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Abstract

In a previous paper [1], it has been shown that the mean-field limit of spa-

tially extended Hawkes processes is characterized as the unique solution u(t, x)

of a neural field equation (NFE). The value u(t, x) represents the membrane

potential at time t of a typical neuron located in position x, embedded in an

infinite network of neurons. In the present paper, we complement this result by

studying the fluctuations of such a stochastic system around its mean field limit

u(t, x). Our first main result is a central limit theorem stating that the spatial

distribution associated to these fluctuations converges to the unique solution of

some stochastic differential equation driven by a Gaussian noise. In our second

main result we show that the solutions of this stochastic differential equation

can be well approximated by a stochastic version of the neural field equation

satisfied by u(t, x). To the best of our knowledge, this result appears to be new

in the literature.

Keywords: Hawkes Processes, Central Limit Theorem, Neural Field

Equations, network of neurons
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1. Introduction

We consider multivariate point processes (N1, . . . , Nn) on [0,∞) represent-

ing the time occurrences of action potentials (often called spikes) of a network
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of n neurons. We assume that the intensity process of N i is of the formλ
i
t = f

(
U it−

)
,

U it = e−αtu0(xi) + 1
n

∑n
j=1 w(xj , xi)

∫ t
0
e−α(t−s)dN j

s .

(1)

In the above formula, U it describes the membrane potential of neuron i at time

t ≥ 0 and xi = i/n represents the position of neuron i in the network. The

function f : R → R+ is the firing rate of each neuron. The function w :

[0, 1] × [0, 1] → R is the matrix of synaptic strengths. It introduces a spatial5

structure in the model; the value w(xj , xi) models the influence of a spike of

neuron j on neuron i, as a function of their positions. On the one hand, when

the sign of w(xj , xi) is positive, neuron j excites neuron i. On the other hand,

if the sign of w(xj , xi) is negative, neuron j inhibits neuron i. The leakage rate

is modelled by the parameter α ≥ 0. The function u0 : [0, 1]→ R describes the10

membrane potential of all neurons in the network at time t = 0. We refer to

f, w, u0 and α as parameters of the multivariate point process (N1, . . . , Nn).

Such point processes are known as nonlinear Hawkes Processes, named after

the pioneer work of A. G. Hawkes [2] where the model has been introduced in the

linear case (i.e., for f linear). Their defining characteristic is that past events15

(spikes in our framework) can affect the probability of future events to occur.

The literature of neuronal modelling via Hawkes processes is vast. To cite just a

few articles, see for instance [3, 4, 5, 6, 7, 8, 9, 10, 11] and the references therein.

Recently, in [1], the authors have established a connection between solu-

tions of (scalar) neural field equations(NFE) and mean field limits of nonlinear

Hawkes processes. Specifically, it has been proved that the multivariate process

(U1
t , . . . , U

n
t )t defined in (1) converges as n → ∞, under some assumptions on

the parameters of the model, to a deterministic function u(t, x) which solves the

neural field equation:
∂

∂t
u(t, x) = −αu(t, x) +

∫ 1

0
w(y, x)f(u(t, y))dy, t > 0 and x ∈ [0, 1],

u(0, x) = u0(x).

(2)

Here, u(t, x) represents the membrane potential at time t of a typical neuron

2



located in position x, embedded in an infinite network of neurons. Neural field20

equations have been widely studied in the literature since the pioneer works

of Wilson, Conwan [12, 13] and Amari [14] in the 1970s. Such models have

attracted a great interest from the scientific community, due to its wide range

of applications and mathematical tractability; see [15] for a recent and compre-

hensive review.25

The goal of the present paper is to complement the results in [1] by describ-

ing the fluctuations of the process (U1
t , . . . , U

n
t )t around its mean field limit

u(t, x). More precisely, by writing ηit = n1/2(U it − u(t, xi)) to denote the in-

dividual fluctuations, the purpose of this paper is to study the convergence of

the sequence of stochastic processes (Γnt )t as n → ∞, where Γnt is the random

signed measure on S ′ (representing the spatial fluctuations) defined as

Γnt (dx) =
1

n

n∑
i=1

ηitδxi(dx). (3)

Here, the set S ′ denotes the dual space of the Fréchet space S = C∞([0, 1]),

the space of all real-valued functions on [0, 1] with continuous derivatives of all

orders. Fix T ≥ 0, denote Γn = (Γnt )0≤t≤T and observe that Γn ∈ D([0, T ],S ′),

the space of càdlàg functions from [0, T ] to S ′. Our first main result, namely

Theorem 1, is a Central Limit Theorem saying that under some assumptions

on the parameters of the model, the sequence of processes (Γn)n≥1 converges in

law to a limit process Γ = (Γt)0≤t≤T as n → ∞. Moreover, the limit process

Γ belongs to C([0, T ],S ′), the set of continuous functions from [0, T ] to S ′, and

for each t ≥ 0, the measure Γt ∈ S ′ is characterized by the following identity:

for all ϕ ∈ S,

Γt(ϕ) = e−αtMt(ϕ) +

∫ t

0

e−α(t−s)Γs

(∫ 1

0

ϕ(x)w(·, x)f ′(u(s, ·))dx
)
ds, (4)

where M = (Mt)t≥0 is a continuous centered Gaussian process taking values in

S ′ with covariance function given, for all t1, t2 ≥ 0 and ϕ1, ϕ2 ∈ S, byE(Mt1(ϕ1)Mt2(ϕ2)) =
∫ t1∧t2

0

∫ 1

0
e2αsI[ϕ1](y)I[ϕ2](y)f(u(s, y))dyds,

I[ϕ](y) =
∫ 1

0
ϕ(x)w(y, x)dx, y ∈ [0, 1],

(5)
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and u(t, x) is the solution of (2). The interested reader is referred to [16, Φ′-

Wiener processes] for details on such Gaussian processes.

Let us give some intuition about Equation (4). The first term in the RHS

of (4), namely e−αtMt(ϕ), comes from the error one makes when replacing

the point measure dN i
t by the intensity measure f(U it )dt. It is the diffusion30

approximation for point processes: formally taking ϕ1 = ϕ2 = δx the Dirac

mass at position x, one obtains in Equation (5) the product w(y, x)2f(u(s, y))

which is the limit variance of the jumps induced by spiking neurons in position y

onto neurons in position x, at time s. The second term in the RHS of (4) comes

from the error one makes when replacing the intensity f(U it ) by the limit one35

f(u(t, xi)): the linearization of f gives the product of the derivative f ′ times

the difference between U it and u(t, xi) (which is encapsulated in ηit and so in the

spatial fluctuation Γnt ).

The study of the fluctuations is a natural follow-up to the study of the

mean-field limits for interacting particle systems (see for instance [17, 18, 19,40

20, 21, 22, 23, 24, 25]). These results are not only interesting per se, they are also

relevant from an applied point of view. Indeed, in the mean-field limit, typically

one can show that the so-called propagation of chaos property holds, meaning

that evolution of any finite number of particles (the neurons in our framework)

become independent (see for instance [26, 27]). In other terms, mean field limits45

neglect the correlations between particles which are present in finite (but large)

systems. In contrast, the correlations do appear in the fluctuations, in particular

in the covariance kernel (5).

With slight abuse of terminology, the mean field limit ut = u(t, ·), which can

be seen as an element of S ′ given by ut(ϕ) =
∫ 1

0
ϕ(x)u(t, x)dx, can be thought

of as a zeroth-order approximation of the finite size system (U1
t , . . . , U

n
t )t. In

that respect, we say that the following process with values in S ′,

(ut + n−1/2Γt)t, (6)

is a first-order approximation of the finite size system, this last definition being

justified by our Central Limit Theorem. In addition to the Central Limit The-
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orem, we also investigate here the link between the first-order approximation

and the solution of the following stochastic neural field equationdV
n
t (x) =

(
−αV nt (x) +

∫ 1

0
w(y, x)f(V nt (y))dy

)
dt+

∫ 1

0
w(y, x)

√
f(V nt (y))
√
n

W (dt, dy),

V n0 (x) = u0(x),

(7)

where W is a Gaussian white noise on R+ × [0, 1]. Loosely speaking, in our

second main result, namely Theorem 6, we show that the process (ut+n
−1/2Γt)t50

is an “almost” solution of (7). To the best of our knowledge, this result appears

to be new in the literature and is of independent interest. To some extent, the

solutions of (7) can be interpreted as an intermediate modelling scale, sometimes

called mesoscopic scale, between the microscopic scale given by Hawkes process

(1) and the macroscopic scale one given by neural field equation (2). In order55

to give sense to solutions of (7) we follow the approach developed by Walsh

(see for instance [28], [29] and the seminal lecture notes [30]). Some heuristics

arguments leading to the stochastic neural field equation (7) are provided in

Section 8.1. Let us mention the article [18] which discusses similar results in

a non rigorous way in the context of non linear stochastic partial differential60

equations.

The literature devoted to mean-field limits is usually concerned with the

convergence of an empirical measure towards a probability measure which is

characterized as the solution of some partial differential equation. It is worth

mentioning that it is not the case here: the mean-field equation (2) is not65

satisfied by a probability density of the potential but by the value of the potential

itself. This difference makes the study of (7) simpler: the square root term,

namely
√
f(Vt(y)), is trivially well-defined which is not the case when the mean

field limit concerns an empirical measure (see [18] for instance).

The results of the present paper are stated in the distribution space S ′ so the70

parameters of the model (f , w and u0) are assumed to be smooth. Concerning

the rate function f , we also assume that its first and second derivatives are

bounded (in particular, f is Lipschitz) and that it is lower-bounded by a positive
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constant (only in the last section). No additional assumptions on the model are

needed and, in particular, the function f could be unbounded.75

The present paper is organized as follows. In Section 2, the notation used

throughout the paper is introduced, the model is described and our first main

result, Theorem 1, is stated. In Section 3, some regularity properties of solu-

tions of the neural field equation are derived. Uniform estimates on the second

moment of the individual fluctuations (used all along the paper) are provided80

in Section 4. Section 5 is devoted to the proof of the tightness of the sequence

(Γn)n defined in (3). In Section 6, we show that the limit of any converging

sub-sequence of (Γn)n solves the limit equation (4). In Section 7, the unique-

ness of solutions of the limit equation (4) is proved which concludes the proof

of the Central Limit Theorem (Theorem 1). In Section 8, we first develop the85

mathematical framework required to study the stochastic neural field equation

(7) and then we prove our second main result, Theorem 6, which makes the

link between the first-order approximation (6) and the stochastic neural field

equation (7). Some technical results used in the previous sections are collected

in the Appendix A. We include in Appendix B some basic definitions about90

Fréchet spaces.

2. General notation, model definition and the central limit theorem

2.1. General notation

Let E and F be some metric spaces. The space of continuous (respectively

càdlàg) functions from E to F is denoted by C(E,F ) (resp. D(E,F )). When95

F = R, we write C(E) (resp. D(E)) instead of C(E,R) (resp. D(E,R)). For

each integer n ≥ 1, let [n] = {1, . . . , n}. We write C∞([0, 1]) (resp. C∞(R)) to

denote the set of all functions ϕ : [0, 1]→ R (resp. ϕ : R→ R ) with continuous

derivatives of all orders. Similarly, we write C∞([0, 1]× [0, 1]) to denote the set

of all functions ψ : [0, 1] × [0, 1] → R with continuous partial derivatives of all100

orders. To ease the notation, the partial derivatives with respect to the first

and second variable of a differentiable function ψ : [0, 1]× [0, 1] are respectively
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denoted by ∂1ψ and ∂2ψ. Throughout the paper, the letter C denotes a positive

constant. Most of the time, the dependence of C with respect to the parameters

of the model is specified.105

We equip the space C0([0, 1]) = C([0, 1]) with the sup norm

||f ||0 = sup
x∈[0,1]

|f(x)|.

