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ABSTRACT

Web browsing is one of the main Internet services, which has largely evolved over the last years. It
now includes many different components (images in various formats, css, Javascript, ProgressiveWeb
Apps, etc.) and a web page is composed of many different resources provided by many servers located
in various places. Knowing how web browsing content is delivered is crucial for better understanding
the Quality of Experience (QoE) offered to end-users. Detecting the factors impacting this QoE is
important to improve them but also to be able to predict the quality in order to anticipate degradations
to it and propose remediations, which is the main goal of our study. For this, we present an analysis of
a measurement campaign we have performed during 6 months (July 2018 - January 2019) on the Top
10,000Alexawebsites, which helps to identify themain factors which can impact the quality perceived
by end-users. This set of factors has been confirmed by a machine learning process (decision tree),
which gives as outputs the set of rules to predict the QoE. The evaluation of our decision tree-based
model, on the Top 10,000-15,000 Alexa websites, never accessed before, shows that we can correctly
predict the web browsing quality an end-user can get.

1. Introduction
Web browsing is a fast-paced and changing domain and

needs to deliver a good experience to end-users since a plethora
of applications and services are nowadays accessed through
web browsers. The Web was originally designed to deliver
static contents but has evolved dramatically towards dynamic
web pages offering to end-users a built-in environment for
education, gaming, video streaming or social networking [1,
2, 3]. Large service companies (e.g Google, Mozilla, Apple,
etc.) are following the trend of new technologies by enabling
Virtual Reality, Virtual Machines or IoT (Internet of Things)
applications embedded in the web browsers. They are deliv-
ered over HTTP/1.1 but also over new transport protocols
such as HTTP/2 (Version 2 of the HyperText Transfer Pro-
tocol) [4], standardized in 2015, or QUIC (Quick UDP Inter-
net Connection) [5, 6] which is paving its way to standard-
ization, as HTTP/3. Network operators or service providers
need to offer the best possible QoS (Quality of Service) to
their customers and for this, they deploy Content Delivery
Networks (CDN) and proxy-based networking architectures,
aiming to improve the web browsing delivery.

The question of measuring the quality when perform-
ing web browsing and the need to identify the main fac-
tors decreasing or enhancing it is then of prime importance.
Measuring web browsing quality needs to be performed in
a meticulous manner by taking into account the latest rich-
exposed browsers’ functionalities. Based on a large mea-
surement campaign we performed over 6 months (July 2018
- January 2019), our first contribution provides an overview
of today’s web browsing delivery, including the number of
resources, their location, the protocol used, etc. Secondly,
we perform a detailed study of these parameters’ impact on
end-users’ perceived quality, in order to highlight the factors
which are the most critical for Web browsing. Thirdly, we

use Machine Learning techniques to validate the identified
factors and through a decision tree model, we identify the
thresholds of these factors in order to automatically predict
the end-users web browsing quality. Then, the identified set
of rules of our model are applied on the Alexa top 10K-15K
websites and our model proves to be efficient, predicting cor-
rectly more than 90% of measurements.

The paper is structured as follows: We first remind in
section 2 the existing web metrics and related work meant to
quantify and qualifyweb browsing. Through section 3we in-
troduce how our measurement campaign is performed, sec-
tion 4 depicts how web browsing content is delivered to end-
users and section 5 analyses the impacts of the parameters
on web browsing quality. Section 6 presents our rules-based
model to predict web browsing quality. We finally conclude
in section 7.

