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ABSTRACT 

This paper proposes an interval-based computational formulation of the Bellman-Zadeh decision-making 
approach when the handled information (goals and constraints) is represented by type-2 fuzzy intervals (FIs). 
Our method, which maintains the flexibility of interval arithmetic and interval reasoning as major objectives, 
consists of representing an FI by its profiles, which are considered gradual numbers. The developed reflection 
is based on interval relations to determine a generic formulation of the intersection operation between type-2 
FIs, where a computational mechanism can be easily derived. This intersection area is considered an uncertain 
decision domain that is represented by lower type-1 FI situations and upper type-1 FI bounds that are 
considered extreme situations in adverse situations and favorable situations, respectively. In this framework, 
any FI between these FI bounds can be chosen by decision makers as an optimal solution according to a 
specified decision criterion. In this paper, a risk decision-making criterion is considered; however, other 
decision criteria can be employed in a similar manner. The proposed vision offers a convenient tool that 
enables decision makers to manage their judgment in the possible uncertain domain of a decision. The interest 
of the proposed approach is the extension of inter-interval relations to type-1 and type-2 FIs, where the 
Bellman-Zadeh decision-making problem using membership functions can be transformed into an interval 
arithmetic problem using the FI profiles. 

Keywords: Type-1 and Type-2 Fuzzy Intervals, Bellman-Zadeh decision-making principle, Intersection 
operator, Imprecision-Uncertainty, Interval relations and Interval arithmetic, Risk decision-making problem. 

I. INTRODUCTION 

   Due to the presence of imprecision and uncertainty in complex environments, decision makers are 
often unable to provide crisp numerical values to quantify their evaluations and/or judgements. 
Decision makers often use some degree of imprecision and/or uncertainty to formulate their 
subjective judgments. To address this situation, fuzzy subsets (often referred to as fuzzy sets (FSs)), 
which are a useful tool for handling the imprecision and uncertainty of decision makers, have been 
substantially exploited in decision-making problems [3][40][41][42].  
    The philosophy of fuzzy decision-making is based on the concept of FSs (also known as type-1 
FSs). The underlying theory—the FS theory proposed by Zadeh [48]—provides a reasonable 
mathematical tool for explicitly representing imprecise (vague) information in the form of 
membership functions. Imprecision is primarily attributed to vague or even approximate 
characteristics (ill-defined limits) that are expressed in a linguistic form using a natural language. 
After a few years, Zadeh expressed his doubts about the ability of a type-1 FS to exhibit the 
uncertainty of word-based representations. By handling words via a type-1 FS based on membership 
degrees, the uncertainty of words is absent. Mendel [31] relies on Popper's falsification principle to 
express the following statement: a type-1 FS is certain and cannot properly represent a word that is 
uncertain by essence.  
    To better handle imprecision and uncertainty, the type-2 FS concept has been proposed. 
Historically, the type-2 FS concept was introduced by Zadeh as an extension of type-1 FS [49]. The 
issue of representing words in a natural language motivated Zadeh’s initial proposition. Zadeh’s 
basic idea can be summarized by the following sentence: "The same words have a different meaning 
for different people". Uncertainties are inherent in the handling of words in a natural language. Thus, 
the type-2 vision enables the integration of uncertainty into the answers of experts and the 
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simultaneous consideration of their different opinions (as originally proposed by Zadeh). Based on 
the extension principle, algebraic structures of type-2 FSs were extensively investigated [36][37]. 
Over the past 30 years, type-2 fuzzy representation has advanced significantly due to the research of 
Mendel et al. [24][32][33][34]. In this framework, interval type-2 FSs are the most commonly 
employed FS of the higher order FS due to the high computational complexity of using general type-
2 FSs. Interval type-2 FSs have been applied in many practical domains, especially in modeling, 
control and decision-making [32][33][40][41][42][45].  
    In the fuzzy literature, an FS is sometimes referred to as a "fuzzy number". In general, this 
denomination refers to an FS whose α-cuts are conventional intervals. Philosophically, and as 
discussed in [17], a fuzzy number does not generalize the concept of a real number but rather the 
concept of a real-valued interval. In this framework, a fuzzy number should inherit the properties of 
intervals and not those of real numbers, which explains why the appellation "fuzzy interval" (FI) is 
employed instead of "fuzzy number" throughout this study. An FI is a convex FS, where all α-cuts 
are intervals. An FI can be considered a stack of nested intervals defined by the α-cuts concept [5].   
    Bellman and Zadeh [3] originally proposed the concept of fuzzy decision-making based on a 
compromise between goals and constraints that are represented by type-1 FSs. This concept of 
optimization aims to determine an optimal solution, where both goals and constraints are represented 
by their membership functions. The fuzzy decision domain, which is denoted D and represented by 
its membership function µD on a referential X, is issued from the intersection operation between the 
fuzzy goals and the fuzzy constraints. In this context, on the referential set X, an optimal solution x* 
of the decision-making problem must reflect the maximum fulfillment degree of the compromise 
between goals and constraints, i.e., x* corresponds to the highest degree of belonging to D.  
    Generally, in type-1 decision-making techniques, the FS (FI) that represents the perception of the 
decision makers is assumed to be fixed, and the optimal decision-making solution is considered 
certain. This optimal solution can be altered if uncertainties are attached to the type-1 FIs. To address 
this uncertainty phenomenon, decision-making methodologies have been extended to type-2 FSs and 
type-2 FIs. This extension is not a new problem. Numerous useful and excellent methods for 
handling decision-making problems using type-2 representation, especially in multiple attribute 
group decision-making problems, have been published in the literature [11][12][40][41][42][43]. For 
instance, in [11][40], ranking values and arithmetic operations techniques are exploited. In [12][43], 
the TOPSIS method is used. In [13], arithmetic operations and fuzzy preference relations are 
proposed. In [47], a linguistic weighted average is exploited. This research domain has expanded, 
and it is now difficult to compose an exhaustive list of all the work that has been published in the 
literature. Regrettably, many excellent pieces of work are not mentioned in this paper. 
      Recently, an interesting type-2 risk decision-making methodology was proposed based on the 
Bellman-Zadeh principle [42]. Using this method, the type-2 goals and constraints are represented by 
type-2 membership functions. As explained in [42], if the decision-making methodologies that were 
previously mentioned are effective and useful, they do not index the decision process for the notion 
of risk. This paper aims to revisit this concept of decision-making, where an alternative 
computational approach is proposed. The philosophy of the proposed method is not limited to the 
risk framework and can be applied to other issues. 
     Generally, fuzzy computations (standard arithmetic operations, intersection, union, …) that are 
based on membership function formalism are implemented using the Zadeh extension principle. 
However, computations based on the Zadeh’s extension principle are expensive due to the need to 
solve a nonlinear programming problem. To overcome this problem, approximation via α-cuts (and 
its hybridizations) is often employed [21][47][49]. Due to its simplicity and the availability of 
computational methods, fuzzy computation based on α-cuts is the most common approach for 
implementing fuzzy operations in different applications. However, the literature is unanimous 
regarding the fact that the α-cut approach is time consuming. In this framework, regardless of the 
method, computing operations on type-2 FIs remain computationally expensive due to the 3D nature 
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of type-2 FIs. Although α-cuts were sound and useful in some situations, this method was 
computationally expensive and required significant preliminary computations. As stated in [22], the 
implementation of type-2 FIs operations sometimes requires the use of massively parallel processing 
units, such as graphical processing units (GPUs). 
     This paper proposes an alternative computational formulation of the Bellman-Zadeh decision-
making method according to an interval-based vision, where the flexibility of interval arithmetic and 
interval relations is maintained as a major objective. Our work aims to replace the membership 
function formalism that is often employed in decision-making methods by an FI representation via 
the concept of gradual numbers. An interval arithmetic methodology, where a generic computational 
mechanism can be easily derived, is proposed to avoid the discretization procedure, which is 
necessary for implementing the α-cuts principle. In this vision, an FI is regarded as a pair of lower 
and upper gradual numbers (bounds), which are referred to as left and right profiles. Fortin et al. 
introduced the notion of gradual numbers, which provides a new outlook on FI and their 
manipulation [8][17][20]. This vision differs from existing methods in the literature and enables the 
extension of interval arithmetic and reasoning methods to FI and decision-making strategies. The 
proposed method has been applied in the decision-making context; however, many uses of its 
potentialities can be imagined in the frameworks of type-2 fuzzy control [10][29], type-2 fuzzy 
multicriteria decision-making and aggregation operators [14][46] in type-2 regression [2][23]. 
     From a methodological point of view, when goals and constraints are represented by a type-2 FI, 
the originality of the proposed methodology exploits the interval relations to express the decision 
domain (intersection domain) as a type-2 FI defined by its lower and upper type-1 FI boundaries. 
The type-1 FI bounds can be interpreted as extreme situations in most adverse and favorable 
situations. They frame a domain that represents an uncertainty footprint of the decision. According to 
a specific criterion, a decision maker in this case can select any optimal solution within this domain. 
Thus, this methodology offers a convenient and flexible tool that enables decision makers to directly 
manage and adjust their decisions within the possible decision domain according to their specified 
decision criteria (e.g., a risk decision-making criterion). The proposed approach extends inter-
interval relations to type-1 and type-2 FIs to propose an interval-based vision of the Bellman-Zadeh 
decision-making problem.  
     This paper is organized as follows. Section II provides some preliminaries about intervals and FIs. 
Semantics and interpretations of type-2 FIs are detailed in section III. In section IV, partial interval 
relations are introduced to provide general analytical expressions of the intersection operator for 
type-1 and type-2 FIs. The decision-making methodology for type-1 and type-2 FIs with associated 
application examples is detailed in section V. Concluding remarks are given in section VI. 