The space Ck([0, 1]) of functions with continuous derivatives up to order k is

equipped with the norm

||f ||k =

k∑
i=0

||f (i)||0, (8)

where f (0) = f and f (i) denotes the i-th derivative of f for i ∈ [k]. The space

S = C∞([0, 1]) is a Fréchet space [31] with the filtering family of semi-norms

(||f ||k)k≥0. Hence it is equipped with the metric dS defined for all f, g in S by,

dS(f, g) :=
∑
k≥0

2−k
||f − g||k

1 + ||f − g||k
. (9)

For a reader not familiar with these notions, some details about Fréchet spaces

are gathered in Appendix B.

Let N be a point process in [0,∞), defined on a filtered probability space

(Ω,F , (Ft)t≥0,P). We say that N is locally finite if for all t ≥ 0, the random

variable Nt = N((0, t]) counting the number of points of N in the interval (0, t]110

is finite almost surely. We say that the (Ft)t≥0-predictable process (λt)t≥0 is

the intensity process of N if the process (Nt −
∫ t

0
λsds)t≥0 is a (Ft)t≥0-local

martingale. For bounded measurable functions g : [0,∞) → R and a locally

finite point process N , we define
∫ t

0
g(s)dNs =

∑
s∈N∩(0,t] g(s) for any t > 0.

For any locally square integrable martingale (Mt)t≥0, the Doob-Meyer de-115

composition gives rise to the angle bracket, usually denoted by (〈M〉t)t≥0,

which is the unique non-decreasing predictable process such that 〈M〉0 = 0

and (M2
t − 〈M〉t)t≥0 is local martingale.

2.2. Model definition and the central limit theorem

Throughout the paper we work on a filtered probability space (Ω,F , (Ft)t≥0,P).120

We assume that this filtered probability space is rich enough so that all the pro-
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cesses we shall consider may be defined on it. We consider a nonlinear Hawkes

process (N1, . . . Nn) in [0,∞) representing the spiking activity of n interacting

neurons. We assume that neuron i ∈ [n] is located at position xi = i/n. The

dynamics of the Hawkes process (N1, . . . , Nn) is described as follows.125

Definition 1. Let f : R → R+, w : [0, 1] × [0, 1] → R and u0 : [0, 1] → R be

measurable functions and α ≥ 0 be a fixed parameter. We say (N1, . . . , Nn) is

a Hawkes process with parameters (f, w, u0, α) if

1. P− almost surely, for all pairs i, j ∈ [n] with i 6= j, the point processes N i

and N j never jump simultaneously.130

2. For each i ∈ [n], the intensity process (λit)t≥0 of N i is given by λit =

f(U it−), where U it is defined by

U it = e−αtu0(xi) +
1

n

n∑
j=1

w(xj , xi)

∫ t

0

e−α(t−s)dN j
s . (10)

We shall work under the following assumption on the parameters (f, w, u0, α)

of the model.

Assumption 1. The function f : R → R+ belongs to C∞(R). Moreover, the

first and second derivatives of f are both bounded, that is ‖f ′‖0 < ∞ and

‖f (2)‖0 <∞. Furthermore, the functions u0 : [0, 1]→ R and w : [0, 1]× [0, 1]→135

R are both smooth, that is, u0 ∈ C∞([0, 1]) and w ∈ C∞([0, 1]× [0, 1]).

Note that under the assumption ‖f ′‖0 < ∞, the function f is Lipschitz

continuous.

Remark 1. Here we briefly discuss some examples of functions f , w and u0

satisfying Assumption 1. They are widely used in the literature (see the reviews140

[15, 32] for instance).

• firing rate f : the sigmoid rate f(u) = f0/(1 + e−(u−κ)) and the gaussian

rate f(u) = f0(1 + erf(u−κ))/2, with erf(x) = (2/
√
π)
∫ x

0
e−t

2/2dt, where

κ ∈ R can be thought as a threshold and f0 > 0 a maximal firing capacity

of the neurons;145
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• synaptic strength w: the standard form is w(x, y) = w(|x−y|). In that

framework, the gaussian w(x) = e−x
2

, the exponential w(x) = e−x and the

mexican hat function are widely used. The latter writes as the difference

of two gaussians or two exponentials: for instance w(x) = e−x
2 −Ae−x2/σ

with A < 1 and σ > 1 describes short range excitation and long range150

inhibition;

• initial condition u0: a constant function or a smooth interpolation be-

tween u0 = 0 and u0 = a > 0.

Remark 2. Throughout the paper we work with smooth functions. We do

this partly in order to avoid some technicalities which make our proofs less155

transparent. Following the approach adopted in [18, 24, 23] it is possible to state

the central limit theorem in some Hilbert space and weaken the assumptions to

consider functions that are only twice differentiable with bounded derivatives.

Remark 3. Note that the positions xi’s are regularly spaced in the compact

set [0, 1]. We stress that our results do not rely on this specific choice. They160

can be easily extended to the case in which the positions xi belong to a regular

grid of some compact set K ⊂ Rd for some integer d ≥ 1, at the cost of more

complicated notation.

For each t ≥ 0, let Ut = (U1
t , . . . , U

n
t ). Under some assumptions on the

functions f, w and u0 (much weaker than those of Assumption 1), it has been165

proved [1, Corollary 2] that the process (Ut)t≥0 converges (in some sense) to the

unique solution u(t, x) of the scalar neural field equation (2).

Recall that we write S to denote C∞([0, 1]) and S ′ to denote its dual space.

The main goal of this paper is to describe the fluctuations of (Ut)t≥0 around its

limit, the continuous deterministic solution u(t, x) of the neural field equation

(2). For this reason, for each i ∈ [n] and t ≥ 0, we define the individual

fluctuations ηit = n1/2(U it − u(t, xi)) and consider the random signed measures

Γnt on S ′ (representing the spatial fluctuations) defined as

Γnt (dx) =
1

n

n∑
i=1

ηitδxi(dx).

9



For some fixed T > 0, denote Γn = (Γnt )0≤t≤T and observe that Γn ∈ D([0, T ],S ′).

Our first main result is the following.

Theorem 1. Under Assumption 1, the sequence (Γn)n≥1 converges in law in170

D([0, T ],S ′) to the unique solution Γ = (Γt)0≤t≤T ∈ C([0, T ],S ′) of equation

(4).

The proof of Theorem 1 is divided in several steps. We first derive some

regularity properties of solutions of the NFE (2) - see Proposition 1 (its proof

is based mainly on results provided in [1]). Next we prove tightness of the

sequence (Γn)n≥1 in D([0, T ],S ′). To that end, we rely on [33, Theorem 4.1],

according to which the tightness of the sequence (Γn)n≥1 in D([0, T ],S ′) follows

from the tightness of the sequence (Γn(ϕ))n≥1 in D([0, T ],R) for each ϕ ∈ S,

where Γn(ϕ) = (Γnt (ϕ))0≤t≤T and for each 0 ≤ t ≤ T ,

Γnt (ϕ) =
1

n

n∑
i=1

ηitϕ(xi).

To show the tightness of (Γn(ϕ))n≥1 in D([0, T ],R), we first decompose Γnt (ϕ)

as

Γnt (ϕ) = e−αtMn
t (ϕ) +Bnt (ϕ) + Cnt (ϕ), (11)

where Mn(ϕ) = (Mn
t (ϕ))0≤t≤T is a local martingale, Bn(ϕ) = (Bnt (ϕ))0≤t≤T is

a continuous stochastic process and Cn(ϕ) = (Cnt (ϕ))0≤t≤T is a continuous func-

tion: all these quantities are carefully defined in Equation (25). We then show175

(see Proposition 3) that the sequence of functions (Cn(ϕ))n≥1 goes to 0 and use

Aldous criterion to show that both sequences (Mn(ϕ))n≥1 and (Bn(ϕ))n≥1 are

tight. From that it is easy to conclude the tightness of (Γn(ϕ))n≥1 in D([0, T ],R)

- see Corollary 3.

Once established the tightness of the sequence (Γn)n≥1, we show that its180

limit points belong to C([0, T ],R) and satisfy equation (4) - see Proposition 4

and Theorem 2 respectively. To conclude the proof of Theorem 1, we then prove

that solutions of equation (4) are unique - see Theorem 3.
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3. Solutions of the Neural Field Equation

The purpose of this section is to show regularity properties for the solu-185

tion u(t, x) of the NFE involved in the definition of the individual fluctuations

(ηit)0≤t≤T . In the preliminary study made in [1], some regularity properties of

u(t, x) are shown. Then, using this a priori regularity we are able to show that

u(t, x) is in fact smooth.

In [1], the function of interest is not the limit potential u(t, x) but the limit

intensity λ(t, x) which is proven to be continuous and uniquely characterized as

the unique physical solution1 of some fixed point equation. Nevertheless these

two functions are closely linked by [1, Equation (3.20)]:u(t, x) = e−αtu0(x) +
∫ t

0
e−α(t−s) ∫ 1

0
w(y, x)λ(s, y)dyds, t > 0 and x ∈ [0, 1],

λ(t, x) = f(u(t, x)).

(12)

Since λ(t, x) belongs to C([0, T ] × [0, 1],R+) [1, Proposition 5], it then fol-190

lows that u(t, x) belongs to C([0, T ] × [0, 1],R) (which can be identified to

C([0, T ], C([0, 1]))). In the following, the evaluation of a function u(t, x) ∈

C([0, T ], C([0, 1])) is rather denoted by ut(x).

In particular, Equation (12) means that ut(x) is a fixed point of the map F

defined by : for all v ∈ C([0, T ], C([0, 1])), for all t ≥ 0 and x ∈ [0, 1],

F (v)t(x) := e−αtu0(x) +

∫ t

0

e−α(t−s)
∫ 1

0

w(y, x)f(vs(y))dyds, (13)

where u0 is the inital condition.

Proposition 1. Under Assumption 1, for all v ∈ C([0, T ], C([0, 1])), F (v) be-195

longs to the smaller space C([0, T ],S). In particular, there is a unique physical

solution of the NFE and existence of a smooth solution.

Proof. Let v be in C([0, T ], C([0, 1])). In particular, v is locally bounded in

time (supt≤T,x∈[0,1] vt(x) < +∞) so, using the Lipschitz continuity of f and the

1By physical solution, we mean a solution which satisfies some a priori property inherited

from the microscopic model (see [1, equation above Proposition 5])
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smoothness of w and u0, it is clear that for all t ≤ T , F (v)t ∈ S and that

F (v)
(k)
t (x) = e−αtu

(k)
0 (x) +

∫ t

0

e−α(t−s)
∫ 1

0

∂k2w(y, x)f(vs(y))dyds.

Let s ≤ t ≤ T , using the Lipschitz continuity of f and the fact that ||∂k2w(y, x)||0 <

∞, we have for all k ≥ 1,

||(F (v)t)
(k) − (F (v)s)

(k)||0 ≤ e−αs|eα(t−s) − 1| ||u(k)
0 ||0

+

∫ t

s

∣∣∣∣∫ 1

0

∂k2w(y, x)f(vh(y))dy

∣∣∣∣ dh
+

∫ s

0

eαh
∣∣e−αt − e−αs∣∣ ∣∣∣∣∫ 1

0

∂k2w(y, x)f(vh(y))dy

∣∣∣∣ dh
≤ C(t− s) ||u(k)

0 ||0 + CT (t− s)eαT (1 + sup
t≤T
||vt||0).

