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Abstract

This paper develops a limit-cycle-based theory of debt fluctuations through a simple endoge-
nous growth model. Public debt and deficit are introduced by relaxing the balanced-budget
rule hypothesis, and assuming a simple fiscal rule. Our main result is that fiscal rules can
be destabilizing, leading to (i) multiple equilibria—four balanced-growth paths can emerge—,
(ii) endogenous public debt cycles, which appear both in the short and the long run, and (iii)
hysteresis phenomena arising from extreme sensitivity of changes in parameters. We also reveal
that a balanced-budget rule does not preclude large aggregate fluctuations. Finally, our cali-
bration exercise highlights that our model produces asymmetric cycles consistent with observed
stylized facts.
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1. Introduction

The public-debt-to-GDP ratio is characterized by oscillating fluctuations, both in

developed and developing countries. Based on historical time series, public debt paths

follow long-lasting and regular cycles (Reinhart and Rogoff, 2010; Abbas et al., 2011;

Poghosyan, 2015). In pioneer works, Reinhart and Rogoff (2010, 2011) analyzed episodes

of debt cycles for 70 countries spanning an exceptionally long time period, and concluded

that “public debt follows a lengthy and repeated boom-bust cycle”. Between 1880 and 2009,

Abbas et al. (2011) identified regular debt cycles, with a total of 66 episodes of debt

decline and 63 episodes of debt increase. Focusing on the 1950-2015 period (IMF data),

the HP-detrended cyclical component of the public-debt-to-GDP ratio for developed and

developing countries (see Figures 1a-2a) and its spectral density (see Figures 1b-2b)

highlight the presence of debt cycles of a certain regularity, around 12 (20) years for

developing (developed) countries.2

1Corresponding author: alexandru.minea@uca.fr
2This is consistent with Poghosyan (2015), who shows that debt cycles during the period 1960-2014

last about 13 years.
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Figure 1: Cyclical Component and Spectral Densities for Developed Countries
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Figure 2: Cyclical Component and Spectral Densities for Developing Countries

Long-lasting theoretical explanations of debt cycles lay on exogenous factors, such

as wars or majors recessions, as in the tax-smoothing theory of Barro (1979) and Bohn

(1998). However, this exogenous-shock-based perspective does not adequately replicate

the regularity and frequency of observed cycles, especially in peacetime periods. In this

paper, we suggest that debt cycles have endogenous origins where boom and bust are

tightly linked. In this case, the internal mechanisms of the economy are sufficient to

generate fluctuations even in absence of any stochastic shocks.

The main argument we develop is that a simple deficit rule can generate long-lasting

public debt cycles, driven by the interaction between the optimal saving behaviour of

households and the government’s budget constraint, without the need of exogenous per-
2



turbations. Such cycles can appear both in the short and long run through the occurrence

of limit-cycles and complex dynamics.

In light of the existing literature, little is known regarding the implications of fiscal

deficits for aggregate fluctuations. Preceding studies rest so far on a balanced-budget

rule, and do not account for public debt. Yet, the persistence of public deficits and debt

characterizes most developed countries since the mid-1970.3 In addition, starting the

1980s, many economies adopted fiscal rules constraining deficit and/or debt. 4 As such,

assessing the impact of deficit rules on endogenous fluctuations is a major challenge facing

economic theory.

This paper addresses this challenge. For reporting on the continuous growth of public

debt in the long run, we build a Romer (1986)-type endogenous growth model, with en-

dogenous labor supply, in the spirit of Schmitt-Grohé and Uribe (1997) (hereafter, SGU).5

Public debt and deficit are introduced by relaxing the balanced-budget rule hypothesis,

and assuming a simple fiscal rule characterized by a constant deficit-to-output ratio. The

study of the dynamics of the economy, both analytically and using a graphical analysis,

reveals the occurrence of local and global bifurcations.

Our results are as follows.

First, our model exhibits multiplicity of equilibria. Consistent with US or OECD

historical data, our calibration shows that four equilibria can appear: two high-growth

equilibria, a low-growth trap, and a “catastrophic” equilibrium in which the economy

disappears. Intuitively, this multiplicity comes from two non-monotonic relations between

consumption and public debt. The first relation is driven by the government’s budget

constraint. Any increase in debt generates a rise in taxes leading to a crowding-out effect

on output and growth; if this crowing-out effect is low (high), consumption and public

debt are positively (negatively) linked, hence the first non-monotonic relationship. The

second relation comes from the behavior of households. Any increase in public debt

reduces both output and the real interest rate, exerting an adverse effect on consumption

and on the inducement to save; depending on parameters, consumption can increase or

decline, hence the second non-monotonic relationship.

Second, endogenous public debt cycles can emerge in the neighborhood of the low-

3The deficit-to-GDP ratio was around 2.5% on average in OECD countries in the period 1970-2005,
and this ratio increased since the Great Recession (according to the 2017 IMF’s World Economic Outlook,
average general government gross debt in ratio of GDP in developed countries rose from around 72% in
2007 to roughly 103% in 2019; and the imbalances triggered by the public debt were at the core of the
2012 Eurozone debt crisis).

4Among all types of fiscal rules, debt and deficit rules were enacted in more than 60 countries by 2012,
namely roughly three times more than expenditure rules, and more than six times more than revenue
rules (see Schaechter et al., 2012; Combes et al., 2017).

5In exogenous growth setups, public debt is only transitory—see the section 3 in SGU. With en-
dogenous growth, in contrast, public debt can grow in the long run; see, e.g. Minea and Villieu (2012),
Boucekkine et al. (2015), Nishimura et al. (2015), Menuet et al. (2018), Cheron et al. (2019), among
others.

3



growth trap. These cycles are (locally) stable for a range of parameter values through the

occurrence of a (supercritical) Hopf bifurcation. This implies that a small perturbation

of a parameter would not remove debt cycles. We show that these limit-cycles get larger

as the deficit target is reduced. At the limit, long-lasting endogenous fluctuations can

take the form of a homoclinic orbit, which defines a path that joins a steady-state to

itself. From a global dynamics perspective, the existence of such an orbit is ensured by

the occurrence of a generic Bogdanov-Takens (BT) bifurcation.

Third, fiscal rules can generate hysteresis and extreme sensitivity to changes in pa-

rameters. For small changes in the deficit-to-output ratio, the steady-state warps in a

non-reversible way through the occurrence of a Cusp bifurcation : a tight deficit ratio

may irreversibly condemn the economy to a low-growth/high-debt trap. Consequently, a

balanced-budget rule does not preclude large aggregate fluctuations.

Quantitatively, our calibration exercise reveals the realism of our findings. The dif-

ferent (local and global) bifurcations occur for reasonable values of economic growth and

public-debt ratio, and the asymmetric cycles that our model produces, with long peri-

ods of nearby-stationary growth and sudden short-living recessions, is consistent with

observed stylized facts. Thus, our model can roughly replicate long-lasting fluctuations

by endogenous mechanisms, reducing the need for exogenous shocks.

All in all, our analysis illustrates the perils of fiscal rules. Fiscal rules—including

the balanced-budget rule, hereafter BBR—can lead to indeterminacy, multiple equilib-

ria, and public debt cycles, with undesirable consequences on economic growth. These

features arise in our general macroeconomic setup with standard assumptions, and are

confirmed by calibration. Although stylized, our setup addresses major long-lasting topics

in macroeconomics.

From a theoretical perspective, our paper is close to a rich and expanding literature

aiming at identifying the different channels of fiscal policy-driven (in)determinacy. These

channels can be roughly divided into three categories. The first one relates to the way

taxes are modeled; examples include taxes on consumption, instead of labor (Giannit-

sarou, 2007), or progressive taxation (Christiano and Harrison, 1999). Second, the way

public spending are modeled is also of importance; growth- or utility-enhancing, instead

of wasteful public spending, can either support determinacy (Chen, 2006) or indetermi-

nacy (Guo and Harrison, 2008, with exogenous growth, and Palivos et al., 2003; Park

and Philippopoulos, 2004 with endogenous growth). Third, the (de)stabilizing effects of

fiscal policy may significantly differ depending on alternative assumptions on taxes and

public spending.6

With respect to this literature, we adopt wasteful public spending, endogenous flat-

6Such departures include non-separable utility function (Linnemann, 2008; Nourry et al., 2013; Abad
et al., 2017), CES production function (Guo and Lansing, 2009; Ghilardi and Rossi, 2014), or two-sector
models (Nishimura et al., 2013; Chang et al., 2015).
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rate taxes on endogenous labor, and an additive utility function, as in SGU. Therefore,

our (in)determinacy results are not triggered by the channels previously emphasized.

On the methodological side, moving from exogenous to endogenous growth dramatically

changes SGUs conclusions regarding the effects of labor taxes. Indeed, their findings must

be amended on two grounds: (i) aggregate instability only occurs if public spending is

high, and (ii) our aggregate-instability result covers a broader class of mechanisms than

in SGU, because it may rely on local and global indeterminacy.

Importantly, in the existing literature, global indeterminacy comes from positive ex-

ternalities associated to increasing returns or two-sector frameworks. In contrast, in our

model, global indeterminacy is established in a one-sector model, and does not fundamen-

tally rest on increasing returns in production. Instead, it rather resorts to the non-trivial

dynamics of the debt-to-capital ratio that give rise to complex interactions between the

government’s budget constraint and the households’ saving behavior. Against this back-

ground, although based on a one-sector model, indeterminacy does not depend on the

famous Benhabib-Farmer condition (Benhabib and Farmer, 1994), namely that the in-

creasing labor demand must be positively sloped and steeper than the labor supply. 7 In

our model with constant returns-to-scale and decreasing returns in all private factors,

the labor demand is a decreasing function of the wage, but nonetheless consistent with

indeterminacy.8

From a policy perspective, the main message of our paper is that fiscal rules can

be destabilizing, because they open the door for multiple equilibria and complex cyclical

dynamics. This finding may be related to empirical studies that highlight the destabilizing

role of fiscal rules due to pro-cyclical biases of fiscal policy in reaction to adverse supply

or demand shocks (see, e.g. Alt and Lowry, 1994; Alesina and Bayoumi, 1996; Fatás and

Mihov, 2006, among others). In our paper, however, the destabilizing effect of fiscal rules

is not based on inadequate responses to exogenous shocks but on endogenous fluctuations

resulting from a tight deficit target.

The paper is organized as follows. Section 2 presents the model, section 3 analyzes

the steady-state, section 4 performs a calibration exercise, section 5 studies local and

global dynamics, section 6 discusses public debt cycles, section 7 extends our results to

balanced-budget rules, and section 8 concludes the paper.