II. PRELIMINARIES: INTERVALS AND FUZZY INTERVALS  

For the sake of simplicity without the loss of generality, the FI in this paper is considered to be 
unimodal and piecewise linear. However, the proposed methodology remains adaptable regardless of 
the form of the FI. Generally, a conventional interval a (the interval is denoted in bold) can be 
expressed by two main representations. The first representation is the endpoints (EP) representation, 
where a is denoted by its endpoints, i.e., a = [a−, a+] with a− ≤ a+. The second representation is the 
midpoint-radius (MR) representation. In this case, the interval a is denoted by a = (Ma, Ra); Ra ≥ 0. 
The midpoint Ma and the radius Ra are defined by Ma = (a−+ a+)/2 and Ra = (a+− a−)/2. The MR 
representation facilitates the interpretation of the interval relations and arithmetic [6][25]. The 
relation between the EP and MR representations is simple, i.e., a− = Ma −Ra  and a+ = Ma +Ra.  

II.1. Type-1 fuzzy intervals 

A type-1 FS is constructed by generalizing the traditional notion of the characteristic function of a 
set. An information is a member of an FS, which is denoted A, with a certain degree of belonging to 
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the interval [0, wA]. If wA = 1, then A becomes a normal FS. With the referential set X, the unimodal 
FS A with this reference is characterized by its membership function, which is denoted µA, such that  
• µA is a continuous mapping from X →[0, wA], and µA(x = k) = wA; 
• its support, i.e., {x | µA(x) > 0}, is the open interval (s−

, s+
), and its modal value is x = k; and 

• µA(x) is nondecreasing for x∈(−∞, k] and nonincreasing for x∈[ k, +∞).  

Let us denote µA− and µA+ as the restrictions of µA to (s−
, k] and µA to [k, s+

), respectively, i.e., µA−(x) 
= µA(x) for x ∈ (s−

, k] and µA+(x) = µA(x) for x ∈ [k, s+
). Let us also assume that these functions are 

injective (µA−  is increasing and µA+ is decreasing). Generally, when the bounds of a conventional 
interval a are flexible and characterize a gradual transition over the interval, they can be represented 
by gradual numbers [8][9][17][20]. A gradual number is a real-valued function that is parameterized 
by a degree of relevance λ. Similar to a conventional interval, an FI can be represented by the 
ordered pair of its two bounds, i.e., a−(λ) and a+(λ) (gradual numbers), which are referred to as left 
and right profiles. In the EP space, an FI is denoted by a(λ) = [a−(λ), a+(λ)], where a−(λ)≤a+(λ). The 
type-1 FS A is interpreted as a type-1 FI a(λ), where a−(λ) and a+(λ) are defined by the inverse 
functions (µA−)-1 and (µA+)-1, respectively:  

a−(λ) = inf{x | µA(x) ≥ λ} = (µA−)−1(λ); and a+(λ) = sup{x | µA(x) ≥ λ} = (µA+)−1(λ). 
In this paper, a−(λ) and a+(λ) are assumed to be continuous, and a−(0) and a+(0) are defined. For 
instance, Fig. 1 shows a normalized type-1 triangular FS A and its representation as a type-1 
triangular FI a(λ). For the sake of clarity, and as habitually applied in FS representations, a rotation 
of an angle of π/2 is shown in Fig. 1.b, which generates Fig. 2.a. An FI is represented by the 
coordinates (a(λ), λ) instead of (λ, a(λ)).  

  
Fig. 1: Type-1 triangular FS and its representation with a type-1 FI 

In a framework of equivalence, Fig. 2.b presents an FS and its representation as an FI in the same 
figure. The values of x and those attached to a(λ) are simultaneously shown on the horizontal axis. 
On the vertical axis, both the degrees of relevance λ and the degrees of belonging to A are shown.  
A membership function representation can be moved to a representation by a pair of gradual 
numbers, and vice versa, without losing any information. Thus, the membership function µA of a 
normal and unimodal FS can be deduced from the gradual number bounds as follows:  

sup{λ | (λ)  ;  if: (0) (1)
( )

sup{λ | (λ)  ;  if: (1) (0)
A

a x a x a
μ x

a x a x a

− − −

+ + +

≤ ≤ ≤=  ≥ ≤ ≤

1

1

( ) ( ) ;  if: (0) (1)
( )

( ) ( ) ;  if: (1) (0)
A

a x a x a
μ x

a x a x a

− − − −

+ − + +

≤ ≤
⇒ =  ≤ ≤

 

Let us give an example to show the equivalence between an FS and an FI using the gradual number 
representation. Let us assume an FS A, which is defined by its membership function µA(x), given by:  
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( ) ( 1) / 5 ;  1 6
( )

( ) (11 ) / 5 ;  6 11
A

A

A

μ x x x
μ x

μ x x x
−

+

= − ≤ ≤=  = − ≤ ≤
 

  
Fig. 2: Type-1 FI representation and equivalence 

This FS can be represented as the FI a(λ) = [a−(λ), a+(λ)], where a−(λ) and a+(λ) are gradual numbers 
that are computed such that 

1

1

λ ( ) ( 1) / 5 (λ) ( ) (λ) 1 5λ

λ ( ) (11 ) / 5 (λ) ( ) (λ) 11 5λ
A A

A A

μ x x a μ
μ x x a μ

− −

+ +

− −

+ −

= = − ⇒ = = +
 = = − ⇒ = = −

 

II.2. Type-2 fuzzy intervals 

Generally, a type-m FS is an FS whose membership values are FSs of type m−1 (m>1). For example, 
a type-2 FS is an FS whose membership values are type-1 FSs. Similar to type-1 formalism, a type-2 
FS is characterized by a type-2 membership function that is represented by two type-1 membership 
functions: the lower function (inf) and the upper function (sup). In this context, a type-2 FS, which is 
denoted Ã, is completely defined by these two type-1, FS Ainf and Asup, which are defined by their 
membership functions, µA

inf(x) and µA
sup(x), and subject to the constraint µA

inf(x) < µA
sup(x) (refer to 

Fig. 3.a for a particular case of triangular type-2 FS). Analogously, if the type-1 FS A can be viewed 
as the type-1 FI a(λ) represented by an ordered pair of its profiles, a type-2 FS Ã can also be 
represented by the type-2 FI ã(λ) (refer to Fig. 3.b). The latter is defined by two type-1 FIs—lower 
ainf(λ) and upper asup(λ) FI—with the inclusion constraint ainf(λ) ⊆ asup(λ). In this context, a type-2 
FI is defined by:  

ã(λ) = { ainf(λ), asup(λ) | ainf(λ) ⊆ asup(λ)} 

  
Fig. 3: Type-2 triangular FS and its representation with a type-2 FI 
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For illustration, Fig. 4.a represents a triangular type-2 FS and its representation as a type-2 FI on the 
same diagram to highlight the equivalence. Similar to type-1 formalism, the values of x and those 
attached to ã(λ) are simultaneously shown on the horizontal axis. Both the degrees of λ and the 
degrees of belonging to type-2 FS are shown on the vertical axis. An illustration is given in Fig. 4.b. 

  
Fig. 4: Type-2 FI representation and equivalence 

III. TYPE-2 FUZZY INTERVALS: SEMANTICS AND INTERPRETATIONS 

III.1. Type-2 fuzzy intervals: ontic and/or epistemic 

According to the meaning attributed to the conventional interval a, two different interpretations can 
be distinguished: ontic and epistemic [9][15][18][28]. This vision can be extended to a type-2 FI 
interpretation and meaning. A type-2 FI ã(λ) can be considered to be ontic or epistemic. In an ontic 
representation, ã(λ) is considered to be a compact entity. Furthermore, ã(λ) is viewed as a set of 
conjunctive type-1 FIs. All type-1 FIs a(λ) between the bounds ainf(λ) and asup(λ) are considered to 
be conjunctive elements (refer to Fig. 5.a). This vision may be feasible in some applications, such as 
computing with words in imprecise and uncertain environments. In an epistemic interpretation, the 
type-2 FI ã(λ) is considered to be a set of disjunctive type-1 FIs a(λ) between ainf(λ) and asup(λ) 
(refer to Fig. 5.b). This vision is better adapted in situations where the exact shape of a type-1 FI may 
not be easily obtained. The exact FI a(λ) is unknown, and only the bounds ainf(λ) and asup(λ), 
including FI a(λ), are available. The manipulated information is uncertain and cannot be precisely 
revealed by only a unique type-1 FI. This representation, which is extensively exploited in fuzzy 
literature, is well suited in experimental scenarios, such as modeling, control and decision-making 
applications. In this paper, the epistemic vision of type-2 FI is adopted. 

