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FINITE-VOLUME APPROXIMATION OF THE INVARIANT MEASURE
OF A VISCOUS STOCHASTIC SCALAR CONSERVATION LAW

SÉBASTIEN BOYAVAL, SOFIANE MARTEL, AND JULIEN REYGNER

Abstract. We study the numerical approximation of the invariant measure of a viscous scalar conservation law, one-
dimensional and periodic in the space variable, and stochastically forced with a white-in-time but spatially correlated noise.
The flux function is assumed to be locally Lipschitz continuous and to have at most polynomial growth. The numerical
scheme we employ discretises the SPDE according to a finite-volume method in space, and a split-step backward Euler
method in time. As a first result, we prove the well-posedness as well as the existence and uniqueness of an invariant
measure for both the semi-discrete and the split-step scheme. Our main result is then the convergence of the invariant
measures of the discrete approximations, as the space and time steps go to zero, towards the invariant measure of the SPDE,
with respect to the second-order Wasserstein distance. We investigate rates of convergence theoretically, in the case where
the flux function is globally Lipschitz continuous with a small Lipschitz constant, and numerically for the Burgers equation.

1. Introduction

1.1. Viscous scalar conservation law with random forcing. We consider the following viscous scalar conservation
law with stochastic forcing on the one-dimensional torus T = R/Z:

du = −∂xA(u)dt+ ν∂xxudt+
∑
k≥1

gkdW k(t), x ∈ T, t ≥ 0, (1)

where (W k)k≥1 is a family of independent real Brownian motions and (gk)k≥1 is a family of smooth functions on T.
The viscosity coefficient ν is assumed to be positive. Under regularity and polynomial growth assumptions on the flux
function A, Equation (1) is well-posed in a strong sense, and there exists a unique invariant measure for its solution, see
Proposition 1.2 below, which is proved in the companion paper [29].

In this work, we construct a numerical scheme, based on the finite-volume method, that allows to approximate this
invariant measure. We place ourselves in the setting of [29] and first recall our main notations, assumptions and results.

1.1.1. Notations. For any p ∈ [1,+∞], we denote by Lp0(T) the set of functions v ∈ Lp(T) such that∫
T
v(x)dx = 0,

and we write ‖v‖Lp
0(T) for the Lp norm induced on Lp0(T). For any integer m ≥ 0, we denote by Hm

0 (T) the intersection
of L2

0(T) with the Sobolev space Hm(T). Combining the Jensen inequality

∀1 ≤ p ≤ q ≤ +∞, ‖v‖Lp
0(T) ≤ ‖v‖Lq

0(T), (2)

with the gradient estimate
‖v‖L∞0 (T) ≤ ‖∂xv‖L1

0(T), (3)
we observe that ‖v‖Hm

0 (T) := ‖∂mx v‖L2
0(T) defines a norm on Hm

0 (T), which is associated with the scalar product 〈v, w〉Hm
0 (T)

and makes Hm
0 (T) a separable Hilbert space.

We denote by N the set of non-negative integers, and by N∗ the set of positive integers.

1.1.2. Assumptions on the flux and the noise. We shall assume that the flux function A and the family of functions (gk)k≥1

satisfy the following condition.

Assumption 1.1 (On A and (gk)k≥1). The function A : R→ R is of class C2, its first derivative has at most polynomial
growth:

∃CA > 0, ∃pA ∈ N∗, ∀v ∈ R, |A′(v)| ≤ CA (1 + |v|pA) , (4)
and its second derivative A′′ is locally Lipschitz continuous on R. Furthermore, for all k ≥ 1, gk ∈ H2

0 (T) and

D :=
∑
k≥1

∥∥gk∥∥2

H2
0 (T)

< +∞. (5)
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The assumptions (4) and (5) will be needed in the arguments contained in this paper while the local Lipschitz continuity
of A′′ is only necessary for Proposition 1.2, which is proved in [29].

The family of Brownian motions (W k)k≥1 is defined on a probability space (Ω,F ,P) equipped with a normal filtration
(Ft)t≥0 in the sense of [13, Section 3.3]. Under Assumption 1.1, the series

∑
k g

kW k has to be understood as an H2
0 (T)-

valued Wiener process WQ with trace class covariance operator Q : H2
0 (T)→ H2

0 (T) given by Qv =
∑
k≥1 g

k〈v, gk〉H2
0 (T),

see [29] for details. In the sequel, we shall call WQ a Q-Wiener process.

1.1.3. Main results from [29]. Given a normed vector space E, B(E) denotes the Borel σ-field on E, P(E) denotes the set
of probability measures over (E,B(E)), and for p ∈ [1,+∞), Pp(E) denotes the subset of P(E) of probability measures
with finite p-th order moment. The well-posedness of (1), as well as the existence and uniqueness of an invariant measure
for its solution, is proved in [29, Theorem 1, Theorem 2].

Proposition 1.2 (Well-posedness and invariant measure for (1)). Let u0 ∈ H2
0 (T). Under Assumption 1.1, there exists a

unique strong solution (u(t))t≥0 to Equation (1) with initial condition u0. That is, an (Ft)t≥0-adapted process (u(t))t≥0

with values in H2
0 (T) such that, almost surely:

(1) the mapping t 7→ u(t) is continuous from [0,+∞) to H2
0 (T);

(2) for all t ≥ 0, the following equality holds:

u(t) = u0 +

∫ t

0

(−∂xA (u(s)) + ν∂xxu(s)) ds+WQ(t). (6)

Furthermore, the process (u(t))t≥0 admits a unique invariant measure µ ∈ P(H2
0 (T)), and if v is a random variable with

distribution µ, then E[‖v‖2
H2

0 (T)
] < +∞ and for all p ∈ [1,+∞), E[‖v‖p

Lp
0(T)

] < +∞.

Let us specify that for any t ≥ 0, the notation u(t) shall always refer to an element of the space H2
0 (T). The scalar

values taken by this function are denoted by u(t, x), for x ∈ T.

1.2. Space discretisation. To discretise (1) with respect to the space variable, we first fix N ≥ 1, denote by TN = Z/NZ
the discrete torus, and define the regular mesh TN on T by

TN := {(xi−1, xi] , i ∈ TN} , xi :=
i

N
,

where we identify T with (0, 1] and TN with {1, . . . , N}. Next, we introduce the finite dimensional space

RN0 := {v = (v1, . . . , vN ) ∈ RN : v1 + · · ·+ vN = 0},
on which we define, for any p ∈ [1,+∞], the normalised `p norm

‖v‖`p0(TN ) :=

(
1

N

∑
i∈TN

|vi|p
)1/p

if p < +∞, ‖v‖`∞0 (TN ) := max
i∈TN

|vi|.

The projection operator ΠN : L1
0(T)→ RN0 is defined by

∀i ∈ TN , (ΠNv)i = N

∫ xi

xi−1

v(x)dx.

Notice that by Jensen’s inequality, it satisfies the inequality

‖ΠNv‖`p0(TN ) ≤ ‖v‖Lp
0(T), (7)

for any p ∈ [1,+∞].
Applying this operator to both sides of (1), we get, for any i ∈ TN ,

d (ΠNu(t))i = −N (A (u (t, xi))−A (u (t, xi−1))) dt+ νN (∂xu (t, xi)− ∂xu (t, xi−1)) dt+ (ΠNW
Q(t))i.

Let us denote by UN (t) = (UNi (t))i∈TN
a vector whose purpose is to approximate the vector ΠNu(t). The basic idea of

finite-volume schemes consists in introducing a numerical flux function A : R2 → R such that the value A(UNi (t), UNi+1(t))
aims to approximate the flux A(u(t, xi)) of the conserved quantity between the two adjacent cells (xi−1, xi] and (xi, xi+1].
The function A satisfies certain properties which are stated in Assumption 1.3 below. Given such a function, for any
v ∈ RN0 we denote by A

N
(v) the vector with coordinates A(vi, vi+1), i ∈ TN .

We then introduce the first-order forward and backward discrete derivative operators D(1,+)
N and D

(1,−)
N , defined by

∀i ∈ TN , (D
(1,+)
N v)i := N(vi+1 − vi), (D

(1,−)
N v)i := N(vi − vi−1),

and the second-order centered discrete derivative operator D(2)
N , defined by

D
(2)
N v = D

(1,−)
N D

(1,+)
N v = D

(1,+)
N D

(1,−)
N v.
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In the sequel, we shall sometimes call the quantities ‖D(1,+)v‖`20(T) and ‖D(2)v‖`20(T) the h1
0(TN ) and h2

0(TN ) norms of v.
For all k ≥ 1, we finally define the vector gk := ΠNg

k ∈ RN0 and denote by WQ,N the process ΠNW
Q =

∑
k g

kW k.
This is a Wiener process in RN0 with covariance

E
[
WQ,N
i (t)WQ,N

j (t)
]

= t
∑
k≥1

gki g
k
j , (8)

which is easily seen to be finite under Assumption 1.1 (see (24) below).
These notations allow us to write a semi-discrete finite-volume approximation of (1) as the stochastic differential

equation (SDE)

dUN (t) = −D(1,−)
N A

N
(UN (t))dt+ νD

(2)
N UN (t)dt+ dWQ,N (t). (9)

We shall sometimes use the notation

b(v) := −D(1,−)
N A

N
(v) + νD

(2)
N v

for the drift of this SDE. Since both this vector field and the noise WQ,N take their values in RN0 , we deduce that (9) is
conservative in the sense that if UN (0) ∈ RN0 , then for all t ≥ 0, UN (t) ∈ RN0 .

We may now state our assumptions on the numerical flux.

Assumption 1.3 (On A). The function A belongs to C1(R2,R), its first derivatives ∂1Ā and ∂2Ā are locally Lipschitz
continuous on R2, and it satisfies the following properties.

(i) Consistency:

∀v ∈ R, A(v, v) = A(v). (10)

(ii) Monotonicity:

∀v, w ∈ R, ∂1Ā(v, w) ≥ 0, ∂2Ā(v, w) ≤ 0. (11)

(iii) Polynomial growth:

∃CĀ > 0, ∃pĀ ∈ N∗, ∀v, w ∈ R, |∂1A(v, w)| ≤ CĀ(1 + |v|pĀ), |∂2A(v, w)| ≤ CĀ(1 + |w|pĀ). (12)

Note in particular that the numerical flux function, and therefore the drift of the SDE (9), is not globally Lipschitz
continuous. Nevertheless, we prove in Proposition 2.4 that (9) is well-posed under Assumption 1.3. The polynomial
growth assumption is used in Proposition 3.1 to obtain uniform h2

0(TN ) estimates on the invariant measure of (UN (t))t≥0.
This task will require uniform `p0(TN ) moment estimates, for large values of p, which will be established in Lemma 2.5
and Proposition 3.1. The fact that the polynomial growth assumption on ∂1A(v, w) (resp. ∂2A(v, w)) is required to hold
uniformly in w (resp. v) may seem demanding, it is however well suited to flux-splitting schemes as the Engquist–Osher
numerical flux described below.

Remark 1.4 (Engquist–Osher numerical flux). A notable class of numerical fluxes satisfying the monotonicity and
polynomial growth conditions (under Assumption 1.1) are the flux-splitting schemes [22, Example 5.2], among which a
commonly employed example is the Engquist–Osher numerical flux [21] defined (for A(0) = 0) by

∀v, w ∈ R, ĀEO(v, w) :=

∫ v

0

[A′(v′)]+dv′ −
∫ w

0

[A′(w′)]−dw′.

1.3. Space and time discretisation. The second stage in constructing a numerical scheme for (1) is the time discreti-
sation of the SDE (9). Considering a time step ∆t > 0 and a positive integer n, we introduce the notation

∆WQ,N
n := WQ,N (n∆t)−WQ,N ((n− 1)∆t). (13)

As already noticed in [30], explicit numerical schemes for SDEs with non-globally Lipschitz continuous coefficients do
not preserve in general the long time stability, whereas implicit schemes are more robust. Therefore, since our main focus
in this paper is to approximate invariant measures, we follow [30] and propose the following split-step stochastic backward
Euler method UN,∆t

n+ 1
2

= UN,∆t
n + ∆tb

(
UN,∆t

n+ 1
2

)
,

UN,∆t
n+1 = UN,∆t

n+ 1
2

+ ∆WQ,N
n+1 .

(14)

The well-posedness of the scheme, i.e. the existence and uniqueness of the value UN,∆t

n+ 1
2

in the first line of (14), is
ensured by Proposition 2.13.
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1.4. Main results. Our first focus is on the long time behaviour of the processes (UN (t))t≥0 and (UN,∆t
n )n∈N. In this

perspective, we state our first result.

Theorem 1.5 (Existence and uniqueness of invariant measures for both schemes). Under Assumptions 1.1 and 1.3, the
following two statements hold:

(i) for any N ≥ 1, the process (UN (t))t≥0 solution of the SDE (9) admits a unique invariant measure ϑN ∈ P(RN0 );
(ii) for any N ≥ 1 and ∆t > 0, the sequence (UN,∆t

n )n∈N defined by (14) admits a unique invariant measure ϑN,∆t ∈
P(RN0 ).

Moreover, for any N ≥ 1 and ∆t > 0, the measures ϑN and ϑN,∆t belong to P2(RN0 ).

The proofs for these two statements are given separately in Section 2. The structure of the proof is the same as for [29,
Theorem 2] where we derived the existence and uniqueness of an invariant measure for the solution of (1) from two
important properties: respectively the dissipativity of the L2

0(T) norm of the solution, and an L1
0(T) contraction property.

In Lemma 2.1 below, we show that both of these properties are preserved at the discrete level. Therefore, we then prove
the existence of an invariant measure with a tightness argument (uniform energy estimates and the Krylov–Bogoliubov
theorem) and the uniqueness with a coupling argument. While the proof of existence is rather standard, our analysis of
uniqueness depends on arguments which are more specific to the processes (UN (t))t≥0 and (UN,∆t

n )n∈N. We insist on the
fact that both proofs of existence and uniqueness crucially rely on the positivity of the viscosity coefficient ν.

We now address the ∆t→ 0 limit of ϑN,∆t and the N → +∞ limit of ϑN . Since most of our results follow from `20(TN )
or L2

0(T) estimates, it is natural in our setting to work with the following distance on P2(`20(TN )) or P2(L2
0(T)).

Definition 1.6 (Wasserstein distance). Let (E, ‖ · ‖E) be a normed vector space and let α, β ∈ P2(E). The quadratic
Wasserstein distance between α and β is defined by

W2(α, β) := inf
π∈Π(α,β)

(∫
E×E

‖u− v‖2E dπ(u, v)

)1/2

,

where Π(α, β) is the set of probability measures on E × E with marginals α and β:

Π(α, β) := {π ∈ P2 (E × E) : ∀B ∈ B (E) , π(B × E) = α(B) and π(E ×B) = β(B)} .

The reader is referred to [32, Chapter 6] for further details on the Wasserstein distance, and in particular for the proof
that it actually defines a distance on P2(E). From now on, the spaces P2(`20(TN )) and P2(L2

0(T)) are systematically
endowed with the topology induced by the corresponding distance W2.

As a first step to approximate numerically the measure µ, we embed the measures ϑN and ϑN,∆t into P(L2
0(T)). Let

us denote by ΨN : RN0 → L∞0 (T) the piecewise constant reconstruction operator defined by, for all v ∈ RN0 ,

∀i ∈ Tn, ∀x ∈ (xi−1, xi], ΨNv(x) := vi.

Notice that for any p ∈ [1,+∞],
‖ΨNv‖Lp

0(T) = ‖v‖`p0(TN ), (15)
so that Theorem 1.5 implies that the pushforward measures

µN := ϑN ◦ (ΨN )−1, µN,∆t := ϑN,∆t ◦ (ΨN )−1, (16)

belong to P2(L2
0(T)). Sections 3 and 4 are devoted to the proof of our main result.

Theorem 1.7 (Convergence of the invariant measures). Under Assumptions 1.1 and 1.3, we have

lim
N→∞

µN = µ in P2(L2
0(T)), (17)

and moreover, for any N ≥ 1,
lim

∆t→0
ϑN,∆t = ϑN in P2(RN0 ). (18)

In short, we have the following approximation result:

lim
N→∞

lim
∆t→0

µN,∆t = µ in P2(L2
0(T)).

Remark 1.8. In Theorem 1.7, µ is seen as a probability measure of P(L2
0(T)) giving full weight to H2

0 (T), as opposed
to Proposition 1.2 where µ was seen as a probability measure of P(H2

0 (T)). The fact that both objects coincide follows
from [29, Lemma 6].

Let us briefly sketch the lines of our proof of (17). First, the positivity of the viscosity coefficient ν makes (1) parabolic,
so that energy estimates in L2

0(T) and H1
0 (T) are a natural tool to study this equation. In this perspective, we derive

uniform (in N) discrete `p0(TN ), h1
0(TN ) and h2

0(TN ) bounds on ϑN . They imply that the sequence (µN )N≥1 is relatively
compact in P2(L2

0(T)). Using the finite-time convergence of the finite-volume scheme ΨNUN (t) to the solution u(t) of
the SPDE (1), we then show that any limit µ∗ of a weakly converging subsequence of (µN )N≥1 is invariant for (1), which
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allows to identify all these limits and leads to (17). This finite-time convergence result, which is an important step in our
argument, is stated in Proposition 3.4. It relies in particular on H2

0 (T) estimates on u, so that the framework of strong
solutions for (1) is well-suited to our approach.

The proof of (18) follows the same approach, and the main finite-time convergence result is stated in Proposition 4.4.

Remark 1.9 (Ergodicity). As the invariant measure µ of the process (u(t))t≥0 is unique from Proposition 1.2, it is
ergodic. In particular, a consequence of Birkhoff’s ergodic theorem (see for instance [14, Theorem 1.2.3]) is that for any
ϕ ∈ L1(µ) and for µ-almost every initial condition u0 ∈ H2

0 (T), almost surely,

lim
t→∞

1

t

∫ t

0

ϕ(u(s))ds = E [ϕ(v)] , where v ∼ µ.

By virtue of Theorem 1.5, this property also holds at the discrete level: the sequence (UN,∆t
n )n∈N satisfies for any

ϕ ∈ L1(ϑN,∆t) and for ϑN,∆t-almost every initial condition UN,∆t
0 ∈ RN0 , almost surely,

lim
n→∞

1

n

n−1∑
l=0

ϕ(UN,∆t
l ) = E

[
ϕ(VN,∆t)

]
, where VN,∆t ∼ ϑN,∆t.

Thanks to this property, it is possible to approximate numerically expectations of functionals under the invariant measure
by averaging in time the simulated process. We used this method to perform the numerical experiments presented in
Section 5.

Complementing the convergence results of Theorem 1.7 with a quantitative rate in N and ∆t is a natural question.
As far as the convergence of µN to µ when N → +∞ is concerned, we sketch in Subsection 3.4 how our arguments may
be adapted to yield a strong L2

0(T) error estimate of order 1/N between uN (t) and u(t), valid in the long time limit,
in the case where the flux function A is globally Lipschitz continuous with a small Lipschitz norm. This implies that
W2(µN , µ) ≤ C/N . We show in Section 5 that this result is sharp in the case where A = 0. In this section, we also study
numerically the rate of convergence of ϑN,∆t to ϑN and observe a weak error of order ∆t, even when the flux function is
not small and not Lipschitz continuous, which is consistent with theoretical results by Kopec on a related class of split-step
schemes [26].

1.5. Review of literature. Many results are found concerning the numerical approximation in finite time of stochastic
conservation laws. A particular case of interest is the stochastic Burgers equation which corresponds to the case of the
flux function A(v) = v2/2. Finite difference schemes are presented in [1, 25] to approximate its solution. When the
viscosity coefficient is equal to zero, the SPDE falls into a different framework. Convergence of finite-volume schemes in
this hyperbolic case have been established both under the kinetic [18, 19, 17] and the entropic formulations [2, 3].