Summing up, we get ||F (v)t−F (v)s||k ≤ kCT (t−s)(1+ ||u0||k+supt≤T ||vt||0).200

Let ε > 0 and k0 be such that
∑+∞
k=k0+1 2−k < ε. It suffices then to take s

and t close enough such that

k0CT (t− s)(1 + ||u0||k0 + sup
t≤T
||vt||0) < ε,

to get d∞(F (v)t, F (v)s) ≤ 2ε and so F (v) ∈ C([0, T ],S).

Assume that u and ũ are two physical solutions of the NFE. Then, λ(t, x) =

f(u(t, x)) and λ̃(t, x) = f(ũ(t, x)) define two physical solutions of the fixed point

equation [1, Equation (3.10)]. Hence, uniqueness for λ proved in [1] implies

uniqueness for u. Existence is already proven in [1].205

4. First estimates

In the sequel, for each t ≥ 0 and i ∈ [n], we writeM
i
t = N i

t −
∫ t

0
f(U is)ds,

g(s, xi) = 1
n

∑n
j=1 w(xj , xi)f(u(s, xj)).

Recall (see Section 2.1) that (M i
t )t≥0 is the local martingale associated with

neuron i. With this notation, by using (10) and (2), we can rewrite ηit =

n1/2(U it − u(t, xi)) as follows:

ηit = Ait +Bit + Cit ,

12



where Ait, B
i
t and Cit are given respectively by

Ait = e−αtn−1/2
∑n
j=1

∫ t
0
eαsw(xj , xi)dM

j
s ,

Bit = n−1/2
∑n
j=1

∫ t
0
e−α(t−s)w(xj , xi)

(
f(U js ))− f(u(s, xj))

)
ds,

Cit = n1/2
∫ t

0
e−α(t−s)

(
g(s, xi)−

∫ 1

0
w(y, xi)f(u(s, y))dy

)
ds.

(14)

Note that (Cit)t≥0 is deterministic, while both (Ait)t≥0 and (Bit)t≥0 are stochas-

tic. Furthermore, (Ait)t≥0 belongs to D(R+) (but is not a local martingale even

if (M i
t )t≥0 is) and (Bit)t≥0 belongs to C(R+). Although every object defined

above depends on n, we omit this dependence to ease the notation.210

We start this section with the following result.

Proposition 2. Assume that f ∈ C1(R) is Lipschitz continuous, u0 is Lips-

chitz continuous, u(t, x) ∈ C([0, T ], C1([0, 1])) and w is bounded such that y →

∂1w(y, x) exists for all x ∈ [0, 1] and supx∈[0,1] ‖∂1w(·, x)‖0 < ∞. Then, for

each T > 0,

sup
n≥1

sup
0≤t≤T

max
i∈[n]

E
[
(ηit)

2
]
<∞. (15)

Proof. By Jensen inequality, we have that

E
[
(ηit)

2
]
≤ 3

(
E
[
(Ait)

2
]

+ E
[
(Bit)

2
]

+ (Cit)
2
)
.

Now, we will bound from above each term on the RHS of the inequality above.

We will start with E
[
(Ait)

2
]
. To that end, we use [34, Proposition II.4.1.] and

the fact that w is bounded to obtain that for all 0 ≤ t ≤ T ,

E
[
(Ait)

2
]

= e−2αt 1

n

n∑
j=1

E
[∫ t

0

e2αsw2(xj , xi)f(U js )ds

]

≤ ‖w‖20
1

n

n∑
j=1

E
[∫ t

0

f(U js )ds

]

= ‖w‖20
1

n

n∑
j=1

E
[
N j
t

]
≤ ‖w‖20

1

n

n∑
j=1

E
[
N j
T

]
. (16)

Since w is bounded and u0 is Lipschitz continuous on [0, 1] (hence bounded as

well), [1, Proposition 3] implies that not only the RHS of (16) is finite, but also

13



that

sup
n≥1

sup
0≤t≤T

max
i∈[n]

E[(Ait)
2] <∞. (17)

Next, we will deal with the term (Cit)
2. From the classical Riemann approx-

imation, we have for each i ∈ [n] and s ≥ 0,∣∣∣∣g(s, xi)−
∫ 1

0

w(y, xi)f(u(s, y))dy

∣∣∣∣ ≤ 1

2n
sup
y∈[0,1]

|∂1w(y, xi)f(u(s, y)

+w(y, x)f ′(u(s, y))∂2u(s, y)| , (18)

and thus we obtain for t ≥ 0,

|Cit | ≤
1

2n1/2
max
j∈[n]

sup
0≤s≤t,y∈[0,1]

|∂1w(y, xj)f(u(s, y)) + w(y, x)f ′(u(s, y))∂2u(s, y)| .

As a consequence of the inequality above, we have for all 0 ≤ t ≤ T ,

|Cit |2 ≤
1

4n

(
sup

0≤s≤T,x,y∈[0,1]

|∂1w(y, x)f(u(s, y) + w(y, x)f ′(u(s, y))∂2u(s, y)|

)2

.

Since MT = sup0≤s≤T ‖u(s, ·)‖0 < ∞ and f is Lipschitz continuous, we have

that f is locally bounded, implying that sups≤T,y,∈[0,1] |f(u(s, y))| < ∞. The

assumptions on the functions u and w ensure that both supx,y∈[0,1] ‖∂1w(y, x)‖0
and sups≤T,y∈[0,1] ‖∂2w(s, y)‖0 are finite, so that

sup
n≥1

sup
t≤T

max
i∈[n]
|Cit |2 <∞. (19)

It remains to deal with the term E
[
(Bit)

2
]
. In what follows, fix an integer

k ≥ 1, and consider τk = inf{0 ≤ t ≤ T : maxi∈[n] |ηit| ≥ k}. By applying Jensen

inequality twice and using the fact that f is Lipschitz continuous, we deduce

that

E
[
(Bit∧τk)2

]
≤

n∑
j=1

E

[(∫ t∧τk

0

e−α((t∧τk)−s)w(xj , xi)(f(U js )− f(u(s, xj)))ds

)2
]

≤ t‖f ′‖20
1

n

n∑
j=1

∫ t

0

w2(xj , xi)E
[
(ηjs∧τk)2

]
ds.

Now, since w is a bounded function, it follows then that for any 0 ≤ t ≤ T ,

E
[
(Bit∧τk)2

]
≤ T‖f ′‖20‖w‖20

∫ t

0

max
j∈[n]

E
[
(ηjs∧τk)2

]
ds. (20)

14



Combining (17), (20) and (19), we have that there exists a finite positive

constant C = C(T,w, f, u) such that for all 0 ≤ t ≤ T and any integer n ≥ 1,

max
i∈[n]

E
[
(ηit∧τk)2

]
≤ C

(
1 +

∫
(0,t]

max
i∈[n]

E
[
(ηis∧τk)2

]
ds

)
.

Since t → E[(ηit∧τk)2] is locally bounded, we may apply Grownwall inequality

to conclude that for all 0 ≤ t ≤ T and any integer n ≥ 1

max
i∈[n]

E
[
(ηit∧τk)2

]
< C,

for some finite positive constant C = C(T,w, f, u). By Lemma 2, which is in

Appendix A, we know that τk → T a.s. as k → ∞, and hence, by Fatou’s

lemma, for all t ≤ T and integer n ≥ 1,

max
i∈[n]

E
[
(ηit)

2
]
< C,

implying the result.215

Corollary 1. Under the assumptions of Proposition 2, for all bounded functions

ϕ : [0, 1]→ R and T > 0,

sup
n≥1

sup
0≤t≤T

E[(Γnt (ϕ))2] <∞. (21)

Proof. Apply Jensen inequality to deduce that

E((Γnt (ϕ))2) = E

( 1

n

n∑
i=1

ηitϕ(xi)

)2


≤ 1

n

n∑
i=1

ϕ2(xi)E((ηit)
2).

Since ϕ is bounded, the result then follows from Proposition 2.

5. Tightness

The goal of this section is to prove that the sequence of S ′-valued stochastic

processes (Γn)n≥1 is tight in D([0, T ],S ′). According to Mitoma [33, Theorem

15



4.1], it suffices to show that the sequence of stochastic processes (Γn(ϕ))n≥1 is220

tight in D([0, T ],R), for each fixed ϕ ∈ S.

In what follows, we fix ϕ ∈ S and consider the sequence of stochastic pro-

cesses (Γn(ϕ))n≥1. Our goal is to show that this sequence is tight in D([0, T ],R).

To show this, we use Aldous’ tightness criterion. According to Aldous [35, The-

orem 16.10], a sequence of stochastic processes (Xn)n≥1 in D([0, T ],R) is tight225

if both condition below are satisfied:

1. for any 0 ≤ t ≤ T and ε > 0, there exist an integer n0 ≥ 1 and K > 0

such that

sup
n≥n0

P(|Xn
t | > K) ≤ ε. (22)

2. for any ε1, ε2 > 0, there exist δ > 0 and an integer n0 ≥ 1 such that

sup
n≥n0

sup
(τ ′,τ)∈Stδ

P(|Xn
τ ′ −Xn

τ | > ε1) ≤ ε2, (23)

where Stδ is the set of all pairs (τ ′, τ) of (Ft)t≥0-stopping times such that

P-a.s we have τ ≤ τ ′ ≤ τ + δ ≤ T.

To verify that (Γn(ϕ))n≥1 satisfies Aldous’s criterion, it will be convenient

to introduce some new notation. Note that for each t ≥ 0 and all n ≥ 1, the

spatial fluctuation Γnt (ϕ) can be rewritten as follows:

Γnt (ϕ) = Ant (ϕ) +Bnt (ϕ) + Cnt (ϕ), (24)

with Ant (ϕ), Bnt (ϕ) and Cnt (ϕ) given respectively by
Ant (ϕ) = 1

n

∑n
i=1 ϕ(xi)A

i
t,

Bnt (ϕ) = 1
n

∑n
i=1 ϕ(xi)B

i
t,

Cnt (ϕ) = 1
n

∑n
i=1 ϕ(xi)C

i
t .

(25)

where Ait, B
i
t and Cit for 1 ≤ i ≤ n are defined in (14).

For later use, it will be useful to write Ant (ϕ) = e−αtMn
t (ϕ), where Mn(ϕ)

is a local martingale given for all t ≥ 0 by

Mn
t (ϕ) =

1

n1/2

n∑
j=1

∫ t

0

eαs
1

n

n∑
i=1

w(xj , xi)ϕ(xi)dM
j
s . (26)
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By writing In[ϕ](y) := n−1
∑n
i=1 w(y, xi)ϕ(xi), one can check (see for instance

[34]) that its angle bracket is given by

〈Mn(ϕ)〉t = n−1
n∑
j=1

∫ t

0

e2αsIn[ϕ](xj)
2f(U js )ds, (27)

and by the polarization identity,

〈Mn(ϕ1),Mn(ϕ2)〉t = n−1
n∑
j=1

∫ t

0

e2αsIn[ϕ1](xj)I
n[ϕ2](xj)f(U js )ds. (28)

With this notation, we can prove the following result.230

Proposition 3. Let us make the same assumptions as in Proposition 2. Then,

for each fixed ϕ in S, the sequences of the stochastic processes (Mn(ϕ))n≥1 and

(An(ϕ))n≥1 are tight in the space D([0, T ]) and (Bn(ϕ))n≥1 is tight in C([0, T ]).