7The survey of Benhabib and Farmer (1999) provides a thorough discussion of this condition.
8Technically, our paper is also related to applications of the Bogdanov-Takens (BT) bifurcation in

economics. By applying the result of Kopell and Howard (1975) in a monetary model, Benhabib et al.
(2001) first used this bifurcation to prove the destabilizing role of Taylor rules. Subsequent works
employed the BT bifurcation to demonstrate the occurrence of Beveridge cycles (Sniekers, 2018), or
homoclinic orbits in growth models (Benhabib et al., 2008, with exogenous growth and variable capacity
utilization, and Mattana et al., 2009, with endogenous growth and two-sectors). In our paper, the BT
bifurcation serves to prove the existence of homoclinic orbits associated with large public debt cycles.
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2. The model

We consider a simple continuous-time endogenous-growth model with N representa-

tive individuals and a government. Each representative agent consists of a household and

a competitive firm. All agents are infinitely-lived and have perfect foresight. Popula-

tion is constant, and we denote individual quantities by lower case letters and aggregate

quantities by corresponding upper case letters, namely X = Nx for all variable X.

2.1. Households

The representative household starts at the initial period with a positive stock of

capital (k0), and chooses the path of consumption {ct}t≥0, hours worked {lt}t≥0, and

capital {kt}t>0, such as to maximize the present discount value of its lifetime utility,

which is assumed to be separable in consumption and leisure9

U =

∞∫

0

e−ρt {u(ct) − v(lt)} dt, (1)

where ρ > 0 is the subjective discount rate. We consider a logarithm utility function

(u(ct) = log(ct)), and preferences for leisure are such that v(lt) = B
1+ε

l1+ε
t , where ε ≥ 0

is the constant elasticity of intertemporal substitution in labour, and B > 0 a scale

parameter.

Households use labor income (wtlt, where wt is the hourly wage rate) and capital

revenues (qtkt, where qt is the rental rate of capital), to consume (ct), invest (k̇t), and

buy government bonds (dt), which return the real interest rate rt. They pay taxes on

wages (τtwtlt, where τt is the wage tax rate), on consumption (τctct, where τct is the

tax rate on consumption), and perceive (positive or negative) lump-sum transfers πt (in

equilibrium, πt is the share Πt/N of total lump-sump transfer Πt); hence the following

budget constraint

k̇t + ḋt = rtdt + qtkt + (1 − τt)wtlt − (1 + τct)ct + πt. (2)

The first order conditions for the maximization of the household’s programme give

rise to the dynamic Euler relation (with qt = rt in competitive equilibrium)

ċt

ct

= rt − ρ −
τ̇ct

1 + τct

, (3)

and to the static relation

(1 − τt)wt

(1 + τct)ct

= Blεt . (4)

9The use of a separable utility function allows neutralizing an important source of indeterminacy in
the form of non-separable preferences (see, e.g., Benhabib et al., 2001; Nourry et al., 2013).
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Eq. (3) is the familiar Keynes-Ramsey rule that governs intertemporal consumption

choices, here in the presence of varying consumption taxes. Eq. (4) shows that, at each

period t, the marginal gain of hours worked (the net real wage (1 − τt)wt, expressed

in terms of marginal utility of consumption, including the effect of consumption taxes

1/((1 + τct)ct)), just equals the marginal cost (Blεt ).

Finally, the optimal path of consumption has to verify the set of transversality con-

ditions

lim
t→+∞

{exp(−ρt) u′ (ct) kt} = 0 and lim
t→+∞

{exp(−ρt) u′ (ct) dt} = 0,

ensuring that lifetime utility U is bounded.10

2.2. Firms

Output (yt) is produced using a constant returns-to-scale technology with a knowledge

externality, namely yt = Ãhα
t k1−α

t , where ht and kt respectively stand for human and

physical capital, Ã > 0 is a scale parameter, and α ∈ (0, 1) is the elasticity of output to

human capital.

Human capital is produced both by raw labor (or training activity) lt, and by the

economy-wide stock of knowledge Xt that generates positive technological spillovers onto

firms’ productivity (as Romer, 1986), namely ht = Xtlt. We assume that knowledge is

produced by a simple Cobb-Douglas technology depending on aggregate levels of physical

and human capital: Xt = Hβ
t K1−β

t , where β ∈ (0, 1) is a measure of human capital

efficiency in the accumulation of knowledge. At aggregate level, we then obtain Ht =

KtL
1/(1−β)
t = KtL

1+φ
t , with 1 + φ = 1/(1 − β) ≥ 1.11

The production function exhibits constant returns-to-scale at the individual level, and

decreasing returns in all private factors. The first order conditions for profit maximization

(relative to private factors) are

wt = α
yt

lt
, (5)

rt = (1 − α)
yt

kt

. (6)

At the aggregate level, the knowledge externality will allow reaching an endogenous

growth path, because the social return of capital is not decreasing. Effectively, the ag-

gregate production function is

Yt = ÃKtL
α(1+φ)
t . (7)

10On the BGP associated to constant growth and interest rates (γ∗ and r∗, respectively), these transver-
sality conditions correspond to the no-Ponzi game constraint γ∗ < r∗. This condition ensures that public
debt will be repaid in the long run, and does not preclude the possibility that γ > r in the short run.

11Human capital externalities, i.e. the fact that your coworkers’ human capital makes you more
productive, are well documented in empirical literature (see, e.g. Rauch, 1993; Moretti, 2004, who find
very significant estimates of human capital externalities). Alternative models of endogenous growth,
based on the Lucas (1988) archetype, consider the formation of human capital through individual training
decisions that compete with productive activities.
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As we will see in section 4, devoted to the quantitative assessment of our results,

the main results of this paper appear even if the aggregated returns-to-scale are close to

constant (i.e. 1 + α(1 + φ) close to one).

2.3. The government

The government provides public expenditure Gt and total transfers Πt, levies taxes,

and borrows from households. The fiscal deficit is financed by issuing debt (Ḋt); hence,

the following budget constraint

Ḋt = rtDt + Gt + Πt − τtwtLt − τctct. (8)

We shall assume that the government (i) claims a part g of aggregate output for public

spending (Gt = gYt),
12 (ii) retrieves a part μ of aggregate output from consumption taxes

net from lump-sum transfers (τctct − Πt = μYt), and (iii) fixes a constant tax rate on

consumption (τct = τc < 1).

At this stage, there are three exogenous parameters (g, μ, and τc) and two endogenous

policy instruments in Eq. (8): public debt (Dt), and the tax rate on wages (τt). To close

the model, one instrument has to be exogenously specified. To this end, we suppose that

the government follows a fiscal rule characterized by a constant deficit-to-output ratio,

namely13

Ḋt

Yt

= θ. (9)

In this way, the tax-rate on wages will serve to adjust the government’s budget constraint,

as in SGU.

The deficit target θ ≥ 0 is consistent with current institutional frameworks (for ex-

ample, a 3% deficit ceiling was adopted by the EU, the West African Economic and

Monetary Union, or the East African Community, see IMF, 2018). As we will see, Eq.

(9) conveys the main message of the paper in a direct and transparent way: a basic

fiscal rule (including the balanced budget rule—BBR—, θ = 0) may have destabilizing

effects, because the interaction between the households’ optimal saving behavior and the

government’s budget constraint opens the door to indeterminacy and complex dynamics,

including long-run public debt cycles.

2.4. Equilibrium

We focus on the symmetric equilibrium in which all household-firm behave similarly.

12As in SGU, public expenditure has no effect on utility or production (i.e. wasteful public spending).
For a recent model with productive expenditure, see, e.g. Menuet et al. (2018).

13Such a deficit rule is discussed in Menuet et al. (2018). We can also specify a gradual rule δ̇t =
η(θ − δt), with δt = Ḋt/Yt, and η > 0 a parameter reflecting the speed of adjustment of the deficit
ratio to its long-run target. Such a rule does not qualitatively change our results. The fiscal rule (9)
corresponds to η = +∞, i.e. δt = θ.
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Definition 1. A symmetric competitive equilibrium is a path {Ct, Lt, Kt, Dt, Yt}∞0 that

solves Eqs. (3), (4), (5), (6), (8), (9), and satisfies the set of transversality conditions and

the IS equilibrium K̇t = Yt − Ct − Gt.

To find endogenous growth solutions, we deflate all growing variables by the capital

stock to obtain long-run stationary ratios, namely (we henceforth omit time indexes):

yk := Y/K, ck := C/K, and dk = D/K.

Given the fiscal rule (9), the tax rate on wages is the adjustment variable in the

government’s budget constraint. Using Eqs. (5), (6), (8) and (9), it follows that

τ =
(1 − α)dk + g − μ − θ

α
= 1 −

(
d̄ − (1 − α)dk

α

)

, (10)

where d̄ = α + μ + θ − g.

Assumption 1. (1 − α)dk < d̄ < α + (1 − α)dk

Assumption 1 ensures that τ ∈ (0, 1). From (4), (6), and (7), we obtain the equilibrium

level of output

yk = A

(
α(1 − τ)

ck

)ψ

, (11)

where ψ := α(1+φ)
1+ε−α(1+φ)

, and A := Ã
(

ÃNε

B(1+τc)

)ψ

.

Assumption 2 (Normal labor demand) α(1 + φ) < 1.

Assumption 2 is a sufficient (unnecessary) condition for ψ > 0, and is verified under

the plausible condition β < 1 − α. Under Assumption 2, labor demand is normal, i.e.

decreasing with real wages.14 This is an important feature, because our indeterminacy

results do not rest on a positively-sloped labor-demand curve, contrasting with Benhabib

and Farmer (1994) and Farmer and Guo (1994).15

14Indeed, from (5) and (7), the aggregate labor demand writes Lt = [ wt

(1−α)ÃKt
]1/(α(1+φ)−1).