As regards the numerical approximation of the invariant measure of an SPDE, we may start by mentioning [10]
concerning the damped stochastic non-linear Schrödinger equation, where a spectral Galerkin method is used for the
space discretisation and a modified implicit Euler scheme for the temporal discretisation. Several works by Bréhier and
coauthors are devoted to the numerical approximation of the invariant measures of semi-linear SPDEs in Hilbert spaces
perturbed with white noise [5, 6, 7], where spectral Galerkin and semi-implicit Euler methods are used. Those results hold
under a global Lipschitz assumption on the nonlinearity. In the more recent works [11, 12, 8], non-Lipschitz nonlinearities
are considered, but they still need to satisfy a one-sided Lipschitz condition.

In the present work, our assumptions on the flux function do not imply that the non-linear term is globally Lipschitz
continuous in L2

0(T) nor even one-sided Lipschitz continuous. In particular, the case of the Burgers equation is covered.
However, Equation (1) satisfies an L1

0(T) contraction property [29, Proposition 5] which may be viewed as a one-sided
Lipschitz condition in the Banach space L1

0(T).

1.6. Outline of the paper and comments on the presentation. Throughout the article, we always work under
Assumptions 1.1 and 1.3. We will not repeat these assumptions in the statements of our results.

Section 2 is dedicated to the proof of the well-posedness and of the existence and uniqueness of an invariant measure
for the semi-discrete scheme (9) and the split-step scheme (14). The proof of Theorem 1.7 is then detailed in two separate
sections. The convergence in space (17) is proved in Section 3 and then, in Section 4, we prove the convergence with
respect to the time step, i.e. Equation (18). Numerical experiments investigating the rates of convergence in Theorem 1.7
are presented in Section 5. The proofs of certain results which are not essential to the exposition of our arguments are
gathered in Appendix.

In order to emphasise our original contributions, throughout the paper some arguments which are standard to either
stochastic calculus or numerical analysis are omitted or merely sketched. A preliminary version of this work, with all
proofs detailed, is available as Chapter 3 of [28], and references to this document are given whenever necessary (see also
the first arXiv version of this paper). More numerical experiments, in particular regarding the turbulent behaviour of the
process in its stationary regime, are also reported in Chapter 4 of [28].
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2. Semi-discrete and split-step schemes: well-posedness and invariant measure

Preliminary results are given in Subsection 2.1. In Subsection 2.2, we prove the well-posedness of the semi-discrete
scheme (UN (t))t≥0, and after establishing some properties of this process, we prove the existence and uniqueness of
an invariant measure ϑN as well as the fact that necessarily, ϑN ∈ P2(RN0 ). Similar results for the split-step scheme
(UN,∆t

n )n∈N are obtained in Subsection 2.3, which completes the proof of Theorem 1.5.

2.1. Preliminary results. In this subsection, we state a few preliminary results which will be used throughout the paper.

2.1.1. Algebraic identities. We define the normalised scalar product on RN by

〈v,w〉`2(TN ) =
1

N

∑
i∈TN

viwi.

When both v and w belong to RN0 , we shall rather denote 〈v,w〉`20(TN ).

The discrete derivative operators D(1,+)
N and D

(1,−)
N satisfy the summation by parts identity

〈D(1,+)
N v,w〉`2(TN ) = −〈v,D(1,−)

N w〉`2(TN ). (19)

We shall also use the variant

〈D(1,+)
N v,D

(1,+)
N w〉`20(TN ) = 〈D(1,−)

N v,D
(1,−)
N w〉`20(TN ) = −〈D(2)

N v,w〉`2(TN ). (20)

2.1.2. Discrete inequalities. The discrete Jensen inequality writes

∀1 ≤ p ≤ q ≤ +∞, ‖v‖`p0(TN ) ≤ ‖v‖`q0(TN ), (21)

and we shall use the following version of the discrete Poincaré inequality:

‖v‖`20(TN ) ≤ ‖D
(1,+)
N v‖`20(TN ) = ‖D(1,−)

N v‖`20(TN ), (22)

which follows from (21) and
‖v‖`∞0 (TN ) ≤ ‖D

(1,+)
N v‖`10(TN ), (23)

which is the discrete version of the gradient estimate (3).

2.1.3. Properties of b. For any z ∈ R, we write sign(z) := 1{z≥0} − 1{z<0}. By extension, for v ∈ RN0 , sign(v) denotes
the vector of {−1,+1}N defined by (sign(v))i = sign(vi). The discretised drift b preserves two important features of
Equation (1) that we will use repeatedly throughout this paper:

Lemma 2.1 (Discrete contraction and dissipativity). For all v,w ∈ RN0 , the function b satisfies
(i) 〈sign(v −w),b(v)− b(w)〉`2(TN ) ≤ 0 (`10(TN ) contraction);
(ii) 〈v,b(v)〉`20(TN ) ≤ −ν‖D

(1,+)
N v‖2

`20(TN )
(`20(TN ) dissipativity).

The proof of Lemma 2.1 relies on the following result, the proof of which is postponed to Appendix A.

Lemma 2.2 (Stability). For any v ∈ RN0 and any q ∈ 2N∗, we have

〈vq−1,D(1,−)A
N

(v)〉`2(TN ) ≥ 0,

where the notation vq−1 refers to the vector with coordinates (vq−1
1 , . . . , vq−1

N ).

We now detail the proof of Lemma 2.1.

Proof of Lemma 2.1. (i) Let v,w ∈ RN0 . From the definition of b and (19–20), we write

〈sign(v −w),b(v)− b(w)〉`2(TN )

= −〈sign(v −w),D
(1,−)
N (A

N
(v)−A

N
(w))〉`2(TN ) + ν〈sign(v −w),D

(2)
N (v −w)〉`2(TN )

= 〈D(1,+)
N sign(v −w),A

N
(v)−A

N
(w)〉`2(TN ) − ν〈D

(1,+)
N sign(v −w),D

(1,+)
N (v −w)〉`20(TN ).

Observe that since the function sign : R→ R is non-decreasing,

〈D(1,+)
N sign(v −w),D

(1,+)
N (v −w)〉`20(TN ) ≥ 0.

As for the other term, it follows from the monotonicity property of Ā that for any i ∈ TN ,

(sign(vi+1 − wi+1)− sign(vi − wi)) (A(vi, vi+1)−A(wi, wi+1)) ≤ 0.
6



Indeed, let us address for instance the case where vi+1 ≥ wi+1 and vi ≤ wi. Then, on the one hand, we have sign(vi+1 −
wi+1)− sign(vi − wi) = 2. On the other hand, we have

Ā(vi, vi+1)− Ā(wi, wi+1) =
(
Ā(vi, vi+1)− Ā(vi, wi+1)

)
+
(
Ā(vi, wi+1)− Ā(wi, wi+1)

)
=

∫ vi+1

wi+1

∂2Ā(vi, z)dz −
∫ wi

vi

∂1Ā(z, wi+1)dz ≤ 0.

The case where vi+1 ≤ wi+1 and vi ≥ wi is treated symmetrically.
(ii) Let v ∈ RN0 . We have

〈v,b(v)〉`20(TN ) = −〈v,D(1,−)
N A

N
(v)〉`20(TN ) + ν〈v,D(2)

N v〉`20(TN ).

Lemma 2.2 with q = 2 shows that the first term of the above decomposition is non-positive, and applying (20) in the
second term yields the result. �

Remark 2.3. The `20(TN ) dissipativity property actually holds for the family of E-fluxes [27], a larger family than the
class of monotone numerical fluxes. The monotonicity assumption (11) seems however necessary as regards the `10(TN )
contraction property.

2.1.4. Finiteness of the covariance of WQ,N . At several places we shall need the estimates

max
i∈TN

∑
k≥1

(gki )2 ≤ D,
∑
k≥1

‖gk‖2`20(TN ) ≤ D,
∑
k≥1

‖D(1,+)
N gk‖2`20(TN ) ≤ D. (24)

The third estimate in (24) follows from (5) and the fact that for any k ≥ 1,

‖D(1,+)
N gk‖2`20(TN ) ≤ ‖g

k‖2H1
0 (T) ≤ ‖g

k‖2H2
0 (T),

where the first inequality can be checked by a direct computation using Jensen’s inequality and the second inequality
follows from (2) and (3). The first and second estimates in (24) are then consequences of the third estimate thanks to (23)
and (22), respectively. These estimates prove for instance the finiteness of the sum in the right-hand side of (8).

2.2. The semi-discrete scheme. In this subsection, we first show that the SDE (9) has a unique global solution
(UN (t))t≥0. We then give uniform `p0(TN ) estimates on this process, which will be used at several places in the sequel of
the paper. We finally prove the existence and the uniqueness of an invariant measure ϑN for (UN (t))t≥0.

2.2.1. Well-posedness of (9). Since the function b is locally Lipschitz continuous, it is a standard result that there exists
a unique strong solution (UN (t))t∈[0,T∗) to Equation (9) defined up to a random explosion time T ∗. That this solution is
actually global in time usually follows from a Lyapunov-type condition. In our context, the presence of a viscous term in
the SPDE (1) allows the use of energy methods based on the dissipation of the squared L2

0(T) norm, see [29]. At the level
of the SDE (9), denoting by LN the associated infinitesimal generator, this fact is observed on the simple estimate

LN‖v‖2`20(TN ) = 2〈v,b(v)〉`20(TN ) +
∑
k≥1

‖gk‖2`20(TN ) ≤ −2ν‖D(1,+)
N v‖2`20(TN ) + D ≤ −2ν‖v‖2`20(TN ) + D, (25)

which follows from Lemma 2.1, (24) and (22). This shows that the squared `20(TN ) norm is a Lyapunov function for LN ,
and implies the following statement.

Proposition 2.4 (Well-posedness of (9)). Let UN
0 be an RN0 -valued, F0-measurable random variable. The stochastic

differential equation (9) admits a unique strong solution (UN (t))t≥0 taking values in RN0 and with initial condition UN
0 .

The proof of Proposition 2.4 is omitted, we refer to [28, Proposition 3.15] for details.

2.2.2. Moment estimates. In this paragraph, we prove the following uniform (in N) `p0(TN ) estimates on the process UN .
For any v ∈ RN0 , we recall the notation vp = (vp1 , . . . , v

p
N ) and take the convention that ‖v‖0

`00(TN )
= 1.

Lemma 2.5 (Moment estimates on the semi-discrete scheme). Let p ∈ 2N∗ and let UN
0 be an F0-measurable random

variable such that E[‖UN
0 ‖

p
`p0(TN )

] < +∞. The solution (UN (t))t≥0 of (9) with initial condition UN
0 satisfies the following

estimates.
(i) For all t ≥ 0,

E
[∥∥UN (t)

∥∥p
`p0(TN )

]
+ νpE

[∫ t

0

〈
D

(1,+)
N

(
(UN (s))p−1

)
,D

(1,+)
N UN (s)

〉
`20(TN )

ds

]
≤ E

[∥∥UN
0

∥∥p
`p0(TN )

]
+ D

p(p− 1)

2
E
[∫ t

0

∥∥UN (s)
∥∥p−2

`p−2
0 (TN )

ds

]
.

(26)
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(ii) There exist six positive constants c
(p)
0 , c(p)

1 , c(p)
2 , d(p)

0 , d(p)
1 and d

(p)
2 , depending only on D, ν and p such that we

have

∀t > 0, E
[∫ t

0

∥∥UN (s)
∥∥p
`p0(TN )

ds

]
≤ c

(p)
0 + c

(p)
1 E

[∥∥UN
0

∥∥p
`p0(TN )

]
+ c

(p)
2 t, (27)

and
∀t > 0, sup

s∈[0,t]

E
[∥∥UN (s)

∥∥p
`p0(TN )

]
≤ d

(p)
0 + d

(p)
1 E

[∥∥UN
0

∥∥p
`p0(TN )

]
+ d

(p)
2 t. (28)

The proof of Lemma 2.5 relies on the following `p0(TN ) extension of the Poincaré inequality (22), the proof of which is
postponed to Appendix A.

Lemma 2.6 (`p0(TN ) Poincaré inequality). For any v ∈ RN0 and p ∈ 2N∗, we have〈
D

(1,+)
N

(
vp−1

)
,D

(1,+)
N v

〉
`20(TN )

≥ 4(p− 1)

p2
‖v‖p

`p0(TN )
.

We sketch the lines of the proof of Lemma 2.5 and refer to [28, Lemma 3.16] for details.

Sketch of the proof of Lemma 2.5. Let us fix p ∈ 2N∗ and apply the Itô formula to ‖UN (t)‖p
`p0(TN )

. We get

d‖UN (t)‖p
`p0(TN )

= p
〈
UN (t)p−1,

(
−D(1,−)

N A
N

(UN (t)) + νD
(2)
N UN (t)

)
dt+ dWQ,N (t)

〉
`2(TN )

+
p(p− 1)

2

〈
UN (t)p−2,

∑
k≥1

(gk)2

〉
`2(TN )

dt.

By Lemma 2.2, 〈
UN (t)p−1,−D(1,−)

N A
N

(UN (t))
〉
`2(TN )

≤ 0;

by (20), 〈
UN (t)p−1, νD

(2)
N UN (t)

〉
`2(TN )

= −ν
〈
D

(1,+)
N

(
UN (t)p−1

)
,D

(1,+)
N UN (t)

〉
`20(TN )

;

and by (24), 〈
UN (t)p−2,

∑
k≥1

(gk)2

〉
`2(TN )

≤ D‖UN (t)‖p−2

`p−2
0 (TN )

.

Using a localisation argument to remove the stochastic integral when taking the expectation, we get (26).
We deduce from (26) and Lemma 2.6 that for any p ∈ 2N∗ and t ≥ 0,

E
[∥∥UN (t)

∥∥p
`p0(TN )

]
≤ E

[∥∥UN
0

∥∥p
`p0(TN )

]
+ D

p(p− 1)

2
E
[∫ t

0

∥∥UN (s)
∥∥p−2

`p−2
0 (TN )

ds

]
,

and

E
[∫ t

0

∥∥∥D(1,+)
N UN (s)

∥∥∥p
`p0(TN )

ds

]
≤ p

4ν(p− 1)
E
[∥∥UN

0

∥∥p
`p0(TN )

]
+ D

p2

8ν
E
[∫ t

0

∥∥UN (s)
∥∥p−2

`p−2
0 (TN )

ds

]
.

This readily yields (27) and (28) for p = 2 and, along with the elementary inequality

‖UN
0 ‖

p−2

`p−2
0 (TN )

≤ 1 + ‖UN
0 ‖

p
`p0(TN )

,

then serves as the basis for an inductive argument on even values of p to obtain the general form of (27) and (28). �

2.2.3. Feller property and existence of an invariant measure. In order to deduce from the Lyapunov condition (25) the
existence of an invariant measure for (UN (t))t≥0, it is necessary to check that it is a Feller process [24, Theorem 4.21],
which in our case is a consequence of the following `10(TN ) contraction property.

Proposition 2.7 (`10(TN ) contraction for UN ). Two solutions (UN (t))t≥0 and (VN (t))t≥0 of (9), driven by the same
Wiener process WQ,N , with possibly different initial conditions, satisfy almost surely

∀0 ≤ s ≤ t,
∥∥UN (t)−VN (t)

∥∥
`10(TN )

≤
∥∥UN (s)−VN (s)

∥∥
`10(TN )

.

Proof. Since (UN (t))t≥0 and (VN (t))t≥0 are driven by the same Wiener process, then (UN (t)−VN (t))t≥0 is an absolutely
continuous process, and

d(UN (t)−VN (t)) =
(
b(UN (t))− b(VN (t))

)
dt.

In particular, we can write for all t ≥ 0,
d

dt

∥∥UN (t)−VN (t)
∥∥
`10(TN )

=
〈
sign

(
UN (t)−VN (t)

)
,b(UN (t))− b(VN (t))

〉
`2(TN )

≤ 0,
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where the inequality comes from Lemma 2.1.(i), and the result follows by integrating in time. �

Corollary 2.8 (Feller property for UN ). The solution (UN (t))t≥0 of Equation (9) satisfies the Feller property, i.e. for
any continuous and bounded function ϕ : RN0 → R and any t ≥ 0, the mapping

u0 ∈ RN0 7−→ Eu0

[
ϕ(UN (t))

]
∈ R

is continuous and bounded, where the notation Eu0
indicates that UN (0) = u0.

The Lyapunov condition (25) implies that for any initial condition u0 ∈ RN0 , the family of probability measures
( 1
t

∫ t
0
Pu0

(UN (s) ∈ ·)ds)t≥0 is tight (see [28, Section 3.2.2] for details), which by the Krylov–Bogoliubov criterion [14,
Corollary 3.1.2] implies the following result.

Proposition 2.9 (Existence of an invariant measure for UN ). The solution (UN (t))t≥0 of (9) admits an invariant
measure ϑN ∈ P2(RN0 ).

2.2.4. Uniqueness of the invariant measure. The proof of uniqueness of the invariant measure ϑN relies on the intermediary
Lemmas 2.10 and 2.11 which are stated below. They follow from standard but a bit lengthy computation, similar instances
of which can be found in [15, 29]. For the sake of legibility of the whole argument, we therefore postpone their proofs to
Appendix B.

Lemma 2.10 (Hitting any neighbourhood of 0 with positive probability). Let (UN (t))t≥0 and (VN (t))t≥0 be two solutions
of (9) driven by the same Wiener process. Then, for all M > 0 and all ε > 0, there exists tε,M > 0 such that

pε,M := inf P(u0,v0)

(∥∥UN (tε,M )
∥∥
`10(TN )

+
∥∥VN (tε,M )

∥∥
`10(TN )

≤ ε
)
> 0,

where the notation P(u0,v0) indicates that UN (0) = u0 and VN (0) = v0 and the infimum is taken over pairs of initial
conditions (u0,v0) such that ‖u0‖`20(TN ) ∨ ‖v0‖`20(TN ) ≤M .

In the setting of Lemma 2.10, we let, for any M ≥ 0,

τM := inf
{
t ≥ 0 :

∥∥UN (t)
∥∥
`20(TN )

∨
∥∥VN (t)

∥∥
`20(TN )

≤M
}
. (29)

Lemma 2.11 (Almost sure entrance in some ball). There exists M > 0 such that for any deterministic initial conditions
u0, v0 ∈ RN0 , τM < +∞ almost surely.

We now detail how Lemmas 2.10 and 2.11 allow to complete the proof of uniqueness of an invariant measure for UN .

Proof of the uniqueness of an invariant measure for UN . We start by fixing ε > 0, to which we associate the quantities
tε,M and pε,M defined at Lemma 2.10, where M has been defined at Lemma 2.11. Let (UN (t))t≥0 and (VN (t))t≥0 start
respectively from arbitrary deterministic initial conditions u0 and v0 and be driven by the same Wiener process. We
define the increasing stopping time sequence

T1 := τM

T2 := inf
{
t ≥ T1 + tε,M :

∥∥UN (t)
∥∥
`20(TN )

∨
∥∥VN (t)

∥∥
`20(TN )

≤M
}

T3 := inf
{
t ≥ T2 + tε,M :

∥∥UN (t)
∥∥
`20(TN )

∨
∥∥VN (t)

∥∥
`20(TN )

≤M
}

...
By the strong Markov property and Lemma 2.11, each term of this sequence is finite almost surely. We introduce the

event
Ej =

{∥∥UN (Tj + tε,M )
∥∥
`10(TN )

+
∥∥VN (Tj + tε,M )

∥∥
`10(TN )

> ε
}

and claim that
∀J ∈ N∗, P

(
∩Jj=1Ej

)
≤ (1− pε,M )J .

