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The deconvolution of a filtered version of a zero-mean normalized independent and identically distributed (i.i.d.) signal ( ) having a strictly negative Kurtosis = [ ] 2( [ ]) [ ] is addressed. This correspondence focuses on the global minimizers of the Godard function. A well-known result states that these minimizers achieve deconvolution at least if the input signal shows the symmetry [ ]=0 . When this constraint is relaxed, ( ) is said to be noncircular symmetric: It is shown that the minimizers achieve deconvolution if and only if 2 [ ] ( ). If this condition is not met, the global minimizers are found to be finite-impulse-response filters with two taps.

I. INTRODUCTION

In recent years, much attention has been paid to source deconvolution, mainly for the wide range of potential applications, among which blind equalization problems in digital communications play a central role. The principles of deconvolution have been set forth by Donoho [START_REF] Donoho | On minimum entropy deconvolution[END_REF] and Benveniste et al. [START_REF] Benveniste | Blind equalizers[END_REF], who introduced the notion of objective functions for stationary time series. The Godard [START_REF] Godard | Self recovering equalization and carrier tracking in two dimensional data communications systems[END_REF], [START_REF] Treichler | A new approach to multipath correction of constant modulus signals[END_REF] and Shalvi-Weinstein [START_REF] Shalvi | New criteria for blind deconvolution of nonminimum phase systems (channels)[END_REF] objective functions are by far the most popular of the literature (there are intrinsic links between both of them, as proved by Regalia [START_REF] Regalia | On the equivalence between the Godard and Shalvi-Weinstein schemes of blind equalization[END_REF]).

The optimization of these functions achieves deconvolution under the condition that the source is circularly symmetric complex. In this correspondence, we investigate whether the deconvolution is achieved or not when this assumption on the source is relaxed.

We briefly justify why considering such a problem is not just a mental exercise. The first point is that many communication sources are not circular (real sources of course, but also complex sources having unusual constellations-see Benedetto et al. [7, ch. 5.4]): in this case, no general result has been presented-as far as we know-concerning the minimization of the Godard function. The second point is that, instead of considering the constant modulus objective function, one could of course achieve the deconvolution by maximizing the Donoho objective function (say, the modulus of the fourth-order cumulant), but the estimation of this latter requires us to estimate an extra term as compared with the circular case that may impair the accuracy of the estimation. Moreover, this extra term cannot be consistently estimated in certain cases: this occurs when the received signal is corrupted by S. Houcke is with Département Signal et Communication PRACom TAMCI, ENST Bretagne, BP 832, 29285 Brest Cedex, France (e-mail: Sebastien.Houcke@enst-bretagne.fr).
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This problem seems to have been neglected in the literature. As a matter of fact, only very partial results have been obtained so far. Ding et al. [START_REF] Ding | Ill-Convergence of Godard blind equalizers in data communication systems[END_REF] have shown that any filtered version of a modulus one sequence (except a binary source) has modulus one if and only if the filter in question has a single tap, thus proving that the minimizers of Godard function achieve deconvolution. However, this result applies only to modulus one sequences [circular or not, independent and identically distributed (i.i.d.) or not]. On the contrary, Papadias [START_REF] Papadias | On the existence of undesirable global minima of godard equalizers[END_REF] showed that for binary sources, the minimization of the Godard function does not allow one to achieve deconvolution directly: indeed, it is easy to show off certain filtered versions of a binary source having the modulus one property. This short survey proves that the determination of the minimizers of the Godard function is still an open problem in general.

Section II describes the problem: the minimization of a functional is defined. The optimization is easily carried out for certain sources (a binary source for instance): this point is proved in Section III. The general case, more involved, is worked out in Section IV. In Section V, we recast the results obtained into the deconvolution framework. Illustrations of the results are provided in Section VI II. SETTING THE PROBLEM Let (sn)n2 denote a (complex or real-valued) i.i.d. sequence, the moments of which exist up to the fourth order. Without loss of generality, we assume in the sequel that s n is zero mean and normalized, i.e., [jsnj2 ]=1 . We will denote by 2 its Kurtosis: 2 = [js n j 4 ] 0j [s 2 n ]j 2 0 2. As a main assumption, we consider along the paper that the Kurtosis is strictly negative (the source is said to be platykurtic: this is not restrictive in the framework of digital communications). For any nonnull f =( f k ) k2 2 `2( ) we consider the time series

z n = +1 k=01 f k s n0k : (1) 
On the one hand, the standard Shalvi-Weinstein function [START_REF] Shalvi | New criteria for blind deconvolution of nonminimum phase systems (channels)[END_REF] is