 
Fig. 5: Ontic and epistemic type-2 FI 
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III.2. Some semantics of type-2 fuzzy intervals 

In the manipulation of type-2 FS (or FI) by the epistemic vision, different semantics can be 
associated with the interpretation of imprecision and uncertainty according to an interval 
representation and reasoning. These imprecise and/or uncertain semantics are interrelated. 
The first semantic of a type-2 representation is connected with the fuzzy meaning given to the 
fuzzification procedure, i.e., a domain transformation, where crisp data (inputs) are transformed into 
fuzzy data. In this context, for a specific value x = x0, unlike the type-1 membership function that 
yields a crisp membership grade (belonging degree), the type-2 function provides a membership 
grade that is represented by an interval (refer to Fig. 6). Belonging to the type-2 fuzzy membership 
function is not a crisp value but rather an interval. The fuzzification operation aims to identify an 
association between the crisp value x = x0 and a belonging interval given by (refer to Fig. 6):  

inf sup
supinf

0 0 0 , ]( ) [ ( ),  ( )] = [λ λA AA
μ x x μ x μ x= =
%

                                     (1) 

Another interesting semantic mentioned by Mendel in [34][35] consists of using the average values 
and standard deviations on the two bounds of a type-2 FI. According to this representation 
philosophy, the nominal (middle) type-1 FI can be considered with its left and right radii, which are 
interpreted as an upper bound of uncertainty. By the MR representation, if additional knowledge is 
provided for the type-2 FI, e.g., its best estimate is its middle (midpoint), and then the radius can be 
considered a measure of its dispersion compared with its midpoint (refer to Fig. 6). This vision is 
considered uncertain and can be justified and motivated by its proximity with a stochastic 
representation, where Gaussian random variables are assumed. As explained in [1], the Gaussian 
variable representation and arithmetic based on the mean and standard deviation) resemble the 
interval representation and arithmetic in the MR space. 

 
Fig. 6: Semantic interpretation of a type-2 FI 

In another register, a third semantic interpretation that is inherent to some decision-making problems 
can be mentioned. For instance, when assuming a type-2 FI ã(λ) derived from a compromise 
between some goals and constraints according to a decision-making strategy, the type-1 FI intervals 
asup(λ) and ainf(λ) can be considered the higher and lower bounds of uncertainty in the decision, 
respectively. This type-2 FI is considered the footprint uncertainty of the decision. In this context, a 
decision-making strategy can be interpreted as choosing the optimal type-1 FI acmp(λ) between ainf(λ) 
and asup(λ) according to a decision criterion. This decision-making problem has an epistemic nature, 
where the objective is to find a type-1 FI among a family of possible FIs, bounded by ainf(λ) and 
asup(λ). This method is adopted in the follow-up paper.  
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IV. INTERSECTION OPERATOR BETWEEN FUZZY INTERVALS 

This section proposes a method based on interval relations to compute the intersection operation 
between two type-2 FIs. The principle is provided for conventional intervals and subsequently 
extended to type-1 FIs and type-2 FIs.  

IV.1. Intersection between intervals 

In the interval arithmetic context, the intersection between the two intervals a  and b is expressed as: 

[ , ] [ , ] [max( , ), min( , )]a b a a b b a b a b− + − + − − + +∩ = ∩ =                              (2) 

Depending on the relative position of a and b, three different cases are discussed: disjoint, inclusion 
and overlapping (refer to Fig. 7). The case of equality is a particular case of overlapping or inclusion. 
In this paper, equality is considered to be a special case of inclusion [7]. 

 
Fig. 7: Three possible cases between two intervals 

According to the intersection results between a and b, these three cases can be merged into the 
following two major situations.  

• Situation 1: The intersection between a and b is empty (case 1).  
In this situation, both intervals are disjoint. This disjoint case occurs when  

a b a a b b a b b aa b M R M R R R M M+ − ⇔ ⇔⇔ < + < − + < −  (a is before b)          (3) 

The disjoint case when b is before a can be easily obtained by the permuted intervals in (3), i.e., 

   a b a b a bb a R R M M+ − ⇔⇔ < + < −                                          (4) 

By unifying conditions (3) and (4), the following Boolean disjoint indicator can be defined:  

( , )  < | |a b a b b aD R R M M= + −                                                   (5) 

If D(a, b) = 1, then a ∩ b = ∅. In the opposite case, when D(a, b) = 0, the intervals can be in 
overlapping cases or inclusion cases. 

• Situation 2: The intersection between a and b is not empty (case 2 and case 3). This situation 
includes the overlapping case and the inclusion case. 

• Inclusion case 

{ {a b b b a a b a b a

a a b b a b b a

M R M R M M R Rb a
M R M R M M R Rba

− −

+ +

− ≤ − − ≤ −≤ ⇔ ⇔
+ ≤ + − ≤ −≤


⊆ ⇔ 


                      (6) 

Equation (5) can be rewritten as follows: 
 | |  a b b a b aM M R R⊆ ⇔ − ≤ −                                                   (7) 

In this case, a ∩ b = [a−, a+]. Similarly, the relation b ⊆ a is obtained by permitting a and b in (7): 

 | |   b a a b a bM M R R⊆ ⇔ − ≤ − ; and a ∩ b = [b−, b+]                                  (8) 

By unification of (7) and (8), the Boolean inclusion indicator can be defined as follows:  
   ( , )  | | | |a b b a b aI M M R R= − ≤ −                                                       (9) 

The intersection between a and b in the inclusion case is expressed as:  

( , ) [ ( , ), ( , )]a b φ a b a b a bI Iφ φ− +∩ = =I                                                 (10) 

where {( , ) γ (1 γ ) γ (1 ( )) / 2
 ; with: 

( ) 1 ; if 0 and 1 if 0( , ) γ (1 γ )
I I I I b a

I I I

φ a b sign R R
sign x x xφ a b

− − −

+ + +
 = ⋅ + ⋅ − = + −
 = ≥ − <= ⋅ + ⋅ −

a b

a b
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• Overlapping case  
The same reasoning presented in the inclusion case can be employed to obtain an overlapping 
condition. Based on the two previous situations, the case of overlapping can be simply deduced. The 
settings when a bp (a is before b) and when a bf (a is after b) can be defined by the Boolean 
indicator  

( , ) ( , ) ( , )a b a b a bO D I= ¬ ⋅¬                                                     (11) 

where ¬  represents  the logical negation operator. Thus, the intersection between a and b is 
expressed as 

[ , ] ; if : 

[ , ] ; if : 

a b
a b

a b

b a

b a

b a M M

a b M M

− +

− +

 > ⇔∩ =  < ⇔

p

f

                                          (12) 

The expression (12) can be reformulated by the following expression:  

( , ) [ ( , ), ( , )]a b φ a b a b a bO Oφ φ− +∩ = =O ; where 

( , ) γ (1 γ )

( , ) (1 γ ) γ  
γ (1 ( )) / 2

a b

a b

O O O

O O O

O b a

φ a b

φ a b
sign M M

− − −

+ + +

 = ⋅ + ⋅ −
 = ⋅ − + ⋅
 = − −


               (13) 

The intersection for the inclusion and overlapping cases is merged into the following expression:  
( , ) ( , ) ( , ) ( , ) a b a b φ a b a b φ a bI O∩ = ⋅ + ⋅I O                                    (14) 

The intersection operator between two intervals a and b is expressed as  

 ;                       if: ( , ) 1
 

( , ) ( , ) ( , ) ( , );   if: ( , ) 0

a b
a b

a b φ a b a b φ a b a b

D
I O D
∅ =∩ =  ⋅ + ⋅ = I O

                    (15) 

The expressions D(a, b), I(a, b) and O(a, b) are mutually exclusive Boolean indicators. 

IV.2. Intersection between type-1 fuzzy intervals 

Theoretically, the intersection operation between conventional intervals given in the previous 
section is directly transposable in the type-1 FI framework. When the two FIs, a(λ) and b(λ), are 
considered, the intersection operation is elaborated by extending the expression (15) to the FI case. 
This extension generates the following FI expression:  

   
 ;                       if: ( (λ), (λ)) 1

λ) (λ)
( (λ), (λ)) ( (λ), (λ)) ( (λ), (λ)) ( (λ), (λ));   if: ( (λ), (λ)) 0

(  
a b

b
a b φ a b a b φ a b a b

a
D

I O D

∅ =
∩ =

⋅ + ⋅ =


 I O

   (16) 

In (16), the indicators D, I and O and φI  and φO are FI versions of the expressions given by (15). All 
intervals in (15) are replaced by FI. However, in practical implementations, some differences exist. 
Unlike intervals where a unique horizontal dimension is employed, an FI is represented according to 
two dimensions: horizontal and vertical. In this context, specific attention must be given to the points 
of intersection between the FI profiles. In a simple way, a point of intersection characterizes a cross 
between two profiles. These break points must be determined beforehand to apply the expression of 
the intersection operator (16). The reasoning methodology regarding these intersection points is 
detailed in the following section. 
A. Reasoning methodology principle 

As in conventional intervals, according to the shapes and relative positions of the two type-1 FIs, two 
major situations can be distinguished: 

• Situation 1:  The intersection between the type-1 FI is empty. 
In this situation, the FIs a(λ) and  b(λ) are totally disjoint (a(λ) b(λ) or  a(λ) b(λ)) and a(λ)∩b(λ) 
= ∅. Since the handled quantities are FIs, the disjunction condition D(a(λ), b(λ)) can be limited to 
the interval supports, i.e., a(0) and b(0). If D(a(0), b(0)) = 1, then a(λ) and b(λ) are totally disjoint 
and an intersection between profiles is impossible.  