Indeed, it is true for J = 1 thanks to the strong Markov property and Lemma 2.10:

P (E1) = E
[
P
(∥∥UN (τM + tε,M )

∥∥
`10(TN )

+
∥∥VN (τM + tε,M )

∥∥
`10(TN )

> ε|FτM
)]
≤ 1− pε,M ,

and the general case follows by induction. Letting J → +∞, we get

P
(
∩∞j=1Ej

)
= lim
J→∞

P
(
∩Jj=1Ej

)
≤ lim
J→∞

(1− pε,M )J = 0,

and consequently, almost surely there exists some t = Tj + tε,M such that

‖UN (t)−VN (t)‖`10(TN ) ≤ ‖UN (t)‖`10(TN ) + ‖VN (t)‖`10(TN ) ≤ ε.
9



Now recall that thanks to Proposition 2.7, ‖UN (t)−VN (t)‖`10(TN ) is non-increasing in time almost surely. Since ε has
been chosen arbitrarily, we deduce that ‖UN (t)−VN (t)‖`10(TN ) converges almost surely to 0 as t→ +∞ when the initial
conditions are deterministic, and since this assertion is true for any pair of initial conditions, it also holds for random and
F0-measurable initial conditions. Let φ : `10(TN )→ R be a Lipschitz continuous and bounded test function, with Lipschitz
constant Lφ. We have in particular, almost surely,

lim
t→∞

∣∣φ(UN (t))− φ(VN (t))
∣∣ ≤ Lφ lim

t→∞

∥∥UN (t)−VN (t)
∥∥
`10(TN )

= 0. (30)

To conclude the proof, assume that there exist two invariant measures ν(1)
N and ν(2)

N for the solution of (9), and take
random initial conditions UN

0 and VN
0 with distributions ν(1)

N and ν(2)
N respectively. We have for all t ≥ 0,∣∣E [φ (UN

0

)]
− E

[
φ
(
VN

0

)]∣∣ =
∣∣E [φ (UN (t)

)]
− E

[
φ
(
VN (t)

)]∣∣ ≤ E
[∣∣φ (UN (t)

)
− φ

(
VN (t)

)∣∣] .
Letting t go to +∞, by (30) and the dominated convergence theorem, we have∣∣E [φ (UN

0

)]
− E

[
φ
(
VN

0

)]∣∣ ≤ lim
t→∞

E
[∣∣φ (UN (t)

)
− φ

(
VN (t)

)∣∣] = 0.

As a consequence, UN
0 and VN

0 have the same distribution, meaning that ν(1)
N = ν

(2)
N . �

Remark 2.12. This proof shows in addition that for any initial distribution, the law of UN (t) converges, when t→ +∞,
to the invariant measure ϑN .

2.3. The split-step scheme. In this subsection, we first show that the implicit equation in (14) has a unique solution,
which ensures the well-posedness of the sequence (UN,∆t

n )n∈N. We then prove the existence and the uniqueness of an
invariant measure ϑN,∆t for this Markov chain. The general organisation of the arguments is rather close to Subsection 2.2,
and we only emphasise which points have to be adapted.

2.3.1. Well-posedness. The following preliminary result ensures that the scheme (14) is well-posed.

Proposition 2.13 (Well-posedness of (14)). For any ∆t > 0 and v ∈ RN0 , there exists a unique w ∈ RN0 such that
w = v + ∆tb(w).

Proof. Uniqueness. It is a straightforward consequence of Lemma 2.1.(i): if w1 and w2 are two solutions, then

‖w1 −w2‖`10(TN ) = 〈sign(w1 −w2),w1 −w2〉`2(TN ) = ∆t〈sign(w1 −w2),b(w1)− b(w2)〉`2(TN ) ≤ 0.

Existence. The mapping Id −∆tb : RN0 → RN0 is continuous. Furthermore, by Lemmas 2.1.(ii) and (22), we have for
all w ∈ RN0 ,

〈(Id−∆tb)(w),w〉`20(TN )

‖w‖`20(TN )

= ‖w‖`20(TN ) −∆t
〈b(w),w〉`20(TN )

‖w‖`20(TN )

≥ ‖w‖`20(TN ) + ν∆t
‖D(1,+)

N w‖2
`20(TN )

‖w‖`20(TN )

≥ (1 + ν∆t)‖w‖`20(TN ).

Thus, as a consequence of [16, Theorem 3.3], Id−∆tb is surjective in RN0 and, for any v ∈ RN0 , there exists w ∈ RN0 such
that w = v + ∆tb(w). �

2.3.2. Existence of an invariant measure. We first prove an `10(TN ) contraction property in order to deduce the Feller
property for (UN,∆t

n )n∈N.

Lemma 2.14 (`10(TN ) contraction for UN,∆t). Let (UN,∆t
n )n∈N and (VN,∆t

n )n∈N be two solutions of (14), constructed
with the same sequence of noise increments (∆WQ,N )n∈N∗ . Then, almost surely and for any n ∈ N,∥∥∥UN,∆t

n+1 −VN,∆t
n+1

∥∥∥
`10(TN )

≤
∥∥UN,∆t

n −VN,∆t
n

∥∥
`10(TN )

.

Proof. From Equations (14) and Lemma 2.1.(ii), we write∥∥∥UN,∆t
n+1 −VN,∆t

n+1

∥∥∥
`10(TN )

=
∥∥∥UN,∆t

n+ 1
2

−VN,∆t

n+ 1
2

∥∥∥
`10(TN )

=
〈
sign

(
UN,∆t

n+ 1
2

−VN,∆t

n+ 1
2

)
,UN,∆t

n+ 1
2

−VN,∆t

n+ 1
2

〉
`2(TN )

=
〈
sign

(
UN,∆t

n+ 1
2

−VN,∆t

n+ 1
2

)
,UN,∆t

n −VN,∆t
n

〉
`2(TN )

+ ∆t
〈
sign

(
UN,∆t

n+ 1
2

−VN,∆t

n+ 1
2

)
,b
(
UN,∆t

n+ 1
2

)
− b

(
VN,∆t

n+ 1
2

)〉
`2(TN )

≤
〈
sign

(
UN,∆t

n+ 1
2

−VN,∆t

n+ 1
2

)
,UN,∆t

n −VN,∆t
n

〉
`2(TN )

≤
∥∥UN,∆t

n −VN,∆t
n

∥∥
`10(TN )

. �
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Remark 2.15. The choice of the split-step backward Euler scheme is essential for the `10(TN ) contraction property to
hold. Indeed, consider for instance two sequences (ŨN,∆t

n )n∈N and (ṼN,∆t
n )n∈N built via an explicit Euler method, that is,

ŨN,∆t
n+1 = ŨN,∆t

n + ∆tb
(
ŨN,∆t
n

)
+ ∆WQ,N

n+1

(and naturally, the same construction for (ṼN,∆t
n )n∈N), then the expansion of the `10(TN ) distance gives∥∥∥ŨN,∆t

n+1 − ṼN,∆t
n+1

∥∥∥
`10(TN )

= sign
〈(

ŨN,∆t
n+1 − ṼN,∆t

n+1

)
, ŨN,∆t

n − ṼN,∆t
n

〉
`2(TN )

+ ∆t
〈
sign

(
ŨN,∆t
n+1 − ṼN,∆t

n+1

)
,b
(
ŨN,∆t
n

)
− b

(
ṼN,∆t
n

)〉
`2(TN )

.

Thus, we would need to control the second term of the right-hand side in the above equation, which is delicate given that
b is not globally Lipschitz.

As for the semi-discrete scheme, Lemma 2.14 induces the following property.

Corollary 2.16 (Feller property for UN,∆t). The solution (UN,∆t
n )n∈N of (14) has the Feller property.

The existence of an invariant measure follows again from the application of the Krylov–Bogoliubov theorem to a
Lyapunov condition similar to (25).

Proposition 2.17 (Existence of an invariant measure for UN,∆t). For all n ≥ 1, we have

1

n

n−1∑
l=0

E
[∥∥∥D(1,+)

N UN,∆t
l+1

∥∥∥2

`20(TN )

]
≤ 1

2nν∆t
‖u0‖2`20(TN ) +

D

2ν
+ ∆tD. (31)

As a consequence, the sequence (UN,∆t
n )n∈N admits an invariant measure ϑN,∆t ∈ P2(RN0 ).

Proof. Starting from the first equation in (14), we have∥∥∥UN,∆t

n+ 1
2

−∆tb
(
UN,∆t

n+ 1
2

)∥∥∥2

`20(TN )
=
∥∥UN,∆t

n

∥∥2

`20(TN )
,

by expanding the left-hand side, we derive the inequality∥∥∥UN,∆t

n+ 1
2

∥∥∥2

`20(TN )
≤
∥∥UN,∆t

n

∥∥2

`20(TN )
+ 2∆t

〈
b
(
UN,∆t

n+ 1
2

)
,UN,∆t

n+ 1
2

〉
`20(TN )

.

Using Lemma 2.1.(ii), we get∥∥∥UN,∆t

n+ 1
2

∥∥∥2

`20(TN )
≤
∥∥UN,∆t

n

∥∥2

`20(TN )
− 2ν∆t

∥∥∥D(1,+)
N UN,∆t

n+ 1
2

∥∥∥2

`20(TN )
. (32)

Now, from the second equation in (14), we have∥∥∥UN,∆t
n+1

∥∥∥2

`20(TN )
=
∥∥∥UN,∆t

n+ 1
2

∥∥∥2

`20(TN )
+ 2

〈
UN,∆t

n+ 1
2

,∆WQ,N
n+1

〉
`20(TN )

+
∥∥∥∆WQ,N

n+1

∥∥∥2

`20(TN )
. (33)

Injecting Inequality (32) into Equation (33), we get∥∥∥UN,∆t
n+1

∥∥∥2

`20(TN )
−
∥∥UN,∆t

n

∥∥2

`20(TN )
≤ −2ν∆t

∥∥∥D(1,+)
N UN,∆t

n+ 1
2

∥∥∥2

`20(TN )
+ 2

〈
UN,∆t

n+ 1
2

,∆WQ,N
n+1

〉
`20(TN )

+
∥∥∥∆WQ,N

n+1

∥∥∥2

`20(TN )
. (34)

By definition of WQ,N and from (24), we have

E
[∥∥∥∆WQ,N

n+1

∥∥∥2

`20(TN )

]
= ∆t

∑
k≥1

‖gk‖2`20(TN ) ≤ D∆t. (35)

On the other hand, the variables UN,∆t

n+ 1
2

and ∆WQ,N
n+1 are independent, so that taking the expectation in (34) yields

E
[∥∥∥UN,∆t

n+1

∥∥∥2

`20(TN )

]
− E

[∥∥UN,∆t
n

∥∥2

`20(TN )

]
≤ −2ν∆tE

[∥∥∥D(1,+)
N UN,∆t

n+ 1
2

∥∥∥2

`20(TN )

]
+ D∆t,

which is valid for any n ∈ N, so that we get a telescopic sum:

E
[∥∥UN,∆t

n

∥∥2

`20(TN )

]
− ‖u0‖2`20(TN ) =

n−1∑
l=0

(
E
[∥∥∥UN,∆t

l+1

∥∥∥2

`20(TN )

]
− E

[∥∥∥UN,∆t
l

∥∥∥2

`20(TN )

])

≤ −2ν∆t

n−1∑
l=0

E
[∥∥∥D(1,+)

N UN,∆t

l+ 1
2

∥∥∥2

`20(TN )

]
+ n∆tD.
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Hence,

2ν∆t

n−1∑
l=0

E
[∥∥∥D(1,+)

N UN,∆t

l+ 1
2

∥∥∥2

`20(TN )

]
≤ ‖u0‖2`20(TN ) + n∆tD. (36)

Besides, since the random variables UN,∆t

l+ 1
2

and ∆WQ,N
l+1 are independent,

E
[∥∥∥D(1,+)

N UN,∆t
l+1

∥∥∥2

`20(TN )

]
= E

[∥∥∥D(1,+)
N UN,∆t

l+ 1
2

∥∥∥2

`20(TN )

]
+ E

[∥∥∥D(1,+)
N ∆WQ,N

l+1

∥∥∥2

`20(TN )

]
, (37)

and by (24),

E
[∥∥∥D(1,+)

N ∆WQ,N
l+1

∥∥∥2

`20(TN )

]
= ∆t

∑
k≥1

∥∥∥D(1,+)
N gk

∥∥∥2

`20(TN )
≤ ∆tD.

Injecting this bound into (37), and (37) into (36), we get (31).
Since ‖D(1,+)

N · ‖`20(TN ) defines a norm on RN0 and since from Corollary 2.16, the sequence (UN,∆t
n )n∈N has the Feller

property, the existence of an invariant measure ϑN,∆t ∈ P2(RN0 ) now follows from the Krylov–Bogoliubov theorem. �

2.3.3. Uniqueness of the invariant measure. Similarly to Subsection 2.2, we first state the intermediary Lemmas 2.18
and 2.19.

Lemma 2.18 (Hitting any neighbourhood of 0 with positive probability). Let (UN,∆t
n )n∈N and (VN,∆t

n )n∈N be two so-
lutions of (14) constructed with the same sequence of noise increments (∆WQ,N

n )n∈N∗ . For any ε > 0 and any M > 0,
there exists nε,M ∈ N such that

pε,M := inf P(u0,v0)

(∥∥∥UN,∆t
nε,M

∥∥∥
`10(TN )

+
∥∥∥VN,∆t

nε,M

∥∥∥
`10(TN )

≤ ε
)
> 0,

where the notation P(u0,v0) indicates that UN,∆t
0 = u0 and VN,∆t

0 = v0 and the infimum is taken over pairs of initial
conditions (u0,v0) such that ‖u0‖`20(TN ) ∨ ‖v0‖`20(TN ) ≤M .

In the setting of Lemma 2.18, we now define

ηM := inf

{
n ∈ N :

∥∥∥UN,∆t
n+1

∥∥∥
`20(TN )

∨
∥∥∥VN,∆t

n+1

∥∥∥
`20(TN )

≤M
}
.

The following lemma is the time-discrete version of Lemma 2.11. The proof is omitted as it is very similar to its time-
continuous counterpart.

Lemma 2.19 (Almost sure entrance in some ball). There exists M > 0 such that for any initial conditions u0, v0 ∈ RN0
for the sequences (UN,∆t

n )n∈N and (VN,∆t
n )n∈N, ηM < +∞ almost surely.

The proof of Lemma 2.18 is quite different from the proof of Lemma 2.10, therefore it is detailed in Appendix B. On
the contrary, Lemma 2.19 essentially follows from the same arguments as Lemma 2.11 and therefore we omit its proof.
Finally, given Lemmas 2.14, 2.18 and 2.19, the proof of the uniqueness of the invariant measure ϑN,∆t of the split-step
scheme is an obvious adaptation of the proof for the semi-discrete scheme.

2.3.4. Conclusion. In order to conclude Section 2, let us summarise the main arguments forming the proof of Theorem 1.5.
Well-posedness of both approximations (UN (t))t≥0 and (UN,∆t

n )n≥0 are stated respectively in Propositions 2.4 and 2.13.
Then, from the `10(TN )-contraction property (Propositions 2.7 and 2.14), it is inferred that both processes are Feller
(Corollaries 2.8 and 2.16). The Feller property combined with the Lyapunov-like estimates (25) and (31) then lead to the
existence of an invariant measure (Propositions 2.9 and 2.17).

The proof of uniqueness consists in a coupling argument that relies on two preliminary steps. The first one is showing
that two coupled solutions hit any neighbourhood of 0 with positive probability (Lemmas 2.10 and 2.18). The second one
is showing that there exists a ball which both coupled processes attain almost surely, in finite time, whatever their initial
conditions (Lemmas 2.11 and 2.19). The final argument establishing uniqueness of the invariant measure from those two
steps is displayed only for the continuous time case at the end of Section 2.2.4.

Observe that the moment estimates for p > 2 from Lemma 2.5 have not been used yet. However, their role is crucial
in the sequel. They will allow us to establish the regularity estimates uniformly in N which will be at the core of our
convergence argument.

3. Convergence of invariant measures: semi-discrete scheme towards SPDE

This section is dedicated to the proof of the first statement in Theorem 1.7, namely the convergence of µN to µ. The
general sketch of the proof is detailed in Subsection 3.1. Subsections 3.2 and 3.3 contain the proofs of the main arguments.
A discussion on the rate of convergence associated with Theorem 1.7 is then provided in Subsection 3.4.
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3.1. General sketch of the proof. The first ingredient of the proof is the following series of uniform estimates on ϑN .

Proposition 3.1 (Uniform `p0(TN ), h1
0(TN ) and h2

0(TN ) estimates on ϑN ). For any N ≥ 1, let VN be a random variable
in RN0 with distribution ϑN . For all p ∈ [1,+∞), there exists a constant C0,p ∈ [0,+∞) such that

sup
N≥1

E
[
‖VN‖p

`p0(TN )

]
≤ C0,p.

Besides, there exist constants C1,2,C2,2 ∈ [0,+∞) such that

sup
N≥1

E
[
‖D(1,+)

N VN‖2`20(TN )

]
≤ C1,2, sup

N≥1
E
[
‖D(2)

N VN‖2`20(TN )

]
≤ C2,2.

Remark 3.2 (Notation for constants). Throughout this section and the next one, we use the superscript indices m, p in
the notation for constants in order to refer to bounds over Sobolev Wm,p norms.

For all N ≥ 1, we recall the definition (16) of the measure µN ∈ P2(L2
0(T)). The discrete regularity estimates from

Proposition 3.1 actually ensure the continuous spatial regularity of random variables drawn from any limiting distribution
of (µN )N≥1, as stated in the following result.

Corollary 3.3 (Relative compactness and Lp0(T), H1
0 (T) and H2

0 (T) estimates on µN ). The sequence (µN )N≥1 is relatively
compact in P2(L2

0(T)), and any subsequential limit µ∗ has the property that if v∗ is a random variable in L2
0(T) with

distribution µ∗, then for all p ∈ [1,+∞),

E
[
‖v∗‖p

Lp
0(T)

]
≤ C0,p,

and

E
[
‖v∗‖2H1

0 (T)

]
≤ C1,2, E

[
‖v∗‖2H2

0 (T)

]
≤ C2,2.

As a consequence of Corollary 3.3, in order to prove that µN converges in P2(L2
0(T)) to the unique invariant measure

µ of (1), it suffices to show that any subsequential limit µ∗ of this sequence coincides with µ. To this aim, we let µ∗ be
such a limit, and for convenience we still denote by (µN )N≥1 the extracted subsequence which converges to µ∗. We then
apply the Skorohod representation theorem to the subsequence (µN )N≥1 to construct, on the same probability space, a
sequence of F0-measurable random variables UN

0 ∈ RN0 and a random variable u∗0 ∈ L2
0(T) such that:

• for all N ≥ 1, UN
0 ∼ ϑN (or equivalently, ΨNUN

0 ∼ µN ),
• u∗0 ∼ µ∗,
• the sequence ΨNUN

0 converges almost surely to u∗0 in L2
0(T).

Notice that by Corollary 3.3, u∗0 ∈ H2
0 (T), almost surely, which thus allows to take this random variable as an initial

condition for (1). Up to taking the product of this probability space with another probability space on which a Q-Wiener
process (WQ(t))t≥0 is defined, which will thus be independent from F0, one may then consider the solution (u∗(t))t≥0

to (1), with initial condition u∗0 and driven by (WQ(t))t≥0. We will still use P and E to denote respectively the probability
and the expectation on this product probability space. For all N ≥ 1, we let (UN (t))t≥0 be the solution to (9) with initial
condition UN

0 ∼ νN and driven by the Wiener process WQ,N = ΠNW
Q. We finally denote by uN (t) = ΨNUN (t) the

piecewise constant reconstruction of UN (t) on T.

