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Characterization of the Undesirable Global Minima

of the Godard Cost Function: Case of

Noncircular Symmetric Signals

Sébastien Houcke and Antoine Chevreuil

Abstract—The deconvolution of a filtered version of a zero-mean normal-

ized independent and identically distributed (i.i.d.) signal ( ) having
a strictly negative Kurtosis = [ ] 2( [ ]) [ ]
is addressed. This correspondence focuses on the global minimizers of the
Godard function. A well-known result states that these minimizers achieve
deconvolution at least if the input signal shows the symmetry [ ] = 0.
When this constraint is relaxed, ( ) is said to be noncircular sym-
metric: It is shown that the minimizers achieve deconvolution if and only if

2 [ ] ( ). If this condition is not met, the global minimizers
are found to be finite-impulse-response filters with two taps.

Index Terms—Deconvolution, constant modulus algorithm, contrast

function, Godard algorithm.

I. INTRODUCTION

In recent years, much attention has been paid to source deconvolu-
tion, mainly for the wide range of potential applications, among which
blind equalization problems in digital communications play a central
role. The principles of deconvolution have been set forth byDonoho [1]
and Benveniste et al. [2], who introduced the notion of objective func-
tions for stationary time series. The Godard [3], [4] and Shalvi–Wein-
stein [5] objective functions are by far the most popular of the literature
(there are intrinsic links between both of them, as proved by Regalia
[6]).

The optimization of these functions achieves deconvolution under
the condition that the source is circularly symmetric complex. In this
correspondence, we investigate whether the deconvolution is achieved
or not when this assumption on the source is relaxed.

We briefly justify why considering such a problem is not just a
mental exercise. The first point is that many communication sources are
not circular (real sources of course, but also complex sources having
unusual constellations—see Benedetto et al. [7, ch. 5.4]): in this case,
no general result has been presented—as far as we know—concerning
the minimization of the Godard function. The second point is that,
instead of considering the constant modulus objective function, one
could of course achieve the deconvolution by maximizing the Donoho
objective function (say, the modulus of the fourth-order cumulant),
but the estimation of this latter requires us to estimate an extra term as
compared with the circular case that may impair the accuracy of the
estimation. Moreover, this extra term cannot be consistently estimated
in certain cases: this occurs when the received signal is corrupted by
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a multiplicative time-varying complex exponential (Doppler shift or
frequency offset in the communication framework).
This problem seems to have been neglected in the literature. As a

matter of fact, only very partial results have been obtained so far. Ding
et al. [8] have shown that any filtered version of a modulus one se-
quence (except a binary source) has modulus one if and only if the
filter in question has a single tap, thus proving that the minimizers of
Godard function achieve deconvolution. However, this result applies
only to modulus one sequences [circular or not, independent and iden-
tically distributed (i.i.d.) or not]. On the contrary, Papadias [9] showed
that for binary sources, the minimization of the Godard function does
not allow one to achieve deconvolution directly: indeed, it is easy to
show off certain filtered versions of a binary source having the mod-
ulus one property. This short survey proves that the determination of
the minimizers of the Godard function is still an open problem in gen-
eral.
Section II describes the problem: the minimization of a functional

is defined. The optimization is easily carried out for certain sources (a
binary source for instance): this point is proved in Section III. The gen-
eral case, more involved, is worked out in Section IV. In Section V, we
recast the results obtained into the deconvolution framework. Illustra-
tions of the results are provided in Section VI

II. SETTING THE PROBLEM

Let (sn)n2 denote a (complex or real-valued) i.i.d. sequence, the
moments of which exist up to the fourth order. Without loss of gen-
erality, we assume in the sequel that sn is zero mean and normal-
ized, i.e., [jsnj