15In Benhabib and Farmer, 1994, p.30, a necessary condition for indeterminacy is that (using our
notations): α(1 + φ) > 1 + ε. This implies that the aggregate labor demand has to be increasing with
real wages (see Eqs. (5) and (7) with α(1 + φ)− 1 > ε ≥ 0). For the labor demand to slope up with real
wages, increasing returns must be important, as discussed by Benhabib and Farmer (1994) and Schmitt-
Grohé and Uribe (1997). In our model, as we have seen, we assume α(1+φ) < 1 < 1+ε, such that labor
demand is normal, i.e. decreasing with real wages. We nevertheless obtain indeterminacy, thanks to the
public debt dynamics. In addition, in our model, indeterminacy is consistent with lowly-increasing social
returns, as illustrated by our quantitative analysis in section 4 (see Benhabib and Farmer, 1999, for a
synthesis of several ways to obtain indeterminacy with small increasing returns).
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The inverse relationship between the consumption ratio and the output ratio in Eq

(11) comes from the labor market equilibrium (4). Following an increase in the consump-

tion ratio, the marginal utility of consumption decreases, thus inducing households to

substitute leisure for working hours (since ε ≥ 0, leisure and consumption are comple-

ment in equilibrium). Then, the equilibrium labor supply and output are reduced. The

same result arises if the tax rate on wages increases.

With constant consumption taxes, the optimal aggregate consumption behaviour is,

from (3) and (6),
Ċ

C
= (1 − α)yk − ρ, (12)

and the path of the capital stock is given by the goods market equilibrium

K̇

K
= (1 − g)yk − ck. (13)

The path of public debt follows the definition of the deficit ratio, namely

Ḋ

D
= θ

yk

dk

. (14)

Hence, the reduced-form of the model is obtained by Eqs. (12), (13) and (14)






ċk

ck

= (g − α)yk − ρ + ck,

ḋk

dk

=
θyk

dk

− (1 − g)yk + ck,

(15)

where, from Eqs. (10) and (11)

yk = A

(
d̄ − (1 − α)dk

ck

)ψ

=: yk(ck, dk). (16)

In equilibrium, any increase in the debt ratio (dk) reduces the output ratio (yk).

Indeed, the growing interest-burden of public debt leads to more taxes on wages, which

discourages labor supply. The same crowding-out effect applies in case of an increase in

public spending or a decrease in the deficit target, through coefficient d̄.

Definition 2. A steady-state i is a symmetric competitive equilibrium where consump-

tion, capital, output, and public debt grow at the common (endogenous) rate γi, such

that ċk = ḋk = 0 in (15). At any steady state i, the economy is characterized by a

balanced-growth path (BGP): γi := Ċ/C = K̇/K = Ẏ /Y = Ḋ/D, while the real interest

rate (ri) is constant.
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We determine the steady-state solutions of the model in section 3, section 4 provides

a quantitative assessment, and section 5 discusses local and global dynamics.

3. Long-run solutions and the deficit target

In this section, we consider strictly positive deficit targets (θ > 0).16 The long-run

endogenous growth solutions are described by two relations between ck and dk. The first

one is the ċk = 0 locus, which comes from the Euler relation (12) and the IS equilibrium

(13)

d∗
k =

1

1 − α

{

d̄ − c∗k

(
ρ − c∗k

(g − α)A

)1/ψ
}

, (17)

where a star denotes steady-state values.

The second relation is the ḋk = 0 locus, related to the government’s budget constraint

(8), and the deficit rule (9)

θyk(c
∗
k, d

∗
k) = [(1 − g)yk(c

∗
k, d

∗
k) − c∗k]d

∗
k. (18)

Steady-state solutions are obtained as the crossing-point of Eqs. (17) and (18).

Theorem 1. The long-run equilibria are characterized by the following regimes.

• Regime L (low public spending): g < α. There are two positive-growth candidates
for a steady-state: a high-growth solution (point P) and a low-growth solution (point
M).

• Regime H (high public spending): g > α. There are three positive-growth candidates
for a steady-state (points M , P and Q), and a no-growth degenerate solution (point
D).

Proof. First, Eq. (17) corresponds to d∗
k = dk(c

∗
k). There are two cases. On the one hand,

if g < α, we have d′
k(c

∗
k) < 0, ∀c∗k > ρ, hence a monotonic decreasing relation between c∗k

and d∗
k. On the other hand, if g > α, we have d′

k(c
∗
k) < 0 if c∗k ∈ [0, ĉk), and d′

k(c
∗
k) > 0 if

c∗k ∈ (ĉk, ρ), where

ĉk =
ψρ

1 + ψ
, (19)

hence a U-shaped curve in the (ck, dk)-plane, with a minimum at ĉk.

Second, Eq. (18) leads to c∗k = ck(d
∗
k), where

ck(d
∗
k) =

{
A

d∗
k

[
d̄ − (1 − α)d∗

k

]ψ
[(1 − g)d∗

k − θ]

}1/(1+ψ)

, (20)

16The balanced-budget rule (BBR) case is studied in section 7.

11



hence c′k(d
∗
k) ≥ 0 ⇔ −(d∗

k)
2ψ(1 − α)(1 − g) − d∗

kθ(1 − α)(1 − ψ) + θd̄ ≥ 0. Focusing on

d∗
k ≥ 0, ck(∙) depicts a bell-shaped curve in the (dk, ck)-plane, with a maximum at

d̂k :=

√
(1 − α)θ[θ(1 − α)(1 − ψ)2 + 4ψ(1 − g)d̄] − θ(1 − α)(1 − ψ)

2ψ(1 − α)(1 − g)
≥ 0.

Notice that, for small deficit targets (the term θ(1 − α)(1 − ψ) is small enough, see our

calibrations in section 4), this maximum can be approximated by

d̂k ≈

√
θd̄

ψ(1 − g)(1 − α)
. (21)

We define c̄k as the maximal consumption ratio, namely c̄k := ck(d̂k). If θ = 0, this value

corresponds to c̄k = [Ad̄ψ(1 − g)]1/(1+ψ).

3a: Regime L (g < α) 3b: Regime H2 (g > α)

Figure 3: The steady states

In Regime L (g < α), there are at most two BGPs (P and M , as in Figure 3a). As

θ increases, the curve ċk = 0 moves upwards (see Eq. 17), while the curve ḋk = 0 moves

backwards (see Eq. 20). Hence, there is a critical value θ̄, such that points the P and

M collide, defining a saddle-node bifurcation : for slightly higher values of θ, there is no

equilibrium.

In Regime H (g > α), four BGPs are feasible, as in Figure 3b. A trivial solution,

denoted by point D, is associated with c∗k = 0 =: cD
k and d∗

k = d̄/ (1 − α) := dD
k (in this

case, we have yD
k = 0). The couple (cD

k , dD
k ) is such that the economy asymptotically

vanishes. We will refer to this solution as close to the “harrodian” perspective. Although

such a “collapse” solution is not economically attractive, it cannot be rejected without
12



assessing the local and global dynamics of the model, as we will see.17 The areas for

which the different positive-growth candidates emerge (or not) as steady-state solutions

are discussed in the following subsection. �

3.1. Behaviour of Regime H

Figure 4 depicts the different configurations of long-run equilibria. The most general

case is Regime H3 (Figure 4e), in which the two steady-state curves intersect four times,

at points Q, P , M , and D. The associated BGPs are such that 0 = γD < γM < γP < γQ,

corresponding to the inverse ranking of the public debt ratio dQ
k < dP

k < dM
k < dD

k .

Regime H3 occurs only if ĉk < c̄k, where ĉk and c̄k respectively correspond to the leftmost

point of ċk = 0 and to the maximum of ḋk = 0, and we focus on this configuration in the

following.18

Ignoring point D for the moment, the areas of structural invariance are located on

either sides of the two saddle-node global bifurcations that surround Regime H3. At

the first bifurcation, labelled SN1 (Figure 4d), points P and M collide. For a small

change in parameters, the economy switches from Regime H3 into Regime H1, which

is characterized by a unique BGP (point Q in Figure 4a). At the second bifurcation,

labelled SN2 (Figure 4f), the situation is symmetric: points P and Q collide, such that

for a small change in parameters, the economy switches from Regime H3 into Regime

H2, where point M is the unique BGP (Figure 4c). The two saddle-node bifurcations

eventually collide for some parameters’ values, defining a CUSP point, such that steady-

states M , P , and Q merge (Figure 4b). In this case, Regime H3 vanishes, and the long-run

solution is unique. For any arbitrarily small change in parameters, on both sides of this

CUSP bifurcation, the number of long-run solutions goes from one to three. As we will

see, this CUSP bifurcation may generate hysteresis.

Our quantitative illustration of the model highlights that these different configurations

are realistic. In section 4 below, using policy instruments θ and g as parameters of interest,

we show that all types of bifurcations are consistent with OECD or US historical data.

17Households’ preferences are defined only for ct > 0, but the steady state D can be asymptotically
reached with limt→+∞ ct = 0+.

18If ĉk > c̄k, Regime H3 cannot appear, since only two BGPs are feasible: points Q and D in Regime
H1, or points M and D in Regime H2. Since these regimes also appear if ĉk < c̄k, we can restrict our
analysis to this configuration (the alternative configuration ĉk > c̄k will be extensively addressed in the
BBR case, in section 7).

13



Figure 4: Topological regimes in Regime H (ĉk < c̄k)

3.2. Some intuition

Fundamentally, the multiplicity of equilibria comes from the government budget con-

straint. In steady state, the fiscal rule leads to θy∗
k = γ∗d∗

k, where γ∗ = (1−g)y∗
k−c∗k. Yet,

any increase in the debt ratio d∗
k generates a rise in taxes to finance the additional govern-

ment debt burden, leading to an adverse effect on output (y∗
k) and growth (γ∗). It follows

that the deficit rule is consistent with two stationary solutions: a high-growth/low-debt

solution and a high-debt/low-growth solution. This explains the hump-shaped relation-

ship between the debt ratio and the consumption ratio. An increase in the debt ratio

d∗
k generates first a positive effect on consumption, provided that d∗

k < d̂k, because the

crowding-out effect of public debt on economic growth is low. On the opposite, as soon

as d∗
k > d̂k, economic growth is strongly affected by the government debt interest burden,

and any further rise in d∗
k reduces consumption. Consequently, due to the fiscal rule, c∗k

is non-monotonically associated to d∗
k.

In the BBR case (θ = 0), the mechanism is similar, except that d̂k = 0 in Eq. (21),

and the ḋk = 0 curve becomes a degenerate hump-shaped curve, composed of the two

branches γ∗ = 0 and d∗
k = 0, as in Figure 3. Indeed, the BBR is consistent with a positive

(constant) stock of public debt and does not preclude multiplicity, as shown in section 7.