[jznj 4 ] ( [jznj 2 ]) 2 (2) 
which may be expanded as

J(f)= 0y k jf k j 4 + xj k f 2 k j 2 ( k jf k j 2 ) 2 +2:
(3) where we set y = 0 2 > 0 and x = j [s 2 n ]j Expanding (5) as

J(f)= [jznj 4 ] 0 2 [jznj 2 ]+1gives J(f) J(f)( [jznj 2 ]) 2 0 2 [jznj 2 ]+1= 2 0 2 +1
where we have set = [jznj 2 ].As 1 (this is due to the Jensen inequality applied to (2)), the right-hand side (RHS) of ( 6) is a convex second-order polynomial in and is minimum for =1=. Setting =inf f2`( ) J(f),wehave 1 0 (1=).Iff reaches the lower bound of J, then J(1=kfk2 p )f)=10 (1=). This proves that =10 (1=). Moreover, if f reaches the lower bound of J, then it reaches the lower bound of J.

With this link between J and J being specified, we may now concentrate on the minimization of J, which is more tractable than this of J.

Actually, we answer the three points: 1) compute with regard to

x; y; 2) show that is reached; 3) characterize the series f such that J(f)=.

As the subsequent developments prove, it is convenient to introduce the following subset of `2( ). Difinition 1: for 2 (0(=2);(=2)) and every p; q 2 ;p 6 = q, we define (e (p;q) k ()) k2 as e (p;q) p ()=cos e (p;q) q ()=isin

e (p;q) k ()=0 if k 6 = p; k 6 = q (6)
and we set F()= p6 =q fe (p;q) k ()j 2 g.

For instance, F(0) is the set of Kronecker series. For a general ; F() is clearly a set of series having at most two nonnull coeffi- cients.

III. SOME STRAIGHTFORWARD ALGEBRA:WHEN 2x y

Keeping in mind that for null x, of global minima of J is F(0), it may be understood that F(0) the set of global minima of J when x is "small."

Result 1: If 2x y,wehave =2+x 0 y. Besides, if 2x <y, equality J(f)= holds if and only if f 2F(0).If2x = y; J(f)= holds if and only if there exists 2 (0(=2);(=2)) such that f 2

F().

Proof: Setting = y 0 2x, and

1=x k f 2 k 2 0 y jf k j 4 +(y 0 x) k jf k j 2 2
we deduce that J(f) 2+x 0 y holds if and only if 1 0 holds. Expanding 1 gives

1=2x k<l jf k f l j 2 (1+cos( k 0 l ))+ k jf k j 2 2 0 k jf k j 4 (7)
where we have set f 2 k = jf k j 2 e i . By definition, 0, hence 1 0 as the sum of two nonnegative terms. This gives 2+x0y.Asfar as the equality is concerned, we notice that 1=0occurs if and only if the two terms of the RHS of (7) equal zero.

•I f >0, the second term of the RHS of ( 7) equals zero if and only if f 2F(0); conversely, f 2F(0) makes the first term of the RHS of (7) be zero. Hence, 1=0.

•I f =0; 1=0if and only if the first term of the RHS of ( 7) is zero. The latter being a sum of nonnegative terms, this reads for all k<l;jf k f l j 2 (1 + cos( k 0 l )) = 0: [START_REF] Ding | Ill-Convergence of Godard blind equalizers in data communication systems[END_REF] Assume that f has at least three nonnull coefficients, i.e., there exist k 1 <k 2 <k 3 such that f k f k f k 6 =0. Without restriction, we may set k =0. Condition [START_REF] Ding | Ill-Convergence of Godard blind equalizers in data communication systems[END_REF] 

implies that k = 2 [] (9) k = 2 [] (10) 
k = k + 2 []: (11) 
From ( 9) and ( 11), it may be deduced that k = []:

This is in contradiction with [START_REF] Luenberger | Optimization by Vector Space Methods[END_REF]. Hence, f has two nonnull coefficients at most: let them be f k and f k ; then (9) holds , and there exists a unique 2 (0=2;=2) such that cos =( jf k j= jf k j 2 + jf k j 2 ) and sin = 0(jf k j= jf k j 2 + jf k j 2 ). We obviously have f 2F ().