2] = 1. We will denote by 
2 its Kurtosis: 
2 =
[jsnj

4] � j [s2n]j
2 � 2. As a main assumption, we consider along

the paper that the Kurtosis is strictly negative (the source is said to be
platykurtic: this is not restrictive in the framework of digital communi-
cations). For any nonnull f = (fk)k2 2 `2( ) we consider the time
series

zn =

+1

k=�1

fksn�k: (1)

On the one hand, the standard Shalvi–Weinstein function [5] is

[jznj
4]

( [jznj2])2
(2)

which may be expanded as

J(f) =
�y

k
jfkj

4 + xj
k
f2k j

2

(
k
jfkj2)2

+ 2: (3)

where we set y = �
2 > 0 and x = j [s2n]j
2. If the source is

symmetric (implying that [s2n] = 0), hence J(f) reduces to 2 �
y(

k
jfkj

4=(
k
jfkj

2)2). Since y > 0, we obviously have J(f) �
2�y, with equality if and only if the series f has a single nonzero coef-
ficient. For x > 0, however, the minimization of J is not that straight-
forward. We will denote by � the lower bound of J :

� = inf
f2` ( )

J(f): (4)

On the other hand, the Godard objective function is defined as

~J(f) = [(jznj
2 � 1)2]: (5)
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Expanding (5) as ~J(f) = [jznj4] � 2 [jznj2] + 1 gives

~J(f) � J(f)( [jznj2])2 � 2 [jznj2] + 1 = ��2 � 2�+ 1

where we have set � = [jznj2]. As � � 1 (this is due to the Jensen
inequality applied to (2)), the right-hand side (RHS) of (6) is a convex
second-order polynomial in � and is minimum for � = 1=�. Setting
~� = inff2` ( )

~J(f), we have ~� � 1� (1=�). If f reaches the lower
bound of J , then ~J(1=kfk2p�)f) = 1 � (1=�). This proves that
~� = 1 � (1=�). Moreover, if f reaches the lower bound ~� of ~J , then
it reaches the lower bound � of J .

With this link between J and ~J being specified, we may now con-
centrate on the minimization of J , which is more tractable than this of
~J . Actually, we answer the three points: 1) compute � with regard to
x; y; 2) show that � is reached; 3) characterize the series f such that
J(f) = �.

As the subsequent developments prove, it is convenient to introduce
the following subset of `2( ).

Difinition 1: for � 2 (�(�=2); (�=2)) and every p; q 2 ; p 6= q,
we define (e(p;q)k (�))k2 as

e
(p;q)
p (�) = cos �

e
(p;q)
q (�) = i sin �

e
(p;q)
k (�) = 0 if k 6= p; k 6= q

(6)

and we set F(�) =
p 6=qf�e(p;q)k (�) j� 2 g.

For instance, F(0) is the set of Kronecker series. For a general
�;F(�) is clearly a set of series having at most two nonnull coeffi-
cients.

III. SOME STRAIGHTFORWARD ALGEBRA: WHEN 2x � y

Keeping in mind that for null x, the set of global minima of J is
F(0), it may be understood thatF(0) remains the set of global minima
of J when x is “small.”

Result 1: If 2x � y, we have � = 2 + x � y. Besides, if 2x < y,
equality J(f) = � holds if and only if f 2 F(0). If 2x = y; J(f) = �
holds if and only if there exists � 2 (�(�=2); (�=2)) such that f 2
F(�).

Proof: Setting � = y � 2x, and

� = x
k

f2k

2

� y jfkj4 + (y � x)
k

jfkj2
2

we deduce that J(f) � 2 + x � y holds if and only if � � 0 holds.
Expanding � gives

�=2x
k<l

jfkflj2(1+cos(�k��l))+�
k

jfkj2
2

�
k

jfkj4

(7)

where we have set f2k = jfkj2ei� . By definition, � � 0, hence� � 0
as the sum of two nonnegative terms. This gives � � 2+x� y. As far
as the equality is concerned, we notice that � = 0 occurs if and only
if the two terms of the RHS of (7) equal zero.