2. Background and Related Work
Policies and processing algorithms used byweb browsers

to render web pages are all different. In order to bring uni-
form benchmarking indicators, standardization bodies such
as the W3C, in collaboration with large service companies,
have defined a set of web metrics to measure web page load-
ing better. The Page Load Time1 (PLT) is the time between
the start of the request andwhen the entire web page has been
loaded. The Resource Timing2 provides information upon
the downloaded resources unit-wise, such as the transport
protocol used, size and type of object or some low level net-
working information. The Paint Timing3 exposes the First
Paint (FP) which is the time for a first pixel to appear on the
end-user’s web browser screen. The Above-The-Fold (ATF)

1https://www.w3.org/TR/navigation-timing/
2https://www.w3.org/TR/resource-timing-2/
3https://www.w3.org/TR/paint-timing/

A. Saverimoutou, B. Mathieu, S. Vaton: Preprint submitted to Elsevier Page 1 of 15



A 6-month Analysis of Factors Impacting Web Browsing Quality for QoE Prediction

[7] exposes the time needed to fully load the visible surface
area of a web page at first glance (making use of W3C infor-
mation). The TFVR (Time for Full Visual Rendering) [8]
exposes the loading time of the visible portion of a website
at first glance (without scrolling) by making use of network-
ing information through the web browser’s exposed HAR
(HTTP Archive). The Speed Index and RUM (Real User
Monitoring) expose a score representing the visible surface
area occupancy of a web page. The Latency Amplification
Factor (LAF) [9] characterizes the content of a web page in
terms of how it affects the page load time.

When end-users go to a website, third parties such as
advertisement networks can impact web browsing quality
[10, 11, 12]. Tomeasure QoE duringweb browsing sessions,
several tools have been developed by the research commu-
nity. FPDetective [13] uses a PhantomJS4 and Chromium
based automation insfrastructure, OpenWPM [14] performs
automated web browsing driven by Selenium5 while sup-
porting stateful and statelessmeasurements and theChameleon
Crawler6 is a Chromium based crawler used for detecting
browser fingerprinting. Fourth Party [15] instruments the
Mozilla-Firefox browser and Web Xray [16] is a PhantomJS
based tool for measuring HTTP traffic. XRay [17] and Ad-
Fisher [18] run automated personalization detection exper-
iments and Common Crawl 7 uses an Apache Nutch based
crawler. Kaleidoscope [19] is an automated tool to evaluate
web features on a large scale focused on the web page style
and page loading times. All these tools (among others) have
largely contributed to the research field but when wanting
to objectively quantify and qualify web browsing, there is a
clear need to finely reproduce an end-user environment and
usual interaction with the latest web browser functionalities,
which they do not offer. We have thus developed our own
tool highlighted in section 3 which offers fine-grained infor-
mation through the latest implemented web metrics and data
obtained from network capture and browser’s offered HTTP
Archive (HAR). We also collect information regarding the
different remote web servers located all over the world, the
downloaded resources’ type, size and Internet protocol through
which they are delivered at different stages of the web page
loading process.

Web browsing includes 4 key actors, namely the end-
user, theweb browser, the network and the remoteweb server.
While some research work [20, 21] describes how to qual-
ify user-experience better, other studies investigate the im-
pact of different Internet protocols on web browsing quality
[22, 23, 24, 25, 26, 27]. Regarding the network, particular
interest is given to the upload or download link when in-
vestigating bottlenecks [28, 29, 30] and Naseer and al. [31]
propose a tool in order to analyze and better understand the
actual configuration parameters employed by today’s web
servers. The PLT is the de facto used web metric but with
the evolution of websites’ characteristics, researchers ques-

4http://phantomjs.org/
5https://www.seleniumhq.org/
6https://github.com/ghostwords/chameleon
7https://commoncrawl.org/

tion the versatility and objectiveness of this metric to mea-
sure end-user’s QoE [32, 33, 34, 35, 36] emphasizing that
what the user really sees on the screen should be primar-
ily measured. Other research work proposes ATF browser-
based measuring techniques [37, 8] in order to measure the
websites’ visible portion loading time. When studying web
browsing performance as a whole, different on-market web
browsers, Internet protocols, network bandwidths and types
of websites need to be taken into account. We have thus fo-
cused our research work by taking into account the mostly
used on-market web browsers, studied the impact of differ-
ent Internet protocols (HTTP/1.1, HTTP/2 or QUIC), used
different types of residential network access (ADSL, Wi-Fi,
Fiber) and assessed the Top 10,000 Alexa websites. Our
measurements include all the web metrics defined by the
W3C and the TFVR (Time for Full Visible Rendering) [8].