• Situation 2:  The intersection between the type-1 FIs is not empty. 
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When considering two conventional intervals, only one relation ∈{disjoint, overlapping, inclusion} 
can occur. However, several relations may coexist between type-1 FIs according to the points of 
intersection between the profiles. Let us consider two FIs, a(λ), λ∈[0, λa] and b(λ), λ∈[0, λb]. If the 
FIs are normalized, we obtain λa = λb =1. Let us denote IPLL and IPRR as the intersection points (IPs) 
between two left (ascending) profiles or two right (descending) profiles, respectively. An intersection 
point between a left profile and a right profile (or between a right profile and a left profile) is denoted 
as IPRL.  
When crossing λ by starting from 0, at each intersection point, the relation between the FI changes 
according to a well-defined neighborhood relation. In this context, if a relation is considered a node 
and an intersection point between two profiles is considered an edge, then the relations between FIs 
a(λ) and b(λ) can be interpreted by the graph in Fig. 8. 

 
Fig. 8: Graph of relations between two fuzzy intervals 

According to the shape of the employed FI, any state ∈{≺, ≻, ⊆, ⊇} in the graph of Fig. 8 can be 
considered an initial state. When assuming n intersection points, n ordered λ-values can be 
identified, i.e., λ1 <...< λn. Each intersection point IPLL or IPRR causes an order relation change, and 
the realized relation holds until the next intersection point occurs. When the graph consists of a 
unique node, which is both the initial state and the final state, the relation is always valid for all λ. 
According to Fig. 8, when the unique intersection point IPRL occurs, a passage toward the disjoint 
relation is produced. This passage to the relation  (or  ), which can only be derived from 
relations ≺ or ≻, shows that the intersection between a(λ) and b(λ) will become equal to ∅. In this 
situation, this point IPRL, which corresponds to λ = λf, is the maximum value of λ for the operation 
a(λ)∩b(λ) (refer to Fig. 9).  
When IPRL does not exist (see Fig. 10), the maximum value of λ for the intersection operation is 
equal to min(λa, λb). 
For illustration, let us examine the two examples given in Figs. 9–10. The first example corresponds 
to normalized FI. In the second, the FIs are not normalized. In each situation, the intersection 
operation is computed according to expression (16). For visibility reasons, the result of the 
intersection is shown in gray in the figures. 
In this example (refer to Fig. 9), three IPLL (λ1, λ3, λ4 with λ1<λ3<λ4), two IPRR (λ2, λ4 with λ2<λ4) 
and one IPRL (λf ) exist. Starting with λ=0, the initial relation is a(λ)⊆b(λ). This inclusion relation 
holds until the first intersection point is touched at λ = λ1, which modified the relation to a(λ)≺b(λ). 
Three additional changes of the relation occur at the values λ2, λ3 and λ4, which sequentially yield 
the relations a(λ)⊇b(λ), a(λ)≻b(λ) and a(λ)≺b(λ). The presence of IPRL (λ=λf ) causes the passage to 
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the relation . In this case, λf is the maximum λ value for a(λ)∩b(λ). This evolution of relations is 
described by the state graph in Fig. 11.a, where the initial state is circled twice. 

 
Fig. 9: Intersection operation between two normalized FIs (case 1) 

The states represent the relations between a(λ) and b(λ), and the transitions refer to λi, where an 
intersection point occurs. The same analysis can be performed for example 2 and includes Fig. 10 
and the graph illustrated in Fig. 11.b. 

  
Fig. 10: Intersection operation between two nonnormalized FIs (case 2) 

 
Fig. 11:  Relation graph for the intersection operations 
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B. Numerical example 

Let us consider the normalized type-1 FI a(λ) and b(λ) of Fig. 12.a., i.e.,  

(λ) [1 4λ,13 8λ];  and: (λ) [2 5λ,11 4λ]a b= + − = + −  

The intersection points between the profiles are expressed as 
IPRR: a+(λ) = b+(λ) ⇒ λ = λ1 = 0.5 ; IPRL: a+(λ) = b−(λ) ⇒ λ = λf  = 11/13 

The intersection operation is illustrated in Fig. 12.a. Fig. 12.b shows the graph of relations between 
a(λ) and b(λ), where three different cases are presented. The computational mechanism is as follows: 
• Case 1: if 0 ≤ λ ≤ 0.5: a(λ) ⊇ b(λ) 

( (λ), (λ)) 1;γ (1 ( )) / 2 0
 (λ) (λ) [ (λ), (λ)]

( (λ), (λ)) (λ); ( (λ), (λ)) (λ)

a b
a b

a b a b

I b a

I I

I sign R R
b b

φ b φ b
− +

− − + +

= = + − =
⇔ ∩ = = =

 

• Case 2: if 0.5 < λ ≤ 11/13: a(λ)≺b(λ) 

( (λ), (λ)) 1;γ (1 ( )) / 2 0
 (λ) (λ) [ (λ), (λ)]

( (λ), (λ)) (λ); ( (λ), (λ)) (λ)

a b
a b

a b a b

O b a

O O

O sign M M
b a

φ b φ a
− +

− − + +
= = − − =

⇔ ∩ = = =
 

• Case 3: if 11/13 < λ ≤ 1: a(λ) b(λ) 
( , ) 1;   (λ) (λ)a b a bD = ∩ = ∅  

For brevity of notation, the intersection operation between a(λ) and b(λ) is expressed as 

[2 5λ,11 4λ] ;   if: 0 λ 0.5
(λ) (λ)  

[2 5λ,13 8λ];     if: 0.5 λ 11/13 
a b

+ − ≤ ≤∩ =  + − < ≤
 

 
Fig. 12: Intersection between two type-1 FI a(λ) and b(λ) 

C. Illustrative example 

In a particular situation, when only linear triangular type-1 FIs are considered, a cartography of all 
possible relations between FIs is obtained. This cartography is divided into four categories according 
to whether the number of intersection points between profiles is 0, 1, 2 or 3. In each category (refer 
to Figs. 13–16) the relations between intervals and the obtained intersection area are provided. 

 
Fig. 13: Category 0 with no intersection point between FI profiles 
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Fig. 14: Category 1: one intersection point between FI profiles 

 
Fig. 15: Category 2: two intersection points between FI profiles 

 
Fig. 16: Category 3: three intersection points between FI profiles 

IV.3. Intersection between type-2 fuzzy intervals 

A. Methodology principle 

Let us consider two type-2 FIs, (λ)a% = {ainf(λ), asup(λ) | ainf(λ)⊆asup(λ)} and (λ)b%  = {binf(λ), bsup(λ) | 
binf(λ) ⊆ bsup(λ)}. The intersection between type-2 FI (λ)a%  and type-2 FI (λ)b%  is defined by the 
following expression:  

(λ) (λ)a b∩ %
% = {ainf(λ)∩binf(λ), asup(λ)∩bsup(λ) | ainf(λ)∩binf(λ) ⊆ asup(λ)∩bsup(λ)} 

Because a type-2 FI is considered to be the concatenation of two type-1 FI bounds with the inclusion 
constraint, the same methodology that was previously presented for type-1 FIs can be used to 
separately compute the two intersection quantities ainf(λ)∩binf(λ) and asup(λ)∩bsup(λ). The principle 
of the intersection between two type-2 FIs is illustrated in Figs. 17–18.  
For instance, Fig. 17 separately illustrates this computational mechanism for the lower and upper 
type-1 FIs. Consequently, (λ) (λ)a b∩ %

%  is depicted in Fig. 18. In the presence of several type-1 FIs, 
note that the intersection operator is associative. Knowing that the manipulated FI is unimodal and 
piecewise linear, the intersection operation is also unimodal and piecewise linear. 
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Fig. 17: Intersection type-1 FIs ainf(λ)∩binf(λ) and asup(λ)∩bsup(λ) 

 
Fig. 18: Intersection operation result between two type-2 FIs 

B. Numerical example 

Let us consider the type-2 FIs (λ)a% and (λ)b% of Fig. 19, i.e., 

inf
inf sup

sup

(λ) [3 3λ,10 6λ];  λ [0,7 / 9]
(λ) { (λ), (λ)}; where:

(λ) [1 4λ,13 8λ];  λ [0,1]
a

a a a
a

= + − ∈=  = + − ∈
% ;  

and inf
inf sup

sup

(λ) [5 4λ,10 4λ];  λ [0,5 / 8]
(λ) { (λ), (λ)}; where:

(λ) [2 5λ,11 4λ];  λ [0,1]
b

b b b
a

= + − ∈=  = + − ∈
%  

The intersection points between the type-1 FI profiles of asup(λ) and bsup(λ) are the same as those 
provided in section 2.B, i.e.,  