Moreover, the sequence of functions (Cn(ϕ))n≥1 satisfies

sup
t∈[0,T ]

|Cnt (ϕ)| ≤ Cn−1/2||ϕ||0, (29)

where C = C(T,w, f, u) is some finite positive constant.

Proof. We need to show that the sequences (Mn(ϕ))n≥1, (An(ϕ))n≥1 and (Bn(ϕ))n≥1

satisfy Aldous’ criterion. We start with (Mn(ϕ))n≥1. All along the proof, we

write L to denote a constant which might change from line to line and depends

only on T, ‖w‖0, ‖ϕ‖0, α and ‖f‖0.235

Tightness of (Mn(ϕ))n≥1. Fix 0 ≤ t ≤ T and ε > 0. By Markov’s

inequality, for all n ≥ 1 and K > 0, we have

P(|Mn
t (ϕ)| > K) ≤ 1

K2
E(|Mn

t (ϕ)|2),

so that by (27), we can deduce from the above inequality that

P(|Mn
t (ϕ)| > K) ≤ 1

K2

1

n

n∑
j=1

E

∫ t

0

(
n−1

n∑
i=1

ϕ(xi)w(xj , xi)

)2

f(U js )e2αsds

 .

Since w and ϕ are bounded, it follows from this last inequality that

P(|Mn
t (ϕ)| > K) ≤ L

K2

1

n

n∑
j=1

E
(∫ t

0

f(U js )ds

)
≤ L

K2
sup
n≥1

1

n


n∑
j=1

E
(
N j
T

) .

17



Then, [1, Proposition 3] together with the inequality above imply that for all

n ≥ 1,

P(|Mn
t (ϕ)| > K) ≤ L

K2
,

and the condition (22) holds whenever K ≥
√
L/ε.

It remains to show that (Mn(ϕ))n≥1 satisfies the condition (23). By [36,

Theorem 2.3.2], it suffices to show that (〈Mn(ϕ)〉)n≥1 satisfies the condition

(23). Thus, take stopping times (τ, τ ′) ∈ Stδ and observe that by (27),

E (|〈Mn(ϕ)〉τ ′ − 〈Mn(ϕ)〉τ |) = n−1
n∑
j=1

E

∣∣∣∣∣∣
∫ τ ′

τ

(
n−1

n∑
i=1

ϕ(xi)w(xj , xi)

)2

f(U js )e2αsds.

∣∣∣∣∣∣


≤ L 1

n

n∑
j=1

E

(∫ τ ′

τ

f(U js )e2αsds

)
.

Now, note that for all j ∈ [n] and t ≥ 0,

f(U js ) ≤ f(u(t, xj)) +
‖f ′‖0√
n
|ηjt | ≤ sup

t≤T
‖f(u(t, ·))‖+

‖f ′‖0√
n
|ηit|.

The local boundedness of both f and u, and the fact that 0 ≤ τ ≤ τ ′ ≤ T ,

imply then that

E (|〈Mn(ϕ)〉τ ′ − 〈Mn(ϕ)〉τ |) ≤ L

E(τ ′ − τ) +
1

n3/2

n∑
j=1

E

(∫ τ ′

τ

e2αs|ηjs|ds

)
By applying Young inequality, we have for all s ≥ 0, j ∈ [n] and ξ > 0,

e2αs|ηjs| ≤
1

2ξ
e4αs +

ξ

2
|ηjs|2,

so that

E

(∫ τ ′

τ

e2αs|ηjs|ds

)
≤ 1

8ξα
E(e4ατ ′ − e4ατ ) +

ξ

2

∫ T

0

E|ηjs|2ds,

where in the last inequality we have also used the fact that 0 ≤ τ ≤ τ ′ ≤ T. By

using that |ex − ey| ≤ |x− y| 12 (ex + ey) in the previous inequality and the fact

that τ ′ − τ ≤ δ, it follows that

E(τ ′−τ)+
1

n3/2

∑
j=1

E

(∫ τ ′

τ

e2αs|ηjs|ds

)
≤ δ+

δ

2ξ
e4αT +

Tξ

2n1/2
sup
t≤T

max
j∈[n]

E(|ηjs|2).
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By using Proposition 2 and taking ξ =
√
δ in the inequality above, we deduce

that

E (|〈Mn(ϕ)〉τ ′ − 〈Mn(ϕ)〉τ |) ≤ L(δ +
√
δ),

showing that (〈Mn(ϕ)〉)n≥1 satisfies the condition (23) and thus the tightness

of (Mn(ϕ))n≥1.

Tightness of (An(ϕ))n≥1. Since |Ant (ϕ)| ≤ |Mn
t (ϕ)| for all n ≥ 1 and

0 ≤ t ≤ T , and (Mn(ϕ))n≥1 satisfies (22), we have that (An(ϕ))n≥1 satisfies240

(22) as well.

To show that tightness of (An(ϕ))n≥1, it remains to show that (An(ϕ))n≥1

satisfies the condition (23). To that end, take stopping times (τ, τ ′) ∈ Stδ, and

note that

P(|Anτ ′(ϕ)−Anτ (ϕ)| > ε1) ≤ P(|Mn
τ ′(ϕ)(e−α(τ ′−τ) − 1)| > ε1/2)

+P(|Mn
τ ′(ϕ)−Mn

τ (ϕ)| > ε1/2)

≤ 4

ε21
E
(

(Mn
τ ′(ϕ))2(e−α(τ ′−τ) − 1)2

)
+P(|Mn

τ ′(ϕ)−Mn
τ (ϕ)| > ε1/2)

≤ 4(αδ)2

ε21
E
(
(Mn

τ ′(ϕ))2
)

+ P(|Mn
τ ′(ϕ)−Mn

τ (ϕ)| > ε1/2)

≤ 4(αδ)2

ε21
E
(
(Mn

T (ϕ))2
)

+ P(|Mn
τ ′(ϕ)−Mn

τ (ϕ)| > ε1/2).

Now, we can proceed as in the proof of the tightness of (Mn(ϕ))n≥1 to conclude245

that (An(ϕ))n≥1 satisfies the condition (23), thus establishing the tightness of

(An(ϕ))n≥1.

Tightness of (Bn(ϕ))n≥1. Fix 0 ≤ t ≤ T and ε > 0. By using Markov

inequality and then Jensen inequality, we have that for all n ≥ 1 and K > 0,

(recall the definition of Bnt (ϕ)),

P(|Bnt (ϕ)| > K) ≤ 1

K2

1

n

n∑
i=1

ϕ2(xi)E(
(
Bit)

2
)
.

The inequality above and (20) yield

P(|Bnt (ϕ)| > K) ≤ L

K2
sup
n≥1

sup
0≤s≤T

max
j∈[n]

E
(
(ηjs)

2
)
.
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Since supn≥1 sup0≤s≤T maxj∈[n] E
(
(ηjs)

2
)

is finite by Proposition 2, we deduce

from inequality above that condition (22) holds.

We will now check that condition (23) holds as well. In the sequel, let

∆j
s(f) = f(U js ) − f(u(s, xj)) for 1 ≤ j ≤ n, 0 ≤ s ≤ T and xj ∈ [0, 1]. Take

stopping times (τ, τ ′) ∈ Stδ, and note that

E|Bnτ ′(ϕ)−Bnτ (ϕ)| ≤ E

∣∣∣∣∣∣ 1n
n∑
i=1

ϕ(xi)
1

n1/2

n∑
j=1

∫ τ ′

τ

e−α(τ ′−s)w(xj , xi)∆
j
s(f)ds

∣∣∣∣∣∣
+ E

∣∣∣∣∣∣ 1n
n∑
i=1

ϕ(xi)
1

n1/2

n∑
j=1

∫ τ

0

(e−α(τ−s) − e−α(τ ′−s))w(xj , xi)∆
j
s(f)ds

∣∣∣∣∣∣ . (30)

Since w and ϕ are bounded functions, f is Lipschitz continuous and |e−x−e−y| ≤

|x− y| for all x, y ≥ 0, we have that

E

∣∣∣∣∣∣ 1n
n∑
i=1

ϕ(xi)
1

n1/2

n∑
j=1

∫ τ

0

(e−α(τ−s) − e−α(τ ′−s))w(xj , xi)∆
j
s(f)ds

∣∣∣∣∣∣
≤ α‖w‖0‖ϕ‖0Lf

1

n

n∑
j=1

E
∫ τ

0

|τ ′ − τ ||ηjs|ds ≤ δL
∫ T

0

1

n

n∑
j=1

E|ηjs|ds

so that Proposition 2 implies that

sup
n≥1

sup
(τ ′,τ)∈Stδ

E

∣∣∣∣∣∣ 1n
n∑
i=1

ϕ(xi)
1

n1/2

n∑
j=1

∫ τ

0

(e−α(τ−s) − e−α(τ ′−s))w(xj , xi)∆
j
s(f)ds

∣∣∣∣∣∣ ≤ Lδ.
(31)

Similarly, one can check that

E

∣∣∣∣∣∣ 1n
n∑
i=1

ϕ(xi)
1

n1/2

n∑
j=1

∫ τ ′

τ

e−α(τ ′−s)w(xj , xi)∆
j
s(f)ds

∣∣∣∣∣∣
≤ ‖f ′‖0‖w‖0‖ϕ‖0

1

n

n∑
j=1

E
∫ τ ′

τ

e−α(τ ′−s)|ηjs|ds. (32)

By applying Young’s inequality we have that for all ξ > 0,

e−α(τ ′−s)|ηjs| ≤
1

2ξ
e−2α(τ ′−s) +

ξ

2
|ηjs|2,

so that

E
∫ τ ′

τ

e−α(τ ′−s)|ηjs|ds ≤
1

2ξ
E
∫ τ+δ

τ

e−2α(τ ′−s)ds+
ξ

2

∫ T

0

E|ηjs|2ds ≤
δ

2ξ
+
ξ

2

∫ T

0

E|ηjs|2ds.
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As a consequence, by taking ξ =
√
δ, it follows from (32) and inequality above

that

E

∣∣∣∣∣∣ 1n
n∑
i=1

ϕ(xi)
1

n1/2

n∑
j=1

∫ τ ′

τ

e−α(τ ′−s)w(xj , xi)∆
j
s(f)ds

∣∣∣∣∣∣ ≤ √δL(1+

∫ T

0

sup
n≥1

1

n

n∑
j=1

E|ηjs|2ds).

By Proposition (2), inequality above and (31), it follows then that

sup
n≥1

sup
(τ ′,τ)∈Stδ

E|Bnτ ′(ϕ)−Bnτ (ϕ)| ≤ L(δ +
√
δ),

proving that (23) holds.250

Proof of (29). In the proof of Proposition (2), it has been proved that for

any 0 ≤ t ≤ T and 1 ≤ i ≤ n,

|Cit | ≤
1

2n1/2
max
j∈[n]

sup
0≤s≤t,y∈[0,1]

|∂1w(y, xj)f(u(s, y)) + w(y, x)f ′(u(s, y))∂2u(s, y)| ,

so that

sup
0≤t≤T

|Cnt (ϕ)| ≤ ‖ϕ‖0
2n1/2

max
j∈[n]

sup
0≤s≤T,y∈[0,1]

|∂1w(y, xj)f(u(s, y)) + w(y, x)f ′(u(s, y))∂2u(s, y)| ,

and the result follows.