Conversely, if f 2F() for any , then 1=0.

IV. NEW RESULTS:WHEN 2x>y

The case y<2x prevents one from using the same direct arguments. The first point consists of restricting the minimization of J over N for a given integer N 2. This has to be rigorously justified. In this section, we set

N =i n f f2 J(f):
The series ( N ) N2 is decreasing, and we have Lemma 1.

Lemma 1: =l i m N!1 N: (12)
The proof is relegated to Appendix I.

Owing to this result, we focus on the minimization of J over N . For the sake of readability, the restriction of J over N is still denoted J. The proof of the following result lies in Appendix II.

Lemma 2: Let f (s) be a stationary point of J. Necessarily, the following condition is fulfilled: 1) either there exist two nonnull integers K1 and K2 and two strictly positive constants 1 and 2;1 6 = 2 such that f (s) has exactly K 1 + K 2 nonnull components: K 1 components of f (s) have a modulus equal to p 1 and K 2 components of f (s) have a modulus equal to p 2 2) or there exist a nonnull integer K and a strictly positive constant such that f (s) has exactly K nonnull components, all with modulus p . We first notice that for any f 2F(6(=4)),wehaveJ(f)=20 (y=2); hence N 2 0 y 2 :

(13)

We are going to prove that (13) is actually an equality.

J is homegenous, i.e., for any 2 and any f 2 N ;J(f)= J(f). Hence, we consider the minimization of J over the unit sphere K1+K have a square modulus equal to a certain 2 6 =0. We first show by contradiction that min(K 1 ;K 2 ) < 2.

Suppose that min(K1;K2) 2.Wehave (16) This is in contradiction with (13); we have proved that min(K1;K2)

J f (min) = x k f (min) k 2 2 0 y K 1 2 1 + K 2 2 2 (K11 + K22) 2 +2 hence J f (min) 0y K 1 2 1 + K 2 2 2 (K 1 1 + K 2 2 ) 2 +2:
1.
By assumption, neither K 1 nor K 2 can be zero. Hence, min(K 1 ;K 2 )=1 ; we may set K 2 =1 . We show by contradiction that K1 =1 . Suppose that K1 2. We set for every k =1 ; 2; ...;K1 (f (min) k ) 2 = 1e i . The minimum of J may be expanded as

J f (min) = xj 2 + 1 k e i j 2 0 y K 1 2 1 + 2 2 (K11 + 2) 2 +2: (17)
As J(f (min) )=J (f (min) ), we may assume that K11 + 2 =1 . We deduce that ' :( 0 ; 1

K ) 2 K +1 ! defined by '(; ! 1 ; ...;! K )=x 1 0 K 1 + k e i! 2 0y((1 0 K 1 ) 2 + K 1 2 ) (18)
has a global minimum at ( 1 ; 1 ; ...; K ). In the sequel, we consider any stationary vector of ', denoted by ( (s) ;! (s) 1 ; ...;! (s) K ). From the computation of the partial derivatives ( @' @! ) l , we directly deduce that k @' @! k = 02x(1 0 K 1 )

k sin ! k (19)
hence we have

k sin ! (s) k =0 : (20) 
In view of ( 18) and (20), we define as

= K1 0 K k=1 cos ! (s) (21) 
and consider the mapping In particular, for any stationary point of ',w eh a v e '( (s) ;! (s) 1 ; ...;! (s) K ) > 0(y=2); hence J(f (min) ) > 2 0 (y=2),

which is clearly a wrong statement due to (13). By contradiction, we have shown that K 1 1; hence K 1 =1 . This implies that f (min) has two nonnull coefficients.