IPRR: sup
sup sup 1(λ) (λ) λ λ 0.5a b+ += ⇒ = = ; and: IPRL: sup

sup sup(λ) (λ) λ λ 11/13fa b+ −= ⇒ = =  

In the same way, the intersection point between the type-1 FI profiles of ainf(λ) and binf(λ) is  

IPRL: inf
inf inf(λ) (λ) λ λ 0.5fa b+ −= ⇒ = =  

By adopting the computational mechanism detailed in section IV.2 for type-1 FIs (refer to Fig. 19), 
the type-2 FI from the intersection operation is expressed as  

inf sup(λ) (λ) (λ) { (λ), (λ)}= ∩ =% %
%d a b d d , where: 
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inf inf inf(λ) (λ) (λ) [5 4λ,10 6λ] ;   if: 0 λ 0.5 d a b= ∩ = + − ≤ ≤  

and sup sup sup

[2 5λ,11 4λ] ;   if: 0 λ 0.5
(λ) (λ) (λ)

[2 5λ,13 8λ];     if: 0.5 λ 11/13 

+ − ≤ ≤= ∩ =  + − < ≤
d a b  

 
Fig. 19: Intersection between ã(λ) and b(̃λ) 

V. TYPE-1 AND TYPE-2 FUZZY INTERVAL DECISION-MAKING METHODOLOGY 

V.1. Type-1 decision-making strategy 

The fuzzy decision-making principle proposed by Bellman and Zadeh [3], which is the basis of the 
fuzzy optimization, defines the fuzzy decision as a confluence of fuzzy goals and fuzzy constraints. 
Let us consider a set of type-1 FIs, which is considered to be the objectives (goals): 

{ (λ) [ (λ), (λ)] | (λ) (λ), 0, , }ig i i i iG g g g g i m− + − += = ≤ = K  

and a set of type-1 FI constraints:  

{ (λ) [ (λ), (λ)] | (λ) (λ), 0, , }ic i i i iC c c c c i n− + − += = ≤ = K  

By this decision-making formalism, the goals and constraints are represented and processed in the 
same way. From a practical and implementation point of view, the goals and constraints do not have 
to be distinguished. This method remains valid for handling decision methods using only fuzzy goals 
or fuzzy constraints. The type-1 FI d(λ), which represents the domain of the decision, is expressed by 
the intersection of goals and constraints and is defined as follows: 

1 1(λ) (λ) (λ) (λ) (λ)d g g c cm n= ∩ ∩ ∩ ∩ ∩K K                                    (17) 

In the decision domain d(λ), the values of λ quantify the degree of utility for the different decision 
options. The type-1 FI d(λ) is computed using the formalism detailed in section IV. According to 
d(λ), the Bellman-Zadeh decision-making methodology is given by the FI formalism, i.e., 

* 1 1
λ λ

λ arg max (λ) arg max{ (λ) (λ) (λ) (λ)}d g g c cm n= = ∩ ∩ ∩ ∩ ∩K K               (18) 

In (18), λ∗ is a unique and crisp value that represents the λ value that corresponds to the decision, 
which reflects the optimal fulfillment degree of the confluence between fuzzy goals and constraints 
(inducing an optimal utility value). This method is equivalent to that developed with membership-
based formalism. FI d(λ) can be represented by an FS D with a membership function µD(x). In this 
case, the optimal value λ∗ of λ on the vertical dimension corresponds to the optimal value x* of x on 
the horizontal dimension. Knowing the value of λ∗, the value of x* can be directly deduced by the 
profile expressions. Due to the intersection computational mechanism of section IV, when 
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considering two unimodal type-1 FIs, the value of λ∗ is determined according to the following simple 
statements:  

• If the intersection point IPRL exists, then the optimal value λ* = λf. 
• If the intersection point IPRL does not exist, then the optimal value λ* = min(λa, λb). 

Due to the commutative and associative properties of the intersection operator, in the presence of 
several FIs, the computational mechanism is performed by pairs of FIs. 
Let us reconsider the example in section IV.2.B. The FIs a(λ) and b(λ) are interpreted as a goal and a 
constraint. According to the expression of d(λ) (refer to section IV.2.b and Fig. 20), the optimal 
value λ* = λf  = 11/13. As illustrated in Fig. 20, the membership function µD, as deduced by a profile 
inversion procedure, is expressed as  

{
μ ( ) ( 2) / 5;       if: 2 81/13

(13 ) / 8;   if: 81/13 9
μ ( )

(11 ) / 4;   if: 9 11

D

D

x x x

x x
x

x x

−

+

= − ≤ ≤
 − ≤ ≤ = − ≤ ≤

 

and the optimal value x* is * * *13 8 λ 2 5 λ 81/13 6.23.x = − ⋅ = + ⋅ = =  

 
Fig. 20: Example of the optimal decision-making solution using type-1 FI 

V.2. Type-2 decision-making strategy 

V.2.1. Methodology principle 

Due to the presence of uncertainty in the type-1 FI goal and constraint representation, type-2 FIs are 
considered. The utility represented by T1FIs is subject to uncertainty and considered to be type-2 
FIs. Let us consider a set of goals represented by 

inf sup inf sup{ (λ) { (λ), (λ) | (λ) (λ)}, 0, , }i i i i i m= = ⊆ =%
% KiG g g g g g  

and a set of type-2 FI constraints:  

inf sup inf sup{ (λ) { (λ), (λ) | (λ) (λ)}, 0, , }i i i i i n= = ⊆ =%
% KiC c c c c c  

Let us assume that the lower (inf) type-1 FI bounds of goals and constraints and the upper (sup) type-
1 FI bounds of goals and constraints represent the worst case (pessimistic) and the best case 
(optimistic), respectively. This choice is natural and corresponds to a situation that is typically 
exploited in uncertain decision problems. In some practical situations, according to corresponding 
utility, the meaning given to the bounds can be swapped; i.e., the lower bound becomes the best case, 
and the upper bound becomes the worst case. 
The uncertain decision domain (λ)d%  defined by the intersection of the type-2 goals and constraints is 
defined as follows: 

1 1 inf sup inf sup(λ) (λ) (λ) (λ) (λ) { (λ), (λ) | (λ) (λ)}m n= ∩ ∩ ∩ ∩ ∩ = ⊆%
% % % %K Kd g g c c d d d d         (19) 
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According to (19), two extreme situations can be distinguished. The first situation, which 
corresponds to the optimistic case, is expressed as follows:  

1 1
sup sup sup sup sup sup sup(λ) [ (λ), (λ)] (λ) (λ) (λ) (λ)d g g c cm nd d− += = ∩ ∩ ∩ ∩ ∩ %K K                      (20) 

The second situation, which refers to the pessimistic case, is expressed as follows:  
1 1

inf inf inf inf inf inf inf(λ) [ (λ), (λ)] (λ) (λ) (λ) (λ)d g g c cm nd d− += = ∩ ∩ ∩ ∩ ∩K K                         (21) 

Once the decision domain (λ)d%  is determined, an optimal FI solution in (λ)d%  can be selected with 
regard to a decision criterion.  
In the approach proposed in [42], the goals and constraints are represented by type-2 membership 
functions. Their computations are generally performed using one of the two approaches introduced in 
the literature: the α-cut approach and the extension principle approach using different t-norms. While 
the extension principle can produce NP-Hard computations, approximation via α-cuts is relatively 
time-consuming. Conceptually, the proposed computational method differs from existing methods 
and enables the extension of interval arithmetic and reasoning in type-2 FI approaches while 
avoiding the discretization procedure, which is necessary for implementing the α-cuts principle. 
Unlike the approach proposed in [42], our method is not numerically limited to computing crisp 
optimal solutions, and it can analytically express all possible decision domains (all type-1 FI 
solutions). This property contributes to the applicability of our approach in uncertain decision-
making methods and offers flexibility in the management of uncertainty.  
In this context, if a risk coefficient β∈[0,1] is specified by the decision makers, the compromise 
solution dβ(λ) between dsup(λ) and dinf(λ) can be chosen, i.e.,  

inf β sup(λ) (λ) (λ)⊆ ⊆d d d  

For instance, as detailed in [42], a linear combination between the pessimistic situation and the 
optimistic situation can be applied. Thus, the solution dβ(λ) is expressed as  

β sup inf(λ) β (λ) (1 β) (λ)d d d= ⋅ + − ⋅                                              (22) 

According to (22), when the risk level β = 0, dβ(λ) corresponds to the pessimistic decision dinf(λ). 
This situation is considered to be the worst (unfavorable) situation; however, the risk to be taken for 
its realization is the lowest risk. In the opposite case, when the risk level β = 1, dβ(λ) matches the 
optimistic (best) decision dsup(λ). This case is the most favorable case; however, the risk to be taken 
for its realization is larger. For any comprise risk level value β∈[0,1], the type-1 FI dβ(λ) refers to a 
compromise risk situation. Fig. 21 shows this principle for a given decision domain, which has been 
previously determined. For instance, if β = 0.5, the middle situation is obtained, i.e.,  

0.5 sup inf sup inf(λ) 0.5 (λ) 0.5 (λ) ( (λ) (λ)) / 2d d d d d= ⋅ + ⋅ = +  

As detailed in section V.1., the Bellman-Zadeh principle can be applied to the type-1 FI dβ(λ) and 
yields the λ-optimal value, i.e.,  

β
* βλ arg max (λ)d=  

This optimal decision-making solution is the maximum λ value of dβ(λ). Due to the convexity 
property of the FI, the optimal λ solution β

*λ  is always between the pessimistic value and the 
optimistic optimal value, i.e., inf

*λ and sup
*λ ,  which are obtained by the application of the Bellman-

Zadeh principle for the type-1 FI bounds dinf(λ) and dsup(λ), i.e.,  
β inf sup inf sup
* * * * inf * supλ [λ ,λ ];  with: λ arg max (λ);  and:  λ arg max (λ)d d∈ = =                       (23) 

Once the optimal value β
*λ  is determined (on the vertical dimension), the optimal solution β

*x  for the 
referential X (on the horizontal dimension) can be deduced via the profiles (gradual number of 
bounds). To enable the solution interpretation on the vertical and horizontal dimensions, the optimal 
solution of the decision-making problem is represented by the couple β β

* *( ,λ )x  for the given risk level 
β. 
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Fig. 21: Optimal behavior in decision-making according to risk level β  

In this framework, knowing that FIs are unimodal and piecewise linear, according to the shape of the 
type-2 decision domain (λ)d% , three cases can be distinguished (refer to Fig. 22). 