Since (An(ϕ))n≥1 is càdlàg tight, (Bn(ϕ))n≥1 is continuous tight and (Cn(ϕ))

goes to 0, the following result holds (see [37, Corollary VI.3.33.]). Furthermore,

Corollary 3 is granted by [33, Theorem 4.1].

Corollary 2. Let us make the same assumptions as in Proposition 3. Then,255

for each fixed ϕ in S, the sequence of stochastic processes (Γn(ϕ))n≥1 is tight in

D([0, T ],R).

Corollary 3. Let us make the same assumptions as in Proposition 3. Then,

the sequences of the laws of (Γn)n≥1 and (Mn)n≥1 are tight in D([0, T ],S ′).

Furthermore, the limit trajectories of (Γn)n≥1 and (Mn)n≥1 are continuous260

as stated below.

Proposition 4. Suppose that w is bounded. Then the limit points of (Γn)n and

(Mn)n≥1 are supported by C([0, T ],S ′).
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Proof. We only give here the proof for the sequence (Γn)n but the same argu-

ment can be applied to (Mn)n. For completeness, let us mention that the result265

for (Mn)n is also a byproduct of Proposition 5 below.

By [35, Theorem 13.4.] it suffices to show that the maximum jump size of Γn

goes to 0 in probability. This means that we need to prove that, for any bounded

set B ⊂ S, the random variable JB(Γn) = sup0≤t≤T supϕ∈B |Γnt (ϕ) − Γnt−(ϕ)|

converges in probability to 0 as n → ∞. Recall that B ⊂ S is bounded if

supϕ∈B ‖ϕ‖k < ∞ for any k ≥ 0 (which is different from boundedness with

respect to dS , see [31, Definition 2.9]). In particular, we have supϕ∈B ‖ϕ‖0 <∞.

Now, observe that (see also proof of condition 2 in the proof of Proposition 5

below)

sup
0≤t≤T

sup
ϕ∈B
|Mn

t (ϕ)−Mn
t−(ϕ)| ≤ eαT ‖w‖0√

n
sup
ϕ∈B
‖ϕ‖0 sup

t≤T

n∑
j=1

∆N j
s ,

where ∆N j
s = N j

s − N j
s− for each j ∈ [n] and s ≥ 0. Almost surely for all

1 ≤ i, j ≤ n with i 6= j, the counting processes N j and N i never jump simulta-

neously, so that

sup
0≤t≤T

n∑
j=1

∆N j
s ≤ 1 almost surely,

and therefore almost surely

sup
0≤t≤T

sup
ϕ∈B
|Mn

t (ϕ)−Mn
t−(ϕ)| ≤ eαT ‖w‖0√

n
sup
ϕ∈B
‖ϕ‖0.

Finally, since Γnt (ϕ) = e−tαMn
t (ϕ)+Bnt (ϕ)+Cnt (ϕ) and both Bnt (ϕ) and Cnt (ϕ)

are continuous functions of time, we deduce that |Γnt (ϕ)− Γnt−(ϕ)| ≤ |Mn
t (ϕ)−

Mn
t−(ϕ)|. Thus, it follows that almost surely,

JB(Γn) ≤ eαT ‖w‖0√
n

sup
ϕ∈B
‖ϕ‖0,

implying the result.

Since the limit trajectories of (Mn)n≥1 and (Γn)n≥1 are continuous, we have

the joint tightness [38, Corollary VI.3.33].
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Corollary 4. Under assumptions of Proposition 3, the sequence of the laws of270

(Γn,Mn)n≥1 is tight in the space D([0, T ],S ′×S ′) with limit points in C([0, T ],S ′×

S ′).

6. Limit equation

In this section we first show the convergence of the local martingale (Mn)n≥1

in order to state the limit equation (38) satisfied by the limit points of (Γn)n≥1.275

Definition 2. Let M be a continuous centred Gaussian process with values in

S ′ with covariance given, for all ϕ1 and ϕ2 in S, for all t1 and t2 ≥ 0, by

E [Mt1(ϕ1)Mt2(ϕ2)] =

∫ t1∧t2

0

∫ 1

0

e2αsI[ϕ1](y)I[ϕ2](y)f(u(s, y))dyds, (33)

where for each y ∈ [0, 1],

I[ϕ](y) =

∫ 1

0

w(y, x)ϕ(x)dx.

Proposition 5. Under assumptions of Proposition 3, the sequence (Mn)n≥1 of

processes in D(R+,S ′) converges in law to M defined above.

Proof. By Corollary 3 and [33, Theorem 5.3], it suffices to show that for 0 ≤

t1 ≤ t2 ≤ . . . ≤ tm ≤ T and ϕ1, . . . , ϕm ∈ S, the sequence of random vec-

tors (Mn
t1(ϕ1), . . . ,Mn

tm(ϕm))n≥1 converges in law to a Gaussian random vector

N (0,Σ) with covariance matrix Σ = (Σij)1≤i,j≤m given by

(Σ)ij =

∫ ti∧tj

0

∫ 1

0

e2αsI[ϕi](y)I[ϕj ](y)f(u(s, y))dyds.

To show this convergence holds, by Cramér-wold Theorem, it is enough to show

that for all β = (β1, . . . , βm), the sequence of random variables (
∑m
p=1 βpM

n
tp(ϕp))n≥1

converges in law to a Gaussian random variable N (0, σ2) with variance σ2 =280

βTΣβ. To that end, we will resort to the central limit theorem for local martin-

gales from [36].

In what follows, for each n ≥ 1, let (M̃n
t )t≥0 be the local martingales defined

by

M̃n
t =

m∑
p=1

βpM
n
tp∧t(ϕp).
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Its angle bracket can be written in the following form:

〈M̃n〉t =
∑

1≤p,q≤m

βpβq〈Mn(ϕp),M
n(ϕq)〉(tp∧tq)∧t.

According to [36], the sequence (M̃n)n≥1 converges in law to a centered Gaussian

process M̃ with covariance function Cov(M̃t, M̃s) = C(t ∧ s), if the following

conditions are verified:285

1. 〈M̃n〉t converges to C(t) in probability as n→∞, for each t > 0.

2. For each ε > 0 and t > 0, the sequence of random variables∑
s≤t

|∆M̃n
s |1{|∆M̃n

s |>ε}
,

converges to 0 in probability as n→∞.

Let us assume that these two conditions have been checked with (C(t))t≥0 such

that C(T ) = σ2. In that case, we would have that
∑m
p=1 βpM

n
tp(ϕp) = M̃n

T

converges to N (0, σ2) in law as n→∞, concluding the proof of the proposition.290

In the remaining part of the proof, we will check conditions 1 and 2 above are

satisfied with (C(t))t≥0 such that C(T ) = σ2.

Proof of condition 1. For each t ≥ 0, write

C(t) =
∑

1≤p,q≤m

βpβq

∫ (tq∧tp)∧t

0

I[ϕp](y)I[ϕq](y)e2αsf(u(s, y))dyds,

and for each n ≥ 1, y ∈ [0, 1] and ϕ ∈ S, let

In[ϕ](y) =
1

n

n∑
i=1

ϕ(xi)w(y, xi).

Observe that C(T ) = σ2 and ‖In[ϕ]‖0 ≤ ‖ϕ‖0‖w‖0. Now, from the Riemann

sum approximation, we also have that

‖In[ϕ]− I[ϕ]‖0 ≤
1

2n
sup

x,y∈[0,1]

|ϕ′(x)w(y, x) + ϕ(x)∂2w(y, x)|.

Moreover, with this notation, it follows from (28) that

〈M̃n〉t =
∑

1≤p,q≤m

βqβp
1

n

n∑
j=1

∫ t∧(tp∧tq)

0

In[ϕp](xj)I
n[ϕq](xj)e

2αsf(U js )ds,
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so that

E|〈M̃n〉t−C(t)| ≤
∑

1≤p,q≤m

βqβpE

∣∣∣∣∣∣ 1n
n∑
j=1

∫ t∧(tp∧tq)

0

In[ϕp](xj)I
n[ϕq](xj)e

2αsf(U js )ds

−
∫ t∧(tp∧tq)

0

∫ 1

0

I[ϕp](y)I[ϕq](y)e2αsf(u(s, y))dyds

∣∣∣∣∣ . (34)

Now, for any 1 ≤ p, q ≤ m, one can check that∣∣∣∣∣∣ 1n
n∑
j=1

(In[ϕp](xj)I
n[ϕq](xj)− I[ϕp](xj)I[ϕq](xj))

∣∣∣∣∣∣
≤ ‖w‖0

n
max

u,v∈{p,q}

{
‖ϕv‖0 sup

x,y∈[0,1]

| ∂
∂x

(ϕu(x)w(y, x))|

}
. (35)

Similarly, from Riemann sum approximation, we have for any s ≤ t fixed,∣∣∣∣∣∣ 1n
n∑
j=1

I[ϕp](xj)I[ϕq](xj)f(u(s, xj))−
∫ 1

0

I[ϕp](y)I[ϕq](y)f(u(s, y))dy

∣∣∣∣∣∣
≤ 1

2n
sup

y∈[0,1],h≤t

∣∣∣∣ ddy (I[ϕp](y)I[ϕq](y)f(u(h, y)))

∣∣∣∣ . (36)

The local boundedness of both f and u implies supt≤T ‖f(u(h, ·)‖0 <∞. Com-

bining this fact with the boundedness of f (1), and the somothness of both ϕp

and ϕq, one can show that

sup
y∈[0,1],h≤T

∣∣∣∣ ddy (I[ϕp](y)I[ϕq](y)f(u(h, y)))

∣∣∣∣ <∞
Furthermore, we have that

E

∣∣∣∣∣∣ 1n
n∑
j=1

∫ t∧(tp∧tq)

0

e2α2I[ϕp](xj)I[ϕq](xj)(f(U js )− f(u(s, xj)))ds

∣∣∣∣∣∣
≤ ‖f ′‖0

‖I[ϕp]‖0‖I[ϕq]‖0
n1/2

∫ t

0

e2αs sup
n≥1

1

n

n∑
j=1

E|ηjs|ds. (37)

Combining the inequalities (35), (36) and (37) with (34), and using that the

function s 7→ supn≥1
1
n

∑n
j=1 E|ηjs| is locally bounded, we then have that there

exists a constant C not depending on n such that for all n sufficiently large

E|〈M̃n〉t − C(t)| ≤ C 1

n1/2
.
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The proof of condition 1 follows now from Markov inequality.

Proof of condition 2. It is enough to prove that there exists a positive

constant C not depending on n ≥ 1 such that for each t > 0 and n ≥ 1,

sup
0≤s≤t

|∆M̃n
s | ≤

C

n1/2
almost surely.

To prove that, observe that for each s ≥ 0,

|∆M̃n
s | ≤ m max

1≤p≤m
{‖ϕp‖0}‖w‖0

1

n1/2

n∑
j=1

∆N j
s ,

implying that (with C = mmax1≤p≤m{‖ϕp‖0}‖w‖0)

sup
0≤s≤t

|∆M̃n
s | ≤

C

n1/2
sup

0≤s≤t

n∑
j=1

∆N j
s .

Since almost surely for all 1 ≤ i, j ≤ n with i 6= j, the counting processes N j

and N i never jump simultaneously, it follows that

sup
0≤s≤t

n∑
j=1

∆N j
s ≤ 1 almost surely,

and the result follows.