3. Measurement Campaign Setup
Our measurement campaign has been performed with

the tool Web View[38]. Web View is a measurement plat-
form whose infrastructure includes probes and a public vi-
sualization website8 illustrating the obtained measurement
results for a set of websites. The Web View probe is a user-
orientated measurement tool whose main objective is to per-
form automated web browsing sessions and measure repre-
sentative information of web pages in order to better qual-
ify and understand web browsing, both in terms of qual-
ity and delivery. Each test can be configured with several
parameters, such as the web browser, the access network
type on which the probe is connected, the list of websites
to measure, the preferred transport protocol to get the con-
tents (HTTP/1.1, HTTP/2, QUIC), etc.
For this study, we deployed probes in France, three different
desktop machines (CPU Intel Core i5 and 8 GB RAM) con-
nected to three different user-representative residential net-
work accesses, i.e ADSL (10Mbps down, 1Mbps up), Wi-Fi
(200Mbps down, 160Mbps up) and FTTH Fiber (800Mbps
down, 300Mbps up). The Wi-Fi network access (802.11
b/g/n, 2.4Ghz and 450Mbit/s max) is provided by a home-
box, connected to the Fiber operational network. Our probes
are located in the same room as the Wi-Fi homebox. Two
popular web browsers, with different window sizes, were
used, namelyGoogle-Chrome (version 63 and 68) andMozilla-
Firefox (version 56 and 62). The Google-Chrome browser
is driven by Chromedriver v.2.36 and v.2.40 and Mozilla-
Firefox by Geckodriver v.0.19 where the main automater is
Selenium v.3.14. Both browsers support HTTP/1.1 andHTTP/2,
but only Google-Chrome implements QUIC. The automated
web browsing sessions were conducted at different times of
the day by requesting different Internet protocols. Some In-
ternet protocolsmight be disabled or blocked by service providers
or corporate companies and the need to study what the ob-
tained quality is when an Internet protocol is not available
is important. When requesting HTTP/1.1, we deactivate the
HTTP/2 and QUIC protocols in the browser; when request-

8https://webview.orange.com
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(a) Resources’ location
(b) MIME type of resources

Figure 1: Downloaded resources

ingHTTP/2we deactivateQUIC but allow fallback toHTTP/1.1
(not all content-servers are HTTP/2-enabled); when request-
ing QUIC, we allow fallback to HTTP/1.1 and HTTP/2 for
non-UDP web servers. We also define another mode, the
QUIC Repeat. This mode favors 0-RTT UDP and 1-RTT
TCP by firstly performing a navigation to the website, clos-
ing the browser, clearing the resources’ cache but keeping
theDNS (DomainName System) cache and going oncemore
to the website when we collect measurements. For all our
measurements, the resources’ cache is always emptied at the
start and end of web browsing session, and we have defined
a timeout of 18 seconds (this value has been set since it is a
very long time to wait for a web page and after more then 18
sec, all end-users will have given up the browsing).
For every visited website, Web View probes measure and
compute 84 parameters9. Amongst them, we have 4 differ-
ent loading times, namely the First Paint (FP), Time for Full
Visual Rendering (TFVR), the processing time (DOM time)
and the Page Load Time (PLT). We also collect network
traffic from which we investigate the corresponding DNS
time for the main web page domain and through the col-
lected HAR10 we assess the overall number of objects down-
loaded and their MIME (Multipurpose Internet Main Exten-
sions) type. From the exposed remote servers’ IP address
correlated to MaxMind GeoIP2 database11 and RIPE NCC
database12, we estimate the continents from which these re-
sources are downloaded. Web View also identifies if the
resources are delivered with secure connections or not, the
number of domains serving the contents and the category
of the website as referenced by Alexa. As per the different
collected timings, which indicate a web page page loading
progression through time, we also collect the number of re-
sources downloaded in these periods of time as well as the
Internet protocol through which they are delivered.