Proposition 3.4 (Finite-time convergence of uN (t)). In the setting introduced above, for all t ≥ 0,

lim
N→+∞

E
[
‖uN (t)− u∗(t)‖2L2

0(T)

]
= 0.

Proposition 3.4 implies in particular that the law of uN (t) converges in P2(L2
0(T)) to the law of u∗(t). But since

uN (t) = ΨNUN (t), and the process (UN (t))t≥0 is stationary, its law does not depend on t. Therefore, the law of u∗(t)
does not depend on t either; in other words, µ∗ is an invariant measure for (1). By the uniqueness result of Proposition 1.2,
we deduce that µ∗ = µ and the proof of (17) is completed.

Remark 3.5. This argument shows that any subsequential limit µ∗ of (µN )N≥1 is an invariant measure for (1), therefore
it provides an alternative proof for the existence part in [29, Theorem 2]. The uniqueness part remains crucial to identify
all subsequential limits and obtain the convergence of the sequence (µN )N≥1.

3.2. Proofs of Proposition 3.1 and Corollary 3.3. We first detail the proof of Proposition 3.1.

Proof of Proposition 3.1. The proof is divided in 4 steps. The `p0(TN ) estimate is derived in Step 1. An intermediary
result is stated in Step 2, and the h1

0(TN ) and h2
0(TN ) estimates are respectively derived in Steps 3 and 4.
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Step 1: `p0(TN ) estimate. The argument is inspired from [24, Proposition 4.24] and relies on the finite-time uniform
estimates from Lemma 2.5. For any M > 0, p ∈ 2N∗ and t > 0, we first write

E
[∥∥VN

∥∥p
`p0(TN )

∧M
]

=
1

t

∫ t

0

∫
RN

0

Eu0

[∥∥UN (s)
∥∥p
`p0(TN )

∧M
]

dϑN (u0)ds

=

∫
RN

0

1

t

∫ t

0

Eu0

[∥∥UN (s)
∥∥p
`p0(TN )

∧M
]

dsdϑN (u0)

≤
∫
RN

0

(
1

t

∫ t

0

Eu0

[∥∥UN (s)
∥∥p
`p0(TN )

]
ds

)
∧MdϑN (u0)

≤
∫
RN

0

(
1

t
c
(p)
0 + c

(p)
1

‖u0‖p`p0(TN )

t
+ c

(p)
2

)
∧MdϑN (u0),

where we have used (27) in Lemma 2.5 at the last line. Letting t→ +∞, we get from the dominated convergence theorem,

E
[∥∥VN

∥∥p
`p0(TN )

∧M
]
≤
∫
RN

0

lim
t→∞

(
1

t
c
(p)
0 + c

(p)
1

‖u0‖p`p0(TN )

t
+ c

(p)
2

)
∧MdϑN (u0) = c

(p)
2 ∧M ≤ c

(p)
2 =: C0,p,

and the result for p ∈ 2N∗ follows by letting M → +∞ and using the monotone convergence theorem. This result extends
readily to the general case p ∈ [1,+∞) by using the Jensen inequality.

Step 2: intermediary estimate. Let p ∈ 2N∗. Taking UN
0 = VN in (26), and using the result of Step 1, we obtain by

stationarity

νpE
[〈

D
(1,+)
N

(
(VN )p−1

)
,D

(1,+)
N VN

〉
`20(TN )

]
≤ D

p(p− 1)

2
E
[∥∥VN

∥∥p−2

`p−2
0 (TN )

]
≤ D

p(p− 1)

2
C0,p−2, (38)

with the convention that C0,0 = 1.
Step 3: h1

0(TN ) estimate. Take p = 2 in (38) to get

E
[
‖D(1,+)

N VN‖2`20(TN )

]
≤ 2D

ν
=: C1,2.

Step 4: h2
0(TN ) estimate. Let (UN (t))t≥0 be the solution of (9) with initial distribution ϑN . By Itô’s formula, for all

t ≥ 0, ∥∥∥D(1,+)
N UN (t)

∥∥∥2

`20(TN )
=
∥∥∥D(1,+)

N UN
0

∥∥∥2

`20(TN )
+ 2

∫ t

0

〈
D

(1,+)
N UN (s),D

(1,+)
N b(UN (s))

〉
`20(TN )

ds

+ 2

∫ t

0

〈
D

(1,+)
N UN (s),d

(
D

(1,+)
N WQ,N

)
(s)
〉
`20(TN )

+ t
∑
k≥1

∥∥∥D(1,+)
N gk

∥∥∥2

`20(TN )
.

(39)

The third term of the right-hand side is a martingale since

∑
k≥1

E
[∫ t

0

〈
D

(1,+)
N UN (s),D

(1,+)
N gk

〉2

`20(TN )
ds

]
≤ t

∑
k≥1

∥∥∥D(1,+)
N gk

∥∥∥2

`20(TN )

E
[∥∥∥D(1,+)

N VN
∥∥∥2

`20(TN )

]
≤ tDC1,2 < +∞,

(40)
where we have used the stationarity of (UN (t))t≥0, Inequality (24), and the h1

0(TN ) estimate from Step 3. Thus, taking
the expectation in (39) and using the stationarity and Inequality (24) again, we get

−2E
[〈

D
(1,+)
N VN ,D

(1,+)
N b(VN )

〉
`20(TN )

]
=
∑
k≥1

∥∥∥D(1,+)
N gk

∥∥∥2

`20(TN )
≤ D.

For any v ∈ RN0 , we have, by (20),〈
D

(1,+)
N v,D

(1,+)
N b(v)

〉
`20(TN )

= −
〈
D

(2)
N v,b(v)

〉
`20(TN )

= −
〈
D

(2)
N v,

(
−D(1,−)

N A
N

(v) + νD
(2)
N v

)〉
`20(TN )

=
〈
D

(2)
N v,D

(1,−)
N A

N
(v)
〉
`20(TN )

− ν‖D(2)
N v‖2`20(TN ),
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so that

2νE
[
‖D(2)

N VN‖2`20(TN )

]
≤ 2E

[〈
D

(2)
N VN ,D

(1,−)
N A

N
(VN )

〉
`20(TN )

]
+ D

≤ 2

√
E
[
‖D(2)

N VN‖2
`20(TN )

]√
E
[
‖D(1,−)

N A
N

(VN )‖2
`20(TN )

]
+ D,

thanks to the Cauchy–Schwarz inequality. We now write

E
[
‖D(1,−)

N A
N

(VN )‖2`20(TN )

]
= E

[
N
∑
i∈TN

(
Ā(V Ni , V Ni+1)− Ā(V Ni−1, V

N
i )
)2]

= E

N ∑
i∈TN

(∫ V N
i+1

V N
i

∂2Ā(V Ni , z)dz +

∫ V N
i

V N
i−1

∂1Ā(z, V Ni )dz

)2


≤ 2E

[
N
∑
i∈TN

(V Ni+1 − V Ni )

∫ V N
i+1

V N
i

∂2Ā(V Ni , z)2dz

]
+ 2E

[
N
∑
i∈TN

(V Ni − V Ni−1)

∫ V N
i

V N
i−1

∂1Ā(z, V Ni )2dz

]

≤ 4C2
ĀE

[
N
∑
i∈TN

(V Ni − V Ni−1)

∫ V N
i

V N
i−1

(1 + |z|pĀ)
2

dz

]

≤ 8C2
Ā

(
E

[
N
∑
i∈TN

(V Ni − V Ni−1)2

]
+ E

[
N
∑
i∈TN

(V Ni − V Ni−1)

∫ V N
i

V N
i−1

|z|2pĀdz

])

= 8C2
Ā

(
E
[∥∥∥D(1,+)

N VN
∥∥∥2

`20(TN )

]
+

1

2pĀ + 1
E
[〈

D
(1,+)
N

(
(VN )2pĀ+1

)
,D

(1,+)
N VN

〉
`20(TN )

])
≤ 8C2

Ā

(
C1,2 +

D

2ν
C0,2pĀ

)
,

(41)

where we have used (11) at the third line, the Jensen inequality at the fourth line, (12) at the fifth line and Step 3 and
the intermediary estimate (38) with p = 2pĀ + 2 at the last line.

We therefore get

2νE
[
‖D(2)

N VN‖2`20(TN )

]
≤ 2

√
E
[∥∥∥D(2)

N VN
∥∥∥2

`20(TN )

]√
4C2

Ā

D

ν
(1 + C0,2pĀ) + D.

Applying Young’s inequality on the right-hand side, we get

2νE
[
‖D(2)

N VN‖2`20(TN )

]
≤ νE

[∥∥∥D(2)
N VN

∥∥∥2

`20(TN )

]
+ 4C2

Ā

D

ν2

(
1 + C0,2pĀ

)
+ D,

which rewrites

E
[∥∥∥D(2)

N VN
∥∥∥2

`20(TN )

]
≤ 4C2

Ā

D

ν3

(
1 + C0,2pĀ

)
+

D

ν
=: C2,2,

and yields the claimed estimate. �

In order to prepare the proof of Corollary 3.3, we first introduce the interpolation operators Ψ
(1)
N : RN0 → H1

0 (T) and
Ψ

(2)
N : RN0 → H2

0 (T) defined by the condition that for any v ∈ RN0 , the function Ψ(1)v (resp. Ψ(2)v) is linear (resp.
quadratic) on each cell of the mesh TN , and takes the value vi at the interface xi. It follows from elementary computations
that, for any v ∈ RN0 ,

‖Ψ(1)
N v‖2L2

0(T) = ‖D(1,+)
N v‖2`20(TN ), ‖Ψ(2)

N v‖2L2
0(T) = ‖D(2)

N v‖2`20(TN ), (42)

and ∥∥∥Ψ
(1)
N v −ΨNv

∥∥∥2

L2
0(T)

=
1

3N2

∥∥∥D(1,+)
N v

∥∥∥2

`20(TN )
, (43)∥∥∥Ψ

(2)
N v −ΨNv

∥∥∥2

L2
0(T)
≤ 3

20N4

∥∥∥D(2)
N v

∥∥∥2

`20(TN )
+

1

2N2

∥∥∥D(1,+)
N v

∥∥∥2

`20(TN )
, (44)

see [28, Lemma 3.30] for details.
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Proof of Corollary 3.3. For m = 1, 2, we denote by µ
(m)
N = ϑN ◦ (Ψ

(m)
N )−1 the pushforward measure of ϑN by the in-

terpolation operator Ψ
(m)
N . For all N ≥ 1, we shall also denote by VN a random variable in RN0 with distribution

ϑN .
Step 1: tightness on L2

0(T). By (42), the uniform h1
0(TN ) estimate of Proposition 3.1 rewrites under the form

sup
N≥1

E
[
‖Ψ(1)

N VN‖2H1
0 (T)

]
≤ C1,2.

Since bounded sets of H1
0 (T) are compact in L2

0(T), this uniform moment estimate shows that the sequence (µ
(1)
N )N≥1 is

tight on L2
0(T). Therefore, by the Prokhorov theorem [4, Theorem 5.1], it is relatively compact in P(L2

0(T)).
It is then easy to deduce from (43) and (44), combined with the uniform h1

0(TN ) and h2
0(TN ) estimates from Propo-

sition 3.1, that for any increasing sequence of integers (Nj)j≥1 and probability measure µ∗ on L2
0(T), the following three

statements are equivalent:
• µNj converges weakly to µ∗;
• µ(1)

Nj
converges weakly to µ∗;

• µ(2)
Nj

converges weakly to µ∗;

so that all three sequences (µN )N≥1, (µ
(1)
N )N≥1 and (µ

(2)
N )N≥1 are relatively compact on L2

0(T), with the same converging
subsequences.

Step 2: moment estimates. Let (Nj)j≥1 and µ∗ be such that µNj
converges weakly to µ∗. For any p ∈ [1,+∞), the

function v 7→ ‖v‖p
Lp

0(T)
is lower semicontinuous on L2

0(T). As a consequence, by the Portmanteau theorem, if v∗ is a
random variable in L2

0(T) with distribution µ∗, then

E
[
‖v∗‖p

Lp
0(T)

]
≤ lim inf

j→+∞
E
[
‖ΨNVN‖p

Lp
0(T)

]
≤ C0,p,

where we have used the isometry property (15) and the uniform `p0(TN ) estimate from Proposition 3.1. By Step 1, the
sequences µ(1)

Nj
and µ

(2)
Nj

also converge weakly to µ∗. Besides, we recall that for any s ≥ 0, the Sobolev norm ‖ · ‖Hs
0 (T)

writes
‖v‖2Hs

0 (T) =
∑
m≥1

(−λm)s〈v, em〉2L2
0(T)

for nonpositive numbers λm and L2
0(T) orthonormal Fourier modes em, see for instance [29, Section 2.1.1]. As a conse-

quence, it follows from the Fatou lemma that the function v 7→ ‖v‖2Hs
0 (T) is lower semicontinuous on L2

0(T). Therefore,
using now the isometry property (42) and the uniform h1

0(TN ) and h2
0(TN ) estimates from Proposition 3.1, we get

E
[
‖v∗‖2H1

0 (T)

]
≤ C1,2, E

[
‖v∗‖2H2

0 (T)

]
≤ C2,2.

Step 3: relative compactness in P2(L2
0(T)). It remains to prove that the weak convergence of µNj

to µ∗ can be
strengthened to the Wasserstein topology. To this aim it is sufficient to check that the sequence ‖VN‖2

`20(TN )
is uniformly

integrable [32, Definition 6.8.(iii)]. For any ε > 0, let us set p = 2(1 + ε) and use (21) together with Proposition 3.1 to get,
for any N ≥ 1,

E
[(
‖VN‖2`20(TN )

)1+ε
]
≤ E

[
‖VN‖p

`p0(TN )

]
≤ C0,p.

By [4, Eq. (3.18), p. 31], this estimate ensures the required uniform integrability. �

3.3. Proof of Proposition 3.4. The first step in the proof of Proposition 3.4 is the decomposition of the error

‖uN (t)− u∗(t)‖2L2
0(T) ≤ 2

(
‖ΨNΠNu

∗(t)− u∗(t)‖2L2
0(T) + ‖uN (t)−ΨNΠNu

∗(t)‖2L2
0(T)

)
. (45)

On the one hand, for all t ≥ 0, an elementary computation yields the estimate

‖ΨNΠNu
∗(t)− u∗(t)‖2L2

0(T) ≤
1

N2
‖u∗(t)‖2H1

0 (T),

while on the other hand, by (15) we have

‖uN (t)−ΨNΠNu
∗(t)‖2L2

0(T) = ‖ΨNUN (t)−ΨNΠNu
∗(t)‖2L2

0(T) = ‖UN (t)−ΠNu
∗(t)‖2`20(TN ).

In order to estimate both terms, we rely on the following finite-time estimates on u∗.

Lemma 3.6 (Finite-time Lp0(T), H1
0 (T) and H2

0 (T) bounds on u∗). Under the assumptions of Proposition 3.4, for all
t > 0 there exist constants C∗,0,pt ,C∗,1,2t ,C∗,2,2t ∈ [0,+∞), such that

sup
s∈[0,t]

E
[
‖u∗(s)‖p

Lp
0(T)

]
≤ C∗,0,pt , sup

s∈[0,t]

E
[
‖u∗(s)‖2H1

0 (T)

]
≤ C∗,1,2t , E

[∫ t

0

‖u∗(s)‖2H2
0 (T)ds

]
≤ C∗,2,2t .
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The proof of Lemma 3.6 is postponed to Appendix C. From the H1
0 (T) bound, we already get the control

E
[
‖ΨNΠNu

∗(t)− u∗(t)‖2L2
0(T)

]
≤ C∗,1,2t

N2
, (46)

on the expectation of the first term in the right-hand side of (45).
In order to estimate the second term, we use the fact that both functions A and A are locally Lipschitz continuous,

respectively on R and R2. In this purpose, we fix M ≥ 0 and introduce the stopping time

τN(M) := inf
{
t ≥ 0 : ‖UN (t)‖`∞0 (TN ) ≥M or ‖u∗(t)‖L∞0 (T) ≥M

}
. (47)

We also denote by L(M) a Lipschitz constant of A on [−M,M ] and of A on [−M,M ]2. We now write

E
[
‖UN (t)−ΠNu

∗(t)‖2`20(TN )

]
= E

[
‖UN (t)−ΠNu

∗(t)‖2`20(TN )1{t≤τN
(M)
}

]
+ E

[
‖UN (t)−ΠNu

∗(t)‖2`20(TN )1{t>τN
(M)
}

]
.

The terms of the right-hand side are respectively estimated in Lemmas 3.7 and 3.8.

Lemma 3.7 (Finite-time convergence in the Lipschitz case). Under the assumptions of Proposition 3.4, for all t > 0 and
δ1, δ2 > 0 such that

δ1ν + δ2L(M) ≤ 2ν, (48)
there exists a constant C(t, L(M), δ1, δ2) such that for any N ≥ 1,

E
[
‖UN (t)−ΠNu

∗(t)‖2`20(TN )1{t≤τN
(M)
}

]
≤ eγ(M)tE

[
‖UN

0 −ΠNu
∗
0‖2`20(TN )

]
+

C(t, L(M), δ1, δ2)

N2
,

with

γ(M) = −2ν + δ1ν +

(
δ2 +

3

δ2

)
L(M).

Proof. For all t ≥ 0, we define the vector eN (t) ∈ RN0 by eN (t) = UN (t)−ΠNu
∗(t). We have

d

dt
eN (t) = D

(1,−)
N fN (t), (49)

where, for all i ∈ TN ,

fNi (t) = −
(
A(UNi (t), UNi+1(t))−A(u∗(t, xi))

)
+ ν

(
(D

(1,+)
N UN (t))i − ∂xu∗(t, xi)

)
.

Using (19), we deduce that
d

dt
‖eN (t)‖2`20(TN ) = 2〈eN (t),D

(1,−)
N fN (t)〉`20(TN ) = −2〈D(1,+)

N eN (t), fN (t)〉`2(TN ),

and now proceed to control the right-hand side of this identity. In this purpose we introduce the zeroth- and first-order
errors rN,(0)(t) and rN,(1)(t) defined by

r
N,(0)
i (t) = u∗(t, xi)− (ΠNu

∗(t))i, r
N,(1)
i (t) = ∂xu

∗(t, xi)− (D
(1,+)
N ΠNu

∗(t))i.

On the one hand,
(D

(1,+)
N UN (t))i − ∂xu∗(t, xi) = (D

(1,+)
N eN (t))i − rN,(1)

i (t),

on the other hand, for all t ≤ τN(M), we get∣∣A(UNi (t), UNi+1(t))−A(u∗(t, xi))
∣∣ ≤ ∣∣A(UNi (t), UNi+1(t))−A(UNi (t), UNi (t))

∣∣+
∣∣A(UNi (t))−A(u∗(t, xi))

∣∣
≤ L(M)

(∣∣UNi+1(t)− UNi (t)
∣∣+
∣∣UNi (t)− u∗(t, xi)

∣∣)
≤ L(M)

(∣∣UNi+1(t)− UNi (t)
∣∣+ |eNi (t)|+

∣∣∣rN,(0)
i (t)

∣∣∣) .
By the Young and Jensen inequalities, we thus deduce that, for any δ1, δ2 > 0,

−2〈D(1,+)
N eN (t), fN (t)〉`2(TN ) ≤ −2ν‖D(1,+)

N eN (t)‖2`20(TN ) + 2ν〈D(1,+)
N eN (t), rN,(1)(t)〉`2(TN )

+
2L(M)

N

∑
i∈TN

N |eNi+1(t)− eNi (t)|
(∣∣UNi+1(t)− UNi (t)

∣∣+ |eNi (t)|+
∣∣∣rN,(0)
i (t)

∣∣∣)
≤
(
−2ν + δ1ν + δ2L(M)

)
‖D(1,+)

N eN (t)‖2`20(TN ) +
ν

δ1
‖rN,(1)(t)‖2`2(TN )

+
3L(M)

δ2

‖D(1,+)
N UN (t)‖2

`20(TN )

N2
+ ‖eN (t)‖2`20(TN ) + ‖rN,(0)(t)‖2`2(TN )

 ,
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and if δ1 and δ2 are small enough for the inequality (48) to hold, then the discrete Poincaré inequality (22) finally yields
d

dt
‖eN (t)‖2`20(TN ) ≤ γ(M)‖eN (t)‖2`20(TN ) + cN (t),

with

cN (t) :=
ν

δ1
‖rN,(1)(t)‖2`2(TN ) +

3L(M)

δ2

‖D(1,+)
N UN (t)‖2

`20(TN )

N2
+ ‖rN,(0)(t)‖2`2(TN )

 .