We are now in position to state the limit equation satisfied by the limit295

points, generically denoted by Γ, of the sequence (Γn)n. The limit equation is:

∀ϕ ∈ S, Γt(ϕ) = e−αtMt(ϕ)+

∫ t

0

e−α(t−s)Γs

(∫ 1

0

ϕ(x)w(·, x)f ′(u(s, ·))dx
)
ds,

(38)

where M is the Gaussian process of Definition 2.

For notational simplicity, let us introduce the following maps Fϕ : D([0, T ],S ′×

S ′)→ D([0, T ],R) defined, for all (gt,mt)t∈[0,T ] in D([0, T ],S ′ × S ′), by

Fϕ(g,m)t = gt(ϕ)−e−αtmt(ϕ)−
∫ t

0

e−α(t−s)gs

(∫ 1

0

ϕ(x)w(·, x)f ′(u(s, ·))dx
)
ds,

so that (38) is equivalent to : for all ϕ ∈ S, Fϕ(Γ,M) = 0.

26



Remark 4. Assumption 1 ensures that the function y 7→
∫ 1

0
ϕ(x)w(y, x)f ′(u(s, y))dx

is in S so that the RHS of (38) is well defined.300

About the space D([0, T ],S ′ × S ′), the product S ′ × S ′ is endowed with

the product topology of the strong topology on S ′. Then, D([0, T ],S ′ × S ′)

is endowed with some projective topology inspired by Skorohod topology (see

Appendix B for more insight). Finally, the maps Fϕ are continuous with respect

to that topology.305

Proposition 6. Under Assumption 1, for all ϕ ∈ S, Fϕ(Γn,Mn) → 0 in

probability.

Proof. Observe that for each t ≥ 0,

Fϕ(Γn,Mn)t = Bnt (ϕ)+Cnt (ϕ)− 1

n

n∑
j=1

∫ 1

0

ϕ(x)w(xj , x)dx

∫ t

0

e−α(t−s)ηjsf
′(u(s, xj))ds.

Recall that supt≤T |Cnt (ϕ)| ≤ C‖ϕ‖∞n−1/2 by Proposition 3. Thus given ε > 0,

we have that supt≤T |Cnt (ϕ)| ≤ ε/2 for all n ≥ (2C‖ϕ‖0ε−1)2, so that the event{
supt≤T |Fϕ(Γn,Mn)t| > ε

}
is contained in eventsup

t≤T

∣∣∣∣∣∣Bnt (ϕ)− 1

n

n∑
j=1

∫ 1

0

ϕ(x)w(xj , x)dx

∫ t

0

e−α(t−s)ηjsf
′(u(s, xj))ds

∣∣∣∣∣∣ > ε/2

 .

We will show in the remaining part of the proof that

sup
0≤t≤T

∣∣∣∣∣∣Bnt (ϕ)− 1

n

n∑
j=1

∫ 1

0

ϕ(x)w(xj , x)dx

∫ t

0

e−α(t−s)ηjsf
′(u(s, xj))ds

∣∣∣∣∣∣→ 0

in L1 as n→∞, implying the result.

To that end, note that for all t ≤ T and n ≥ 1,∣∣∣∣∣∣Bnt (ϕ)− 1

n

n∑
j=1

∫ 1

0

ϕ(x)w(xj , x)dx

∫ t

0

e−α(t−s)ηjsf
′(u(s, xj))ds

∣∣∣∣∣∣ ≤ In + IIn,

where (remember that ∆j
s(f) = f(U js )− f(u(s, xj)))

In =

∣∣∣∣∣∣ 1√
n

n∑
j=1

∫ t

0

e−α(t−s)

[
1

n

n∑
i=1

ϕ(xi)w(xj , xi)−
∫ 1

0

ϕ(x)w(xj , x)dx

]
∆j
s(f)ds

∣∣∣∣∣∣ ,
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and

IIn =

∣∣∣∣∣∣ 1√
n

n∑
j=1

∫ 1

0

ϕ(x)w(xj , x)dx

∫ t

0

e−α(t−s)
[
∆j
s(f)− f ′(u(s, xj))

ηjs√
n

]∣∣∣∣∣∣ .
(39)

Now, using the fact that f is Lipschitz and classical Riemann estimates, it

follows that

In ≤ ‖f
′‖0

2n
sup

0≤x,y≤1
| ∂
∂x

(ϕ(x)w(y, x))|
∫ t

0

e−α(t−s) 1

n

n∑
j=1

|ηjs|ds.

Since the function s → supn≥1
1
n

∑n
j=1 E|ηjs| is locally bounded by Proposition

2), we have that In → 0 in L1 as n→∞.310

To deal with IIn, we recall that the Taylor approximation of order 2 yields

|f(x)− f(y)− f ′(y)(x− y)| ≤ |x− y|
2

2
‖f ′′‖0, for all x, y ∈ R.

Hence, we have for all s ≥ 0 and j ∈ [n],

|∆j
s(f)− f ′(u(s, xj))

ηjs√
n
| ≤ (U js − u(s, xj))

2

2
‖f ′′‖0 =

‖f ′′‖0
2n

(ηjs)
2,

so that

E(IIn) ≤ sup
0≤y≤1

∣∣∣∣∫ 1

0

ϕ(x)w(y, x)dx

∣∣∣∣ ‖f ′′‖02
√
n

∫ t

0

e−α(t−s) sup
m≥1

1

m

m∑
j=1

E((ηjs)
2)ds.

The local boundedness of s → supn≥1
1
n

∑n
j=1 E((ηjs)

2) implies that IIn → in

L1 as n→∞ as well, concluding the proof of the proposition.

We are now in position to state the main result of this section.

Theorem 2. Under Assumption 1, any limit point Γ of the sequence (Γn)n≥1

is a solution of (38) in C(R+,S ′).315

Proof. Let Γ be a limit point of (Γn)n and (nk)k be such that Γnk → Γ in dis-

tribution. Like in Corollary 4, we obviously have joint tightness of (Γnk ,Mnk).

Hence let M be such that (Γ,M) is a limit point of (Γnk ,Mnk). The conver-

gence result of Proposition 6 and continuous mapping theorem imply that for

all ϕ in S, Fϕ(Γ,M) = 0. Hence Γ satisfies (38).320

Finally, the continuity of Γ follows from Proposition 4.
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7. Convergence

Proposition 7. Under Assumption 1, there is path-wise uniqueness of the so-

lutions of limit equation (38): if Γ and Γ̃ are two solutions in C(R+,S ′) con-

structed on the same probability space as M , then Γ and Γ̃ are indistinguishable.325

Proof. Let Γ and Γ̃ be two solutions and take T > 0. In the following, consider

the restrictions of Γ and Γ̃ to [0, T ]. For almost every ω ∈ Ω, Γ(ω) and Γ̃(ω) are

continuous and Fϕ(Γ(ω)− Γ̃(ω),M) = 0 for all ϕ ∈ S, i.e.

(Γ(ω)−Γ̃(ω))t(ϕ) =

∫ t

0

e−α(t−s)(Γ(ω)−Γ̃(ω))s

(∫ 1

0

ϕ(x)w(·, x)f ′(u(s, ·))dx
)
ds.

(40)

In the following, we assume that such a generic ω is fixed and omit to write the

dependence.

Let ϕ be in S. Since Γ and Γ̃ are continuous, Γ(ϕ) and Γ̃(ϕ) belong to

C([0, T ],R) and in particular, supt∈[0,T ] |(Γt − Γ̃t)(ϕ)| < +∞. The uniform

boundedness principle [31, Theorem 10.11.] implies that there exists k and

c > 0 such that

∀ϕ ∈ S, sup
s∈[0,T ]

|(Γs − Γ̃s)(ϕ)| ≤ c||ϕ||k.

Therefore, let us define for all t in [0, T ],

Lt = sup
ϕ∈S

sup
s∈[0,t]

|(Γs − Γ̃s)(ϕ)|
||ϕ||k

≤ c < +∞.

In order to use boundedness for f and its derivatives, let us remark that

KT = supt∈[0,T ] ||u(t, ·)||0 < +∞ so that without loss of generality, f could

be restricted to the compact interval [−KT ,KT ] and so considered to be C∞330

with bounded derivatives of any order.

Then, using Lemma 1 and the fact that w, u and f are smooth,∥∥∥∥∫ 1

0

ϕ(x)w(·, x)f ′(u(s, ·))dx
∥∥∥∥
k

≤ ||ϕ||0 sup
s∈[0,T ]

sup
x∈[0,1]

||w(·, x)f ′(u(s, ·))||k

≤ C||ϕ||k

(
sup
x∈[0,1]

||w(·, x)||k

)
||f|[−KT ,KT ]||k+1

(
sup

s∈[0,T ]

||u(s, ·)||kk

)
≤ CT ||ϕ||k.
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Going back to (40), we have

|(Γ− Γ̃)t(ϕ)| ≤
∫ t

0

Ls

∥∥∥∥∫ 1

0

ϕ(x)w(·, x)f ′(u(s, ·))dx
∥∥∥∥
k

ds.

and so Lt ≤ CT
∫ t

0
Lsds. Since Lt is a priori bounded by c, Gronwall’s lemma

implies that for all t ∈ [0, T ], Lt = 0 which means that Γ = Γ̃.

The argument above holds for almost every ω so path-wise uniqueness is

proven.335

Theorem 3. Under Assumption 1, the sequence (Γn)n converges in law in

D(R+,S ′) to the unique solution of (38) in C(R+,S ′).

Proof. Let Γ be a limit point of (Γn)n. According to Theorem 2, Γ is a so-

lution of the limit system (38) in C(R+,S ′). Yet, path-wise uniqueness given

by Proposition 7 and Yamada-Watanabe theorem gives weak uniqueness by the340

same argument as in [39, Theorem IX.1.7(i)]. Finally, weak uniqueness gives

uniqueness of the limit point Γ and so convergence.

8. Connection with a stochastic NFE

Let us begin this section with some discussion about the standard central

limit theorem. Let X̄n be the empirical mean of some i.i.d. square integrable345

centred and normalized random variables X1, . . . , Xn. The law of large numbers

and central limit theorem respectively tells that X̄n = 0 + o(1) and X̄n =

0 + n−1/2Z + o(n−1/2) where Z is a standard Gaussian random variable. Of

course, the second statement is purely informal but gives the flavor of the result.

With this description in mind, we provide here an informal overview of the350

mean-field limit and central limit theorem stated in this paper. Assume for

ease of the presentation that the limit Γt is in fact a function, namely there

exists (t, x) 7→ Γt(x) such that for all ϕ, Γt(ϕ) =
∫ 1

0
ϕ(x)Γt(x)dx. Then, the

take-away message until this point of the paper is: in order to approximate the

microscopic system (U it )t≥0,i∈[n], there are two steps,355
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1. the mean-field limit u(t, x) makes an error of order n−1/2 since the renor-

malized error Γn goes to something non trivial;

2. the mean-field combined with the fluctuations, namely Y n(t, x) := u(t, x)+

n−1/2Γt(x) makes an error of order o(n−1/2).

With this in mind, the goal of this section is to find an approximation V n of Y n360

with an error of order o(n−1/2) justifying that V n is a better approximation than

the standard mean-field limit. This approximation V n will be characterized as

the unique solution of a particular stochastic version of the neural field equation

and the discussion above justifies that it is the Stochastic Neural Field Equation

(SNFE) naturally associated with the Hawkes processes given by (1).365

In the following we are interested in the following SNFEdV
n
t (x) =

(
−αV nt (x) +

∫ 1

0
w(y, x)f(V nt (y))dy

)
dt+

∫ 1

0
w(y, x)

√
f(V nt (y))
√
n

W (dt, dy),

V n0 (x) = u0(x).