After our 6-months campaign on the top 10,000 Alexa
9https://webview.orange.com/monitoringParameters

10HTTP Archive
11http://www.maxmind.com
12https://stat.ripe.net/

websites, we got 244 Million different measurements, rep-
resenting the measurement of 9597 distinct websites. 403
distinct websites were discarded due to the small amount
of web browsing results (these websites were either unavail-
able, blocked as per our geographic location or not respond-
ing in less than 18 seconds). Our dataset then includes mea-
surements for websites having theirmainweb page estimated
to be in North America (NA) for 52.23%, in Europe (EU)
for 28.44%, in Asia (AS) for 16.22%, and in South America
(SA) for 1.10%.

4. Web Browsing Delivery Analysis
We present in this section an analysis of our collected

measurements and highlight themain evolutions ofweb brows-
ing delivery with regards to previous studies [39, 9] which
have identified that the category of a website (as per Alexa
ranking), number of objects embedded in the web page and
amount of web servers delivering content has an impact on
web browsing quality. A part of our dataset is made public
at https://webview.orange.com/public/dataset.zip.

4.1. What are these objects ?
Theweb pages aremore complex nowadays andwewanted

to evaluate their evolution, compared towhat it was few years
ago [39, 40, 41]. When amainweb page is located in Europe,
on average between 2 and 47 resources need to be down-
loaded for less than 25% of the websites and between 125
and 230 resources need to be downloaded for more than 75%
of these websites. Since 2014, the amount of downloaded
resources composing a web page has increased by 17% on
average for the Alexa websites ranked 1-2000 and by 31%
on average for websites ranked 5000-10000.
Going deeper into the question from where the resources are
downloaded, (Fig.1a) presents the location of the servers.
On average, when amainweb page is located inNorth Amer-
ica, a mean number of 72 resources is downloaded , mainly
from EU and from NA. When a main web page is in Asia,
an average number of 78 resources is downloaded, about half
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(a) Main web page in NA (b) Main web page in SA

(c) Main web page in EU (d) Main web page in AS

Figure 2: Aggregated distribution of resources

(a) Distribution for Entertainment category (b) Distribution for Shopping category

Figure 3: MIME types of objects per category

from Asia, and the other half from NA and EU. The mean
distributions help in profiling the overall location of the con-
tent servers for a European end-user. The Fig.2 provides the
complete distribution of downloaded resources for the 4 con-
tinents where the main home page is. The Fig.2a shows that
when a main web page is located in North America, for 50%
of the measurements, more than 8 objects are downloaded
from EU and 50 objects from NA. On the other hand, the
Fig.2d shows that when a main web page is in Asia, for 75%
of the different measurements, up to 65 objects are down-
loaded from AS, 20 objects from EU and 27 objects from
NA. We can observe that for a European end-user, many ob-
jects are downloaded from Europe, which is due to Content
Delivery Networks. For main web pages located in Asia, we
can detect that many resources are coming from Asia, which
could impact the quality, because of the network delay.

Following the question about what these objects are, Fig.
1b represents the breakdown of the downloaded objects by

content MIME types of 8 random websites belonging to dif-
ferent categories as referenced by Alexa. While images oc-
cupy most of the time the highest distribution type of re-
sources, on average web pages (except Search-Engines cate-
gory) are composed of 4 css, 5 scripts, 16 images and 2 xml.
We identified that the average number of scripts and images
has increased by 53% over the last 15 years from past stud-
ies [42] and by 7% from recent studies [39]. Furthermore
when paying particular attention to the different types of im-
ages, when using a Google-Chrome web browser and vis-
iting a Google website, on average 80% of images are now
in WebP format. Compared to studies conducted in 2011 –
2014, Flash usage has been reduced by 61% as Adobe will
remove all support for Flash in 2020. When performing our
measurements, we also noticed an increasing PWA (Progres-
sive Web Apps) usage of 6% between July 2018 and January
2019. On a wider scope, based on the Alexa websites Cat-
egory listings available, 3921 websites were assessed. The
Newswebsites download on average 19.81%more resources,

A. Saverimoutou, B. Mathieu, S. Vaton: Preprint submitted to Elsevier Page 4 of 15
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Figure 4: Website lemonde.fr content servers