Against this background, the mere presence of public debt with a fiscal rule explains

the multiplicity in Regimes L and H. In Regime H, there is an additional source of
14



multiplicity, due to high public spending. Indeed, in the long-run, the BGP requires

K̇/K = Ċ/C = γ∗. According to the Euler equation (12) and the IS equilibrium (13),

this condition amounts to (1 − g)y∗
k − c∗k = (1 − α)y∗

k − ρ, or

c∗k − ρ = (α − g)yk(c
∗
k, d

∗
k). (22)

As we have seen, yk negatively depends on dk and ck through the labour market

equilibrium (see Eq. 16). Then, the relation between c∗k and d∗
k crucially depends on the

sign of α−g. If g < α (regime L), an increase of c∗k decreases the RHS of (22) and rises the

LHS, thus generating an unambiguously monotonic decreasing relation between c∗k and

d∗
k, as depicted in Figure 3a. If g > α (regime H), both sides of Eq. (22) positively depend

on c∗k, which produces a non-monotonic association between c∗k and d∗
k. Consequently, any

debt ratio is associated with two consumption ratios, as in Figure 3b.

The role of the condition g > (<)α is intuitive. As d∗
k increases, the growth rates

of consumption (Ċ/C) and private capital (K̇/K) decrease, through an adverse effect

on output. However, the impact of the output ratio on the growth rate of consumption

depends on the return of capital (1 − α)—see Eq. (12), while its impact on the growth

rate of capital depends on public spending (1 − g)—see Eq. (13). Therefore, if g < (>)α,

the investment-goods sector is more (less) sensitive than the consumption-goods sector to

a change of dk, and the consumption ratio ck must adjust in order to restore the equality

K̇/K = Ċ/C along the BGP.

Two results deserve particular attention. First, as we will see, although the Regime

L is well-determined, the higher-growth solution (Q) cannot be reached. This explain

why governments can be induced to increase public spending until reaching Regime H.

Second, in regime H3 indeterminacy cannot be avoided, unless the positive long-run

solution disappears. Effectively, one cannot obtain the positive BGP P without the

undetermined solution Q. Thus, local and global indeterminacy can be viewed as the

price that must be paid to generate a positive long-run growth solution.

The following section presents a calibration exercise showing that the different con-

figurations arise for plausible parameters’ values.

4. A quantitative assessment

Our numerical results are based on reasonable values of parameters. In our benchmark

calibration, we choose ρ = 0.02, corresponding to the long-run value of the risk free (real)

interest rate, and the labor elasticity of substitution is fixed at ε = 0, thus characterizing

an infinite Frisch elasticity as usual in business cycle models (see SGU). Regarding the

technology, we set A = 0.05 to obtain realistic rates of economic growth, and the size of the

knowledge externality in the production function is α = 0.1, close to its value (α = 0.08)

in Turnovsky (2000). The measure of human capital intensity in the accumulation of
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knowledge is set to β = 0.75 in our baseline calibration, since human capital is probably

the most important factor in the production of knowledge.

Regarding the government’s behavior, we consider a range of deficit ratios θ ∈ (0, 0.03),

in line with long-run average values in US or OECD from 1950 to 2019. In the baseline

calibration, governments expenditure is chosen so that the fraction of net national pro-

duction devoted to public spending on goods and services equals the historical average

in the United States (g = 0.225). Besides, the sum of consumption taxes and lump-sum

taxes is assumed to be 15% of GDP (namely, μ = 0.15). For these parameters’ values,

the corresponding rate of wage taxation (in percent of GDP) is between 10% and 16.5%,

depending on the equilibrium considered (the average value in OECD data is roughly

15%).

PARAMETERS
Households
S 1 Intertemporal elasticity of substitution
ρ 0.02 Discount rate
ε 0 Labor elasticity of substitution
Technology
A 0.05 Productivity parameter
α 0.1 Size of the knowledge externality in the production function
β 0.75 Share of human capital in the production of knowledge
Government
g 0.225 Government spending on goods and services
θ 0 to 0.03 Long-run deficit-ratio target
μ 0.15 Share of consumption taxes plus lump-sum taxes in GDP

Table 1: The baseline calibration

In our benchmark calibration, regime L appears for g < 0.1, while, in the opposite

case, regime H prevails. As g ' 22.5% in historical data, we particularly focus from

now on the latter regime. Table 2 reproduces the different steady-state solutions in the

more general case (Regime H3), under a deficit target θ = 1.3% (consistent with the

existence of Regime H3). The long-run economic growth rate equals 2%, 4.7%, and 6.8%

at points M , P , and Q, respectively; and the long-run public debt to output ratio is 64%,

27%, and 19%, respectively. These numbers are fairly realistic. In particular, point M is

closely related to OECD data. This feature is of particular importance, since the cyclical

dynamics in our model appear in the neighborhood of this steady state. Moreover, the

two saddle-node bifurcations SN1 and SN2 emerge for reasonable values of the deficit

target, namely θ ' 1.46% and θ ' 1.18% respectively, and are associated to realistic

long-run economic growth and public debt ratio.
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Table 2 also computes different types of bifurcations of codimension 1 and 2 (the

codimension of a bifurcation is the number of parameters that must be varied for the

bifurcation to occur). In our benchmark calibration, a Hopf bifurcation occurs at θ '
1.42% (namely in Regime H3); while, if two parameters (here, the deficit target θ and

the public pending ratio g) are allowed to vary, a CUSP bifurcation arises at θ ' 2.3%

and g ' 22%, and a Bogdanov-Takens bifurcation (labelled BT) appears at θ ' 0.7%

and g ' 23%. For lower values of the discount rate (e.g. ρ = 0.01), a Generalized Hopf

(Bautin) bifurcation (labelled GH) can also occur (at θ ' 1.8% and g ' 24% in our

calibration). The interpretation of these bifurcations will be provided in the following

sections. What is of particularly importance here is that all types of bifurcations are

consistent with economic conditions experienced by developed countries during the last

decades.

θ g γM γP γQ DM/Y M DP /Y P DQ/Y Q

SN1 0.0146 0.225 0.032 0.08 0.46 0.15
Regime H3 0.013 0.225 0.02 0.047 0.068 0.64 0.27 0.19

SN2 0.0118 0.225 0.017 0.058 0.70 0.20
CUSP 0.023 0.22 0.049 0.47
Hopf 0.0142 0.225 0.026 0.039 0.072 0.55 0.36 0.20
GH 0.018 0.24 0.025 −− −− 0.71 −− −−
BT 0.007 0.23 0.02 0.033 0.08 0.33 0.21 0.09

Table 2: Economic growth and the public debt ratio under different configurations

The three regimes established in Figure 4 appear on either parts of the two saddle-node

bifurcations (SN1 and SN2). These bifurcations can be generated by particular values

of the deficit target (θ1 and θ2, respectively). Ignoring the harrodian equilibrium D, if

θ > θ1 ' 1.46% only the high-growth solution Q exists (Regime H1); if θ < θ2 ' 1.18%

only the low-growth trap M appears (Regime H2); while in the intermediate regime

θ2 < θ < θ1, three positive-growth BGPs prevail as we have seen (Regime H3).

Interestingly, Regime H3 can occur without the need of high social returns-to-scale in

the aggregate production function. With g = 0.15, for example, regime H3 is consistent

with β = 0 and α = 0.01, namely for almost constant returns-to-scale (1+α(1+φ) = 1.01).

Indeed, for these values, regime H3 prevails as soon as 0 < θ < 1.345%. Therefore, in

our setup multiplicity (and indeterminacy) can arise even if returns to scale are close to

constant, as empirical evidence suggests (see, e.g. Basu and Fernald, 1997).19

19In contrast, Benhabib and Farmer (1994) need increasing returns in excess of 0.5. Following the
empirical works of Burnside (1996) or Basu and Fernald (1997), suggesting that the U.S. manufacturing
industry displays roughly constant returns with no external effects, a theoretical research agenda was
opened by Benhabib and Farmer (1996) in order to reduce the degree of increasing returns needed to
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Figure 5: Bifurcation diagram as a function of θ (regime H)

The presence of two saddle-node bifurcations in the neighborhood of the CUSP singu-

larity can generate a hysteresis phenomenon, as described in Figure 5. Suppose, e.g., that

the deficit target is θ2 < θ < θ1, and that the economy locates at the low-growth steady-

state M in Regime H3 (starting, e.g., at point H). If θ increases until θ1, the economy

moves along steady state M until point LP1. If θ increases further, the economy switches

into Regime H1 and the steady state suddenly jumps from M to Q. However, if from this

point θ is decreased, the economy does not come back to steady-state M , but public debt

decreases along steady-state Q until point LP2 at θ = θ2. If we further decrease the value

of θ, the economy switches in Regime H2, and the steady state suddenly jumps to M .

Hence, for small changes in the deficit target, the steady state warps in a non-reversible

way: decreasing too much the long-term deficit target may condemn the economy to an

irreversible steady-state with low economic growth (and high debt). Of course, such an

analysis is only based on comparative statics of the steady states, and must be further

investigated from a dynamics perspective. This is the goal of the following sections.

5. Analysis of dynamics

This section is devoted to the analysis of local dynamics, followed by global dynamics.

generate indeterminacy. The conclusion was that indeterminacy can arise with low increasing returns, or
even constant returns, in multi-sector models (see, e.g., Benhabib and Nishimura, 1998; Benhabib et al.,
2000); for example, indeterminacy requires increasing returns of about 0.07 in Benhabib and Farmer
(1996). In our one-sector model, indeterminacy can arise with very low increasing returns around 0.01.
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5.1. Local dynamics

By linearization, in the neighborhood of steady-state i, i ∈ S = {D,M,P,Q}, the

system (15) behaves according to (ċk, ḋk) = Ji(ck − ci
k, dk − di

k), where Ji is the Jacobian

matrix. The reduced-form includes one jump variable (the consumption ratio ck0) and one

pre-determined variable (the public-debt ratio dk0, since the initial stocks of public debt

D0 and private capital K0 are predetermined). Hence, for BGP i to be well determined,

the Jacobian matrix

Ji =

(
CC i CDi

DC i DDi

)

,

must contain two opposite-sign eigenvalues, where, using (15),

CC i = ci
k[1 + (g − α)yci], (23)

CDi = ci
k(g − α)ydi, (24)

DDi = θydi − γi − (1 − g)ydidi
k, (25)

DC i = θyci − (1 − g)ycidi
k + di

k, (26)

with, using (16),

yci :=
∂yi

k

∂ci
k

= −
ψyi

k

ci
k

< 0, and ydi :=
∂yi

k

∂di
k

= −
(1 − α)ψyi

k

d̄ − (1 − α)di
k

< 0. (27)

Hence, the trace and the determinant of the Jacobian matrix are, respectively

Tr(Ji) = θydi + ci
k[1 + (g − α)yci] − γi − (1 − g)ydidi

k, (28)

det(Ji) = −ci
k[γ

i − θydi + (1 − g)di
kydi + (g − α)(γiyci + di

kydi)]. (29)

The following theorem establishes the topological behaviour of each steady state.