(41)

whereW is a Gaussian white noise. The mathematical arguments used below are

highly inspired from [28] where other kinds of stochastic neural field equations

can be found.

First we need to specify what we mean by Gaussian white noise. Here, we

use the Gaussian random field

W = (W (A))A∈B(R+×[0,1]), (42)

with covariance function

E(W (A)W (B)) = |A ∩B|,

where |A ∩ B| denotes the Lebesgue measure of A ∩ B. Then, the SNFE (41)

has to be understood in the weak sense.370

Definition 3. By a solution to (41) we mean a real-valued random field (V nt (x))t≥0,x∈[0,1]
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such that

V nt (x) = e−tV n0 (x) +

∫ t

0

e−(t−s)
∫ 1

0

w(y, x)f(V ns (y))dyds

+

∫ t

0

e−(t−s)
∫ 1

0

w(y, x)

√
f(V ns (y))√

n
W (ds, dy), (43)

almost surely for all t ≥ 0 and x ∈ [0, 1].

Now it suffices to give sense to the stochastic term,∫ t

0

e−(t−s)
∫ 1

0

w(y, x)

√
f(V ns (y))√

n
W (ds, dy).

Walsh’s theory of stochastic integration provides a nice framework to give it a

sense, see for instance [28, Theorem 3.1] or [29] for details. We use this theory

in the rest of the paper.

Before stating the well posedness of the SFNE and the approximation result,375

we first provide some heuristics leading to (41).

8.1. Heuristic motivation for (41)

Assume for now that Γt and Mt defined as distributions in the previous

sections are in fact functions (this will be precised later on). Then, let us make

the following abuse of notation: Γt(x) = Γt(δx) and Mt(x) = Mt(δx) in such a

way that, for any ϕ ∈ S,

Γt(ϕ) =

∫ 1

0

ϕ(x)Γt(x)dx and Mt(ϕ) =

∫ 1

0

ϕ(x)Mt(x)dx.

To guess what equation Γt(x) solves, we take (informally) ϕ = δx in (4) to get

Γt(x) = e−αtMt(x)+

∫ t

0

e−α(t−s)
∫ 1

0

w(y, x)f ′(u(s, y))Γs(y)dyds, t ≥ 0 and x ∈ [0, 1].

(44)

As briefly discussed in the Introduction, the first term on the RHS of the equa-

tion above, namely Mt(x), is the limit in distribution as n→∞ of

1√
n

n∑
j=1

w(xj , x)

∫ t

0

eαs(dN j
s − f(U js ))ds,
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which has mean zero and limit variance∫ t

0

e2αs

∫ 1

0

w2(y, x)f(u(s, y))dyds.

Besides, the Martingale Central Limit theorem ensures that Mt(x) is Gaussian

so a suitable description for Mt(x) should be:

Mt(x) =

∫ t

0

∫ 1

0

eαsw(y, x)
√
f(u(s, y))W (ds, dy), t ≥ 0 and x ∈ [0, 1], (45)

where W is the white noise process defined in (42).

Now, we are interested in Y nt (x) = u(t, x) + n−1/2Γt(x) which, by summing

(12) and (44) (where M is replaced according to (45)), is given by

Y nt (x) = e−αtu0(xi) +

∫ t

0

e−α(t−s)
∫ 1

0

w(y, x)

√
f(u(s, y))√

n
W (ds, dy)

+

∫ t

0

e−α(t−s)
∫ 1

0

w(y, x)
(
f(u(s, y)) + n−1/2f ′(u(s, y))Γs(y)

)
dyds. (46)

According to Taylor approximation, the error made when replacing f(Y ns (y)) by

f(u(s, y)) + n−1/2f ′(u(s, y))Γs(y) is of order o(n−1/2) and replacing f(Y ns (y))380

by f(u(s, y)) is of order o(1). When making these replacements, Equation (46)

is exactly the equation satisfied by the solution of our SNFE. For this reason,

we expect that the difference between Y n and the solution of the SFNE is of

order o(n−1/2). This result is confirmed below in Theorem 6.

8.2. Results on the SNFE385

Theorem 4. Under Assumption 1, assume that f is lower bounded by m > 0.

Then, for all n ≥ 1 there exists a unique (up to modification) solution V of (41)

(in the sense of Definition 3) such that for all T > 0,

sup
t≤T,x∈[0,1]

E
[
|Vt(x)|2

]
< +∞. (47)

Proof. Without loss of generality we assume in this proof that n = 1.

We begin with uniqueness. Suppose that V and Ṽ are two solutions and
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define ∆ = V − Ṽ . We have

∆(t, x) =

∫ t

0

e−(t−s)
∫ 1

0

w(y, x)[f(Vs(y))− f(Ṽs(y))]dyds

+

∫ t

0

e−(t−s)
∫ 1

0

w(y, x)

[√
f(Vs(y))−

√
f(Ṽs(y))

]
W (ds, dy).

By Jensen and Burkhölder inequalities it follows that

E[|∆(t, x)|2] ≤ 2t‖w‖20
∫ t

0

e−2(t−s)
∫ 1

0

E
[(
f(Vs(y))− f(Ṽs(y))

)2
]
dyds

+ 2‖w‖20
∫ t

0

e−2(t−s)
∫ 1

0

E

[(√
f(Vs(y))−

√
f(Ṽs(y))

)2
]
dyds.

Then, we use the fact that f and
√
f are Lipschitz (since f is lower bounded)

and it follows that

E[|∆(t, x)|2] ≤ 2t‖w‖20‖f ′‖20
∫ t

0

e−2(t−s)
∫ 1

0

E
[
|∆(s, y)|2

]
dyds

+ 2‖w‖20C‖f ′‖20
∫ t

0

e−2(t−s)
∫ 1

0

E
[
|∆(s, y)|2

]
dyds.

Writing G(t) := supx∈[0,1] E[|∆(t, x)|2], we get

G(t) ≤ C(t+ 1)

∫ t

0

G(s)ds, (48)

and Gronwall’s lemma implies G(t) = 0 for all t ≥ 0 which grants the uniqueness

property.

For the existence of a solution, we can proceed with Picard iteration. Let

V
(0)
t (x) = u0(x) for all t ≥ 0, and define iteratively on k,

V
(k+1)
t (x) := e−tu0(x) +

∫ t

0

e−(t−s)
∫ 1

0

w(y, x)f(V (k)
s (y))dyds

+

∫ t

0

e−(t−s)
∫ 1

0

w(y, x)

√
f(V

(k)
s (y))W (ds, dy). (49)

The proof of convergence of the Picard iteration is pretty classic and follows

computations which are similar to the ones given above to show the uniqueness390

property. We give below a sketch of proof with the main steps whereas the

interested reader is referred to [28, Theorem 3.7.] for the missing computations.
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Using the fact that supx∈[0,1] u0(x)2 < +∞ (which is granted by Assump-

tion 1), one can show by induction that supt≤T,x∈[0,1] E
[
|V (k)
t (x)|2

]
< +∞ so

that the stochastic integral in (49) is well defined in Walsh’s sense. Then, defin-

ing ∆(k) := V (k+1) − V (k) and Gk(t) := supx∈[0,1] E[|∆(k)
t (x)|2] and applying

induction on the same computations as the one leading to Equation (48) give

Gk(t) ≤ Ck(t+ 1)k
∫ t

0

· · ·
∫ tk−1

0

G0(tk)dtkk . . . dt1,

for k ≥ 1 and G0(t) ≤ Ct(1+supx∈[0,1] u0(x)2) for some time dependent constant

Ct. Using both inequalities above, one can show that

sup
k

sup
t≤T,x∈[0,1]

E
[
|V (k)
t (x)|2

]
< +∞.

Finally, this implies the existence of the limit Vt(x) in L2 and that the conver-

gence is uniform, i.e.

sup
t≤T,x∈[0,1]

E
[
|V (k)
t (x)− Vt(x)|2

]
→ 0.

Hence, Equation (47) is satisfied and the uniform convergence justifies taking

the limit as k goes to infinity in (49) in order to prove that the limit V is indeed

a solution in the sense of Definition 3.395

Furthermore, the mean-field limit is an approximation of the SFNE in the

following sense.

Proposition 8. Under the assumptions of Theorem 4, there exists a constant

C = C(T,w, f, u0) such that the unique solution V n of (41) satisfies

sup
t≤T,x∈[0,1]

E
[
|V nt (x)− u(t, x)|2

]
≤ C

n
. (50)

Proof. The proof is pretty similar to the proof of Theorem 4 but here we

must keep track of the index n. Let us denote ∆n := V n − u and Gn(t) :=

supx∈[0,1] E[|∆n
t (x)|2]. We have

∆n(t, x) =

∫ t

0

e−(t−s)
∫ 1

0

w(y, x)[f(V ns (y))− f(u(s, y))]dyds

+ n−1/2

∫ t

0

e−(t−s)
∫ 1

0

w(y, x)
√
f(V ns (y))W (ds, dy).
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The same arguments (Jensen and Burkhölder inequalities) imply the existence

of a constant C such that

Gn(t) ≤ C
(
n−1 + t

∫ t

0

Gn(s)ds

)
,

which grants the result according to Gronwall’s lemma.

The following result gives the space-time regularity of the solution of the

SFNE (41).400

Theorem 5. Under the assumptions of Theorem 4, the unique solution V of

(41) is Lp bounded,

sup
t≤T,x∈[0,1]

E [|Vt(x)|p] < +∞, (51)

for all p ≥ 2, and there is a modification of V such that (t, x) 7→ Vt(x) is

(η1, η2)-Hölder continuous for any η1 < 1/2 and η2 < 1.

Proof. Using Jensen and Burkhölder inequalities in a similar way as in the proof

of Theorem 4, one can get, from (43), the following inequality

E [|Vt(x)|p] ≤ 3p−1

[
|u0(x)|p + ||w||p0||f ′||

p
0

(
tp−1 + cpt

p/2−1
)∫ t

0

E
[(

sup
x
|Vs(x)|+ f(0)

)p]
ds

]
,

and so there is a constant Ct such that Hp(t) := supx∈[0,1] E [|Vt(x)|p] satisfies

Hp(t) ≤ Ct

(
1 + sup

x∈[0,1]

u0(x)p +

∫ t

0

Hp(s)ds

)
.

Since u0 is bounded, Gronwall’s lemma applied to the last inequality gives (51).

For the time regularity, the same kind of computations give for any p and

times 0 ≤ s ≤ t, the existence of a constant Ct such that

E [|Vt(x)− Vt′(x)|p] ≤ Ct (1 +Hp(t)) (t− t′)p/2.

Finally, Kolmogorov’s continuity theorem gives the stated regularity (remember

that p can be as large as one needs).405
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For the spatial regularity, let us write Vt(x) := I1(t, x) + I2(t, x) + I3(t, x) as

given in Definition 3 by
I1(t, x) := e−tV0(x),

I2(t, x) :=
∫ t

0
e−(t−s) ∫ 1

0
w(y, x)f(Vs(y))dyds,

I3(t, x) :=
∫ t

0
e−(t−s) ∫ 1

0
w(y, x)

√
f(Vs(y))√

n
W (ds, dy).

For all x and x′ in [0, 1], one can show that for any p ≥ 2, and j = 1, 2, 3,

E [|Ij(t, x)− Ij(t, x′)|p] ≤ Ct|x− x′|p. (52)

Instead of giving the full computations, we only give the arguments here (once

again, similar computations can be found in [28, Theorem 3.10]. For j = 1, it

is a direct consequence of the Lipschitz continuity of u0. For j = 2 and 3, it

comes from the Lipschitz continuity of w.