Kids and Teens websites have a significant greater fraction
of Flash objects and Shopping websites make greater usage
of JavaScript. When assessing the overall distribution of re-
sources aggregated byMIME type, the Fig. 3 represents two
different Alexa-referenced categories where a large variety
of objects are incorporated in the corresponding web pages.
We selected these 2 categories, since they represent a major
part of the popular websites. The Fig. 3a shows that Enter-
tainment websites make greater usage of images (in WebP,
PNG or JPG format), followed by JavaScripts and Videos
(which can be further decomposed in different formats, e.g
WebM, Mp4 or Mp2t). The Shopping websites (Fig. 3b) also
make use of a high number of images in different formats
which greatly change all along the day thanks to JavaScript.

4.2. Who is delivering the resources?
In this analysis, we aimed to identify to which extent,

when an end-user navigates to a specificwebsite from a given
location, the resources needed are downloaded from many
servers located at various places. For this, we analyzed if the
contents are downloaded from the same authoritative DNS
name server of the main web page. Domains delivering con-
tents and having the same authoritative DNS name server as
the main web page are entitled Same-Origin domains and
conversely Non-Origin domains. From our global measure-
ments, when amain web page domain is in North America or
Europe, irrespective of the preferred Internet protocol, con-
tents are served on average by 2 Same-Origin domains and 7
Non-Origin domains and when the main web page is in Asia
or South America, contents are delivered on average by 3
Same-Origin domains and 13 Non-Origin domains. Those
Non-Origin domains represent specific services involved in
the web page composition (e.g., Google services, such as
advertisements or analytics) but also CDN nodes providing
contents on behalf of the origin servers.

The average number of domains is not huge, but we can
have some websites with many different domains involved
in the delivery. As an example of such a complex web-
site, Fig.4 points out the servers delivering contents when
browsing the website lemonde.fr, where the main web page
is located in Europe and belongs to the News category. For
this website, 352 resources are downloaded from 29 differ-
ent domains, where 15 domains located in North America
deliver 50 resources and 14 domains in Europe deliver 302
resources. Themain web page as well as the 13 Same-Origin
domains are hosted in Europe by Fastly serving 61.36% of

Figure 5: Objects downloaded in HTTP or HTTPS

the overall number of resources, while Akamai and Amazon
serve 11.36% of the resources. The Other content servers
regroup 9 different Non-Origin domain web servers. Our
website WebView 13 proposes a graphical representation of
this kind of analysis.

4.3. Do websites secure connections ?
Compared to the previous studies [43, 44, 45] encryp-

tion has been largely adopted to preserve privacy. Indeed,
web browsers nowadays favor it by adding by default https://
when a user requests a web page. Furthermore, since Google
marked non-HTTPSwebsites as insecure in its Chrome browser
in July 2018, HTTPS adoption has increased. However, from
our Top 10,000 Alexa websites, only 36.02% of the web-
sites deliver their contents in full HTTPS (100% HTTPS)
and still 0.28% of the websites deliver their contents in full
HTTP (100% HTTP, no resource composing the web page
is delivered by an HTTPS server). In between, we have
websites composed of resources received with HTTPS and
HTTP. As per Fig.5, on average, when the web page is lo-
cated in North America, 12 resources are downloaded in
HTTP and 70 resources in HTTPS and when the main web
page is in Asia, 32 resources are downloaded in HTTP and
46 resources in HTTPS. While HTTP/2 and QUIC-enabled
web servers mainly deliver contents in HTTPS through TLS
1.2 14, some content servers still deliver resources in a non-
secure mode (HTTP). Those websites are mainly located in
Asia.

4.4. Which Internet protocol do I receive?
Since the previous published papers analysingWeb brows-

ing, the new Internet Protocols, namely HTTP/2 and QUIC,
have been promoted. We then wanted to evaluate the adop-
tion of these protocols by web servers. We made measure-
ments explicitly requesting these protocols and analyzed if
the remote servers reply using them or if they fall back to
another one. Fig. 6 and Fig. 7 show the results of those
measurements, in terms of protocol distribution.

