally symmetric tensor of order n ≥ 1 and let p = ϕ(S) ∈ P n (R 3 ) be the corresponding homogeneous polynomial of degree n (see subsection 2.2). Then the tensor S is invariant under some transformation g ∈ O(3) if and only if

where ̺ stands either for ρ or ρ. We suppose now that g = s(ν ν ν). Without loss of generality, we can choose an orthonormal basis (e e e 1 , e e e 2 , e e e 3 ) such that ν ν ν = e e e 3 but then

We will now use the necessary and sufficient conditions obtained in Appendix A, namely theorems A.4 and A.7 which characterize z-even or odd homogeneous polynomials. We observe that the scalar product ν ν ν • x x x and the Euclidean transvectant p, (ν ν ν • x x x) k k defined in subsection 2.5 write as follows when ν ν ν = e e e 3 .

We are thus lead to introduce the following linear operators:

be a homogeneous polynomial of degree n ≥ 1.

(1) Suppose first that n = 2r + 1 is odd. If p is z-even, then a n = a 2r+1 and all the terms a 2i-1 vanish and thus L n (p) = 0. Conversely, if L n (p) = 0, then,

where each α (n) i = 0 by lemma A.1. Thus a 2i-1 = 0 for 1 ≤ i ≤ r + 1 and p is z-even.

(2) Suppose now that n = 2r is even. If p is z-even, then all the terms a 2i-1 vanish. Thus

Hence, we have {a 2i-1 (x, y), z} LP = 0 for 1 ≤ i ≤ r. But since n is even, all the a 2i-1 (x, y) are odd and by lemma A.5, they must vanish. This achieves the proof.

We are now interested to formulate a necessary and sufficient condition for a homogeneous polynomial p of degree n ≥ 1 to be odd in z. A result similar to lemma A.1 will be established first. To do so, we introduce the differential operator

if n is odd. Then, there exists a unique (r +1)-tuple (µ 

Moreover, if we define the linear operator

then, for every homogeneous polynomial p of degree ≤ n, we have

Since the proof is almost identical to the one of lemma A.1, we will not repeat it but just emphasize the changes. In the proof of lemma A.1, the q × q matrix B 1 should be replaced by the (r + 1) × (r + 1) matrix B1 := B( Ĩ1 , J), where Ĩ1 := {1, 3, . . . , 2r -1, n} , J := {0, 1, 2, . . . , r} .

Note that det B1 > 0 by lemma A.3 and hence that the µ (n) k are uniquely defined. Then, we introduce the q × (r + 1) matrix B2 := B( Ĩ2 , J ) where Ĩ2 := {0, 2, . . . , 2(q -1)} .