Theorem 2. (Local Stability)

• In regime L, M is locally unstable and P is locally determinate (saddle-point stable).

• In regime H, points D and P are locally determinate (saddle-point stable); point Q
is locally indeterminate (stable); and M can be either locally indeterminate (stable)
or unstable.

Corollary 1. A Hopf bifurcation can emerge in the neighborhood of M(cM
k , dM

k ), if its

coordinates verify dM
k < d̂k. In particular, for small values of θ, the Hopf bifurcation is

reached at θh such that

θh := (1 − g)dM
k −

CCM

ydM
. (30)
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Proof. See Appendix A.

The major difference between regimes L and H is related to the monotonicity of the

ċk = 0 curve. As we have seen (see Theorem 1), the two regimes are characterized by

the saddle-node bifurcation SN1, at which points M and P collide. But, in regime H,

another bifurcation SN2 arises, which gives birth, for nearby parameters’ values, to the

positive-growth solutions P and Q. Thus, the interplay between the consumption ratio

and the public debt ratio can give rise to complex dynamics, depending on the location

of steady states in the plane (dk, ck).

The local stability analysis points out that, due to the possibility of a Hopf bifurcation,

small changes in the deficit target can generate radical shifts in the dynamics, together

with large oscillations of economic growth and public debt in the neighborhood of the

low-growth trap M . Sections 6 and 7 explicitly characterize this bifurcation. Beforehand,

we turn to global dynamics.

5.2. Global dynamics and (in)determinacy

According to the analysis of local dynamics, we can distinguish four cases depending

on the fiscal policy parameters—the deficit target and the public spending ratio.

Regime L – There are two steady states, but only the higher BGP (P ) can be reached

in the long-run, as the low-growth trap (M) is unstable. Hence, there is no local or global

indeterminacy in this regime (Figure 6a).20

Regime H1 – This regime is also characterized by two steady states. One is as-

sociated to high economic growth (Q, with low consumption and deficit ratios) and is

stable, while the harrodian equilibrium D is saddle-path stable. Consequently, there is

local indeterminacy in the vicinity of Q, and possibly global indeterminacy, because the

economy can move towards Q or D, if the initial debt ratio is such that dk0 > d̂k (see

Figure 6b).

Regime H2 – In this regime there are equally two steady states, M and D. The

latter is still locally determinate, but the topological behavior of the low-growth trap M

depends on its position relative to dk. If dM
k > d̂k, M is unstable, and there is no local or

global indeterminacy. Starting from an initial public debt ratio close to dM
k , the economy

converges towards the harrodian equilibrium D. In contrast, if dM
k < d̂k, there is global

indeterminacy, as states the following proposition.

Proposition 1. If dM
k < d̂k, the steady state exhibits indeterminacy as follows: for initial

public debt ratios originating in the neighborhood of M , the economy can converge to the
point D, to the point M , or can join a periodic orbit around point M , depending on the
initial jump in consumption.

20The initial public debt ratio exerts a threshold effect: if dk0 < dM
k , for any predetermined dk0 the

consumption ratio ck0 jumps to place the economy on the saddle-path that converges towards P , which
defines the unique long-run equilibrium. In contrast, if dk0 > dM

k there is no long-run solution.
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Proof. If dM
k < d̂k there is a Hopf bifurcation at CCM = −DDM ⇔ θ = θh, as we

have seen. This Hopf bifurcation can be supercritical, generating a stable limit cycle (if

the first Lyapunov coefficient is negative), or subcritical, generating an unstable closed

orbit (if the first Lyapunov coefficient is positive), depending on parameters. Indeed,

a Generalized (Bautin) Hopf bifurcation may arise for realistic values of parameters, as

stated in Table 2. At this Generalized Hopf bifurcation the first Lyapunov coefficient is

zero, ensuring the presence of stable limit cycles for nearby parameter values. Hence, the

economy can converge towards a periodic orbit around M if the bifurcation is supercritical

or directly jump on this orbit if the bifurcation is subcritical as in Figure 6c. In addition,

if dk0 > d̂k, there is a unique trajectory that goes towards the harrodian equilibrium D.

As a consequence, given a predetermined debt ratio any path that converges toward M

or D, or joins the cycle, can be reached. �

Figure 6: Global dynamics

Regime H3 – There are four steady states: P and D are still saddle-path stable, Q

is still stable, but the local stability of point M depends on its location relative to d̂k, as

in Regime H2. The following proposition summarizes the global dynamics.

Proposition 2. In regime H3, the dynamics exhibit indeterminacy as follows:

i. Trajectories originating in the neighborhood of M can converge either to points D,
P , or Q. Points D and P can be reached by only one trajectory, while there is an
infinite set of trajectories converging to Q.

21



ii. Additionally, if dM
k < d̂k, the economy can join M or a periodic orbit around M .

Proof. The proof of (i) directly results from Theorem 1. If dM
k > d̂k, point M is unstable,

and the economy can converge towards saddle-points D or P , or the (locally indeter-

minate) steady state Q. If dM
k < d̂k, a Hopf bifurcation arises at θ = θh, as stated in

Corollary 1. As previously, this bifurcation can be subcritical or supercritical, depending

on parameters. Thus, point M can be stable, associated to an instable periodic orbit, or

unstable with a stable limit cycle around M ; hence (ii). �

Regime H is thus characterized by local (in the vicinity of Q and M , and of the pos-

sible limit-cycle that surrounds the low-growth trap M), and global indeterminacy. The

short-run and long-run behavior of the economy is then subject to “animal spirits”, in

the form of self-fulfilling prophecies that generate multiple balanced growth paths in the

future. Such indeterminacy is intuitive. Suppose, for example, that at the initial time

households expect low public debt in the steady-state. This implies that the expected

tax rate is low, and the expected net return of capital is high. Then, at the initial time

households increase their savings, such that the initial consumption ratio (ck0) is low

and the initial hours worked will be high. In equilibrium, labor supply will also be high,

generating large fiscal resources and low public debt in the future (along P and Q BGPs).

Conversely, following the same mechanism, high expected public debt is self-fulfilling, and

may lead to the growth solutions M or D. In other words, by their consumption-leisure

tradeoff at the initial time, forward-looking households can, in equilibrium, validate any

expectation on the BGP that can be reached in the future.

Figure 7 synthesizes our results in the (θ, g) plane. The two saddle-node bifurcations

are depicted by the curves SN1(θ) and SN2(θ) that represent the limit-points between

regimes H1 and H3, and H3 and H2, respectively. For our benchmark calibration g =

0.225, and these limit-points are labelled LP1 and LP2, respectively. The CUSP point

(labelled CP ) occurs at the intersection of these two bifurcation curves, such that, for

higher values of the deficit target or lower values of the public spending ratio, Regime

H3 vanishes. The dashed curve H(θ) depicts the locus of Hopf bifurcations. For the

benchmark calibration, the Hopf bifurcation point (labelled H) is located in Regime H3,

but it can be located in Regime H2 for lower values of the public spending ratio, as shows

Figure 7.

It must be emphasized that the area consistent with Regime H3 enlarges as the deficit

target is reduced. Therefore, ceteris paribus, a small deficit target is likely to increase the

risk of aggregate fluctuations. Yet, as shows section 7, local and global indeterminacy do

not vanish under a BBR.
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Figure 7: Location of regimes and bifurcation points in the (θ, g) plane

6. Long-run endogenous public debt cycles

According to Corollary 1 and Proposition 2, our model produces a (local) Hopf bi-

furcation in the neighborhood of the low-growth trap M in Regime H3. Moreover, the

occurrence of a (global) Generalized Hopf bifurcation ensures that this local bifurcation

can be supercritical, hence ensuring the presence of stable limit-cycles for nearby param-

eters’ values. In this section we characterize these limit-cycles, and show that they get

larger as the deficit target is reduced. At the limit, when steady states M and P are

close, the limit-cycle that surrounds M merges with the stable and unstable saddle-paths

of P , through a saddle-loop bifurcation generating an homoclinic orbit. The existence of

such a homoclinic orbit follows from the occurrence of a Bogdanov-Takens bifurcation.

In a two (or more) parameter system, such a bifurcation occurs when a Hopf bifurcation,

a saddle-loop bifurcation, and a saddle-node bifurcation coincide in a single point of the

parameter space.

At first, we compute the family of limit-cycles that emerge when the deficit target θ

is reduced in the vicinity of the Hopf bifurcation. As we have seen, in the benchmark

calibration the Hopf bifurcation occurs at θh ' 1.418%, and (as the bifurcation is super-

critical in the benchmark calibration) stable limit-cycles born for slightly lower values.

As the deficit target becomes more stringent, these limit cycles enlarge and generate large

fluctuations in public debt and economic growth (Figure 8).
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Figure 8: Public debt and growth cycles as a function of θ

Figures 9 describes the dynamics in the neighborhood of points M and P , depending

on the deficit target. If θ > θh, the low-growth trap is locally sable (Figure 9a). At θ = θh

the Hopf bifurcation occurs, and stable limit-cycles arise for θ̃ < θ < θh (Figure 9b). The

existence of stable limit cycles for a range of parameters such that θ̃ < θ < θh implies

that a small perturbation to a parameter would not eliminate the cyclical dynamics of

public debt and growth. The limit-cycle enlarge as θ decreases, until it coincides with the

stable and unstable manifolds of the saddle point P , at θ = θ̃ ' 1.3885%. At this point,

there is a saddle-loop bifurcation, which is depicted in Figure 9c. At the bifurcation, the

periodic orbit connects P to himself, producing a homoclinic orbit (i.e. the limit cycle

degenerates into an orbit homoclinic to the saddle). For lower values of θ, as in Figure

9d, periodic orbits no longer exist and the anti-saddle path of P now escapes point P

and moves eventually to points Q or D.

9a: M is stable (θh < θ)
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9b: Stable limit cycle around M (θ̃ < θ < θh)

9c: Saddle-loop bifurcation (θ = θ̃)

9d: Limit-cycles vanish (θ < θ̃)

Figure 9: A typology of global dynamics in the neighborhood of the low-growth trap
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To prove the existence of the homoclinic orbit, we shall refer to the Bogdanov-Takens

(BT) bifurcation. This co-dimension two bifurcation occurs in a dynamic two-parameter

system when a critical point has a zero eigenvalue of multiplicity two. The following

proposition shows that a generic BT bifurcation arises in our model, when steady states

M and P collide at a point such that dM
k = dP

k < d̂k.