First and very logically, we note that when requesting
13https://webview.orange.com/d/UyIIcrUmz
14Now TLS 1.3 is deployed but at the time of the measurements, it was

still TLS 1.2
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(a) Requesting HTTP/2 (b) Requesting QUIC (c) Requesting QUIC Repeat

Figure 6: Received protocol distribution upon request

(a) Requesting HTTP/2 (b) Requesting QUIC (c) Requesting QUIC Repeat

Figure 7: Average received protocol distribution

web pageswithHTTP/1.1, all the servers replywithHTTP/1.1.
When performing measurements requesting HTTP/2, we re-
ceived all the resources inHTTP/2 (100%H2) only for 11.82%
of the websites. The other 88.18% of the websites reply in an
average protocol distribution of 52.04% HTTP/1.1, 46.75%
HTTP/2 and 1.21% Server Push. We can then see that al-
though standardized in 2015, HTTP/2 is not yet widely de-
ployed and that it is not equivalent worldwide, more used for
servers in NA or SA, whereas in Europe and Asia, HTTP/1.1
is still prevalent.

When performing tests requestingQUIC,we see that QUIC
is not deployed by many servers, but mainly Google ones.
On average 97% of the different QUIC-enabled web servers
areGoogle servers replying inQUIC v.43when usingGoogle-
Chrome v.6815 and the other 3% are non-Google web servers
replying inQUIC v.37-38when usingGoogle-Chrome v.6316.
From our measurements, we analyze that 0% of the web-
sites reply in full QUIC for all the resources (100% HQ) and
that the responses are received at an average distribution of
6.12% QUIC, 50.57% HTTP/2, 42.1% HTTP/1.1 and 1.21%
Server Push. QUIC responses are highest when the main
web page is in North America (in particular from Google
servers).

QUIC is natively used jointly with HTTP/2 for the first
request, but offers a QUIC zero-RTT connection when con-
necting to an already known website. We then evaluate if
the distribution is different with the QUIC Repeat mode. In
this configuration, 7.21% of the websites fully reply in QUIC
(100%HQ). The rest of websites, 92.79%, reply in a distribu-

15android.com (90.6% HQ), google.com (52.6% HQ) or youtube.com
(49.1% HQ)

16facenama.com (81% HQ), sarkariexam.com (57.4% HQ) or digital-
grant.ru (55% HQ)

Figure 8: Visible portion of website

tion of 12.71% QUIC, 45.11% HTTP/2, 41.09% HTTP/1.1
and 1.09% Server Push. We can then see that QUIC Repeat
favors QUIC reply distribution, because the browser knows
that the website can reply in QUIC.

To sum up this evaluation, HTTP/1.1 is still widely used
by web servers, HTTP/2, although standardized in 2015, is
deployed at a low pace, and QUIC is mainly used by Google
web servers.

5. Factors impacting Web Browsing Quality
An indicator of end-users’ perceived quality when per-

forming web browsing is the time needed to load a web page
(entirely or certain parts of it). This section points out the
different factors impacting (decreasing or increasing) these
loading times.
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(a) Requesting HTTP/1.1 (b) Requesting HTTP/2 (c) Requesting QUIC Repeat

Figure 9: First Paint loading time

(a) Requesting HTTP/1.1 (b) Requesting HTTP/2 (c) Requesting QUIC Repeat

Figure 10: TFVR loading time

5.1. Impact of the requested protocol
We present in this section the impact of the Internet Pro-

tocol on the end-users’ quality, measured either by the FP,
TFVR or PLT. The TFVR provides the loading time of the
visible portion of the web page and is tightly linked to the
end-user’s browser window size. Fig. 8 depicts the different
visible portion of web sites (without scrolling the web page)
upon different browserwindow sizes. For example, when the
main web page is located in North America, with browser
window size of 1920x1080, less than 50% of the measure-
ments provide a visible portion less than 32.09%. The Page
Load Time provides to an end-user the needed time to load
the entire web page (visible and non visible parts).