• If � > 0, the second term of the RHS of (7) equals zero if and
only if f 2 F(0); conversely, f 2 F(0)makes the first term of
the RHS of (7) be zero. Hence, � = 0.

• If � = 0;� = 0 if and only if the first term of the RHS of (7) is
zero. The latter being a sum of nonnegative terms, this reads

for all k < l; jfkflj2(1 + cos(�k � �l)) = 0: (8)

Assume that f has at least three nonnull coefficients, i.e., there
exist k1 < k2 < k3 such that fk fk fk 6= 0. Without restric-
tion, we may set �k = 0. Condition (8) implies that

�k =
�

2
[�] (9)

�k =
�

2
[�] (10)

�k = �k +
�

2
[�]: (11)

From (9) and (11), it may be deduced that �k = �[�]:
This is in contradiction with (10). Hence, f has two non-
null coefficients at most: let them be fk and fk ; then
(9) holds , and there exists a unique � 2 (��=2; �=2)
such that cos � = (jfk j= jfk j2 + jfk j2) and sin � =

�(jfk j= jfk j2 + jfk j2). We obviously have f 2 F(�).
Conversely, if f 2 F(�) for any �, then� = 0.

IV. NEW RESULTS: WHEN 2x > y

The case y < 2x prevents one from using the same direct arguments.
The first point consists of restricting the minimization of J over N

for a given integer N � 2. This has to be rigorously justified. In this
section, we set

�N = inf
f2

J(f):

The series (�N)N2 is decreasing, and we have Lemma 1.
Lemma 1:

� = lim
N!1

�N : (12)

The proof is relegated to Appendix I.
Owing to this result, we focus on the minimization of J over N .

For the sake of readability, the restriction of J over N is still denoted
J . The proof of the following result lies in Appendix II.
Lemma 2: Let f (s) be a stationary point of J . Necessarily, the fol-

lowing condition is fulfilled: 1) either there exist two nonnull integers
K1 and K2 and two strictly positive constants �1 and �2; �1 6= �2
such that f (s) has exactly K1 + K2 nonnull components: K1 com-
ponents of f (s) have a modulus equal to

p
�1 and K2 components of

f (s) have a modulus equal to
p
�2 2) or there exist a nonnull integer

K and a strictly positive constant such that f (s) has exactlyK nonnull
components, all with modulus

p
�.

We first notice that for any f 2 F(�(�=4)), we have J(f) = 2 �
(y=2); hence

�N � 2� y

2
: (13)

We are going to prove that (13) is actually an equality.
J is homegenous, i.e., for any � 2 and any f 2 N ; J(�f) =

J(f). Hence, we consider the minimization of J over the unit sphere
of N : SN = ff such that kfk2 = 1g. As J is continuous and
SN is compact, the lower bound �N is reached at one of the stationary
points specified in Lemma 2. Denote it by f (min).
Assume that f (min) belongs to the first type given in Lemma

2. After possible reordering, we may suppose that coefficients
f
(min)
1 ; . . . ; f

(min)
K have a square modulus equal to a certain �1 6= 0,

coefficients f (min)
K +1; . . . ; f

(min)
K1+K have a square modulus equal to a

certain�2 6= 0. We first show by contradiction thatmin(K1;K2) < 2.
Suppose that min(K1; K2) � 2. We have

J f (min) =

x
k

f
(min)
k

2 2

� y K1�
2
1 +K2�

2
2

(K1�1 +K2�2)2
+ 2
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hence

J f (min) � �y K1�
2
1 +K2�

2
2

(K1�1 +K2�2)2
+ 2: (14)

It is easily shown that for any K1; K2 > 0, and any positive �1; �2
such that �1�2 6= 0

K1�
2
1 +K2�

2
2

(K1�1 +K2�2)2
<

1

min(K1;K2)
(15)

(actually (15) is an equality if and only if �1 = 0 or �2 = 0, which is
impossible due to the hypothesis). Both this result and (14) yield