Once again, the stated regularity is obtained thanks to Kolmogorov’s conti-410

nuity theorem.

8.3. Approximation result

We start this section discussing the well-posedness of both processes (Γt(x))t,x

and (Mt(x))t,x.

Proposition 9. Fix T > 0 and assume assumptions of Theorem 4.415

1. The process (Mt(x))t≤T,x∈[0,1] given by (45) is well-defined in L2. More-

over, there is a modification of (Mt(x))t,x such that (t, x) 7→ Mt(x) is

(η1, η2)-Hölder continuous for any η1 < 1/2 and η2 < 1. If we define for

such a modification

Mt(ϕ) =

∫ 1

0

ϕ(x)Mt(x)dx, for ϕ ∈ S and t ≤ T,

then M = (Mt)t≤T is a S ′-valued centered Gaussian process with covari-

ance function defined in (5).

2. There exists a unique solution (Γt(x))t≤T,x∈[0,1] of (44) such that for all

T > 0,

sup
t≤T,x∈[0,1]

E
[
|Γt(x)|2

]
< +∞.
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Moreover, the solution is bounded in Lp for any p ≥ 2,

sup
t≤T

sup
x∈[0,1]

E(|Γt(x)|p) <∞,

and there exists a modification such that (t, x) 7→ Γt(x) is (η1, η2)-Hölder

continuous for any η1 < 1/2 and η2 < 1. Furthermore, if we define for

such a modification

Γt(ϕ) =

∫ 1

0

ϕ(x)Γt(x)dx, for ϕ ∈ S and t ≤ T,

then the resulting S ′-valued process (Γt)t≤T is the unique solution of (4).

Proof. By Proposition 1, we have that supt≤T ‖u(t, ·)‖0 < ∞. Using this fact

and recalling that f is Lipscthiz continuous and w is bounded, one can easily

deduce that for any t ≤ T and x ∈ [0, 1],∫ t

0

∫ 1

0

e2αsw2(y, x)f(u(s, y))dsdy <∞.

Then, by [28, Theorem 3.1] the process Mt(x) given by (45) is well-defined for

any t ≤ T and x ∈ [0, 1]. The proof of the regularity properties of (Mt(x))t,x is420

omitted here since it follows along the same lines as in the proof of Theorem 5.

Now, fix t ≤ T and take ϕ ∈ S. Under assumptions of Theorem 4 we

can apply Fubini–Tonelli property for martingale integrals (see for instance [29,

Theorem 5.30]) to deduce that

Mt(ϕ) =

∫ 1

0

ϕ(x)Mt(x)dx =

∫ t

0

eαs
∫ 1

0

I(ϕ)(y)
√
f(u(s, y))W (dsdy),

where y 7→ I(ϕ)(y) is defined in (5). By using the properties of the white noise

W and [28, Theorem 3.1], one can easily check that M is indeed a S ′-valued

centered Gaussian process with covariance function defined in (5).

It remains to prove Item 2. The proof of existence and uniqueness of solutions

of (44) is similar to that of Theorem 4, whereas the boundedness in Lp and the

regularity properties of (Γt(x))t,x follows along the same lines as in the proof

of Theorem 5. For this reason the details are not given here. To conclude the
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proof of the theorem, fix t ≤ T , take ϕ ∈ S and observe that by the definition

of Γt(x) we have

Γt(ϕ) = e−αtMt(ϕ) +

∫ 1

0

ϕ(x)

∫ t

0

e−α(t−s)
∫ 1

0

w(y, x)f ′(u(s, y))Γs(y)dydsdx.

By Fubini Theorem, we can interchange the order of integration of the the term

in the RHS of the equation above to deduce that

Γt(ϕ) = e−αtMt(ϕ)+

∫ t

0

e−α(t−s)
∫ 1

0

(∫ 1

0

ϕ(x)w(y, x)f ′(u(s, y))dx

)
Γs(y)dyds.

Since for any s ≥ 0,

Γs

(∫ 1

0

ϕ(x)w(·, x)f ′(u(s, ·))dx
)

=

∫ 1

0

(∫ 1

0

ϕ(x)w(y, x)f ′(u(s, y))dx

)
Γs(y)dy,

we have that Γt(ϕ) solves (4) and the result follows by uniqueness of Proposition425

7.

We are now ready to state and prove the approximation result: that is the

control of Dn defined by, for all t ∈ [0, T ] and x ∈ [0, 1],

Dn(t, x) := Y nt (x)− V nt (x) (53)

where Y nt (x) and V nt (x) are respectively given by (46) and (43).

Theorem 6. Under assumptions of Theorem 4, for any T > 0 there exists a

constant C = C(T,w, f ′, f (2), α) such that for all n ≥ 1,

sup
0≤t≤T

sup
x∈[0,1]

E((Dn(t, x))2) ≤ C

n2
.

Proof. By Jensen and Burkhölder inequalities it follows that

E(Dn(t, x)2) ≤ 2‖w‖20
n

∫ t

0

e−2α(t−s)
∫ 1

0

E
((√

f(u(s, y))−
√
f(V ns (y))

)2
)
dyds

+t

∫ t

0

e−2α(t−s)
∫ 1

0

w2(y, x)E
(∣∣∣f(u(s, y)) + f ′(u(s, y))n−1/2Γs(y)− f(V ns (y))

∣∣∣2) dyds.
(54)
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By applying Taylor approximation of order 2 and then the inequality (a+ b)2 ≤

2(a2 + b2), we obtain that

E
(∣∣∣f(u(s, y)) + f ′(u(s, y))n−1/2Γs(y)− f(V ns (y))

∣∣∣2) ≤ 2‖f ′‖20E((Dn(s, y))2)

+
‖f (2)‖0

2n2
E(Γ4

s(y)).

Now, by using first that f is lower bounded by m and then the fact that f is

Lipschitz, it follows that

E
((√

f(u(s, y))−
√
f(V ns (y))

)2
)
≤ ‖f

′‖20
4m

E
(
|u(s, y)− V ns (y)|2

)
.

Combining these last two inequalities with inequality (54) yields

E(Dn(t, x))2 ≤ ‖w‖
2
0‖f ′‖0

2nm

∫ t

0

e−2α(t−s)
∫ 1

0

E (|u(s, y)− V ns (y)|) dyds

+ 2t‖w‖20‖f ′‖20
∫ t

0

e−2α(t−s)
∫ 1

0

E((Dn(s, y))2)dyds

+
t‖w‖20‖f (2)‖20

2n2

∫ t

0

e−2α(t−s)
∫ 1

0

E(Γ4
s(y))dyds.

LetH(t) = supx∈[0,1] E((Dn(t, x))2). By Proposition 8 and Theorem 9, it follows

that for all t ≤ T ,

H(t) ≤ C1

n2
+ C2

∫ t

0

H(s)ds,

for positive constants C1 and C2 depending only on T,w, f ′, f (2) and α. Propo-

sition 1 together with Theorems 4 and 9 imply that the function t 7→ H(t) is

locally bounded, so that the result follows from Gronwall inequality.430
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Appendix A. Lemmas

Lemma 1. Let f and g be in Ckb (R,R). Then fg and f ◦ g are in Ckb (R,R) and

there exists C > 0 such that

||fg||k ≤ C||f ||k||g||k and ||f ◦ g||k ≤ C||f ||k(1 + ||g||kk).

Proof. From Leibniz rule, it is clear that ||fg||k ≤ C||f ||k||g||k. For the second

statement, one can proceed by induction on k using ||f ◦ g||k ≤ ||f ||0 + ||g′ f ′ ◦

g||k−1 and the first statement.

Lemma 2. For T > 0 and integers n, k ≥ 1, let τk = inf{0 ≤ t ≤ T :440

maxi∈[n] |ηit| ≥ k}. If f is Lipschitz continuous, both u0 and w0 are bounded,

and u(t, x) ∈ C([0, T ], C[0, 1]), then τk → T almost surely as k →∞.

Proof. By Markov inequality, we have

P(τk < t) = P(sup
s≤t

max
i∈[n]
|ηis| ≥ k)

≤ 1

k
E(sup

s≤t
max
i∈[n]
|ηis|)

≤ 1

k
E(sup
s≤T

max
i∈[n]
|ηis|)

For each s ≥ 0 and i ∈ [n], since ηis =
√
n(U is − u(s, xi)) and by assumption

MT = sups≤T ‖u(s, ·)‖0 <∞, it follows that

|ηis| ≤
√
n(|U is|+MT ).

Now, one can check that for all s ≤ T and i ∈ [n],

|U is| ≤ ‖u0‖0 + ‖w‖0
1

n

n∑
j=1

N j
T ,

so that [1, Proposition 3] ensures that

E
(

sup
s≤T

max
i∈[n]
|U is|

)
≤ ‖u0‖0 + ‖w‖0

1

n

n∑
j=1

E(N j
T ) <∞.
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Collecting the estimates above, we deduce that for some positive constant C =

C(T,w, u, n), it holds E
(
supt≤T maxi∈[n](|ηit|

)
< C, implying if τ = limk τk,

then for all t ≤ T,

P(τ < t) = lim
k→∞

P(τk < t) = 0,

and the result follows.

Appendix B. Fréchet spaces

Here are gathered some technical definitions and results about semi-normed445

spaces and Fréchet spaces in particular. Most of what appears here is taken

from [31].

In the following, let E denote a separated semi-normed space equipped with

the family of semi-norms {Nν , ν ∈ NE} and e denote a generic element of E.

The family is said to be filtering if for all finite subset N ⊂ NE , there exists µ

in NE such that, for all e ∈ E,

sup
ν∈N
||u||ν ≤ ||u||µ.

The dual space E′ is the space of continuous linear forms ξ on E. If the family

of norms is filtering then there is a simple characterisation of E′:

ξ ∈ E′ ⇔ ∃ν ∈ NE , c > 0, sup
e∈E

|ξ(e)|
||e||ν

≤ c.

Definition 4. Any B ⊂ E is called bounded if for every ν ∈ NE , supe∈B ||e||ν <

+∞.

In this paper, we endow E′ with the strong topology defined by the family

of semi-norms indexed by the bounded sets B of E,

||ξ||B := sup
e∈B
|ξ(e)|.

Hence, ξn → ξ in E′ is equivalent to ||ξn − ξ||B → 0 for every bounded set B.450

In particular, ξn → ξ implies ξn(e)− ξ(e) for all e in E.

Definition 5. A Fréchet space is any sequentially complete metrizable semi-

normed space.
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All through the paper, the Fréchet space of interest is S equipped with its

natural filtering family of semi-norms. Hence, for instance, the space C([0, T ],S ′)455

is understood as the space of continuous functions γ from [0, T ] to S ′ equipped

with the strong topology. Its topology is given by the projective limit topology

of {ξ 7→ sup0≤t≤T ||ξt||B , B bounded set of E}. In particular, γ ∈ C([0, T ],S ′)

implies γ(ϕ) ∈ C([0, T ],R) for all ϕ in S. The construction ofD([0, T ],S ′) follows

the same idea where the sup norm over t ∈ [0, T ] is replaced by Skorohod metric.460
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[23] Luçon E, Stannat W. Transition from gaussian to non-gaussian fluctua-

tions for mean-field diffusions in spatial interaction. The Annals of Applied530

Probability 2016;26(6):3840–909.
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