We deduce from Grönwall’s lemma that, for all t ≤ τN(M),

‖eN (t)‖2`20(TN ) ≤ eγ(M)t‖eN (0)‖2`20(TN ) +

∫ t

0

eγ(M)(t−s)cN (s)ds,

and therefore, for all t ≥ 0,

E
[
‖eN (t)‖2`20(TN )1{t≤τN

(M)
}

]
≤ eγ(M)tE

[
‖eN (0)‖2`20(TN )

]
+

∫ t

0

eγ(M)(t−s)E
[
cN (s)

]
ds.

For all s ∈ [0, t], the expectation of cN (s) rewrites

E
[
cN (s)

]
=

ν

δ1
E
[
‖rN,(1)(s)‖2`2(TN )

]
+

3L(M)

δ2

E
[
‖D(1,+)

N UN (s)‖2
`20(TN )

]
N2

+ E
[
‖rN,(0)(s)‖2`2(TN )

] .

On the one hand, the stationarity of UN and Proposition 3.1 yield

E
[
‖D(1,+)

N UN (s)‖2`20(TN )

]
≤ C1,2.

On the other hand, it easily follows from the Taylor formula that

E
[
‖rN,(0)(s)‖2`2(TN )

]
≤ 1

N2
E
[
‖u∗(s)‖2H1

0 (T)

]
, E

[
‖rN,(1)(s)‖2`2(TN )

]
≤ 4

N2
E
[
‖u∗(s)‖2H2

0 (T)

]
,

so that we get ∫ t

0

eγ(M)(t−s)E
[
cN (s)

]
ds ≤

C(t, L(M), δ1, δ2)

N2
,

with

C(t, L(M), δ1, δ2) :=

∫ t

0

eγ(M)(t−s)
(

4ν

δ1
E
[
‖u∗(s)‖2H2

0 (T)

]
+

3L(M)

δ2

(
C1,2 + E

[
‖u∗(s)‖2H1

0 (T)

]))
ds,

which is finite by Lemma 3.6. �

Lemma 3.8 (Uniform control over τN(M)). Under the assumptions of Proposition 3.4, for all t > 0 we have

lim
M→+∞

lim sup
N→+∞

E
[
‖UN (t)−ΠNu

∗(t)‖2`20(TN )1{t>τN
(M)
}

]
= 0,

where τN(M) was defined at Equation (47).

The proof of Lemma 3.8 relies on the following result, the proof of which is postponed to Appendix C.

Lemma 3.9 (Finite-time uniform h1
0(TN ) bound on UN ). Under the assumptions of Proposition 3.4, for all t > 0 there

exists a constant S1,2
t ∈ [0,+∞), such that

sup
N≥1

E

[
sup
s∈[0,t]

‖D(1,+)
N UN (s)‖2`20(TN )

]
≤ S1,2

t .

Proof of Lemma 3.8. By the Cauchy–Schwarz, triangle and Jensen inequalities, we first write

E
[
‖UN (t)−ΠNu

∗(t)‖2`20(TN )1{t>τN
(M)
}

]
≤
√

E
[
‖UN (t)−ΠNu∗(t)‖4`20(TN )

]√
P
(
t > τN(M)

)
≤
√

8
(
E
[
‖UN (t)‖4

`20(TN )

]
+ E

[
‖ΠNu∗(t)‖4`20(TN )

])√√√√P

(
sup
s∈[0,t]

‖UN (s)‖`∞0 (TN ) ≥M or sup
s∈[0,t]

‖u∗(s)‖L∞0 (T) ≥M

)
.

On the one hand, we deduce from (21), (7), Proposition 3.1 and Lemma 3.6 that

E
[
‖UN (t)‖4`20(TN )

]
≤ C0,4, E

[
‖ΠNu

∗(t)‖4`20(TN )

]
≤ C∗,0,4t .
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On the other hand, we get from the union bound and the Markov inequality that

P

(
sup
s∈[0,t]

‖UN (s)‖`∞0 (TN ) ≥M or sup
s∈[0,t]

‖u∗(s)‖L∞0 (T) ≥M

)

≤ P

(
sup
s∈[0,t]

‖UN (s)‖`∞0 (TN ) ≥M

)
+ P

(
sup
s∈[0,t]

‖u∗(s)‖L∞0 (T) ≥M

)

≤ 1

M
E

[
sup
s∈[0,t]

‖UN (s)‖`∞0 (TN )

]
+ P

(
sup
s∈[0,t]

‖u∗(s)‖L∞0 (T) ≥M

)
.

Using (23), (21), the Jensen inequality, and Lemma 3.9, we get

E

[
sup
s∈[0,t]

‖UN (s)‖`∞0 (TN )

]
≤

√√√√E

[
sup
s∈[0,t]

‖D(1,+)
N UN (s)‖2

`20(TN )

]
≤
√

S1,2
t ,

while by (2) and (3),

P

(
sup
s∈[0,t]

‖u∗(s)‖L∞0 (T) ≥M

)
≤ P

(
sup
s∈[0,t]

‖u∗(s)‖H2
0 (T) ≥M

)
,

and since u∗ is a continuous H2
0 (T)-valued process, the right-hand side (which does not depend on N) converges to 0 when

M → +∞. This completes the proof. �

We are now ready to complete the proof of Proposition 3.4.

Proof of Proposition 3.4. Combining (45) with (46) and the results of Lemmas 3.7 and 3.8, we see that in order to complete
the proof of Proposition 3.4, it only remains to check that

lim
N→+∞

E
[
‖UN

0 −ΠNu
∗
0‖2`20(TN )

]
= 0.

Using the obvious identity v = ΠNΨNv and (7), we first write

‖UN
0 −ΠNu

∗
0‖2`20(TN ) = ‖ΠNΨNUN

0 −ΠNu
∗
0‖2`20(TN ) ≤ ‖ΨNUN

0 − u∗0‖2L2
0(T).

By the construction of UN
0 and u∗0, we know that ‖ΨNUN

0 − u∗0‖2L2
0(T)

converges to 0 almost surely. It remains to check
that the expectation of this random variable also converges to 0, which easily follows from the moment estimates of
Proposition 3.1 and Corollary 3.3 by uniform integrability. �

Remark 3.10. The finite-time convergence result of Proposition 3.4 shows in particular that the semi-discrete scheme
(uN (t))t≥0 converges, in a certain sense, to a solution (u∗(t))t≥0 to the SPDE (1). The proof of this proposition could
actually be adapted to make this statement more general, without the assumption that the process (uN (t))t≥0 be stationary
for example. We will not elaborate in this direction as the purpose of the present work is to focus on invariant measures
rather than on finite-time trajectorial approximations.

3.4. Discussion of the rate of convergence. The estimates (45) and (46), together with the result of Lemma 3.7,
display error terms of order 1/N2 for the estimation of ‖uN (t)−u∗(t)‖2

`20(T)
, but the localisation procedure by the stopping

time τN(M), which is used to handle the fact that A and A are not globally Lipschitz continuous, generally prevents this
computation from providing a global rate of convergence.

However, under the assumption that both A and A are globally L-Lipschitz continuous, for some L ∈ [0,+∞), a strong
error estimate can be derived. Indeed, in this case, let us define on a same probability space:

• (UN
0 )N≥1 a sequence of F0-measurable random vectors such that UN

0 ∼ ϑN ;
• u0 a F0-measurable random variable in H2

0 (T) with distribution µ;
• WQ a Q-Wiener process;

and denote by (UN (t))t≥0 and (u(t))t≥0 the respective solutions to (9) and (1), with respective initial conditions UN
0

and u0, and respectively driven by WQ and WQ,N := ΠNW
Q. Notice that, in contrast with the setting of the previous

subsections, the sequence ΨNUN
0 is not assumed to converge almost surely to u0; on the other hand, we now know that

both processes (UN (t))t≥0 and (u(t))t≥0 are stationary.
As a consequence, (45), (46) and Corollary 3.3 already yield

E
[
‖uN (t)− u∗(t)‖2`20(TN )

]
≤ 2

(
C1,2

N2
+ E

[
‖UN (t)−ΠNu

∗(t)‖2`20(TN )

])
.
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One may then apply Lemma 3.7 with L(M) = L to obtain

E
[
‖UN (t)−ΠNu

∗(t)‖2`20(TN )1{t≤τN
(M)
}

]
≤ eγtE

[
‖UN

0 −ΠNu
∗
0‖2`20(TN )

]
+

C(t, L, δ1, δ2)

N2
,

with γ = −2ν + δ1ν + (δ2 + 3
δ2

)L. Since the right-hand side does not depend on M , we may take the M → +∞ limit first
and thus obtain

E
[
‖UN (t)−ΠNu

∗(t)‖2`20(TN )

]
≤ eγtE

[
‖UN

0 −ΠNu
∗
0‖2`20(TN )

]
+

C(t, L, δ1, δ2)

N2
.

Besides, by stationarity of (u(t))t≥0 and Corollary 3.3, the constant C(t, L, δ1, δ2) from Lemma 3.7 is bounded from above
by

C′(t, L, δ1, δ2) =

∫ t

0

eγ(t−s)
(

4ν

δ1
C2,2 +

6L

δ2
C1,2

)
ds =

(
4ν

δ1
C2,2 +

6L

δ2
C1,2

)∫ t

0

eγsds.

We therefore deduce the finite-time estimate

E
[
‖uN (t)− u∗(t)‖2L2

0(TN )

]
≤ 2

(
eγtE

[
‖UN

0 −ΠNu
∗
0‖2`20(TN )

]
+

C1,2 + C′(t, L, δ1, δ2)

N2

)
, (50)

with a squared error term of order 1/N2. It is remarkable that this is the same order as for deterministic conservation laws
(see for instance [22, Theorem 17.1]), so that, in our setting, the noise is sufficiently smooth in space not to deteriorate
the strong error. This is in contrast with classical results for SPDEs with space-time white noise [23].

When the constant L is small enough, then it is possible to choose δ1 and δ2 which satisfy (48) and such that γ < 0. In
this ‘perturbative’ case (which presents similar features to the one briefly discussed in the introduction of [9]), one may
take the t→ +∞ limit in (50) and obtain the long time estimate

lim sup
t→+∞

E
[
‖uN (t)− u∗(t)‖2L2

0(TN )

]
≤ C′′

N2
, C′′ = 2

(
C1,2 +

1

−γ

(
4ν

δ1
C2,2 +

6L

δ2
C1,2

))
.

Since for any t ≥ 0, uN (t) ∼ µN and u(t) ∼ µ, we have

W2(µN , µ) ≤
√
E
[
‖uN (t)− u∗(t)‖2

L2
0(TN )

]
,

therefore the estimate above yields the quantitative bound

W2(µN , µ) ≤
√
C′′

N
.

We shall check in Section 5 that the order 1/N for the Wasserstein distance is sharp in the case where A = 0.

4. Convergence of invariant measures: split-step scheme towards semi-discrete scheme

This section is dedicated to the proof of the second statement in Theorem 1.7, namely the convergence of ϑN,∆t to ϑN
when ∆t→ 0. We follow the same outline as in Section 3, and we only emphasise the differences in the arguments. The
main results of tightness and finite-time convergence are stated in Subsection 4.1 and proved in Subsection 4.2 and 4.3,
respectively. Rates of convergence are then discussed in Subsection 4.4.

Throughout this section, we arbitrarily fix a maximal time step ∆tmax > 0 and we always take ∆t ∈ (0,∆tmax].

4.1. Statement of the main arguments. The next two results play the respective roles of Proposition 3.1 and Corol-
lary 3.3.

Proposition 4.1 (Uniform `40(TN ) and h1
0(TN ) estimates on ϑN,∆t). For all N ≥ 1 and all ∆t ∈ (0,∆tmax], let VN,∆t

be a random variable in RN0 with distribution ϑN,∆t, and let VN,∆t
1
2

be defined by

VN,∆t
1
2

= VN,∆t + ∆tb
(
VN,∆t

1
2

)
.

There exist constants C∆,0,4,C∆,1,2,C∆,1,2
1
2

∈ [0,+∞), which only depend on ν, D and ∆tmax, such that

sup
N≥1

sup
∆t∈(0,∆tmax]

E
[
‖VN,∆t‖4`40(TN )

]
≤ C∆,0,4,

sup
N≥1

sup
∆t∈(0,∆tmax]

E
[
‖D(1,+)

N VN,∆t‖2`20(TN )

]
≤ C∆,1,2, sup

N≥1
sup

∆t∈(0,∆tmax]

E
[
‖D(1,+)

N VN,∆t
1
2

‖2`20(TN )

]
≤ C∆,1,2

1
2

.
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Remark 4.2. Observe that unlike in Proposition 3.1, no h2
0(TN ) estimate is established here, and as a consequence,

`p0(TN ) estimates for p > 4, which were used in Proposition 3.1 to control the polynomial growth of the derivatives of the
numerical flux, are not used. Indeed, the h2

0(TN ) estimate was necessary to interpret any limit of the space-discretised
approximations of the invariant measure µ as a starting distribution for an H2

0 (T)-valued Markov process. Here, the aim
is to approximate the invariant measure of an RN0 -valued Markov process, so that any probability measure on RN0 can be
regarded as an initial distribution for this process. The content of Proposition 4.1 will be sufficient to control the terms
that will arise from the decomposition of the approximation error.

Corollary 4.3 (Relative compactness and `40(TN ) and h1
0(TN ) estimates on ν∗N ). The family of probability measures

{ϑN,∆t,∆t ∈ (0,∆tmax]} is relatively compact in P2(RN0 ), and any subsequential limit ϑ∗N (when ∆t→ 0) has the property
that if VN,∗ is a random variable in RN0 with distribution ϑ∗N , then

E
[
‖VN,∗‖4`40(TN )

]
≤ C∆,0,4, E

[
‖D(1,+)

N VN,∗‖2`20(TN )

]
≤ C∆,1,2.

The proof of Proposition 4.1 is detailed in Subsection 4.2. Corollary 4.3 is straightforward.
We now let (∆tj)j≥1 ⊂ (0,∆tmax] be a sequence of time steps decreasing to 0 and such that ϑN,∆tj converges to some

probability measure ϑ∗N in P2(RN0 ). We use the Skorohod representation theorem to construct, on the same probability
space, a sequence of F0-measurable random vectors (U

N,∆tj
0 )j≥1 and a random vector UN,∗

0 such that:

• for all j ≥ 1, UN,∆tj
0 ∼ ϑN,∆tj ,

• UN,∗
0 ∼ ϑ∗N ,

• U
N,∆tj
0 converges almost surely to UN,∗

0 .
Up to enlarging this probability space with the same product procedure as in Section 3.1, we let WQ,N be a Wiener
process with covariance given by (8), we define the sequence (∆WQ,N

n )n∈N∗ by (13), and we denote by (U
N,∆tj
n )n∈N and

(UN,∗(t))t≥0 the respective solutions to (14) and (9) with initial conditions UN,∆tj
0 and UN,∗

0 , and noises (∆WQ,N
n )n∈N∗

and WQ,N . We finally define the continuous-time piecewise constant interpolation of the split-step scheme (U
N,∆tj

(t))t≥0

by
∀n ∈ N, ∀t ∈ [n∆tj , (n+ 1)∆tj), U

N,∆tj
(t) = UN,∆tj

n .

Notice that for any t ≥ 0, U
N,∆tj

(t) ∼ ϑN,∆tj .
The finite-time convergence statement reads as follows. It is proved in Subsection 4.3.

Proposition 4.4 (Finite-time convergence of U
N,∆tj

(t)). In the setting described above, for all t ≥ 0,

lim
j→+∞

E
[
‖UN,∆tj

(t)−UN,∗(t)‖2`20(TN )

]
= 0.

We deduce that the measure ϑ∗N is invariant for the SDE (9), which by Theorem 1.5 completes the proof of (18) in
Theorem 1.7.

4.2. Proof of Proposition 4.1. We first prove the h1
0(TN ) estimates. Set u0 = VN,∆t in the proof of Proposition 2.17.

Since Theorem 1.5 asserts that ϑN,∆t ∈ P2(RN0 ), one may take the expectation and the n→ +∞ limit in (36) to get

E
[
‖D(1,+)

N VN,∆t
1
2

‖2`20(TN )

]
≤ D

2ν
=: C∆,1,2

1
2

.

The same operations in (31) yield

E
[
‖D(1,+)

N VN,∆t‖2`20(TN )

]
≤ D

(
1

2ν
+ ∆tmax

)
=: C∆,1,2.

We now focus on the `40(T) estimate. Let (UN,∆t
n )n∈N = (UN,∆t1,n , . . . , UN,∆tN,n )n∈N be a solution of (14) with a deterministic

initial condition u0. By convexity of the function v 7→ v4, for any α, β ∈ R, we have (α− β)4 ≥ α4 − 4α3β. In particular,
for any i ∈ TN , taking α = UN,∆t

i,n+ 1
2

and β = ∆tbi(U
N,∆t

n+ 1
2

), we have

(UN,∆ti,n )4 =
(
UN,∆t
i,n+ 1

2

−∆tbi

(
UN,∆t

n+ 1
2

))4

≥ (UN,∆t
i,n+ 1

2

)4 − 4(UN,∆t
i,n+ 1

2

)3∆tbi

(
UN,∆t

n+ 1
2

)
.

Hence, expanding the function b and summing over i, we get∥∥UN,∆t
n

∥∥4

`40(TN )
≥
∥∥∥UN,∆t

n+ 1
2

∥∥∥4

`40(TN )
+ 4∆t

〈
(UN,∆t

i,n+ 1
2

)3,D
(1,−)
N A

N
(UN,∆t

n+ 1
2

)
〉
`2(TN )

− 4ν∆t
〈

(UN,∆t

i,n+ 1
2

)3,D
(2)
N UN,∆t

n+ 1
2

〉
`2(TN )

.