 
Fig. 22: Three configurations of the optimal solutions according to the shape of the decision domain  

The first case occurs when the modal value of dsup(λ) is before the modal value of dinf(λ), i.e., 
sup inf
* * is before .x x  Reciprocally, case 2 occurs when the modal value of dsup(λ) is after the modal 

value of dinf(λ), i.e., sup inf
* * is after .x x  If these modal values are vertically aligned, case 3 occurs. In 

the latter case, regardless of the value of β and consequently for β
*λ , the solution β

*x  remains 
unchanged. According to the risk level  β, the evolution of the solution is restricted to a linear 
relationship (diagonal line) between the extreme optimal solutions sup sup

* *( ,λ )x  and inf inf
* *( ,λ ).x  In this 

case, the decision solution is expressed as  
β sup inf
* * *

β sup inf
* * *

β (1 β)
λ λ λ

x x x     
= ⋅ + − ⋅     

     
     

                                                     (24)  

This methodology enables decision makers to manage their choices according to a specified risk 
level.  
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If β=0, then β inf β inf
* * * *λ λ  and  .x x= =  If β=1, then β sup β inf

* * * *λ λ  and  .x x= =  For any value of β, the 
optimal solution of β β

* *(λ , )x  is diagonally chosen between the solutions that correspond to β=0 and 
β=1. According to Fig. 22, the following expression can be deduced: 

β inf sup β inf sup inf sup
* * * * * * * *λ [λ ,λ ] [min( , ), max( , )]x x x x x∈ ⇒ ∈  

This finding is in accordance with the result reported in [42], where membership formalism was 
applied. When β=0.5, the midpoints of the intervals inf sup

* *[λ ,λ ]  and 
inf sup inf sup
* * * *[min( , ),max( , )]x x x x are obtained. Thus, if additional knowledge is provided by the 

decision makers, e.g., this midpoint solution is the best confluence between the goals and constraints, 
then the interval radius can be considered to be a measure of dispersion compared with the midpoint 
solution. For instance, if 0.5

*λ  (midpoint of inf sup
* *[λ ,λ ]  is considered the best solution, the radius of 

inf sup inf sup
* * * *[min( , ),max( , )]x x x x  is considered a dispersion measure.  

V.2.2. Numerical illustrative and comparative example 

Let us consider the numerical example of section IV.2.b. The decision domain is given by the type-2 
FIs inf sup(λ) { (λ), (λ)}.d d d=%  The configuration of this example is similar to that of case 1 given in Fig. 
22. An example that illustrates the configuration of case 3 in Fig. 22 is provided in Appendix A. The 
decision-making strategy according to the risk level β = 0.5 is illustrated in Fig. 23.  

 
Fig. 23: Decision-making for β = 0.5 

For each level β, the type-1 FI compromise dβ(λ) can be computed by using gradual numbers that 
represent the FI profiles. The optimal solution β β

* *( ,λ )x  can be computed as follows:  
β
*

β
*

81/13 7
β (1 β)

11/13 1/ 2λ

x     
= ⋅ + − ⋅           

 

In the same way, if β is equal to 0.8, the results are depicted in Fig. 24.  
To provide an overview of the difference between this study and the approach given in [42] and 
explain the reasoning behind our approach, a conceptual comparison between the two visions is 
provided. In this context, for the approach proposed in [42], the type-2 FIs (λ)%a and (λ)%b of Fig. 19 
are represented by type-2 FSs Ã and B̃. Each type-2 FS is characterized by its lower and upper 
membership functions.  
For any given risk level β, the optimal solution using the method in [42] is expressed as follows:  

β inf sup inf sup
* arg max{((1 β) ( ) β ( )) ((1 β) ( ) β ( ))} A A B B

x X

x μ x μ x μ x μ x
∈

= − ⋅ + ⋅ ∩ − ⋅ + ⋅  
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The crisp optimal results obtained using the approach given in [42] are in accordance with those of 
our approach. For instance, if β = 0.8, the optimization problem yields 0.8

*x = 83/13. However, our 
approach does not employ either the extension principle or the α-cuts principle. Unlike the method in 
[42], our approach can determine all decision domains (λ),%d  which represent the uncertainty 
footprint of the decision. In addition to the optimal crisp value, for any value of β, the profiles of the 
type-1 FI that represents this decision are obtained. These remarks clearly indicate the advantage of 
our computing strategy using only standard interval relations and interval arithmetic operations while 
avoiding the iterative aspect inherent to optimization algorithms, especially in complex situations 
where several goals and constraints can be applied. As illustrated in the example, our method can 
permit important elasticity in the management of uncertainty and enables the propagation of this 
decision domain by using aggregation operators to perform the decision-making strategy (refer to 
Appendix B for an example). 

    
Fig. 24: Decision-making for β = 0.8 

V.2.3. Application examples 

A. Example 1 

This example is inspired by [42]. We consider the temperature example, where the objective of a 
decision maker is to optimize the temperature of a room depending on the satisfaction levels of some 
people. Assume that you have invited two groups of friends (a group of men denoted by %a  and a 
group of women named ).%b  We know that the most demanding (pessimistic) man will be completely 
happy with 17°C and will be completely unhappy at temperatures less than 16°C or greater than 
19°C. The degree of satisfaction between 16° and 19° is given by the type-1 FI illustrated in Fig. 25 
(dashed triangle in %a ). The most tolerant (optimistic) man states that he will be completely satisfied 
at 17° and completely unsatisfied at temperatures less than 14° and greater than 25°. The satisfaction 
degree is also depicted in Fig. 25 (solid triangle in %a ). The satisfaction profiles of all other men 
range between the optimistic situation and the pessimistic situation. This statement can be 
represented by the type-2 FI (λ)%a  shown in Fig. 25, where the upper type-1 FI (the optimistic or best 
case) is represented as a solid tringle and the lower type-1 FI (the pessimistic or worst case) is 
represented by a dashed triangle. By adopting the same reasoning, the requirements of the women's 
group in terms of room temperature are represented by the type-2 FI (λ),%b  as shown in Fig. 25. The 
type-2 FIs and their intersection are represented in Fig. 25. The configuration of this example refers 
to case 2 in Fig. 22. In this example, the decision procedure aims to determine the temperature of the 
room while achieving the highest degree of satisfaction. 
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Fig. 25: Uncertain decision domain with pessimistic and optimistic type-2 FIs 

The intersection points between the upper type-1 FI profiles are  

IPRR: sup
1λ 2 / 5= ; IPRL: supλ 3 / 4.f =   

In the same way, the intersection point between the lower type-1 FI profiles is  

IPRL: infλ 1/ 4.f =  

The decision domain is expressed as follows:  

inf sup(λ) { (λ), (λ)}=%d d d ; where: inf (λ) [18 2λ,19 2λ] ;   if: 0 λ 1/ 4 d = + − ≤ ≤  

and: sup

[16+4λ, 23 3λ] ;   if: 0 λ 2 / 5
(λ)

[16 4λ, 25 8λ];     if: 2/5 λ 3 / 4 

− ≤ ≤=  + − < ≤
d  

As previously detailed, the pessimistic and optimistic decision-making solutions using the Bellman-

Zadeh principle are  
inf inf inf inf inf
* * inf * inf *

sup sup supsup sup
* sup * sup **

λ λ 1/ 4 (λ ) 18 2 (1/ 4) (λ ) 19 2 (1/ 4) 18.5

(λ ) 16 4 (3 / 4) (λ ) 25 8 (3 / 4) 19λ λ 3 / 4
f

f

x d d

x d d

− +

− +
 = = = = + ⋅ = = − ⋅ = 

⇒  = = + ⋅ = = − ⋅ == =  
 

In this example, the decision inf inf
* *( ,λ ) (18.5,1/ 4)x =  indicates that the temperature 18.5° 

corresponds to the lowest satisfaction degree of all persons in the two groups (none of the persons 
will be less satisfied than 25%). If the decision maker chooses this value, its decision is considered to 
be prudent with the lowest risk level, i.e., β = 0. In the opposite case, the decision 

sup sup
* *( ,λ ) (19,3 / 4)x = is considered to be the riskiest case (β =1) because all persons in the groups in 

the best (optimistic) case will be satisfied at 75%. In this context, for the given risk level β, if 
β β
* *λ [1/ 4,3 / 4] [18.5,19].x∈ ⇒ ∈  For instance, Fig. 26 illustrates the decision-making mechanism for 

β = 0.5. For any value of β, the optimal solution β β
* *( ,λ )x  is approximated as follows:  

β
*

β
*

19 18.5 18.75
β (1 β)

3 / 4 1/ 4 0.5λ

x       
= ⋅ + − ⋅ =               

 

If the temperature 18.75° is selected by the decision maker, a 50% satisfaction level will be attained 
by all persons with a medium risk. Compared with the method in [42], all remarks and advantages 
discussed in the illustrative example (refer to section V2.2.) remain valid in this case.  