Assume now that f (min) belongs to the second type of the stationary points given in Lemma 2: f (min) has K nonnull components, each of modulus p .IfK =1 , we would have J(f (min) )=x 0 y + 2 > 2 0 y=2, which is impossible, owing to (13). Hence, K 2.W e may set K1 = K 01, and 1 = ; 2 = . This notation allows us to write J(f (min) ) as in (17). The same conclusion comes: K 1 =1 . Once gain, we have proved that f (min) has exactly two nonnull components.

Conversely, it remains to prove that f (min) 2 F(6(=4)).Wedenote by f 1 and f 2 the nonnull coefficients of f (min) . With J being homogeneous, we may set f 1 = p 1 0 and f 2 = p e i . We hence have to study the minimum of (; ) 7 ! x((1 0 + cos()) 2 + 2 sin() 2 ) 0 y((1 0 ) 2 + 2 ):

Setting to zero the first derivative with regard to gives =0or 2 = [START_REF] Benveniste | Blind equalizers[END_REF]. The case =0is not associated with the minimum.

Hence, = 6(=2). This allows us to prove finally that =1 =2.

Hence, f (min) 2F(6(=4)).

We hence have shown that for any f 2 N ;J(f)= N iff f 2 F(6(=4)). This implies that N = 2 for every N 2; owing to Lemma 1, this says that the lower bound of J is reached and, moreover, = 2 =20 (y=2).T akeanyf such that J(f)=20 (y=2).I ff has a finite number of nonnull components, the previous developments show that f 2F(6(=4)). On the contrary, we know that f is a stationary point of the Lagrangian (27) (this time, the sums are infinite) [10, ch. 7]. The moduli of the components of f belong to a set of one or two elements. Now, f 2 `2( ): we deduce that f has a finite number of nonnull components; hence f 2F(6(=4)).We the lower-bound is =1(hence =0 ) and a f for which J is minimum belongs to F(); 2 (0(=2); (=2)); this result is not in contradiction with [START_REF] Papadias | On the existence of undesirable global minima of godard equalizers[END_REF] but is more precise since we proved that no other f can reach the minimum. For real nonbinary sources, the fact that the global minimizers belong to F(6=4) is a pertinent information that allows one to retrieve the source s n (a rotation of the equalized output has so be considered).

As far as (complex-valued) modulus one sequences sn (but not binary) are concerned [START_REF] Ding | Ill-Convergence of Godard blind equalizers in data communication systems[END_REF], we obviously have

= y 0 2x = 0 [js n j 4 ] 0 2( [js n j 2 ]) 2 0jE s 2 n j 2 0 2jE s 2 n j 2 =10jE s 2 n j 2 > 0:
This is exactly the context of result 1, and the minimizers of J are "trivial filters," i.e., elements of F(0). This result is consistent with Result 1 in [START_REF] Ding | Ill-Convergence of Godard blind equalizers in data communication systems[END_REF].

VI. APPLICATION TO BLIND EQUALIZATION

In this section, we consider an i.i.d. sequence sn, where sn belongs to the alphabet (1= p 5)f1; 01; 3i; 03ig. The points of the alphabet are equilikely; hence x =6 4 =100;y =1and 2x>y .

We consider the ARMA series given by 3yn 0yn01 = sn +2sn01.

We have y n = 1 k=0 h k s n0k , where 1 k=0 h k z 0k is the stable and causal expansion of H(z)=(1+2z 01 )=(3 0z 01 ). The sequence zn is obtained after passing y n through a causal filter with finite-impulse-response g. This means that g k =0if k= 2f0; ...;K0 1g. Hence, zn follows model ( 1), with f n = K01 k=0 g k h n0k . As K is finite (we chose K =1 5 ), this in general prevents J from reaching its lower bound since no finite-order filter g may invert the system, i.e., f can, at best, be "close" to F(6(=4)). We consider for agivenf the distance to the set F():d(f) = minp;q inf ; kf 0 e (p;q) ()k2. The computation of d(f ) is a nonlinear minimum leastsquare problem. As a least-square problem in (parameters p; q; are supposed to be fixed), the 3 minimizing jjf 0 e (p;q) ()k 2 2 is 3 =( f je (p;q) ()) = f p cos 0 if q sin : Plugging this expression into kf 0 e (p;q) ()k 2 eventually gives a function of to be minimized (this time, p; q are fixed). The stationary are given by the equation where we set f k = a k + ib k . There are two solutions in [0; ]: one of them corresponds to the minimum of kf 0 e (p;q) ()k 2 , the other to the maximum. In order to compute d(f ), it remains to consider the minimum previously found for every (p; q);p <q . This distance is achieved for a certain angle denoted by (f ). The number of observed data is finite: we observe y0; ...;yN01; hence the cost function J is not perfectly known. We hence consider a consistent estimate