We know thanks to Lemma 2.2 that the second term of the right-hand side is non-negative. Using (20) in the third term,
we get ∥∥UN,∆t

n

∥∥4

`40(TN )
≥
∥∥∥UN,∆t

n+ 1
2

∥∥∥4

`40(TN )
+ 4ν∆t

〈
D

(1,+)
N (UN,∆t)3

n+ 1
2
,D

(1,+)
N UN,∆t

n+ 1
2

〉
`20(TN )

.
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From Lemma 2.6, we get ∥∥UN,∆t
n

∥∥4

`40(TN )
≥
∥∥∥UN,∆t

n+ 1
2

∥∥∥4

`40(TN )
+ 3ν∆t

∥∥∥UN,∆t

n+ 1
2

∥∥∥4

`40(TN )
. (51)

On the other hand, let us look at the second step of the scheme (14). By the construction of the split-step scheme,
the random variables UN,∆t

i,n+ 1
2

and ∆WQ,N
i,n+1 are independent. Since ∆WQ,N

i,n+1 ∼ N (0,∆t
∑
k≥1(gki )2) and

∑
k≥1(gki )2 ≤ D

by (24), we write

E
[∥∥∥UN,∆t

n+1

∥∥∥4

`40(TN )

]
= E

[∥∥∥UN,∆t

n+ 1
2

+ ∆WQ,N
n+1

∥∥∥4

`40(TN )

]
= E

[∥∥∥UN,∆t

n+ 1
2

∥∥∥4

`40(TN )

]
+

6

N
E

[∑
i∈TN

(UN,∆t
i,n+ 1

2

)2
(

∆WQ,N
i,n+1

)2
]

+ E
[∥∥∥∆WQ,N

n+1

∥∥∥4

`40(TN )

]
≤ E

[∥∥∥UN,∆t

n+ 1
2

∥∥∥4

`40(TN )

]
+ 6D∆tE

[∥∥∥UN,∆t

n+ 1
2

∥∥∥2

`20(TN )

]
+ 3D2∆t2. (52)

Combining Inequalities (51) and (52), we get

E
[∥∥UN,∆t

n

∥∥4

`40(TN )

]
≥ E

[∥∥∥UN,∆t
n+1

∥∥∥4

`40(TN )

]
− 6D∆tE

[∥∥∥UN,∆t

n+ 1
2

∥∥∥2

`20(TN )

]
− 3D2∆t2 + 3ν∆tE

[∥∥∥UN,∆t

n+ 1
2

∥∥∥4

`40(TN )

]
from which we get the telescoping sum

3ν∆t

n−1∑
l=0

E
[∥∥∥UN,∆t

l+ 1
2

∥∥∥4

`40(TN )

]
≤ ‖u0‖4`40(TN ) − E

[∥∥UN,∆t
n

∥∥4

`40(TN )

]
+ 6D∆t

n−1∑
l=0

E
[∥∥∥UN,∆t

l+ 1
2

∥∥∥2

`20(TN )

]
+ 3nD2∆t2.

Thus,
1

n

n−1∑
l=0

E
[∥∥∥UN,∆t

l+ 1
2

∥∥∥4

`40(TN )

]
≤ 1

3ν∆tn
‖u0‖4`40(TN ) +

2D

νn

n−1∑
l=0

E
[∥∥∥UN,∆t

l+ 1
2

∥∥∥2

`20(TN )

]
+

D2∆t

ν
. (53)

Recall that from (22) and Equation (36), we have

1

n

n−1∑
l=0

E
[∥∥∥UN,∆t

l+ 1
2

∥∥∥2

`20(TN )

]
≤ 1

n

n−1∑
l=0

E
[∥∥∥D(1)

N UN,∆t

l+ 1
2

∥∥∥2

`20(TN )

]
≤
‖u0‖2`20(TN )

2νn∆t
+

D

2ν
. (54)

Injecting (54) into (53), we get

1

n

n−1∑
l=0

E
[∥∥∥UN,∆t

l+ 1
2

∥∥∥4

`40(TN )

]
≤ 1

3ν∆tn
‖u0‖4`40(TN ) +

2D

ν

(
‖u0‖2`20(TN )

2νn∆t
+

D

2ν

)
+

D2∆t

ν
.

Using now the same arguments as for derivation of the `p0(TN ) estimates in Proposition 3.1, we get

E
[∥∥∥VN,∆t

1
2

∥∥∥4

`40(TN )

]
≤ D2

ν2
+

D2∆t

ν
=

D2

ν

(
1

ν
+ ∆t

)
.

To conclude, we use Inequality (52) once again:

E
[∥∥VN,∆t

∥∥4

`40(TN )

]
≤ E

[∥∥∥VN,∆t
1
2

∥∥∥4

`40(TN )

]
+ 6D∆tE

[∥∥∥VN,∆t
1
2

∥∥∥2

`20(TN )

]
+ 3D2∆t2

≤ D2

ν

(
1

ν
+ ∆t

)
+

3D2∆t

ν
+ 3D2∆t2

≤ D2

(
1

ν
+ 3∆tmax

)(
1

ν
+ ∆tmax

)
=: C∆,0,4.

4.3. Proof of Proposition 4.4. Similarly to the semi-discrete scheme, we use a localisation argument in order to use
the local Lipschitz continuity of the function b. For any M ≥ 0 and j ≥ 1, we therefore introduce the stopping time

ρj(M) = inf
{
t ≥ 0 : ‖UN,∆tj

(t)‖`20(TN ) ≥M or ‖UN,∗(t)‖`20(TN ) ≥M
}
,

and write, for all t ≥ 0,

E
[
‖UN,∆tj

(t)−UN,∗(t)‖2`20(TN )

]
= E

[
‖UN,∆tj

(t)−UN,∗(t)‖2`20(TN )1{t≤ρj
(M)
}

]
+ E

[
‖UN,∆tj

(t)−UN,∗(t)‖2`20(TN )1{t>ρj
(M)
}

]
.

The terms in the right-hand side are respectively estimated in Lemmas 4.5 and 4.6, from which the conclusion of the
proof of Proposition 4.4 is straightforward.
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In the next statement, we respectively denote by C(M) and L(M) a bound and a Lipschitz constant (with respect to the
`20(TN ) norm) of b on the ball {‖ · ‖`20(T) ≤M}.

Lemma 4.5 (Finite-time convergence in the Lipschitz case). Under the assumptions of Proposition 4.4, for all t > 0 and
δ ∈ (0, 1], there exists a constant C∆(t, L(M),C(M), δ,∆tmax) such that for any j ≥ 1,

E
[
‖UN,∆tj

(t)−UN,∗(t)‖2`20(TN )1{t≤ρj
(M)
}

]
≤ 2e2L(M)t

(
E
[∥∥∥UN,∆tj

0 −UN,∗
0

∥∥∥2

`20(TN )

]
+ ∆t1−δj C∆(t, L(M),C(M), δ,∆tmax)

)
.

Proof. Let t ≥ 0 and j ≥ 1. We introduce the notation njt = b t
∆tj
c and first use (14) to write

U
N,∆tj

(t) = U
N,∆tj

nj
t

= U
N,∆tj
0 +

nj
t−1∑
l=0

(
U
N,∆tj
l+1 −U

N,∆tj
l

)
= U

N,∆tj
0 + ∆tj

nj
t−1∑
l=0

b
(
U
N,∆tj
l+ 1

2

)
+ WQ,N (njt∆tj),

so that, by (9),

U
N,∆tj

(t)−UN,∗(t) = U
N,∆tj
0 −UN,∗

0 +

nj
t−1∑
l=0

∫ (l+1)∆tj

l∆tj

(
b
(
U
N,∆tj
l+ 1

2

)
− b

(
UN,∗(s)

))
ds−RN,∆tj (t),

with

RN,∆tj (t) =

∫ t

nj
t∆tj

b
(
UN,∗(s)

)
ds+ WQ,N (t)−WQ,N (njt∆tj).

We now assume that t ≤ ρj(M). Since, by (32), we have ‖UN,∆tj
l+ 1

2

‖`20(TN ) ≤ ‖U
N,∆tj
l ‖`20(TN ), then for any l ≤ njt − 1 and

s ∈ [l∆tj , (l + 1)∆tj ],∥∥∥b(UN,∆tj
l+ 1

2

)
− b

(
UN,∗(s)

)∥∥∥
`20(TN )

≤ L(M)

∥∥∥UN,∆tj
l+ 1

2

−UN,∗(s)
∥∥∥
`20(TN )

≤ L(M)

(∥∥∥UN,∆tj
l+ 1

2

−U
N,∆tj
l

∥∥∥
`20(TN )

+
∥∥∥UN,∆tj

(s)−UN,∗(s)
∥∥∥
`20(TN )

)
≤ L(M)

(
∆tjC(M) +

∥∥∥UN,∆tj
(s)−UN,∗(s)

∥∥∥
`20(TN )

)
.

Likewise, rewriting

RN,∆tj (t) =

∫ t

nj
t∆tj

(
b
(
UN,∗(s)

)
− b

(
U
N,∆tj

(s)
))

ds+ (t− nt∆tj)b
(
U
N,∆tj

nj
t

)
+ WQ,N (t)−WQ,N (njt∆tj)

we get∥∥RN,∆tj (t)
∥∥
`20(TN )

≤ L(M)

∫ t

nj
t∆tj

∥∥∥UN,∆tj
(s)−UN,∗(s)

∥∥∥
`20(TN )

ds+ ∆tjC(M) +
∥∥∥WQ,N (t)−WQ,N (njt∆tj)

∥∥∥
`20(TN )

.

We deduce that∥∥∥UN,∆tj
(t)−UN,∗(t)

∥∥∥
`20(TN )

≤
∥∥∥UN,∆tj

0 −UN,∗
0

∥∥∥
`20(TN )

+ L(M)

∫ t

0

∥∥∥UN,∆tj
(s)−UN,∗(s)

∥∥∥
`20(TN )

ds+ c∆,j(t),

with
c∆,j(t) = ∆tjC(M)

(
L(M)t+ 1

)
+ max
l=0,...,nj

t

sup
s∈[l∆tj ,(l+1)∆tj)

∥∥WQ,N (s)−WQ,N (l∆tj)
∥∥
`20(TN )

.

Therefore, by Grönwall’s lemma,∥∥∥UN,∆tj
(t)−UN,∗(t)

∥∥∥
`20(TN )

≤ eL(M)t

(∥∥∥UN,∆tj
0 −UN,∗

0

∥∥∥
`20(TN )

+ c∆,j(t)

)
,

and then by Jensen’s inequality,

E
[∥∥∥UN,∆tj

(t)−UN,∗(t)
∥∥∥2

`20(TN )
1{t≤ρj

(M)
}

]
≤ 2e2L(M)t

(
E
[∥∥∥UN,∆tj

0 −UN,∗
0

∥∥∥2

`20(TN )

]
+ E

[
c∆,j(t)2

])
.

It remains to estimate

E
[
c∆,j(t)2

]
≤ 2

(
∆t2jC

2
(M)

(
L(M)t+ 1

)2
+ E

[
max

l=0,...,nj
t

sup
s∈[l∆tj ,(l+1)∆tj)

∥∥WQ,N (s)−WQ,N (l∆tj)
∥∥2

`20(TN )

])
.

By the Markov property and scaling invariance for the Wiener process WQ,N , the random variables

Gl := sup
s∈[l∆tj ,(l+1)∆tj)

∥∥WQ,N (s)−WQ,N (l∆tj)
∥∥2

`20(TN )
, l ≥ 0,
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are independent and identically distributed, with, for any p ∈ [1,+∞),

E[Gpl ] = ∆tpjgp,

for some constant gp which depends on p and the vectors gk but not on ∆tj . As a consequence, we deduce from Jensen’s
inequality that

E

[
max

l=0,...,nj
t

Gl

]
≤ E

[
max

l=0,...,nj
t

Gpl

]1/p

≤ E

 nj
t∑

l=0

Gpl

1/p

= (njt + 1)1/p∆tjg
1/p
p ≤ (t+ ∆tmax)∆t

1−1/p
j g1/p

p ,

which yields the claimed estimate by taking p = 1/δ. �

Lemma 4.6 (Uniform control over ρj(M)). Under the assumptions of Proposition 4.4, for any t ≥ 0,

lim
M→+∞

lim sup
j→+∞

E
[
‖UN,∆tj

(t)−UN,∗(t)‖2`20(TN )1{t>ρj
(M)
}

]
= 0.

The proof of Lemma 4.6 follows the same outline as Lemma 3.8. Namely, it combines `40(TN ) bounds over U
N,∆tj

(t)

and UN,∗(t) uniformly in j, and the fact that by virtue of the Markov property, the probability of the event {t > ρj(M)}
goes to 0 as M → +∞. The `40(TN ) bounds follow from Proposition 4.1 and (28), in which E[‖UN,∗

0 ‖4
`40(TN )

] is bounded

from above by C∆,0,4 thanks to Corollary 4.3. The control of the term P(t > ρj(M)) relies on the uniform (in j) bound on

E[sups∈[0,t] ‖U
N,∆tj

(t)‖2
`20(TN )

] stated in the next lemma, the proof of which is postponed to Appendix C.

Lemma 4.7 (Finite-time uniform `20(TN ) bound on U
N,∆tj ). Under the assumptions of Proposition 4.4, for all t ≥ 0

there exists a constant S∆,0,2
t such that

sup
j≥1

E

[
sup
s∈[0,t]

∥∥∥UN,∆tj
(t)
∥∥∥2

`20(TN )

]
≤ S∆,0,2

t .

In order to complete the proof of Proposition 4.4, it only remains to check that

lim
j→+∞

E
[∥∥∥UN,∆tj

0 −UN,∗
0

∥∥∥2

`20(TN )

]
= 0,

which follows from the `40(TN ) estimates from Proposition 3.1 and Corollary 4.3 by uniform integrability. A more detailed
proof of this result is contained in [28, Section 3.4].

4.4. Discussion of the rate of convergence. Unlike Lemma 3.7, our proof of Lemma 4.5 is not designed to yield a
strong error estimate valid in the long time limit, because it does not directly exploit the decomposition of b into dissipative
and contractive parts. Let us however point out the fact that all constants involved in the uniform in ∆t estimates in this
section also turn out to be uniform in N , which is not crucial for our purpose since we establish results for a fixed value
of N , but might indicate that both limits ∆t → 0 and N → +∞, and associated rates of convergence, could be studied
simultaneously.

As far as weak error estimates are concerned, one might expect in the Lipschitz case a weak error of order ∆t between
ϑN,∆t and ϑN , as is the case for explicit Euler schemes [31]. For gradient SDEs with a non globally Lipschitz continuous
drift, the weak backward error analysis of split-step schemes also shows order ∆t [26]. For the SDE (9), we also observe
order ∆t on the numerical simulations of Section 5, even with a non small (with respect to ν) and non Lipschitz continuous
flux function A.

5. Orders of convergence: analytic case and numerical study

5.1. Analytic case. In this subsection, we consider the case where the flux function A vanishes, so that (1) is the
stochastic heat equation

du(t) = ν∂xxu(t)dt+
∑
k≥1

gkdW k(t), (55)

and the SDE (9) writes

dUN (t) = νD
(2)
N UN (t)dt+

∑
k≥1

gkdW k(t). (56)
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5.1.1. Computation of µ and ϑN . Since the drift of the SDE (56) is linear, the process (UN (t))t≥0 is Gaussian, and its
stationary distribution ϑN is the centered Gaussian measure on RN0 with covariance matrix KN solution to the Lyapunov
equation

νKND
(2)
N + (νKND

(2)
N )> + QN = 0, QN :=

∑
k≥1

gkgk
>
.

The solution to this equation admits the explicit expression

KN =

∫ +∞

0

etνD
(2)
N QNetνD

(2)
N dt =

∑
k≥1

∫ +∞

0

ρkN (t)ρkN (t)>dt,

where ρkN (t) = etνD
(2)
N gk is the solution to the discrete heat equation

d

dt
ρkN (t) = νD

(2)
N ρkN (t), ρkN (0) = gk.

Using the duality relation

〈v,ΨNw〉L2
0(TN ) = 〈ΠNv,w〉`20(TN ), v ∈ L2

0(T), w ∈ RN0 ,

we deduce that the pushforward measure µN is the centered Gaussian measure on L2
0(T) with covariance operator KN :

L2
0(T)→ L2

0(T) defined by, for any v, w ∈ L2
0(T),

〈v,KNw〉L2
0(T) =

∑
k≥1

∫ +∞

0

〈ρkN (t),ΠNv〉`20(TN )〈ρkN (t),ΠNw〉`20(TN )dt

=
∑
k≥1

∫ +∞

0

〈ΨNρkN (t), v〉L2
0(T)〈ΨNρkN (t), w〉L2

0(T)dt.

A similar computation at the infinite-dimensional level of (55) shows that µ is the centered Gaussian measure on L2
0(T)

with covariance operator K : L2
0(T)→ L2

0(T) defined by, for any v, w ∈ L2
0(T),

〈v,Kw〉L2
0(T) =

∑
k≥1

∫ +∞

0

〈rk(t), v〉L2
0(T)〈rk(t), w〉L2

0(T)dt,

where rk(t) is the solution to the heat equation

∂tr
k(t, x) = ν∂xxr

k(t, x), rk(0, x) = gk(x).

5.1.2. Computation of W2(µN , µ). In order to compute explicitly W2(µN , µ), we now assume that gk = 0 for k ≥ 2, and
take

g1(x) = g(x) :=
√

2 sin (2πm0x) ,

for some m0 ∈ N∗. The main advantage of this choice lies in the spectral identities

∂xxg = −λg, λ = (2πm0)2,

and, with g = ΠNg,

D
(2)
N g = −λNg, λN = 2N2

(
1− cos

(
2πm0

N

))
.

These identities allow to compute the time integrals appearing in the operators K and KN and yield, for any v, w ∈ L2
0(T),

〈v,Kw〉N =
1

2νλ
〈g, v〉L2

0(T)〈g, w〉L2
0(T), 〈v,KNw〉N =

1

2νλN
〈ΨNg, v〉L2

0(T)〈ΨNg, w〉L2
0(T).

As a consequence, both operators K and KN have rank 1, and it follows from standard results on finite-dimensional
Gaussian vectors [20] that the optimal coupling between µ and µN in Definition 1.6 is given by the law of the pair of
random variables (u, uN ) defined by

u =
Z√
2νλ

g, uN = εN
Z√

2νλN
ΨNg, εN := sign

(
〈g,ΨNg〉L2

0(T)

)
,

where Z is a standard, one-dimensional Gaussian variable. The Wasserstein distance W2(µN , µ) then writes

W2(µN , µ) =

∥∥∥∥ g√
2νλ
− εNΨNg√

2νλN

∥∥∥∥
L2

0(T)

.

For N large enough, εN = 1 and λN = λ+ O(1/N2), so that

NW2(µN , µ) ∼ N√
2νλ
‖g −ΨNg‖L2

0(T) →
1√

24νλ
‖g‖H1

0 (T),
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which confirms that the rate 1/N derived in Subsection 3.4 is sharp in this case.

5.1.3. Time discretisation. The split-step scheme associated with (56) rewrites

UN,∆t
n+1 =

(
I− ν∆tD

(2)
N

)−1

UN,∆t
n + ∆WQ,N

n+1 ,

which shows that its invariant measure is the centered Gaussian measure on RN0 with covariance matrix KN,∆t given by

KN,∆t = ∆t

+∞∑
n=0

((
I− ν∆tD

(2)
N

)−1
)n

QN

((
I− ν∆tD

(2)
N

)−1
)n

.

With the one-dimensional noise introduced above, this expression reduces to

KN,∆t = ∆t
(1 + ν∆tλN )2

(1 + ν∆tλN )2 − 1
gg>.

It follows that

W2(ϑN,∆t, ϑN ) =

∣∣∣∣∣
√

1

2νλN
−

√
∆t

(1 + ν∆tλN )2

(1 + ν∆tλN )2 − 1

∣∣∣∣∣ ‖g‖`20(TN ) = ∆t(1 + O(∆t))

√
νλN

2
‖g‖`20(TN ),

which shows the order ∆t for the Wasserstein distance between ϑN,∆t and ϑN , uniformly in N since we recall that
λN = λ+ O(1/N2).

5.2. Numerical experiments. In this subsection, we study numerically the weak error between ϑN,∆t and ϑN , as a
function of ∆t. More precisely, we take as a test function

Φ(v) = exp
(
−‖v‖2`20(TN )

)
, v ∈ RN0 ,

and estimate
errN (∆t) :=

∣∣E [Φ(VN,∆t)
]
− E

[
Φ(VN )

]∣∣ , VN,∆t ∼ ϑN,∆t, VN ∼ ϑN .
Notice that, since Φ is globally Lipschitz continuous, the quantity errN (∆t) is controlled byW2(ϑN,∆t, ϑN ) and is therefore
at most of order ∆t in the case α = 0.