J f (min) > 2� y

min(K1;K2)
� 2� y

2
: (16)

This is in contradiction with (13); we have proved thatmin(K1;K2) �
1. By assumption, neither K1 nor K2 can be zero. Hence,
min(K1; K2) = 1; we may set K2 = 1. We show by contra-
diction that K1 = 1. Suppose that K1 � 2. We set for every
k = 1; 2; . . . ; K1 (f

(min)
k )2 = �1e

i� . The minimum of J may be
expanded as

J f (min) =
xj�2 + �1 k

ei� j2 � y K1�
2
1 + �22

(K1�1 + �2)
2 + 2: (17)

As J(�f (min)) = J(f (min)), we may assume that K1�1 + �2 = 1.
We deduce that ' : (0; 1

K
)� K +1 ! defined by

'(�; !1; . . . ; !K ) = x 1�K1�+ �
k

ei!
2

�y((1�K1�)
2 +K1�

2) (18)

has a global minimum at (�1; �1; . . . ; �K ). In the sequel, we consider
any stationary vector of', denoted by (�(s); !(s)1 ; . . . ; !

(s)
K ). From the

computation of the partial derivatives ( @'

@!
)l, we directly deduce that

k

@'

@!k
= �2�x(1�K1�)

k

sin!k (19)

hence we have

k

sin!
(s)
k = 0: (20)

In view of (18) and (20), we define � as

� = K1 �
K

k=1

cos!
(s)
k � 0 (21)

and consider the mapping

 �(�) = x(1� ��)2 � y((1�K1�)
2 +K1�

2): (22)

Due to (21), we may restrict the analysis of  � for 0 � � � 2K1. In
Appendix III, we show Lemma 3.

Lemma 3: For any 0 � � � 2K1 and any � 2 (0; (1=K1)), we
have

 �(�) > �y
2
: (23)

In particular, for any stationary point of ', we have
'(�(s); !

(s)
1 ; . . . ; !

(s)
K ) > �(y=2); hence J(f (min)) > 2 � (y=2),

which is clearly a wrong statement due to (13). By contradiction, we
have shown that K1 � 1; hence K1 = 1. This implies that f (min)

has two nonnull coefficients.
Assume now that f (min) belongs to the second type of the sta-

tionary points given in Lemma 2: f (min) has K nonnull components,
each of modulus

p
�. IfK = 1, we would have J(f (min)) = x� y+

2 > 2� y=2, which is impossible, owing to (13). Hence,K � 2. We

may setK1 = K�1, and �1 = �; �2 = �. This notation allows us to
write J(f (min)) as in (17). The same conclusion comes:K1 = 1. Once
gain, we have proved that f (min) has exactly two nonnull components.
Conversely, it remains to prove that f (min) 2 F(�(�=4)). We de-

note by f1 and f2 the nonnull coefficients of f (min). With J being
homogeneous, we may set f1 =

p
1� � and f2 =

p
�ei� . We hence

have to study the minimum of

(�; �) 7! x((1��+� cos(�))2+�2 sin(�)2)� y((1� �)2 +�2):

Setting to zero the first derivative with regard to � gives � = 0 or
2� = �[2�]. The case � = 0 is not associated with the minimum.
Hence, � = �(�=2). This allows us to prove finally that � = 1=2.
Hence, f (min) 2 F(�(�=4)).
We hence have shown that for any f 2 N ; J(f) = �N iff f 2

F(�(�=4)). This implies that �N = �2 for every N � 2; owing
to Lemma 1, this says that the lower bound � of J is reached and,
moreover, � = �2 = 2 � (y=2). Take any f such that J(f) = 2 �
(y=2). If f has a finite number of nonnull components, the previous
developments show that f 2 F(�(�=4)). On the contrary, we know
that f is a stationary point of the Lagrangian (27) (this time, the sums
are infinite) [10, ch. 7]. The moduli of the components of f belong to
a set of one or two elements. Now, f 2 `2( ): we deduce that f has
a finite number of nonnull components; hence f 2 F(�(�=4)). We
have shown Result 2.
Result 2: If 2x > y; � = 2� (y=2). Moreover, J(f) = � holds if

and only if f 2 F(�(�=4)).