Jest (g)= 1 N N01 n=0
(jz n j 2 0 1) 2

where we have set g =( g0; ...;gK01). At the n +1th iteration of the steepest descent algorithm, we have g (n+1) = g (n) 0 nr (n) where

r (n) =2 @ Jest @g g (n) =4 N01 k=0 (z k 0 1)z k Y k :
In this equation, Y k =( y k ;y k01 ; ...;y k0K+1 ). The step may be taken as the solution that minimizes the fourth-order polynomial 7 ! Jest (g (n) 0 r (n) ).

Fig. 1 provides the constellation after convergence: as expected, this one is "close" to a 16-state constellation-the noise around each point is due to the fact that f does not exactly belong to F(6(=4)).

We consider 1000 Monte Carlo experiments. For every experiment, we compute the estimate Jest . After convergence of the steepest descent algorithm, we obtain g est expected to be an argument minimum of Jest. This provides fest, the convolution of gest with h. For every f est , both the distance d(f est ) and the angle (f est ) are computed. The empirical mean and variance of these quantities are listed in Table I.

As expected, the estimate fest is close to F(6(=4)). 

We first show that J is uniformly continuous over B(m; M ).

We set c1(f )= k jf k j 4 ;c2(f )=j k f 2 k j 2 ;c3(f )= ( k jf k j 2 ) 2 and c 4 (f )=0yc 1 (f )+xc 2 (f ). Notice that for any r; s 2B(m; M ) jJ(s) 0 J (r)j 1 jc 3 (s)c 3 (r)j 2 (jc 3 (s)kc 4 (s) 0 c 4 (r)j+ jc 4 (s)kc 3 (s) 0 c 3 (r)j) ; as c 3 has a nonnull lower-bound over B(m; M ), the inequality implies that J is uniformly continuous over B(m; M ) as soon as c1;c2; and c3 are uniformly continuous. There exists an f such that J (f )= 0

(25) for a certain >0.

With J being homogeneous, we may set kfk 2 =1 . We propose to split f as f = p (k) + q (k) , where p jljk. We consider 1 >>0: we set m =10 and M =1+.

Notice that (K1 +1)> 0y=2

(36) holds if and only if (yK1 0 K1 0 1=K1 +1)+10 y> 0y=2, that is K 1 > 1, which holds by assumption. As (34) and (36) are true, hence (35) implies (23).

•i f yK 1 = K 1 +1 ; is decreasing; this yields () (2K 1 ) > 0y=2 and this proves (23).

  of N : S N = ff such that kfk 2 =1g.AsJ is continuous and S N is compact, the lower bound N is reached at one of the stationary points specified in Lemma 2. Denote it by f(min) .Assume that f (min) belongs to the first type given in Lemma 2. After possible reordering, we may suppose that coefficients f (min) 1 ; ...;f(min) K have a square modulus equal to a certain 1 6 =0, coefficients f (min) K +1 ; ...;f(min) 

2 such

 2 shown that for any K 1 ;K 2 > 0, and any positive 1 ; 15) is an equality if and only if 1 =0or 2 =0 , which is impossible due to the hypothesis). Both this result and (14) yield J f(min) 

(

  )=x(1 0 ) 2 0 y((1 0 K 1 ) 2 + K 1 2 ): (22) Due to (21), we may restrict the analysis of for 0 2K 1 .In Appendix III, we show Lemma 3.