We work with the Burgers equation, for which A(v) = αv2/2, with a strength parameter α ≥ 0. We keep the one-
dimensional noise introduced in Subsection 5.1 and take the values m0 = 1 in order to minimise spatial oscillations. The
typical behaviour of a solution strongly depends on the relative orders of magnitude of the non-linear term and the viscous
term. Whether the equation is viscous-driven or flux-driven, the noise-induced spatial oscillations are either dissipated or
non-linearly transported and transformed to oscillations with higher frequency. Therefore, the exact order of convergence
derived in Subsection 5.1 holds in a situation which is far from representative of what ought to be expected from the
Burgers equation.

In the case α = 0, under the invariant measure µ, the functions ∂xxu and u∂xu have respective orders of magnitude
ν−1/2 and ν−1 in the L2

0(T) norm. Therefore, we shall study the four identified regimes of the solution associated with
the different ranges where, ceteris paribus, the value of α lies:

• the linear regime α = 0;
• the viscous regime |αu∂xu| � |ν∂xxu|, that is to say α� ν3/2;
• the equilibrated regime |αu∂xu| ' |ν∂xxu|, that is to say α ' ν3/2;
• the inviscid regime |αu∂xu| � |ν∂xxu|, that is to say α� ν3/2.

For numerical experiments we will take ν = 0.1 and the different regimes correspond to α = 0, α = 0.01ν3/2, α = ν3/2

and α = 100ν3/2.

5.2.1. Analytic results for α = 0. In the Gaussian case α = 0, the expectations involved in the definition of errN (∆t) are
analytic and write, with the notation of Subsection 5.1,

E[Φ(VN,∆t)] =

√
1

1 + 2κN,∆t
, κN,∆t =

∆t(1 + ν∆tλN )2

(1 + ν∆tλN )2 − 1
‖g‖2`20(TN ),

E[Φ(VN )] =

√
1

1 + 2κN
, κN :=

‖g‖2
`20(TN )

2νλN
,

with ‖g‖2
`20(TN )

= (sin(πm0

N )/πm0

N )2 as soon as N > 2m0. We deduce from these expressions that errN (∆t) is of order ∆t,
uniformly in N .

26



5.2.2. Ergodic approximation of E[Φ(VN,∆t)]. For N ≥ 1 and ∆t > 0, let us denote

IN,∆t := E[Φ(VN,∆t)].

From Remark 1.9 and the Central Limit Theorem for Markov chains, we may expect that there exist ΣN,∆t such that for
T large enough, the random variable

ÎN,∆tT =
1

n

n−1∑
l=0

Φ(UN,∆t
l ), T = n∆t,

has the Gaussian distribution

ÎN,∆tT ∼ N
(
IN,∆t,

(ΣN,∆t)2

T

)
.

The evolution of the empirical average ÎN,∆tt , t ∈ [0, T ], along a single trajectory of the split-step scheme is plotted on
Figure 1 for the four regimes of α. The value of IN,∆t seems to be the same for all regimes α = 0, α� ν3/2 and α ' ν3/2,
and to be significantly larger for α� ν3/2.

Figure 1. Evolution of ÎN,∆tt for t ∈ [0, T ] and the four regimes of α. In the case α = 0, the theoretical
value of IN,∆t is superposed as a horizontal line. Here, N = 32, ∆t = 2−10 and T = 256.

In § 5.2.3, Monte Carlo confidence intervals for IN,∆t are obtained by fixing a time horizon T � 1 and estimating the
parameters IN,∆t and ΣN,∆t from a sample of M � 1 independent realisations ÎN,∆t,(1)

T , . . . , Î
N,∆t,(M)
T .

5.2.3. Weak error between ϑN,∆t and ϑN . Let N = 32, ∆tmin = 2−8 and ∆tmax = 2−1. Our purpose is to plot the
evolution of errN (∆t) for ∆t ∈ [∆tmin,∆tmax]. To this aim, we fix ∆t = 2−10 � ∆tmin, approximate

errN (∆t) '
∣∣∣IN,∆t − IN,∆t∣∣∣ ,

and compute both terms in the right-hand side thanks to Monte Carlo simulations as is described in § 5.2.2.
The resulting error curves are plotted on Figure 2 for the four regimes of α. The weak error is observed to be of order

∆t, uniformly in α.

Remark 5.1. The error curves of Figure 2 are plotted with the same final time horizon T , and the same number of Monte
Carlo realisations M , for all values of ∆t. As it turns out that the asymptotic variance ΣN,∆t is approximately uniform
in N and ∆t, this results in the estimator of errN (∆t) having the same variance for all ∆t. This is the reason why, in
log-log coordinates, confidence intervals appear to be larger for smaller values of ∆t.
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Figure 2. Evolution of errN (∆t) for ∆t ∈ [∆tmin,∆tmax] and the four regimes of α, with associated
confidence intervals. In the case α = 0, the theoretical value of errN (∆t) is superposed. Here, the final
time horizon is T = 256 and the number of copies for the Monte Carlo estimation is M = 200.

Appendix A. Proofs of auxiliary inequalities

Proof of Lemma 2.2. Let v ∈ RN0 and q ∈ 2N∗. By (19) we have

〈vq−1,D(1,−)A
N

(v)〉`2(TN ) = −〈D(1,+)vq−1,A
N

(v)〉`2(TN ) = −
∑
i∈TN

(vq−1
i+1 − v

q−1
i )A(vi, vi+1).

For any i ∈ TN , using (11) and (10), we get

(vq−1
i+1 − v

q−1
i )A(vi, vi+1) =

∫ vq−1
i+1

vq−1
i

A(vi, vi+1)dz ≤
∫ vq−1

i+1

vq−1
i

A
(
z1/(q−1), z1/(q−1)

)
dz = Aq

(
vq−1
i+1

)
−Aq

(
vq−1
i

)
,

where Aq denotes a function defined on R such that A′q(z) = A(z1/(q−1)). Since the sum over i ∈ TN of all terms in the
right-hand side vanish, the proof is completed. �

Proof of Lemma 2.6. For v ∈ RN0 and p ∈ 2N∗, we first write〈
D

(1,+)
N (vp−1),D

(1,+)
N v

〉
`20(TN )

= N
∑
i∈TN

(
vp−1
i+1 − v

p−1
i

)
(vi+1 − vi)

= N(p− 1)
∑
i∈TN

(vi+1 − vi)
∫ vi+1

vi

|z|p−2dz

= N(p− 1)
∑
i∈TN

(vi+1 − vi)
∫ vi+1

vi

(
|z|p/2−1

)2

dz.

For each i ∈ TN , the summand in the right-hand side is a symmetric and nonnegative function of vi and vi+1, therefore
whatever the sign of vi+1 − vi, Jensen’s inequality yields

(vi+1 − vi)
∫ vi+1

vi

(
|z|p/2−1

)2

dz ≥
(∫ vi+1

vi

|z|p/2−1dz

)2

.

As a consequence, we get〈
D

(1,+)
N (vp−1),D

(1,+)
N v

〉
`20(TN )

≥ N(p− 1)
∑
i∈TN

(∫ vi+1

vi

|z|p/2−1dz

)2

=
4N(p− 1)

p2

∑
i∈TN

(∫ vi+1

vi

d

dz

(
sign(z)|z|p/2

)
dz

)2

=
4N(p− 1)

p2

∑
i∈TN

(
sign (vi+1) |vi+1|p/2 − sign (vi) |vi|p/2

)2

=
4(p− 1)

p2
‖D(1,+)w‖2`20(TN ),
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where w is the vector with coordinates wi = sign (vi) |vi|p/2, i ∈ TN . This vector does not necessarily belong to RN0 so
we cannot apply the Poincaré inequality (22) direclty. Let us however notice that since v ∈ RN0 , there exist two indices
i−, i+ ∈ TN such that vi− ≤ 0 ≤ vi+ , so that wi− ≤ 0 ≤ wi+ . As a consequence,

‖w‖2`20(TN ) =
1

N

∑
wi≥0

|wi|2 +
1

N

∑
wi<0

|wi|2

≤ 1

N

∑
wi≥0

|wi − wi− |2 +
1

N

∑
wi<0

|wi − wi+ |2

≤ 1

N

∑
wi≥0

N
∑
j∈TN

|wj+1 − wj |2 +
1

N

∑
wi<0

N
∑
j∈TN

|wj+1 − wj |2

= N
∑
j∈TN

|wj+1 − wj |2

=
∥∥∥D(1,+)

N w
∥∥∥2

`20(TN )
.

Injecting this estimate in the identity above, we deduce that〈
D

(1,+)
N (vp−1),D

(1,+)
N v

〉
`20(TN )

≥ 4(p− 1)

p2
‖w‖2`20(TN ) =

4(p− 1)

p2
‖v‖p`p0(TN ) ,

which completes the proof. �

Appendix B. Proofs of intermediary results for the uniqueness of invariant measures

B.1. The semi-discrete scheme.

Proof of Lemma 2.10. We recall that b : RN0 → RN0 is locally Lipschitz continuous (for every norm over RN0 ). Let M > 0
and ε > 0. Let us also fix the deterministic values u0,v0 ∈ RN0 satisfying ‖u0‖`20(TN ) ∨ ‖v0‖`20(TN ) ≤ M , along with the
following constants:

tε,M := − 1

2ν
log

ε2

16M2
;

LM+ε := Lipschitz constant of b over the ball
{
‖·‖`10(TN ) ≤M + ε

}
;

δε :=
ε

4
e−LM+εtε,M .

Let (UN (t))t≥0 and (VN (t))t≥0 denote two solutions of (9) with the initial conditions u0 and v0. We introduce the
stopping times

τ̃U
N

:= inf
{
t ≥ 0 : ‖UN (t)‖`10(TN ) ≥M + ε

}
, τ̃V

N

:= inf
{
t ≥ 0 : ‖VN (t)‖`10(TN ) ≥M + ε

}
.

Furthermore, we denote by (uN (t))t≥0 and (vN (t))t≥0 the noiseless counterparts of (UN (t))t≥0 and (VN (t))t≥0:
d

dt
uN (t) = b

(
uN (t)

)
,

d

dt
vN (t) = b

(
vN (t)

)
,

with respective initial conditions u0 and v0.
By Lemma 2.1.(ii) and (22), we have

d

dt

(∥∥uN (t)
∥∥2

`20(TN )
+
∥∥vN (t)

∥∥2

`20(TN )

)
≤ −2ν

(∥∥uN (t)
∥∥2

`20(TN )
+
∥∥vN (t)

∥∥2

`20(TN )

)
,

so that Grönwall’s lemma yields the upper bound∥∥uN (t)
∥∥2

`20(TN )
+
∥∥vN (t)

∥∥2

`20(TN )
≤
(
‖u0‖2`20(TN ) + ‖v0‖2`20(TN )

)
e−2νt,

meaning that for t ≥ tε,M , we have ∥∥uN (t)
∥∥2

`20(TN )
+
∥∥vN (t)

∥∥2

`20(TN )
≤ ε2

8
,

and consequently, by (21),∥∥uN (t)
∥∥
`10(TN )

+
∥∥vN (t)

∥∥
`10(TN )

≤
∥∥uN (t)

∥∥
`20(TN )

+
∥∥vN (t)

∥∥
`20(TN )

≤ ε

2
.

We now consider the event {
sup

t∈[0,tε,M ]

∥∥WQ,N (t)
∥∥
`10(TN )

≤ δε

}
.
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For any t ≤ τ̃UN ∧ τ̃VN ∧ tε,M , the four vectors UN (t), VN (t), uN (t) and vN (t) stay in the ball {‖ · ‖`10(TN ) ≤M + ε},
and thanks to the local Lipschitz continuity assumption on b we have∥∥UN (t)− uN (t)

∥∥
`10(TN )

+
∥∥VN (t)− vN (t)

∥∥
`10(TN )

=

∥∥∥∥∫ t

0

(
b
(
UN (s)

)
− b

(
uN (s)

))
ds+ WQ,N (t)

∥∥∥∥
`10(TN )

+

∥∥∥∥∫ t

0

(
b
(
VN (s)

)
− b

(
vN (s)

))
ds+ WQ,N (t)

∥∥∥∥
`10(TN )

≤
∫ t

0

(∥∥b (UN (s)
)
− b

(
uN (s)

)∥∥
`10(TN )

+
∥∥b (VN (s)

)
− b

(
vN (s)

)∥∥
`10(TN )

)
ds+ 2

∥∥WQ,N (t)
∥∥
`10(TN )

≤ LM+ε

∫ t

0

(∥∥UN (s)− uN (s)
∥∥
`10(TN )

+
∥∥VN (s)− vN (s)

∥∥
`10(TN )

)
ds+ 2δε,

so by Grönwall’s lemma, we have∥∥UN (t)− uN (t)
∥∥
`10(TN )

+
∥∥VN (t)− vN (t)

∥∥
`10(TN )

≤ 2δεe
LM+εt ≤ 2δεe

LM+εtε,M =
ε

2
, (57)

for every t ∈ [0, τ̃U
N ∧ τ̃VN ∧ tε,M ]. But it appears that the case τ̃U

N ∧ τ̃VN

< tε,M is impossible for small values of
ε. Indeed, it would either imply ‖(UN − uN )(τ̃U

N

)‖`10(TN ) ≤ ε/2 or ‖(VN − vN )(τ̃V
N

)‖`10(TN ) ≤ ε/2 which is impossible
because we have on the one hand∥∥∥UN

(
τ̃U

N
)∥∥∥

`10(TN )
≥M + ε

(
or
∥∥∥VN

(
τ̃V

N
)∥∥∥

`10(TN )
≥M + ε

)
,

and on the other hand∥∥∥uN (τ̃UN
)∥∥∥

`10(TN )
≤
∥∥∥uN (τ̃UN

)∥∥∥
`20(TN )

≤ ‖u0‖`20(TN ) ≤M
(
or
∥∥∥vN (τ̃VN

)∥∥∥
`10(TN )

≤M
)
.

Therefore, Inequality (57) holds for all t ∈ [0, tε,M ]. Thus,∥∥UN (tε,M )
∥∥
`10(TN )

+
∥∥VN (tε,M )

∥∥
`10(TN )

≤
∥∥UN (tε,M )− uN (tε,M )

∥∥
`10(TN )

+
∥∥VN (tε,M )− vN (tε,M )

∥∥
`10(TN )

+
∥∥uN (tε,M )

∥∥
`10(TN )

+
∥∥vN (tε,M )

∥∥
`10(TN )

≤ ε,

and we have just shown that{
sup

t∈[0,tε,M ]

∥∥WQ,N (t)
∥∥
`10(TN )

≤ δε

}
⊂
{∥∥UN (tε,M )

∥∥
`10(TN )

+
∥∥VN (tε,M )

∥∥
`10(TN )

≤ ε
}
.

and therefore,

P(u0,v0)

(∥∥UN (tε,M )
∥∥
`10(TN )

+
∥∥VN (tε,M )

∥∥
`10(TN )

≤ ε
)
≥ P

(
sup

t∈[0,tε,M ]

∥∥WQ,N (t)
∥∥
`10(TN )

≤ δε

)
.

Notice that the right-hand side does not depend on u0 nor v0. Furthermore, it is positive since WQ,N is an RN -valued
Wiener process. Hence, taking the infimum over u0 and v0 on the left-hand side yields the wanted result. �

Proof of Lemma 2.11. From Itô’s formula, we have for all t ≥ 0,∥∥UN (τM ∧ t)
∥∥2

`20(TN )
+
∥∥VN (τM ∧ t)

∥∥2

`20(TN )

= ‖u0‖2`20(TN ) + ‖v0‖2`20(TN ) +

∫ τM∧t

0

〈
b(UN (s)),UN (s)

〉
`20(TN )

ds+

∫ τM∧t

0

〈
b(VN (s)),VN (s)

〉
`20(TN )

ds

+

∫ τM∧t

0

〈
UN (s) + VN (s),dWQ,N (s)

〉
`20(TN )

+ 2
∑
k≥1

∫ τM∧t

0

∥∥gk∥∥2

`20(TN )
ds.

(58)
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The fifth term of the right-hand side is a martingale. Indeed, by the Cauchy–Schwarz inequality, Inequality (24), and the
bound (27), we have

E

∑
k≥1

∫ τM∧t

0

∣∣∣〈UN (s) + VN (s),gk
〉
`20(TN )

∣∣∣2 ds


≤

∑
k≥1

∥∥gk∥∥2

`20(TN )

E
[∫ t

0

∥∥UN (s) + VN (s)
∥∥2

`20(TN )
ds

]

≤ 2D

(
E
[∫ t

0

∥∥UN (s)
∥∥2

`20(TN )
ds

]
+ E

[∫ t

0

∥∥VN (s)
∥∥2

`20(TN )
ds

])
≤ 2D

(
2c

(2)
0 + c

(2)
1

(
‖u0‖2`20(TN ) + ‖v0‖2`20(TN )

)
+ 2c

(2)
2 t
)

< +∞.
Thus, taking the expectation in (58), applying Lemma 2.1.(ii), Inequality (24), (22) and (29), we get

E
[∥∥UN (τM ∧ t)

∥∥2

`20(TN )
+
∥∥VN (τM ∧ t)

∥∥2

`20(TN )

]
−
(
‖u0‖2`20(TN ) + ‖v0‖2`20(TN )

)
= 2E

[∫ τM∧t

0

(〈
b
(
UN (s)

)
,UN (s)

〉
`20(TN )

+
〈
b
(
VN (s)

)
,VN (s)

〉
`20(TN )

)
ds

]
+ 2E

∫ τM∧t

0

∑
k≥1

∥∥gk∥∥2

`20(TN )
ds


≤ −2νE

[∫ τM∧t

0

(∥∥∥D(1,+)
N UN (s)

∥∥∥2

`20(TN )
+
∥∥∥D(1,+)

N VN (s)
∥∥∥2

`20(TN )

)
ds

]
+ 2E [τM ∧ t]D

≤ −2νE
[∫ τM∧t

0

(∥∥UN (s)
∥∥2

`20(TN )
+
∥∥VN (s)

∥∥2

`20(TN )

)
ds

]
+ 2E [τM ∧ t]D

≤ 2
(
D− νM2

)
E [τM ∧ t] .

So if we choose M >
√
D/ν, we get

E[τM ∧ t] ≤
‖u0‖2`20(TN )

+ ‖v0‖2`20(TN )

2 (νM2 − D)
,

and we deduce from the monotone convergence theorem that E[τM ] = limt→∞ E[τM ∧ t] < +∞. �

B.2. The split-step scheme.