 22

 
Fig. 26: Simplified decision according to a risk level β = 0.5 

B. Example 2 

Let us consider an employee who goes to work in the morning (by car between 7:00 and 13:00), 
works for 6 hours, and then returns home in the afternoon (between 13:00 and 19:00). The objective 
of this decision application is to help this employee choose the departure and return times by 
considering the density of road traffic. This example is inspired by [42].  
The traffic density was measured every half hour between 7:00 and 19:00 for the previous 10 days 
(at each half hour, 10 measures were recorded). For illustration purposes, measurements taken 
between 7:00 and 13:00 are shown in Fig. 27. For example, at 8:00, the traffic road density falls 
between 0.7 and 0.8. At 7:00, the traffic remains stable at its highest level (approximately 0.8). In the 
same way, at 13:00, the traffic remains stable at its lowest level (approximately 0.2). 

 
Fig. 27: Morning road traffic density and its representation by a type-2 FI  

This uncertain data can be represented by a type-2 FI. In this context, a possibilistic approach is 
exploited to determine the type-2 FI (refer to Fig. 27). Thus, the objective is to determine the least 
uncertain linear (or piecewise linear) type-2 FI with respect to the inclusion constraints between the 
measured data and the type-2 FI bounds (all measured data are encapsulated in the type-2 FI). For 
additional details about the possibilistic approach, refer to [4][9]. The densities of the morning and 
afternoon traffic are represented by the type-2 FIs (λ)%m  and (λ)%a , as shown in Fig. 28 and expressed 
as 

inf
inf sup

sup

(λ) 15 10λ;  λ [0.2,0.8]
(λ) { (λ), (λ)}; where:

(λ) 43 / 3 (20 / 3)λ;  λ [0.2, 0.8]

= − ∈
= = − ∈





%

m
m m m

m
;  
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and: inf
inf sup

sup

149 /13 (100 /13)λ;  λ [0.2,0.46]

(λ) 52 / 5 10λ;                 λ [0.46,0.66]
(λ) { (λ), (λ)}; where:

53 / 7 (100 / 7)λ;       λ [0.66, 0.8]

(λ) 35 / 3 (20 / 3)λ;  λ [0.2, 0.8]

+ ∈
= + ∈

= + ∈
= + ∈

  
 


%

a
a a a

a

 

 
Fig. 28: Type-2 FIs that represent the road traffic densities in the morning and afternoon 

To achieve a compromise between the departure times and the return times, the type-2 FI (λ)%a  that 
represents the afternoon traffic is shifted 6 hours to the left. For instance, a morning trip at 8:00 
corresponds to an afternoon trip at 14:00 (refer to Fig. 29).  

 
Fig. 29: Uncertain decision-making according to the road traffic densities 

In this context, the type-2 FI (λ)%a  becomes  

inf

sup

inf sup

71/13 (100 / 13)λ;  λ [0.2, 0.46]

(λ) 22 / 5 10λ;                 λ [0.46, 0.66]
(λ) { (λ), (λ)}; where: 11 / 7 (100 / 7)λ;       λ [0.66, 0.8]

(λ) 17 / 3 (20 / 3)λ;  λ [0.2,0.8]

s

s

s s
s

+ ∈
= + ∈

= + ∈
= + ∈

  
 


%

a
a a a
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As previously detailed, the decision-making solutions using the Bellman-Zadeh principle are (refer 

to Fig. 29):  

inf inf
* *
sup sup
* *

λ 0.53 9.70 (9:42 for departure and 15:42 for return)

λ 0.65 10 (10:00 for departure and 16:00 for return)

x

x

 = =
⇒ = = 

 

In this application, because the best configuration (in terms of utility) is the configuration with low 

road traffic, the lower type-1 FI is considered to be the best case. In the same way, the upper type-1 

FI is considered to be the worst case. In this context, a cautious decision maker (the least risky or the 

most risk-averse) will drive to work at 10:00 and return at 16:00 because the worst-case traffic is 

approximately 0.65. In the opposite case, the highest risky (the least risk-averse) decision maker will 

drive to work at 9:42 and return at 15:42 because the best traffic conditions occur at approximately 

0.53. For intermediate risk levels, the optimal departure time ranges between 9:42 and 10:00 (the 

optimal return time is between 15:42 and 16:00). 

For any value of β, the optimal solution β β
* *( ,λ )x  for the departure is computed by the following 

approximation:  

β sup inf
* * *

β sup inf
* * *

10 9.70
(1 β) β = (1 β) β

0.65 0.53λ λ λ

x x x         
= − ⋅ + ⋅ − ⋅ + ⋅                       

 

The optimal solution for the return can be deduced from the solution of the departure. For example, 
if the selected risk level is equal to 0.7, we can obtain 0.7 0.7

* *( ,λ ) (9.79,0.56).x =  The value 9.79 
corresponds to 9:47. In this case, the decision with a risk level of 0.7 is a departure time at 9:47 and a 
return time at 15:47. 

V2.4. Remarks and discussion  

•  In this paper, to utilize type-2 FIs in an analytically tractable way, particularly in a fuzzy decision-
making context, a computational approach is proposed for the implementation of the Bellman-Zadeh 
principle. Because interval arithmetic operations on real numbers have to be extended to type-1 FIs, 
the motivation and reasoning behind our approach have been to extend this philosophy to type-2 FIs 
in a decision-making application. The proposed method has been applied to linear and piecewise 
linear type-2 FIs but remains transposable regardless of the shape of the FIs. In this context of 
nonlinear type-2 FI shapes, the approximated relation (24) becomes very restrictive, and application 
of the generic equation given by (22) is more reasonable. 
• While the aim of this paper is to develop an interval-based computational mechanism for the 
Bellman-Zadeh decision-making principle, the proposed methodology can be transposed in several 
applications based on type-2 FIs, where guaranteed and analytical computations are possible. A 
reflection about the applicability of our approach for extending multicriteria and multiattribute 
decision-making approaches [26][27][39][50] to the type-2 fuzzy context should be mentioned. The 
proposed approach can motivate a certain interest in the frameworks of type-2 automatic control 
[10][29], type-2 regression and modeling [2][23], type-2 linear programming methods [19], etc. Our 
type-2 FI representation can be employed to implement several aggregation operators (conjunctive 
and disjunctive operators, weighted average and ordered weighted average operators, and the 
Choquet integral). As an example, Appendix B shows the potential use of our computational method 
through the 2-Additive Choquet integral (2-ACI) [7][30]. 
• Direct application of this approach in type-2 FI model predictive control is possible. The proposed 
approach can extend the type-1 FI model predictive control (MPC) strategies [16] for handling type-
2 FIs [29]. In this framework, fuzzy goals and fuzzy constraints, which are defined using relevant 
system variables, are assumed to be uncertain and represented by type-2 FIs. By the MPC 
philosophy, fuzzy constraints are usually defined in the domain of the control actions, and fuzzy 
goals are usually defined in the domain of the outputs and/or state space variables. The control 
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strategy objective is to force the process to perform better based on a compromise between the goals 
and the constraints. In this case, the proposed computational method can be employed to obtain the 
control actions by a multistage fuzzy decision-making (FDM) approach based on the Bellman-Zadeh 
principle. The proposed formalism adapts to decision-making applications in control, especially 
when the models are parametric regressive models with inputs, outputs and parameters represented 
by type-2 FIs. 
• If this approach can take advantage of the flexibility, rigor and guaranteed results of interval 
arithmetic and reasoning, it can be criticized for its accumulation of fuzziness (such as type-1 FI 
approaches). This phenomenon causes overestimation of uncertainties in the resulting type-2 FIs. 
This overestimation is derived from the decorrelation phenomenon of interval arithmetic, which is 
also known as a dependency problem. Because interval arithmetic guarantees the set of all possible 
results, the pessimistic independence property between the intervals is implicitly assumed. This 
overestimation problem can be reduced by implementing some extensions and hybridizations of 
interval arithmetic [38][44]. 