V. DISCUSSION

Let us recast the results into the deconvolution framework: suppose
that sn is real-valued. Hence, x = 1; and condition 2x = y reads
[s4] = 1: this occurs when the sequence (sn) is a binary sequence:

the lower-bound is � = 1 (hence ~� = 0) and a f for which J is
minimum belongs to F(�); � 2 (�(�=2); (�=2)); this result is not in
contradiction with [9] but is more precise since we proved that no other
f can reach the minimum. For real nonbinary sources, the fact that the
global minimizers belong to F(��=4) is a pertinent information that
allows one to retrieve the source sn (a rotation of the equalized output
has so be considered).
As far as (complex-valued) modulus one sequences sn (but not bi-

nary) are concerned [8], we obviously have

� = y � 2x

= � [jsnj4] � 2( [jsnj2])2 � jE s2n j2 � 2jE s2n j2
= 1� jE s2n j2
> 0:

This is exactly the context of result 1, and the minimizers of ~J are
“trivial filters,” i.e., elements of F(0). This result is consistent with
Result 1 in [8].

VI. APPLICATION TO BLIND EQUALIZATION

In this section, we consider an i.i.d. sequence sn, where sn belongs
to the alphabet (1=

p
5)f1;�1; 3i;�3ig. The points of the alphabet are

equilikely; hence x = 64=100; y = 1 and 2x > y.
We consider the ARMA series given by 3yn�yn�1 = sn+2sn�1.

We have yn = 1

k=0 hksn�k, where
1

k=0 hkz
�k is the stable and

causal expansion ofH(z) = (1+2z�1)=(3� z�1). The sequence zn
is obtained after passing yn through a causal filter with finite-impulse-
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response g. This means that gk = 0 if k =2 f0; . . . ; K� 1g. Hence, zn
follows model (1), with fn = K�1

k=0 gkhn�k .
As K is finite (we chose K = 15), this in general prevents ~J from

reaching its lower bound since no finite-order filter g may invert the
system, i.e., f can, at best, be ”close” to F(�(�=4)). We consider for
a given f the distance to the set

�
F(�) : d(f) = minp;q inf�;� kf�

�e(p;q)(�)k2. The computation of d(f) is a nonlinear minimum least-
square problem. As a least-square problem in � (parameters p; q; � are
supposed to be fixed), the �� minimizing jjf � �e(p;q)(�)k22 is

�� = (f je(p;q)(�)) = fp cos � � ifq sin �:

Plugging this expression into kf � �e(p;q)(�)k2 eventually gives a
function of � to be minimized (this time, p; q are fixed). The stationary
� are given by the equation

2 �a2p � b2p + a2q + b2q sin(2�) + (apbq + aqbp) cos(2�) = 0

where we set fk = ak + ibk. There are two solutions in [��; �]: one
of them corresponds to the minimum of kf � �e(p;q)(�)k2, the other
to the maximum. In order to compute d(f), it remains to consider the
minimum previously found for every (p; q); p < q. This distance is
achieved for a certain angle denoted by �(f).

The number of observed data is finite: we observe y0; . . . ; yN�1;
hence the cost function ~J is not perfectly known. We hence consider a
consistent estimate

~Jest(g) =
1

N

N�1

n=0

(jznj
2 � 1)2

where we have set g = (g0; . . . ; gK�1). At the n+1th iteration of the
steepest descent algorithm, we have

g
(n+1) = g

(n) � �nr
(n)

where

r(n) = 2
@ ~Jest
@g

g
(n)

= 4

N�1

k=0

(zk � 1)zkYk:

In this equation, Yk = (yk; yk�1; . . . ; yk�K+1). The step �n may
be taken as the solution that minimizes the fourth-order polynomial
� 7! ~Jest(g

(n) � �r(n)).
Fig. 1 provides the constellation after convergence: as expected, this

one is “close” to a 16-state constellation—the noise around each point
is due to the fact that f does not exactly belong to F(�(�=4)).