Proof of Lemma 2.18. First, let ε > 0 and let us fix u0,v0 ∈ RN0 such that ‖u0‖`20(TN ) ≤M and ‖v0‖`20(TN ) ≤M .
Let (uN,∆tn )n∈N and (vN,∆tn )n∈N denote the noiseless counterparts of the sequences (UN,∆t

n )n∈N and (VN,∆t
n )n∈N, i.e.

uN,∆tn+1 = uN,∆tn + ∆tb
(
uN,∆tn+1

)
, vN,∆tn+1 = vN,∆tn + ∆tb

(
vN,∆tn+1

)
, (59)

with initial conditions u0 and v0. Then (uN,∆tn )n∈N and (vN,∆tn )n∈N are subject to non-perturbed `20(TN ) dissipativity,
and consequently the sum of their energies decreases to 0 over time. Indeed, we have∥∥uN,∆tn

∥∥2

`20(TN )
+
∥∥vN,∆tn

∥∥2

`20(TN )
=
∥∥∥uN,∆tn+1 −∆tb

(
uN,∆tn+1

)∥∥∥2

`20(TN )
+
∥∥∥vN,∆tn+1 −∆tb

(
vN,∆tn+1

)∥∥∥2

`20(TN )

=
∥∥∥uN,∆tn+1

∥∥∥2

`20(TN )
+
∥∥∥vN,∆tn+1

∥∥∥2

`20(TN )
+ (∆t)2

(
‖b (un+1)‖2`20(TN ) + ‖b (vn+1)‖2`20(TN )

)
− 2∆t

(〈
uN,∆tn+1 ,b

(
uN,∆tn+1

)〉
`20(TN )

+
〈
vN,∆tn+1 ,b

(
vN,∆tn+1

)〉
`20(TN )

)
therefore, using successively Lemma 2.1.(ii) and (22), we get∥∥∥uN,∆tn+1

∥∥∥2

`20(TN )
+
∥∥∥vN,∆tn+1

∥∥∥2

`20(TN )
−
(∥∥uN,∆tn

∥∥2

`20(TN )
+
∥∥vN,∆tn

∥∥2

`20(TN )

)
≤ 2∆t

(〈
uN,∆tn+1 ,b

(
uN,∆tn+1

)〉
`20(TN )

+
〈
vN,∆tn+1 ,b

(
vN,∆tn+1

)〉
`20(TN )

)
≤ −2∆tν

(∥∥∥D(1,+)
N uN,∆tn+1

∥∥∥2

`20(TN )
+
∥∥∥D(1,+)

N vN,∆tn+1

∥∥∥2

`20(TN )

)
≤ −2∆tν

(∥∥∥uN,∆tn+1

∥∥∥2

`20(TN )
+
∥∥∥vN,∆tn+1

∥∥∥2

`20(TN )

)
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so that ∥∥∥uN,∆tn+1

∥∥∥2

`20(TN )
+
∥∥∥vN,∆tn+1

∥∥∥2

`20(TN )
≤ 1

1 + 2∆tν

(∥∥uN,∆tn

∥∥2

`20(TN )
+
∥∥vN,∆tn

∥∥2

`20(TN )

)
,

by induction, we get for all n ∈ N,∥∥uN,∆tn

∥∥2

`20(TN )
+
∥∥vN,∆tn

∥∥2

`20(TN )
≤
(

1

1 + 2∆tν

)n (
‖u0‖2`20(TN ) + ‖v0‖2`20(TN )

)
.

It appears now that if we fix the value

nε,M :=

⌈
−1

log(1 + 2∆tν)
log

(
ε2

16M2

)⌉
,

we get for all n ≥ nε,M , ∥∥uN,∆tn

∥∥
`10(TN )

+
∥∥vN,∆tn

∥∥
`10(TN )

≤
∥∥uN,∆tn

∥∥
`20(TN )

+
∥∥vN,∆tn

∥∥
`20(TN )

≤ ε

2
.

Now, we fix δε := ε/(4nε,M ) and we restrict ourselves to the event{
sup

n=1,...,nε,M

∥∥∆WQ,N
n

∥∥
`10(TN )

≤ δε

}
. (60)

Let (UN,∆t
n )n∈N and (VN,∆t

n )n∈N be two solutions of (14) with the deterministic initial conditions u0 and v0 respectively.
With similar arguments as for the proof of Proposition 2.7, we get from (14), (59) and Lemma 2.1.(ii), for all n ∈ N,∥∥∥UN,∆t

n+1 − uN,∆tn+1

∥∥∥
`10(TN )

+
∥∥∥VN,∆t

n+1 − vN,∆tn+1

∥∥∥
`10(TN )

≤
∥∥∥UN,∆t

n+ 1
2

− uN,∆tn+1

∥∥∥
`10(TN )

+
∥∥∥VN,∆t

n+ 1
2

− vN,∆tn+1

∥∥∥
`10(TN )

+ 2
∥∥∥∆WQ,N

n+1

∥∥∥
`10(TN )

=
〈
sign

(
UN,∆t

n+ 1
2

− uN,∆tn+1

)
,UN,∆t

n − uN,∆tn

〉
`2(TN )

+ ∆t
〈
sign

(
UN,∆t

n+ 1
2

− uN,∆tn+1

)
,b
(
UN,∆t

n+ 1
2

)
− b

(
uN,∆tn+1

)〉
`2(TN )

+
〈
sign

(
VN,∆t

n+ 1
2

− vN,∆tn+1

)
,VN,∆t

n − vN,∆tn

〉
`2(TN )

+ ∆t
〈
sign

(
VN,∆t

n+ 1
2

− vN,∆tn+1

)
,b
(
VN,∆t

n+ 1
2

)
− b

(
vN,∆tn+1

)〉
`2(TN )

+ 2
∥∥∥∆WQ,N

n+1

∥∥∥
`10(TN )

≤
∥∥UN,∆t

n − uN,∆tn

∥∥
`10(TN )

+
∥∥VN,∆t

n − vN,∆tn

∥∥
`10(TN )

+ 2
∥∥∥∆WQ,N

n+1

∥∥∥
`10(TN )

.

On the event (60), we have for all n = 1, . . . , nε,M ,∥∥∥UN,∆t
n+1 − uN,∆tn+1

∥∥∥
`10(TN )

+
∥∥∥VN,∆t

n+1 − vN,∆tn+1

∥∥∥
`10(TN )

≤
∥∥UN,∆t

n − uN,∆tn

∥∥
`10(TN )

+
∥∥VN,∆t

n − vN,∆tn

∥∥
`10(TN )

+ 2δε.

In particular, by induction, we have∥∥∥UN,∆t
nε,M

− uN,∆tnε,M

∥∥∥
`10(TN )

+
∥∥∥VN,∆t

nε,M
− vN,∆tnε,M

∥∥∥
`10(TN )

≤ 2nε,Mδε =
ε

2
.

Thus,∥∥∥UN,∆t
nε,M

∥∥∥
`10(TN )

+
∥∥∥VN,∆t

nε,M

∥∥∥
`10(TN )

≤
∥∥∥UN,∆t

nε,M
− uN,∆tnε,M

∥∥∥
`10(TN )

+
∥∥∥VN,∆t

nε,M
− vN,∆tnε,M

∥∥∥
`10(TN )

+
∥∥∥uN,∆tnε,M

∥∥∥
`10(TN )

+
∥∥∥vN,∆tnε,M

∥∥∥
`10(TN )

≤ ε

2
+
ε

2
= ε.

We just have shown that

P(u0,v0)

(∥∥Unε,M

∥∥
`10(TN )

+
∥∥Vnε,M

∥∥
`10(TN )

≤ ε
)
≥ P

(
sup

n=1,...,nε,M

∥∥∆WQ,N
n

∥∥
`10(TN )

≤ δε

)
> 0.

Since the event (60) does not depend on u0 nor v0, we get the result. �
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Appendix C. Proofs of finite-time bounds for Sections 3 and 4

Proof of Lemma 3.6. The proof of these estimates is largely based on refinements of computations made in [29].
Proof of the Lp0(T) estimate. Let p ∈ 2N∗ and let us repeat the proof of [29, Lemma 3] up to [29, Equation (23)]. When

the initial condition u∗0 is random and has distribution µ∗, this equation writes

E
[
‖u∗ (t ∧ Tr)‖pLp

0(T)

]
= E

[
‖u∗0‖

p
Lp

0(T)

]
− pE

[∫ t∧Tr

0

∫
T
∂xA(u∗(s))u∗(s)p−1dxds

]

− νp(p− 1)E

[∫ t∧Tr

0

∫
T
∂xu

∗(s)2u∗(s)p−2dxds

]
+
p(p− 1)

2

∑
k≥1

E

[∫ t∧Tr

0

∫
T
u∗(s)p−2(gk)2dxds

]
,

for all t ≥ 0 and r ≥ 0, where Tr is a stopping time converging almost surely towards +∞ as r → +∞ (by [29,
Corollary 2]). Using [29, Equation (24)], the non-positivity of the third term of the right-hand side, and bounding the
gk’s by their supremum, we get the inequality

E
[
‖u∗ (t ∧ Tr)‖pLp

0(T)

]
≤ E

[
‖u∗0‖

p
Lp

0(T)

]
+
p(p− 1)

2

∑
k≥1

∥∥gk∥∥2

L∞0 (T)

E

[∫ t∧Tr

0

‖u∗(s)‖p−2

Lp−2
0 (T)

ds

]
.

Using now Corollary 3.3, (3), (5), and [29, Equation (18)], we get

E
[
‖u∗ (t ∧ Tr)‖pLp

0(T)

]
≤ C0,p +

p(p− 1)

2
D
(
C

(p−2)
5

(
1 + E

[
‖u∗0‖

p−2

Lp−2
0 (T)

])
+ C

(p−2)
6 t

)
,

where the constants C(p−2)
5 and C(p−2)

6 , defined in [29], depend only on ν, p and D. Using once again Corollary 3.3 and
letting r → +∞, we obtain

lim sup
r→∞

E
[
‖u∗ (t ∧ Tr)‖pLp

0(T)

]
≤ C0,p +

p(p− 1)

2
D
(
C

(p−2)
5

(
1 + C0,p−2

)
+ C

(p−2)
6 t

)
=: C∗,0,pt .

Applying Fatou’s lemma on the left-hand side, we get

E
[
‖u∗(t)‖pLp

0(T)

]
≤ C∗,0,pt ,

from which we easily get the claimed inequality in the case p ∈ 2N∗. The general case p ∈ [1,+∞) then follows from the
Jensen inequality.

Proof of the H1
0 (T) and H2

0 (T) estimates. We now start from [29, Lemma 4] which, when u∗0 is random, gives the
estimate

E
[
‖u∗(t ∧ Tr)‖2H1

0 (T)

]
+ νE

[∫ t∧Tr

0

‖u∗(s)‖2H2
0 (T) ds

]
≤ E

[
‖u∗0‖

2
H1

0 (T)

]
+ C7

(
1 + E

[
‖u∗0‖

2pA+2

L
2pA+2

0 (T)

])
+ C8t,

and from which we deduce, by applying Fatou’s lemma on the left-hand side and Corollary 3.3 on the right-hand side:

E
[
‖u∗(t)‖2H1

0 (T)

]
+ νE

[∫ t

0

‖u∗(s)‖2H2
0 (T) ds

]
≤ C1,2 + C7

(
1 + C0,2pA+2

)
+ C8t =: C∗,1,2t .

We conclude that
E
[
‖u∗(t)‖2H1

0 (T)

]
≤ C1,2 + C7

(
1 + C0,2pA+2

)
+ C8t =: C∗,1,2t ,

and

E
[∫ t

0

‖u∗(s)‖2H2
0 (T) ds

]
≤ 1

ν

(
C1,2 + C7

(
1 + C0,2pA+2

)
+ C8t

)
=: C∗,2,2t . �

Proof of Lemma 3.9. Lemma 3.9 is a refinement of the uniform h2
0(TN ) estimate from Proposition 3.1. We start from (39)

and use the definition of b to write∥∥∥D(1,+)
N UN (t)

∥∥∥2

`20(TN )
=
∥∥∥D(1,+)

N UN
0

∥∥∥2

`20(TN )
+ 2

∫ t

0

〈
D

(1,+)
N UN (s),D

(1,+)
N

(
−D(1,−)

N A
N

(UN (s)) + νD
(2)
N UN (s)

)〉
`20(TN )

ds

+ 2

∫ t

0

〈
D

(1,+)
N UN (s),d

(
D

(1,+)
N WQ,N

)
(s)
〉
`20(TN )

+ t
∑
k≥1

∥∥∥D(1,+)
N gk

∥∥∥2

`20(TN )
.

By (20) and Young’s inequality,

−2
〈
D

(1,+)
N UN (s),D

(1,+)
N D

(1,−)
N A

N
(UN (s))

〉
`20(TN )

= 2
〈
D

(2)
N UN (s),D

(1,−)
N A

N
(UN (s))

〉
`20(TN )

≤ 2ν‖D(2)
N UN (s)‖2`20(TN ) +

1

2ν
‖D(1,−)

N A
N

(UN (s))‖2`20(TN ),
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while
2ν
〈
D

(1,+)
N UN (s),D

(1,+)
N D

(2)
N UN (s)

〉
`20(TN )

= −2ν‖D(2)
N UN (s)‖2`20(TN ),

so that, using (24) in addition,∥∥∥D(1,+)
N UN (t)

∥∥∥2

`20(TN )
≤
∥∥∥D(1,+)

N UN
0

∥∥∥2

`20(TN )
+

1

2ν

∫ t

0

‖D(1,−)
N A

N
(UN (s))‖2`20(TN )ds

+ 2

∫ t

0

〈
D

(1,+)
N UN (s),d

(
D

(1,+)
N WQ,N

)
(s)
〉
`20(TN )

+ tD.

We deduce that for any t ≥ 0,

sup
s∈[0,t]

∥∥∥D(1,+)
N UN (s)

∥∥∥2

`20(TN )
≤
∥∥∥D(1,+)

N UN
0

∥∥∥2

`20(TN )
+

1

2ν

∫ t

0

‖D(1,−)
N A

N
(UN (s))‖2`20(TN )ds+ 2ZNt + tD, (61)

where ZNt is defined by

ZNt = sup
s∈[0,t]

∫ s

0

〈
D

(1,+)
N UN (r),d

(
D

(1,+)
N WQ,N

)
(r)
〉
`20(TN )

,

and it remains to control the expectation of the right-hand side of the inequality (61).
First, by Proposition 3.1, we have

E
[∥∥∥D(1,+)

N UN
0

∥∥∥2

`20(TN )

]
≤ C1,2.

Next, by stationarity of UN and (41), we have

E
[∫ t

0

‖D(1,−)
N A

N
(UN (s))‖2`20(TN )ds

]
≤ tE

[
‖D(1,−)

N A
N

(UN
0 )‖2`20(TN )

]
≤ t8C2

Ā

(
C1,2 +

D

2ν
C0,2pĀ

)
.

Finally, we recall that by (40), the process (
∫ t

0
〈D(1,+)

N UN (s),d(D
(1,+)
N WQ,N )(s)〉`20(TN ))t≥0 is a martingale. Therefore, ap-

plying successively the Jensen and the Doob inequalities, the Itô isometry, the Cauchy–Schwarz inequality, Proposition 3.1
and (24), we get

E
[
ZNt
]
≤

(
E

[
sup
s∈[0,t]

∣∣∣∣∫ s

0

〈
D

(1,+)
N UN (r),d

(
D

(1,+)
N WQ,N

)
(r)
〉
`20(TN )

∣∣∣∣2
])1/2

≤ 2

(
E

[∣∣∣∣∫ t

0

〈
D

(1,+)
N UN (r),d

(
D

(1,+)
N WQ,N

)
(r)
〉
`20(TN )

∣∣∣∣2
])1/2

= 2

E

∑
k≥1

∫ t

0

〈
D

(1,+)
N UN (r),D

(1,+)
N gk

〉2

`20(TN )
dr

1/2

≤ 2
√
t

(
E
[∥∥∥D(1,+)

N UN
0

∥∥∥2

`20(TN )

])1/2
∑
k≥1

∥∥∥D(1,+)
N gk

∥∥∥2

`20(TN )

1/2

≤ 2
√
tC1,2D,

which completes the proof. �

Proof of Lemma 4.7. Lemma 4.7 is a refinement of the proof of Proposition 2.17. We fix t > 0, and for the sake of
simplicity we write ∆t in place of ∆tj . We also introduce the notation nt = b t∆tc.

We start from Equation (34). For all n = 0, . . . , nt, we write

∥∥UN,∆t
n

∥∥2

`20(TN )
=
∥∥∥UN,∆t

0

∥∥∥2

`20(TN )
+

n−1∑
l=0

(∥∥∥UN,∆t
l+1

∥∥∥2

`20(TN )
−
∥∥∥UN,∆t

l

∥∥∥2

`20(TN )

)

≤
∥∥∥UN,∆t

0

∥∥∥2

`20(TN )
− 2ν∆t

n−1∑
l=0

∥∥∥D(1,+)
N UN,∆t

l+ 1
2

∥∥∥2

`20(TN )
+ 2

n−1∑
l=0

〈
UN,∆t

l+ 1
2

,∆WQ,N
l+1

〉
`20(TN )

+

n−1∑
l=0

∥∥∥∆WQ,N
l+1

∥∥∥2

`20(TN )

≤
∥∥∥UN,∆t

0

∥∥∥2

`20(TN )
+ 2

n−1∑
l=0

〈
UN,∆t

l+ 1
2

,∆WQ,N
l+1

〉
`20(TN )

+

n−1∑
l=0

∥∥∥∆WQ,N
l+1

∥∥∥2

`20(TN )
.
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Taking the supremum in time and the expectation, we get

E
[

sup
n=0,...,nt

∥∥UN,∆t
n

∥∥2

`20(TN )

]
≤ E

[∥∥∥UN,∆t
0

∥∥∥2

`20(TN )

]
+2E

[
sup

n=0,...,nt

∣∣∣∣∣
n−1∑
l=0

〈
UN,∆t

l+ 1
2

,∆WQ,N
l+1

〉
`20(TN )

∣∣∣∣∣
]

+E

[
nt−1∑
l=0

∥∥∥∆WQ,N
l+1

∥∥∥2

`20(TN )

]
.

(62)
First, by (22) and Proposition 4.1, we have

E
[∥∥∥UN,∆t

0

∥∥∥2

`20(TN )

]
≤ E

[∥∥∥D(1,+)
N UN,∆t

0

∥∥∥2

`20(TN )

]
≤ C∆,1,2.

Noticing that the sequence (
∑n−1
l=0 〈U

N,∆t

l+ 1
2

,∆WQ,N
l+1 〉`20(TN ))n≥1 is a martingale, we get by applying successively Jensen’s

and Doob’s inequalities to the second term of the right-hand side,

E

[
sup

n=0,...,nt

∣∣∣∣∣
n−1∑
l=0

〈
UN,∆t

l+ 1
2

,∆WQ,N
l+1

〉
`20(TN )

∣∣∣∣∣
]
≤

E

 sup
n=0,...,nt

∣∣∣∣∣
n−1∑
l=0

〈
UN,∆t

l+ 1
2

,∆WQ,N
l+1

〉
`20(TN )

∣∣∣∣∣
2
1/2

≤ 2

E

∣∣∣∣∣
nt−1∑
l=0

〈
UN,∆t

l+ 1
2

,∆WQ,N
l+1

〉
`20(TN )

∣∣∣∣∣
2
1/2

.

From (14), we may observe that each increment ∆WQ,N
l+1 is independent from the family (UN,∆t

m+ 1
2

,∆WQ,N
m )m=0,...,l. There-

fore, defining VN,∆t and VN,∆t
1
2

as in Proposition 4.1, we have

2

(
E

[
nt−1∑
l=0

∣∣∣∣〈UN,∆t

l+ 1
2

,∆WQ,N
l+1

〉
`20(TN )

∣∣∣∣2
])1/2

≤ 2

(
nt−1∑
l=0

E
[∥∥∥UN,∆t

l+ 1
2

∥∥∥2

`20(TN )

]
E
[∥∥∥∆WQ,N

l+1

∥∥∥2

`20(TN )

])1/2

≤ 2
√
D∆t

(
ntE

[∥∥∥VN,∆t
1
2

∥∥∥2

`20(TN )

])1/2

≤ 2
√

DtC∆,1,2
1
2

,

where we have used (35) at the second line and Proposition 4.1 together with (22) at the third line. Injecting this bound
into (62), and using (35) again, we finally get

E
[

sup
n=0,...,nt

∥∥UN,∆t
n

∥∥2

`20(TN )

]
≤ C∆,1,2 + 2

√
DtC∆,1,2

1
2

+ tD =: S∆,0,2
t . �
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