Proposition 3. Define the BT singularity as a steady state with two zero eigenvalues
but a nonzero Jacobian matrix. There is a critical pair of fiscal instruments (gbt, θbt) that
satisfies this singularity.

Proof. We prove Proposition 3 for small economic growth (γ → 0), as it is the case in

the neighborhood of the low-growth trap M (see Appendix B). There is a pair (gbt, θbt),

such that (det(JM ), Tr(JM)) = (0, 0), where

gbt =
α + μ − A

(
ρ

(1−α)A

)(1+ψ)/ψ

1 − A
(

ρ
(1−α)A

)(1+ψ)/ψ
,

θbt =
(1 + αψ − gbt(1 + ψ))(α + μ − gbt)

ψ(gbt − α)
.

�

The Bogdanov-Takens bifurcation is obtained at point BT in Table 2, at (gbt, θbt) '
(0.23, 0.007). At this point, as Figure 7 shows, the saddle-node curve SN1(θ) is tangent

with the Hopf-curve H(θ). The mechanism driving the homoclinic orbits is as follows.

The point where P and M collide defines the saddle-node bifurcation SN1, while (if

ĉk < c̄k and dM
k < d̂k) M undergoes a Hopf bifurcation generating a periodic orbit in

Regime H3, as we have seen. The BT bifurcation is then obtained as the collision of the

saddle-node and the Hopf bifurcations. As (g, θ) gets closer to (gbt, θbt), the non-saddle

point M converges towards P , so that the periodic orbit collides with the manifolds of

the saddle equilibrium and degenerates into a homoclinic orbit.

The presence of a BT bifurcation has important implications. Indeed, for parame-

ter values close to (gbt, θbt), the economy can experiment large fluctuations in economic

growth and public debt, or slowly converge towards the steady state P along the ho-

moclinic orbit (a cycle with virtually infinite period). For nearby parameter values, the

economy escapes point P and converges towards the stable steady state Q.

Figure 10 exemplifies a spectacular aspect of the perils of fiscal rules: a very small

change in the target may produce radical shifts in long-run dynamics. If, e.g., θ passes

from 1.3888% to 1.3889%, the paths of economic growth and public debt are similar

until t = 3000, but their dynamics suddenly change after this time. In the first case,

the economy gradually converges towards Q, while in the second case it is character-

ized by periodic recessions with sharp increases in public debt, or by a homoclinic loop
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that reaches the saddle steady state P (this saddle-loop bifurcation defines the border-

line between the trajectories that converge to Q and those that join P ). Beyond this

extreme sensitivity to changes in parameters, the asymmetric cyclical dynamics that our

model produces—with long periods of nearby-stationary growth and sudden short-living

recessions—are consistent with observed stylized facts.

Figure 10: Path-dependance to small changes in the deficit target

The fact that a public deficit target gives birth to large fluctuations and possible

local and global indeterminacy might plead in favor of the adoption of balanced-budget

rules. However, in our model, the tighter the deficit target, the larger oscillations of

public debt and economic growth, and the higher the area of indeterminacy, as we have

seen. Furthermore, as shown in the following section, the BBR is also likely to produce

indeterminacy and large fluctuations.

7. The BBR special case

In this section, we study the case θ = 0, ∀t, which characterizes the balanced-budget

rule (BBR) associated with no deficit (but possibly positive inherited public debt, i.e.
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dk0 ≥ 0). In this case, Eq. (18) leads to

γ(c∗k, d
∗
k)d

∗
k = 0,

where economic growth is γ∗ := (1− g)yk(c
∗
k, d

∗
k)− c∗k. Disregarding negative public debt,

this condition implies that either γ = 0 and dk > 0, or γ > 0 and dk = 0.

Compared with the previous section, the ḋk = 0 locus now becomes a degenerate

hump-shaped curve which peaks at (0, c̄k), as depicted by the dashed lines in Figure 3.

The first part of this curve corresponds to the dk = 0 locus associated to non-zero growth;

and the second part corresponds to γ(ck, dk) = 0, describing a decreasing relation between

dk and ck. This means that the maximum of ḋk = 0 is now located at d̂k = 0.

Regime L is qualitatively unchanged, except that point M now qualifies a zero-growth

trap (see Appendix C for the analytical proof). In Regime H, under the BBR the

parameter sets that give rise to the saddle-node bifurcations can be found analytically,

as establishes the following theorem.

Theorem 3. If θ = 0 and g > α, there are two saddle-node bifurcations at ρ1 and ρ2

(with 0 < ρ1 < ρ2), where

ρ1 := (1 + ψ)

[
d̄[(g − α)A]1/ψ

ψ

]ψ/(1+ψ)

,

ρ2 := (g − α)A

(
d̄

c̄k

)ψ

+ c̄k.

Proof. See Appendix C.

The critical values ρ1 and ρ2 correspond respectively to points (0, c̄k) (bifurcation

point SN1) and to (0, ĉk) (bifurcation point SN2) in Figure 11, such that regime H can

be subdivided between three cases. If ρ > ρ2 (Regime H1), there is one positive growth

solution (corresponding to point Q in the previous sections), and one negative-growth

solution. If ρ < ρ1 (Regime H2), there is one no-growth solution (corresponding to point

M in the previous sections). If ρ1 < ρ < ρ2 (Regime H3), there are two positive-growth

solutions (points P and Q) and the no-growth solution (point M) if c̄k > ĉk (Figure 11a).

If c̄k < ĉk, the two positive-growth solutions turn into negative-growth solutions (Figure

11b). Hence, with a BBR, Regime H3 can appear in the case c̄k < ĉk, in contrast with

the preceding sections, but points P and Q are now associated to negative-growth BGPs.

Even if these solutions are not economically attractive, they play an important role in

the dynamics around point M , as we will see. In all configurations, there is also the

degenerate solution (D). According to our calibration exercise, ρ1 and ρ2 take reasonable

values, namely ρ1 = 0.0213 and ρ2 = 0.0378.
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-a- c̄k > ĉk -b- c̄k < ĉk

Figure 11: Topological behaviour of Regime H (θ = 0)

The following proposition states the topological properties of the different equilibria.

Proposition 4.

i. If cM
k > ĉk, P is locally determinate (saddle-path stable), Q is locally indeterminate,

and the no-growth trap M is unstable.

ii. If cM
k < ĉk, the no-growth trap M can become stable, with the presence of a Hopf

bifurcation, and, since economic growth is negative, Q is determinate and P becomes
indeterminate.

Proof: See Appendix D.

Under the BBR, our model is similar to SGU, but in an endogenous growth context. 21

In a neoclassical exogenous growth model, SGU show that aggregate instability (defined

as the local indeterminacy of the unique perfect-foresight steady-state) occurs when taxes

are levied on labor income, irrespective of the level of public spending. In our endogenous

growth setup, their analysis needs to be amended on two grounds. First, in the case with

low public spending (g < α, Regime L), the perfect-foresight BGP is unique and well-

determined, such that there is no aggregate instability, as in section 3. Second, in the

case with high public spending (g > α, Regime H), there are multiple steady states, of

which one is locally indeterminate. Hence, in this regime, our aggregate-instability result

covers a broader class of mechanisms than in SGU, because it relies both on local and

global indeterminacy. Furthermore, cyclical dynamics can appear around the no-growth

trap, in the vicinity of the Hopf bifurcation.

21Contrary to SGU who consider a BBR with no debt (Dt = 0, ∀t), our BBR can be associated to a
(strictly) positive public debt level. Indeed, for an economy starting with an initial public debt D0 > 0,
the BBR implies that public debt is constant over time: Ḋt = 0 ⇔ Dt = D0, ∀t. This is an important
point, because we exhibit complex dynamics of the public debt ratio (dkt = D0/Kt > 0) even if the
public debt level is constant.
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Under the BBR, the Hopf-bifurcation parameter can no longer be the deficit target

(as θ = 0), and another bifurcation parameter must be found. The following proposition

establishes the existence of a Hopf bifurcation as a function of the public spending ratio.

Proposition 5. In the BBR case, a Hopf bifurcation occurs if cM
k < ĉk at the unique

value gh, such that

gh =
A0(1 − (1 − α)ψ) + ψ(α + μ)

A0 + ψ
,

where A0 := A(ρ/(1 − α)A)(1+ψ)/ψ.

Proof: The proof directly results from corollary 1. By Eq. (30), if θ = 0 the Hopf

bifurcation is such that

(1 − gh)dM
k =

CCM

ydM
. (31)

As ydM < 0, Eq. (31) can be verified only if CCM < 0, namely if cM
k < ĉk. Indeed, in the

BBR case, the Hopf bifurcation cannot arise if cM
k > ĉk, because d̂k = 0 ⇒ DDM > 0,

∀dk ≥ 0. Since DDM > 0, a necessary condition for Tr(JM) to change sign is CCM < 0.

From Appendix B, we have

CCM =
ρ(1 + ψ)

1 − α
(gm − g), where gm :=

1 + αψ

1 + ψ
> α,

hence the public spending ratio must be higher than gm.22 By inspection of (23) and

(27) follows Proposition 3. �

The case cM
k < ĉk occurs when human capital externalities are high enough (in our

calibration exercise below, we consider β = 0.885 with otherwise the baseline calibration).

The public spending ratio that corresponds to the Hopf bifurcation is gh = 0.2345 (the

associated Lyapunov coefficient is equal to 587, defining a sub-critical Hopf bifurcation).

For all reasonable configurations of parameters, no Generalized Hopf bifurcation has been

found, excluding the existence of stable limit-cycles under the BBR. Therefore, there is

a periodic orbit around the no-growth trap M that can be reached by a jump in the

consumption ratio. As the cycle is unstable, inside the orbit all trajectories converge

to the low-growth trap M , while outside the orbit the economy eventually goes to the

catastrophic equilibrium D (if we exclude the negative-growth steady state Q). This

generates both local (in the vicinity of M) and global indeterminacy: since the initial

consumption ratio is a free jumpable variable, starting with a predetermined public debt

ratio dk0 < d̄/(1 − α), the economy can converge towards the no-growth trap M , the

catastrophic equilibrium D, or a periodic orbit around M , depending on households’

views on the future.