We consider 1000 Monte Carlo experiments. For every experiment,
we compute the estimate ~Jest. After convergence of the steepest de-
scent algorithm, we obtain gest expected to be an argument minimum
of ~Jest. This provides fest, the convolution of gest with h. For every
fest, both the distance d(fest) and the angle �(fest) are computed. The
empirical mean and variance of these quantities are listed in Table I.
As expected, the estimate fest is close to F(�(�=4)).

APPENDIX I
PROOF OF LEMMA 1

Let m;M be two real numbers such that 0 < m < M and denote
by B(m;M) the set

B(m;M) = ff 2 `2( ) jm � kfk �Mg: (24)

We first show that J is uniformly continuous over B(m;M).
We set c1(f) =

k
jfkj

4; c2(f) = j
k
f2k j

2; c3(f) =
(

k
jfkj

2)2 and c4(f) = �yc1(f) + xc2(f). Notice that for
any r; s 2 B(m;M)

jJ(s)� J(r)j �
1

jc3(s)c3(r)j
�

(jc3(s)kc4(s)� c4(r)j+

jc4(s)kc3(s)� c3(r)j)
;

as c3 has a nonnull lower-bound over B(m;M), the inequality implies
that J is uniformly continuous overB(m;M) as soon as c1; c2; and c3
are uniformly continuous.

Fig. 1. Constellation after convergence.

TABLE I
ESTIMATED MEAN/VARIANCE AFTER CONVERGENCE

Take � > 0 and consider r; s 2 B(m;M). We have

jc1(s)� c1(r)j �
k

s4k j�j r
4
k

�
k

s4k � r4k

�
k

s2k � r2k s2k + r2k

� 2M2

k

jsk � rkj jsk + rkj :

The Cauchy–Schwartz inequality finally yields

jc1(s)� c1(r)j � 2M2

k

jsk � rkj2

k

jsk + rkj2

and therefore, if ks � rk2 � (�=4M3); jc1(s) � c1(r)j � �, hence
proving the uniform continuity of c1.
As far as c2 is concerned, notice that

jc2(s)� c2(r)j

�
k

s2k � r2k
k

s2k + r2k

� 2M2

k

s2k � r2k

� 4M3ks� rk2

hence proving the uniform continuity of c2. As far as c3 is concerned,
we let the reader show its uniform continuity. We now focus on the
second part of the lemma. Of course, �N � �. Suppose that �̂ =
limN!1 �N > �.
There exists an f such that

J(f) = �̂� � (25)

for a certain � > 0.
With J being homogeneous, we may set kfk2 = 1. We propose to

split f as f = p(k) + q(k), where p(k)l = fl if jlj < k and p(k)l = 0 if
jlj � k. We consider 1 > � > 0: we set m = 1 � � and M = 1 + �.
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There exists an integerK1 such that for every k � K1 we have: p(k) 2
B(m;M). Let then k be such that k � K1.

As J is uniformly continuous over B(m;M), there exists � such
that jJ(s) � J(r)j � (�=2) as soon as ks � rk2 � �; on the other
hand, q(k) may be chosen as small as desired, i.e., there existsK2 such
that for every k � K2 kq

(k)k2 � �. Taking any k � max(K1; K2),
and choosing s = f; r = p(k), it yields

J(f) � J p(k) �
�

2
� �̂�

�

2
(26)

which clearly contradicts (25). We have proved Lemma 1.