Lemma 3 :

 3 For any 0 2K1 and any 2 (0; (1=K1)),w e have

have shown Result 2 . 2 :

 22 Result If 2x>y ;=20 (y=2). Moreover, J(f)= holds if and only if f 2F(6(=4)).

  V. D ISCUSSION Let us recast the results into the deconvolution framework: suppose that sn is real-valued. Hence, x =1 ; and condition 2x = y reads [s 4 ]=1 : this occurs when the sequence (s n ) is a binary sequence:

  2)+(a p b q + a q b p ) cos(2)=0

  m; M be two real numbers such that 0 <m<Mand denote by B(m; M ) the set B(m; M )=ff 2 `2( ) j m kfkMg:

Fig. 1 .

 1 Fig. 1. Constellation after convergence.TABLE I ESTIMATED MEAN/VARIANCE AFTER CONVERGENCE

  if jlj <kand p (k) l =0if

. If the source is symmetric (implying that[s 2 n ]=0 ), hence J(f) reduces to 2 0 y( k jf k j 4 =( k jf k j 2 ) 2 ). Since y>0, we obviously have J(f) 20y, with equality if and only if the series f has a single nonzero coefficient. For x>0, however, the minimization of J is not that straightforward. We will denote by the lower bound of J:=i n f f 2`( ) J(f):(4)On the other hand, the Godard objective function is defined as J (f )= [(jz n j 2 0 1) 2 ]:(5)

There exists an integer K1 such that for every k K1 we have: p (k) 2 B(m; M). Let then k be such that k K 1 .

As J is uniformly continuous over B(m; M), there exists such that jJ(s) 0 J(r)j(=2) as soon as ks 0 rk2 ; on the other hand, q (k) may be chosen as small as desired, i.e., there exists K 2 such that for every k K 2 kq (k) k 2 . Taking any k max(K 1 ;K 2 ), and choosing s = f;r = p (k) , it yields

which clearly contradicts (25). We have proved Lemma 1.

APPENDIX II PROOF OF LEMMA 2

For every integer k, we let a k ;b k be a k = <(f k );b k = =(f k ), and define a =( a k ) k2 ;b =( b k ) k2 . With J being homogeneous, the minimization of J over N is equivalent to the minimization of J over the unit-sphere S N . A stationary point f (s) of J is then a stationary point of the Lagrangian

We may define and as

k . Forcing to zero the partial derivatives (@L=@a l ) and

(@L=@b l ) implies that the vector X l =( a l ;b l ) T is a solution of the linear system

where is the identity matrix of size 2 and M = 0 and l =( a (s) l ) 2 +( b (s) l ) 2 . Equation (28) implies, in particular that, for every index l, either X l is null or belongs to the Kernel of M 0 (2y l +2 )I 2 .

On the other hand, the eigenvalues of M are 6 2 + 2 : M 0 (2y l +2)I 2 has a nonnull kernel if and only if either 2y l +2 = 2 + 2 or 2y l +2 = 0 2 + 2 . This implies that for every index l; l is either zero or belongs to a set having either one or two elements.

APPENDIX III PROOF OF LEMMA 3

As x; y > 0, we may without any restriction suppose that x =1 .As a function of ; is a second-order polynomial ()=( 2 0 yK1(K1 +1)) 2 +2(yK1 0 )+10 y:

We set 1 = yK1(K1 +1).

1. If 1 , then is concave, hence the lower bound of over (0; 1=K1) is on one of the edges of this interval, that is inf 2(0;1=K ) ()=m i n (0); 1 K 1 :

(29) However, (0) = 1 0 y and, by assumption, 1 0 y>0y=2,

Moreover, ((1=K1)) = (1 0 =K1) 2 0 y=K1 0y=K1.

By assumption, K 1 2, hence

Equations ( 29), (30), and (31) imply (23).

2. If > 1 , the minimum of over is reached for a certain 0 defined as

where 2 = yK 1 . We set ()= (0) = 0 ( 0 2) 2 2 0 2 1 +10 y:

The derivative of writes 0 ()= 2( 0 2 ) ( 2 0 2 1 ) 2 (K1 +10 )yK1: II shows the variations of .

We hence have for every •I f yK 1 >K 1 +1, Table III shows the variations of . (35)