22To ensure that gh ≥ gm, we assume that α(1 + ψA0) ≤ μ(1 + ψ).
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12a: The family of periodic orbits as g increases

12b: Behavior of the debt ratio and economic growth for g = 0.2348

Figure 12: Dynamics under the BBR

The magnitude of the periodic orbit that encloses point M enlarges as g increases. The

economy then fluctuates between the harrodian BGP (D) and the negative-growth steady

state Q, as in Figure 12a. The largest orbit (obtained for ḡ ' 0.2349) is the heteroclinic

connection between D and Q (Q is saddle-point stable with negative growth), defining

the envelope of an elliptic sector, which contains an infinite number of stable orbits that

converge to point M . Inside the periodic orbit, self-fulfilling prophecies can generate a

great variety of transitory endogenous cycles along which the economy experiments large

fluctuations before being trapped in secular stagnation. For a high public spending ratio,

i.e. close to ḡ, the periodic orbit passes “near” points D and Q, such that the economy

is subject to sudden “heart attacks” of public debt (see Figure 12b), as emphasized by

Rogoff (2015).

Compared with the the main analysis with a positive deficit rule, under the BBR

the economy is equally subject to large oscillations in public debt and economic growth.

However, two major differences emerge. First, the closed orbit that turns around point M

is unstable and contains all stable trajectories that converge towards M . Consequently,

the cycle can be reached only by an adequate jump in the initial consumption ratio,

following households’ expectations. Do households expect that the steady state is M

(or D), the economy leaves the cyclical orbit to jump on a path that joins this point.
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This “knife-edge” property of expectations was avoided in the preceding section, because

the limit-cycle was stable.23 Second, in the vicinity of the heteroclinic orbit, stationary

growth is negative at point Q, while it was positive previously at point P in the vicinity of

the saddle-loop bifurcation. Then, beyond large public debt fluctuations, the dynamics of

economic growth radically differ. With a positive deficit target, the economy experiences

long periods of positive growth, interrupted by brief slowdown episodes (see Figure 10).

In contrast, the BBR leads the economy into a secular recession, interspersed with periods

of exuberant growth as in Figure 12b.

8. Concluding remarks

In this paper we developed an original framework for assessing the role of fiscal rules

for aggregate fluctuations. Our model illustrates the perils of fiscal rules. First, fiscal

rules are destabilizing because multiple equilibria and complex dynamics can emerge even

when the deficit target is low (including the balanced-budget rule). Second, the economy

can experiment (possibly large) public debt and growth fluctuations both in the short

and the long run without the need of exogenous shocks. Indeed, the interaction between

households’ optimal saving behaviour and the government’s budget constraint gives birth

to Hopf and Bogdanov-Takens bifurcations that ensure the stability of public debt cycles.

The calibration of the model—consistent with OECD or US data—reveals the realism of

our findings: the various bifurcations occur for reasonable values of parameters, and the

cycles that our model are consistent with observed stylized facts.

Finally, our model opens the door for a limit-cycles-based theory of public debt fluc-

tuations. From a methodological perspective, a fruitful extension would be to examine a

stochastic version of our model, as in Beaudry et al. (2016). From a policy perspective,

another extension could analyze the consequences of fiscal policy in terms of aggregate

fluctuations. On the one hand, some of the conclusions of the existing literature may have

to be revisited in the presence of deficit and debt. Reassessing the role of progressive

taxes, endogenous public spending, or alternative specifications of preferences as drivers

of indeterminacy are some handful examples. On the other hand, the complex effects

triggered by our simple deficit rule make the case for exploring alternative fiscal rules,

all the more given their increased popularity since the recent crisis (Combes et al., 2017;

Menuet et al., 2018). These possible directions are left for future research.

23Therefore, if θ > 0 cycles are not associated to a particular expectation, but are consistent with
an infinity of expectations. There is no knife-edge, and the cycles emerge even if consumption was a
backward variable. Importantly, the jump of consumption depends on the the tax rate, therefore on
wages: if the adjustment of wages cannot take place—for example, if there is a resistance to increases in
wage taxes—then consumption is no longer a jump variable (or the adjustment will be sluggish).
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Appendix A. Proof of Theorem 2

We study the local stability of steady-states by inspecting the slope of ċk = 0 (denoted

by si
c) and ḋk = 0 (denoted by si

d) in the neighbourhood of each BGP i.

First, using the Implicit Function Theorem, we compute si
c = −CDi/CC i and si

d =

−DDi/DC i.

Second, the trace and the determinant of the jacobian matrix are Tr(Ji) = CC i+DDi

and det(Ji) = CC iDDi − CDiDC i = CC iDC i(si
c − si

d).

Third, from Eq. (23)-(26), as θ is small enough, we have (i) DC i > 0; (ii) CC i > 0 in

regime L; (iii) CDi > 0 in regime L and CDi < 0 in regime H.

Hence, we deduce the following results.

• In regime L, we have sM
d < 0, with |sM

d | > |sM
c |, as shown in Figure 3a. Thus,

it follows that DDM > 0, i.e. det(JM ) > 0, and Tr(JM) > 0, hence point M is

unstable. Regarding point P , there are two possible cases:

(a) DDP < 0 (as illustrated in Figure 3a). In this case, det(JP ) < 0, i.e. P is a

saddle point.

(b) DDP > 0. In this case, we have sP
d < 0, with |sP

d | < |sP
c |, thus: det(JP ) < 0,

and P is still saddle.

• In regime H, we can divide the (ck, dk)-plan in four distinct areas, as depicted in

Figure A1:

- north-east (NE): si
c > 0, and si

d < 0 ⇒ det(Ji) > 0, and Tr(Ji) > 0.

- south-east (SE): si
c < 0, si

d < 0, and |si
d| > |si

c| ⇒ CC i < 0, and det(Ji) < 0.

- south-west (SW ): si
c < 0 and si

d > 0 ⇒ det(Ji) > 0 and Tr(Ji) < 0.

- north-west (NW ): si
c > 0, si

d > 0, and there are two configurations: (i) if |si
d| > |si

c|
⇒ CC i > 0, and det(Ji) < 0; (ii) if |si

d| < |si
c| ⇒ det(Ji) > 0 and Tr(Ji) can be

positive or negative.

As D ∈ SE, D is saddle-path stable. If P and Q exist, as P ∈ NW with |sP
d | > |sP

c |
and Q ∈ SW , it follows that P is saddle-path stable and Q is locally indeterminate

(stable). Regarding point M , two situations can arise: if M ∈ NE, M is unstable,

while if M ∈ NW with |sM
d | < |sM

c |, a Hopf bifurcation can occur when CCM +

DDM = 0. Corollary 1 comes directly from Eqs. (23) and (25).
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Figure A1: Local stability (ĉk < c̄k)

Appendix B. Bogdanov-Takens bifurcation and homoclinic orbits

We prove the occurrence of a Bogdanov-Takens (BT) bifurcation and homoclinic or-

bits in the neighborhood of equilibrium M (formally, γ → 0) using a two-step proof. In

the first step, we will show that there is a critical pair of fiscal instruments that character-

izes the BT singularity. In the second step, we demonstrate the existence of a homoclinic

orbit around point M , using the argument that points P and M collide at the BT bifur-

cation.

Step 1: Preliminary.

First of all, we compute the coordinates of point M when γM → 0. By Eq. (12),

when γM → 0, it follows that yM
k = ρ/(1 − α). From Theorem 1, we deduce that cM

k =

(1 − g)ρ/(1 − α), and dM
k = 1

(1−α)

{

d̄ − cM
k

(
ρ

(1−α)A

)1/ψ
}

. From Eq. (27), we compute:

ycM = −ψ/(1 − g), ydM = − (1−α)ψ

(1−g)(ρ/(1−α)A)1/ψ .

Second, when γM → 0, we obtain, using Eqs. (28) and (29)

Tr(JM ) = θydM + cM
k [1 + (g − α)ycM ] − (1 − g)ydMdM

k , (B.1)

det(JM ) = −cM
k ydM [(1 − α)dM

k − θ]. (B.2)

We need to find the values of parameters g and θ, such that Tr(JM) = det(JM) = 0.

On the one hand, using (B.2), it follows that det(JM) = 0 ⇔ d̄−(1−g)A
(

ρ
(1−α)A

)1+1/ψ

=

θ. As d̄ = α + μ + θ − g, we conclude that det(JM ) = 0 ⇔ g = gbt, where

gbt :=
α + μ − A

(
ρ

(1−α)A

)1+1/ψ

1 − A
(

ρ
(1−α)A

)1+1/ψ
.
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On the other hand, at g = gbt, we have, using (B.1), Tr(JM ) = 0 ⇔ θ = θbt, where

θbt :=
(1 + αψ − gbt(1 + ψ))(α + μ − gbt)

ψ(gbt − α)
.

As ρ is small enough, we ensure that gbt > 0 and θbt > 0 under the mild condition

1 − α > μ(1 + ψ) (in our baseline calibration, we find gbt ≈ 0.23 and θbt ≈ 0.007). Con-

sequently, at (g, θ) = (gbt, θbt), it follows that Tr(JM ) = (JM ) = 0; hence, the Jacobian

matrix JM has a double zero eigenvalue.

Step 2: Homoclinic orbit.

We prove the occurrence of the BT bifurcation by applying a theorem that allows us to

transform our system into a simpler, topologically equivalent planar system of differen-

tial equations with well-known bifurcation diagram. We conclude using a Lemma that

ensures the occurrence of homoclinic orbits.

Theorem (Kuznetsov, 1998, Theorem 8.4, p. 321) Suppose that a planar system

ẋ = f(x, α), x ∈ R2, α ∈ R2,

with smooth f , has at α = 0, the equilibrium x = 0 with a double zero eigenvalue:

λ1,2 = 0.

Assume the following generic conditions are satisfied:

(BT.0) the jacobian matrix A(0) = fx(0, 0) 6= 0;

(BT.1) a20(0) + b11(0) 6= 0;

(BT.2) b20(0) 6= 0;

(BT.3) the map

(x, α) 7→

(

f(x, α), tr

(
∂f(x, α)

∂x

)

, det

(
∂f(x, α)

∂x

))

is regular at point (x, α) = (0, 0).

Then there exist smooth invertible variable transformations smoothly depending on

the parameters, a direction-preserving time reparametrization, and smooth invertible

parameter changes, which together reduce the system to

{
η̇1 = η2,

η̇2 = β1 + β2η1 + η2
1 + sη1η2 + O(||η||3),

where s := sgn[b20(a20(0) + b11(0))] = ±1. �
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Let α := (g−gbt, θ−θbt) and x := (ck−cM
k , dk−dM

k ). Clearly, at α = 0, the equilibrium

x = 0 has a double zero eigenvalue. We need to ensure conditions (BT.0)-(BT.3).