APPENDIX II
PROOF OF LEMMA 2

For every integer k, we let ak; bk be ak = <(fk); bk = =(fk), and
define a = (ak)k2 ; b = (bk)k2 . With J being homogeneous, the
minimization of J over N is equivalent to the minimization of J over
the unit-sphere SN . A stationary point f (s) of J is then a stationary
point of the Lagrangian

L(a; b; �) = x
k

a2k � b2k

2

+ 4x
k

akbk

2

� y
k

a2k + b2k
2

� �
k

a2k + b2k

2

� 1 : (27)

We may define � and � as � = 2x k(a
(s)2
k � b

(s)2
k ) and � =

4x k a
(s)
k b

(s)
k . Forcing to zero the partial derivatives (@L=@al) and

(@L=@bl) implies that the vector Xl = (al; bl)
T is a solution of the

linear system

(M � (2y�l + 2�)I2)Xl = 0 (28)

where I2 is the identity matrix of size 2 and

M =
� �

� ��

and �l = (a
(s)
l )2 + (b

(s)
l )2. Equation (28) implies, in particular that,

for every index l, either Xl is null or belongs to the Kernel of M �
(2y�l + 2�)I2.

On the other hand, the eigenvalues of M are � �2 + �2 : M �
(2y�l + 2�)I2 has a nonnull kernel if and only if either 2y�l + 2� =
�2 + �2 or 2y�l + 2� = � �2 + �2. This implies that for every

index l; �l is either zero or belongs to a set having either one or two
elements.

APPENDIX III
PROOF OF LEMMA 3

As x; y > 0, we may without any restriction suppose that x = 1. As
a function of �;  is a second-order polynomial

 �(�) = (�2 � yK1(K1 + 1))�2 + 2�(yK1 � �) + 1� y:

We set �1 = yK1(K1 + 1).

1. If � � �1, then  � is concave, hence the lower bound of  over
(0; 1=K1) is on one of the edges of this interval, that is

inf
�2(0;1=K )

 �(�) = min  �(0);  �
1

K1
: (29)

TABLE II
VARIATIONS OF �: CASE OF yK < K + 1

TABLE III
VARIATIONS OF �: CASE OF yK > K + 1

However,  �(0) = 1� y and, by assumption, 1� y > �y=2,
hence

 �(0) > �
y

2
: (30)

Moreover,  �((1=K1)) = (1 � �=K1)
2 � y=K1 � �y=K1.

By assumption, K1 � 2, hence

 �
1

K1
> �

y

2
: (31)

Equations (29), (30), and (31) imply (23).
2. If � > �1, the minimum of  � over is reached for a certain

�0 defined as

�0 =
� � �2
�2 � �21

where �2 = yK1. We set

�(�) =  �(�0)

= �
(� � �2)

2

�2 � �21
+ 1� y:

The derivative of � writes

�0(�) =
2(� � �2)

(�2 � �21)
2
(K1 + 1� �)yK1:

• If yK1 < K1 + 1, Table II shows the variations of �.
We hence have for every 0 � � � 2K1

inf
�2(0;1=K )

 �(�) � inf
�2

 �(�)

� �(�)

� min(�(yK1); �(2K1)): (32)

Now

�(yK1) = 1� y > �y=2 (33)

by assumption. On the other hand

�(2K1) = 1� y �
K1(2� y)2

K1(4� y)� y

hence

�(2K1) > �y=2 (34)

if and only if K1 > 1; this condition being verified by
assumption, (33) and (34) hold true, hence (32) implies (23).

• If yK1 > K1 + 1, Table III shows the variations of �.
It yields

inf
�2(0;1=K )

 �(�) � min(�(K1 + 1); �(2K1)): (35)
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Notice that

�(K1 + 1) > �y=2 (36)

holds if and only if (yK1 �K1 � 1=K1 + 1) + 1 � y >
�y=2, that isK1 > 1, which holds by assumption. As (34)
and (36) are true, hence (35) implies (23).

• if yK1 = K1 + 1; � is decreasing; this yields �(�) �
�(2K1) > �y=2 and this proves (23).
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