VI. CONCLUSION 

In this paper, an interval-based approach of the Bellman-Zadeh decision-making methodology, 
where the goals and constraints are represented by unimodal and piecewise liner type-2 FIs, is 
proposed. First, the intersection operator between type-2 FIs was investigated. This operation uses 
the gradual number representation to extend interval relations to a type-2 FI. This extension 
facilitates the implementation of the intersection operator, which creates an uncertain decision area 
bounded by two type-1 FIs. In a second part of this paper, a decision-making strategy is proposed to 
select the optimal solution within this decision area according to a specified criterion. According to 
the Bellman-Zadeh methodology, the risk criterion was exploited as an example. Other decision 
criteria can be employed. The proposed approach has been presented for unimodal FIs but can be 
adapted to a nonunimodal FI, such as a trapezoidal FI. The intersection operator is based on the 
relations {≺, ≻, ⊆, ⊇}, which verify the conditions of partial-order relations [25]. This paper 
provides illustrative examples only. However, several types of decision-making applications can be 
imagined. The ideas developed in this paper can be most likely used as a basis for studying the order 
relations between type-2 FIs and their rankings in multiple attribute decision-making problems.  
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Appendix A: Decision-making computational example 
 

Let us consider the type-2 FI (λ)g% and (λ)c% of Fig. 27, i.e., 

inf
inf sup

sup

(λ) [5 2λ,10 3λ];  λ [0,1]
(λ) { (λ), (λ)};where:

(λ) [4 3λ,16 9λ];  λ [0,1]
g

g g g
g

= + − ∈=  = + − ∈
% ; and: 

inf
inf sup

sup

(λ) [8 5λ,13 2λ];  λ [0,5 / 7]
(λ) { (λ), (λ)}; where:

(λ) [4 7λ,15 4λ];  λ [0,1]
c

c c c
c

= + − ∈=  = + − ∈
%  

By adopting the same method employed in the previous examples, the intersection points between 
the profiles and the decision domain are as computed and illustrated in Fig. 30.  
The optimal pessimistic and optimistic values inf inf

* *( ,λ )x and sup sup
* *( ,λ )x are  

inf inf inf
* *
sup sup sup
* *

λ λ 1/ 4 8 5 (1/ 4) 10 3 (1/ 4) 9.25

λ λ 3 / 4 4 7 (3 / 4) 16 9 (3 / 4) 9.25
f

f

x

x

 = =  = + ⋅ = − ⋅ =
⇒ = = = + ⋅ = − ⋅ = 

 

The configuration of this example is consistent with that of case 3 given in Fig. 22.  

In this context, regardless of the value of β, the solution β
*x  remains unchanged. All FI dβ(λ) yield a 

unique solution β
*x  on the horizontal dimension. 
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Fig. 30: Uncertain decision domain and decision strategy 

 
 
 

Appendix B: 2-Additive type-2 FI Choquet integral computational example 

 
Let us consider the set of crisp alternatives {a1, …, an} to be aggregated and associated with a set of 
n criteria. The 2-ACI is expressed as  

                 0 0 1

1
( , ) ( , ) | | ( | |)

2ij ij

n
i j ij i j ij i i ijI I i j iCI min a a I max a a I a v I> < = ≠= ⋅ + ⋅ + ⋅ − ⋅∑ ∑ ∑ ∑           (25) 

In (25), the coefficient Iij represents the mutual interaction between criteria i and j and can be 
interpreted as follows: 
• A positive Iij indicates that the criteria are complementary (positive synergy). 
• A negative Iij indicates that the criteria are redundant (negative synergy). 
• A null Iij indicates that no interaction between criteria exists (the criteria are independent). 
The coefficients vi in (25) are the Shapley indices that represent the relative importance of each 
elementary criterion in relation to all other criterion, with 1Σ 1.n

i iv= = The 2-ACI has been extended to 
the fuzzy context in which the alternatives are represented by type-1 FIs [7][30]. This extension 
resulted in the following expression: 

      
0 0 1

λ λ λ λ λ λ
1

( )= ([ ( )],[ ( )])× ([ ( )],[ ( )])× + [ ( )] ( )
2ij ij

n

ij ij i ij
I I i j i

min I max I v I
> < = ≠

+ × −∑ ∑ ∑ ∑i j i j iCI a a a a a   (26) 

In (26), a1(λ), …, an(λ) are type-1 FI alternatives. Our objective is to extend (26) to the situation in 
which the alternatives are uncertain and represented by type-2 FIs. In this context, the 2-ACI given 
by (26) becomes:  

                 
0 0 1

, ,λ (λ)
1

= ( (λ) (λ))× + ( (λ) (λ))× + × )
2

( ) (
ij ij

n

ij ij ij
I I i j i

imin I min I Iv%% % % %
%

> < = ≠
− ⋅∑ ∑ ∑ ∑ii j i j aa a a aCI   (27) 

where inf sup inf sup(λ) { (λ), (λ) | (λ) .(λ)}= ⊆%CI CI CI CI CI  

In (27), inf sup inf sup(λ) { (λ), (λ) | (λ) (λ)}, 1, , }i i i i i n= ⊆ =% Kia a a a a are type-2 FI alternatives. In the 
implementation of the 2-ACI given by (27), the min and max between two type-2 FIs is realized 
using the same methodology as the intersection operator. Thus, the min and max between two type-2 
FIs (λ)%a and (λ)%b is defined by the expressions  

( (λ), (λ))min %
%a b = {min(ainf(λ), binf(λ)), min(asup(λ), bsup(λ))} 
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( (λ), (λ))max %
%a b = {max(ainf(λ), binf(λ)), max(asup(λ), bsup(λ))} 

where the min and max operators between the type-1 FIs are computed using the methodology given 
in [7]. Let us illustrate the computation of the 2-ACI for aggregating the four type-2 FI alternatives 

1(λ)%a , …, 4 (λ)%a  illustrated in Fig. 31 and listed in Table 1; with ν1 = 0.4, ν2 = 0.35, ν3 = 0.1, and ν4 

= 0.15 and I14 = -0.35, I34 = -0.3, I13 = 0.15, and I23 = 0.6. According to these data values, the 2-ACI 
(27) is expressed as follows: 

1 3 2 3 1 4

3 4
1

, , ,

, (λ)                     

λ =0.15 ( (λ) (λ)) 0.6 ( (λ) (λ)) 0.35 ( (λ) (λ))

0.3 ( (λ) (λ)) × 0.5 )         

( )

(
n

ij
i j i

i

min min max

max Iv%

% % % % % %

% %

%

= ≠

× + × + ×

+ × + −∑ ∑ia

a a a a a a

a a

CI

 

T2FIs Lower T1FI Upper T1FI 

1(λ)%a  [1+λ, 4−2λ] [2λ, 6−4λ] 

2 (λ)%a  [3+2λ, 8−3λ] [2+3λ, 9−4λ] 

3 (λ)%a  [3+3λ, 7−λ] [1+5λ, 8−2λ] 

4 (λ)%a  [1+2λ, 4−λ] [3λ, 5−2λ] 
Table 1: Expressions of the four type-2 FI alternatives 

The min and max operators between the type-2 FIs are computed as follows: 

1 3 1,( (λ) (λ)) (λ)min % % %=a a a ; 

In this case, 1(λ)%a  and 3(λ)%a are totally ordered. 

 
Fig. 31: Shape of the four type-2 FI alternatives 

The order relation between the type-2 FIs 2 (λ)%a  and 3(λ)%a  is not total and cannot be totally ordered. 
In this case, the min operator is computed as follows (refer to Fig. 32): 

1 3,( (λ) (λ)) (λ)min %
% % =a a θ ; with: 2 3

inf inf inf(λ) ( (λ), (λ)min= =θ a a
[3 2λ,7 λ];if: 0 λ 0.5

[3 2λ,8 3λ];if: 0.5 λ 1

+ − ≤ ≤
 + − < ≤

 

and: 2 3
sup sup sup(λ) ( (λ), (λ)min= =θ a a

[1 5λ,8 2λ];if: 0 λ 0.5

[2 3λ,9 4λ];if: 0.5 λ 1

+ − ≤ ≤
 + − < ≤

 

By applying the same methodology, the max operator is computed as follows (refer to Fig. 33): 

3 4 3,( (λ) (λ)) (λ)max % % %=a a a ; and: 

1 4,( (λ) (λ)) (λ)max % % %=a a ω ; with: 1 4
inf inf inf(λ) ( (λ), (λ)max= =ω a a [1 2λ, 4 λ]+ − ; and: 

4 4
sup sup sup(λ) ( (λ), (λ)max= =ω a a

[3λ,6 4λ];if: 0 λ 0.5

[3λ,5 2λ];if: 0.5 λ 1

− ≤ ≤
 − < ≤
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Fig. 32: min operator between 2 (λ)%a  and 3 (λ)%a  

 
Fig. 33: max operator between 1(λ)%a  and 4 (λ)%a  

Using the proposed computational method, the final 2-ACI aggregation operator (27) is expressed by 
the following analytical expressions (refer to Fig. 34):  

CIinf = 
3.35 3.2λ[ ,9.2 2.05λ];if: 0 λ 0.5

[3.35 3.20λ,9.8 3.25λ];if: 0.5 λ 1

+ − ≤ ≤
 + − < ≤

; CIsup= 
0.9 6.25λ[ ,11.5 4.7λ];if: 0 λ 0.5

[1.5 5.05λ,911.75 5.2λ];if: 0.5 λ 1

+ − ≤ ≤
 + − < ≤

 

 
Fig. 34: 2-ACI result as a type-2 FI 