Condition (BT.0). Using Eq. (23), at point M , we have

CCM = cM
k [1 + (g − α)ycM ] =

ρ

1 − α
(1 + ψα − g(1 + ψ)),

hence; CCM |g=gbt = ρ
1−α

(
1 + ψα − gbt(1 + ψ)) 6= 0. Consequently, the jacobian matrix

JM evaluated at (g, θ) = (gbt, θbt) is non-zero.

Conditions (BT.1) and (BT.2). Numerically, we compute the generic BT parameters,

and show that a20(0) + b11(0) 6= 0 and b20(0) 6= 0 for a large constellation of parameters.

Using our baseline calibration, we find a20 = −0.0232 and b11 = 4.88.

Conditions (BT.3). Let φ : (x, α) 7→
(
f(x, α), Tr(JM), det(JM )

)
. Numerically, we

ensure that det(φ(0, 0)) 6= 0 for a large space of parameters.

Finally, according to the above-mentioned theorem, our system is topological equiva-

lent to the following two-differential-equations system in the neighborhood of equilibrium

M {
η̇1 = η2,

η̇2 = β1 + β2η1 + η2
1 ± η1η2,

(B.3)

where β1 and β2 are combinations of parameters. The coefficient on η1η2 is −1, since

the periodic orbit around point M is stable (the first Lyapunov coefficient is negative

in our baseline calibration). Thus, the bifurcation diagram is usually depicted in the

(β1, β2)-plane (Kuznetsov, 1998, section 8.4.2), where the origin corresponds to the BT

bifurcation.

Against this background, the existence of homoclinic orbits directly derives from the

properties of the bifurcation diagram and the following lemma.

Lemma (Kuznetsov, 1998, Lemma 8.7) There is a unique smooth curve P corre-

sponding to a saddle homoclinic bifurcation in system (B.3) that originates at β = 0 and

has the following local representation

P =

{

(β1, β2) : β1 = −
6

25
β2

2 + o(β2
2), β2 < 0

}

.

�
Consequently, in the neighborhood of equilibrium M , this lemma establishes that

there is a combination of parameters such that there exists at least one bifurcation curve

originating at β = 0 (i.e. (g, θ) = (gbt, θbt)), along which system (B.3) has a saddle

homoclinic bifurcation. To sum up, if (ck, dk) is close to (cM
k , dM

k ), and (g, θ) is close to

the BT bifurcation (gbt, θbt) the economy can experiment an homoclinic orbit (along the
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curve P).

Appendix C. Proof of Theorem 3

Using the Keynes-Ramsey relationship (17) with θ = 0, positive growth solutions are

given by the implicit function Φ(ck) = 0, where

Φ(ck) := d̄ − ck

(
ck − ρ

(α − g)A

)1/ψ

. (C.1)

(a) Case g < α. Clearly, Φ ∈ C1((ρ, +∞)) and Φ is a decreasing function, hence a

decreasing relationship between ck and dk, as depicted in Figure 3a. As Φ(ρ) = d̄ > 0,

and limck→+∞ Φ(ck) = −∞, according to the Intermediate Value Theorem, there is a

unique point čk ∈ (ρ, +∞), such that Φ(čk) = 0. The point P = (0, čk) characterizes a

steady-state if and only if cP
k < ck = [A(1−g)d̄ψ]1/(1+ψ), which is true for a small discount

rate.24

(b) Case g > α. In this case, Φ ∈ C1([0, ρ)), and

Φ′(ck) =

[
ρ − ck

(g − α)A

]−1+1/ψ [
1 + ψ

ψ(g − α)A

]

(ck − ĉk),

where ĉk = ψρ/(1 + ψ) < ρ is the minimum of Φ on [0, ρ), as depicted in Figure 3b.

Consequently, Φ′(ck) < 0 if ck ∈ [0, ĉk) and Φ′(ck) > 0 if ck ∈ (ĉk, ρ). As Φ(0) =

Φ(ρ) = d̄ > 0, according to the Intermediate Value Theorem, there are two roots: cQ
k ∈

(0, ĉk) and cP
k ∈ (ĉk, ρ) if and only if

Φ(ĉk) = d̄ − ĉk

(
ρ − ĉk

(g − α)A

)1/ψ

< 0. (C.2)

As shown by the following lemma, the existence conditions can be expressed according

to the value of ρ.

Lemma 1. Let g > α. There are two critical levels ρ1 and ρ2 (0 < ρ1 < ρ2) such that:

• If ρ < ρ1, Φ(∙) has no root.

• If ρ1 < ρ < ρ2, Φ(∙) has two roots, and cP
k < ck.

• If ρ > ρ2, Φ(∙) has two roots, and cP
k > ck.

Proof. First, from (C.2), we have Φ(ĉk) ≥ 0 ⇔ ρ ≤ ρ1 := (1 + ψ)
[

d̄[(g−α)A]1/ψ

ψ

]ψ/(1+ψ)

. As

Figure 11 depicts, the value ρ1 is such that the two positive growth solutions (P and Q)

24Indeed, if ρ → 0, using Eq. (C.1) we have cP
k ≈ [A(α − g)d̄ψ]1/(1+ψ) < [A(1 − g)d̄ψ]1/(1+ψ) = ck.
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coincide (cP
k = cQ

k = ĉk). For ρ > ρ1, there are two roots (regime H3), while for ρ < ρ1,

there is no root (regimes H1 or H2).

Second, from (C.1), we compute Φ(c̄k) ≥ 0 ⇔ ρ ≤ ρ2 := (g − α)A
(

d̄
c̄k

)ψ

+ c̄k; hence

if ρ ≤ ρ2 ⇔ c̄k ≤ cQ
k < ĉk or c̄k ≥ cP

k > ĉk. There are two cases.

(i) c̄k > ĉk: in this case, we have ρ ≤ ρ2 ⇔ cP
k ≤ c̄k. As Figure 11a shows, ρ2 is

such that the higher positive growth solution (P ) and the no growth solution coincide

(cP
k = cM

k = ck).

(ii) c̄k < ĉk: in this case, we have ρ ≤ ρ2 ⇔ cQ
k ≥ c̄k. As Figure 11b shows, ρ2 is

such that the lower positive growth solution (Q) and the no growth solution coincide

(cQ
k = cM

k = ck).

Finally, we ensure that ρ1 < ρ2 for a large constellation of parameters. Using our

baseline calibration (Table 2), we find ρ1 = 0.0213 and ρ2 = 0.0378. �

Consequently, we sum up the two different cases.

(i) c̄k > ĉk. If ρ > ρ2 > ρ1, solutions P and Q are present, but there is only one

positive-growth steady-state: Q (regime H1). If ρ1 < ρ < ρ2, P and Q characterize

positive-growth solutions (regime H3). Finally, if ρ < ρ1, P and Q do not exist, and

there is no positive-growth solution (regime H2). In this way, there is a bifurcation at

ρ = ρ1 and ρ = ρ2, as depicted in Figure 11a. Indeed, at ρ = ρ2, the system changes from

regime H3 to regime H1, and at ρ = ρ1, the system changes from H2 to H3.

(ii) c̄k < ĉk. If ρ > ρ2 > ρ1, solutions P and Q are present, but Q is the only positive-

growth solution – P is a negative-growth solution – (regime H1). If ρ1 < ρ < ρ2, P and

Q both characterize negative-growth solutions (regime H3). Finally, if ρ < ρ1, P and Q

do not exist, and there is no non-zero-growth solution (regime H2). In this way, there

is a bifurcation at ρ = ρ1 and ρ = ρ2, as depicted in Figure 11b: at ρ = ρ2, the system

changes from regime H3 to regime H1, and at ρ = ρ1, the system changes from H2 to H3.

Appendix D. Local stability (θ = 0)

(i) Regime L.

At steady-state P , we have dP
k = 0, thus, using Eqs. (28)-(29): Tr(JP ) = cP

k [1 + (g −
α)ycP ]− γP , and det(JP ) = −cP

k γP [1 + (g−α)ycP ]. As g < α and ycP < 0, det(JP ) < 0,

namely there are two opposite-sign eigenvalues. Consequently, P is saddle-point stable.

At steady-state M , cM
k > 0, dM

k > 0 and γM = (1 − α)yM
k − ρ = 0, namely

Tr(JM ) = cM
k [1 + (g − α)ycM ] − (1 − g)ydMdM

k , and det(JM ) = −(1 − α)cM
k dM

k ydM > 0.

As ycM < 0 and ydM < 0, we have det(JM ) > 0, and Tr(JM ) > 0, and there are two

positive eigenvalues. Consequently, M is locally unstable.

(ii) Regime H.
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First, let us consider the two solutions with positive economic growth. At steady-

states P and Q, we have di
k = 0, thus: Tr(Ji) = ci

k[1 + (g − α)yci] − γi, and det(JP ) =

−ci
kγ

i[1 + (g − α)yci] for i = P,Q. Since DC i = 0, there is one negative eigenvalue

(λi
1 = −γi) and one eigenvalue that changes sign, depending on the considered equilibrium

(λi
2 = ci

k[1 + (g − α)yci]). With yci = −ψyi
k/c

i
k and ci

k = ρ − (g − α)yi
k at steady states

i = P,Q, we obtain λi
2 := λ2(c

i
k) = ci

k+ψ(ci
k−ρ). Thus λi

2(ĉk) = 0, where ĉk := ψρ/(1+ψ).

Since cQ
k < ĉk and cP

k > ĉk, it follows that λQ
2 < 0 and λP

2 > 0. Consequently, P is

characterized by two opposite-sign eigenvalues and is locally determined (saddle-point

stable), while Q is characterized by two negative eigenvalues and is locally undetermined

(stable). Regarding point M , as γM = 0, we have: det(JM ) = −(1 − α)cM
k dM

k ydM > 0,

and Tr(JM) = cM
k [1+ (g−α)ycM ]− (1− g)ydMdM

k = −(1− g)ydMdk +(cM
k − ĉk)/(1+ψ).

As cM
k > ĉk, and ydM < 0, it follows that Tr(JM) > 0, hence M is unstable. This analysis

generalizes the simple case of section 3.

Second, let us consider the two solution with negative economic growth. As λi
1 =

−γi > 0, λQ
2 < 0, and λP

2 > 0, we deduce that P is indeterminable (stable) and Q is

saddle-point stable. Regarding point M , we still have det(JM ) > 0. As cM
k < ĉk, the

trace Tr(JM ) can now change sign, depending on parameters, as proposition 5 states.
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