The FP exposes the moment when a first pixel appears on
an end-user’s browser screen. The FP involves the download
and rendering of the main web page html source code and on
average involves the download of 2 objects from 1 domain
for 99.98% of all measurements. The only difference among
the measurements is in general the size of the html page it-
self, thus increasing the corresponding download time.

As shown in Fig.9a, we can see that the FP value is very
close for HTTP/1.1, HTTP/2 and QUIC. This can be ex-
plained since before FP, on average only 2 objects are down-
loaded in this time and all the benefits of the HTTP/2 pro-
tocol (multiplexing, header compression, server push func-

tion) can not happen. Similarly, for QUIC, since the first
request is sent using HTTP/2 and the number of objects very
small, 99.76% ofQUICmeasurements receiveHTTP/2 replies.
But one can see that the FP is smaller for the QUIC Re-
peat mode, since in this case, resources are downloaded in
0-RTT from UDP-enabled web servers and in 1-RTT from
TCP-enabled web servers. The First Paint value is a good
indicator of the network state when performing web brows-
ing since objects are mostly downloaded from the main web
page domain itself thus decreasing the total DNS time.

Looking at Fig.10 and Fig.11 , we can see that the be-
havior for the TFVR and PLT is close to the one detected
with the FP measurement, i.e.; there is no noticeable dif-
ference between HTTP/1.1, HTTP/2 and QUIC. Indeed, as
depicted in Fig.7, when requesting HTTP/2, the HTTP/1.1
Internet protocol is still largely used. Similarly, with our
dataset, when requesting QUIC, about 50% of the measure-
ments have a QUIC distribution less than 0.79%, and those
websites fall back to HTTP/2. But for the QUIC Repeat
mode, the TFVR is largely smaller, thanks to 0-RTT UDP
and 1-RTT TCP. For example, when comparing QUIC Re-
peat versus HTTP/2, the TFVR loading time is reduced by
54.2% for a main web page in North America.

(a) Requesting HTTP/1.1 (b) Requesting HTTP/2 (c) Requesting QUIC Repeat

Figure 11: PLT loading time
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(a) Main web page in NA (b) Main web page in EU (c) Main web page in SA (d) Main web page in AS

Figure 12: Impact of number of domains

(a) ADSL network access (b) Wi-Fi network access (c) Fiber network access

Figure 13: PLT when requesting HTTP/1.1

5.2. Impact of the number of domains
When performingweb browsing, the resources are down-

loaded from various domains (as discussed in section 4.2,
from Same-Origin and Non-Origin domains). The number
of domains contacted increases proportionally to the DNS
lookup times and thus the overall loading times (for the TFVR
or PLT). When a web page is located in North America or
Europe, on average, resources are downloaded from 9 do-
mains (with an overall DNS time of 316.09 ms) and when
the main web page is in South America, resources are down-
loaded on average from 16 domains (with an overall DNS
time of 1715.85 ms). In general websites being served by
large number of domains belong to the News and Shopping
category.
Fig.12 illustrates the overall tendency regarding the number
of domains through which resources are downloaded when
requestingHTTP/2 and the corresponding loading time. This
is represented as a heatmapwhere dark blue represents higher
concentration of values and light blue lower concentration
of values together with the corresponding Page Load Time.
For instance, in Fig.12a, there are plenty of websites having
about 7-8 domains and offering a PLT of about 1500 ms, and
very fewwebsites having 30 domains for a PLT at about 3000
ms. When a web page is located in North America or Eu-
rope, the PLT loading time is good and time increases with
the number of domains from which the resources are down-
loaded. When the main web page is in Asia, the PLT loading
time increases proportionally to the number of domains (av-
erage of 3915 ms DNS time with the number of domains
being 4) and the objects being mainly served in HTTP/1.1
increase blocking and waiting time.

5.3. Impact of ad blockers
Advertisement in web pages is nowadays naturally em-

bedded and can decrease an end-user’s QoE, regarding the

overall loading time of a website. From our measurements,
when using an ad blocker (Adblock Plus), on average, the
number of downloaded resources is reduced by 11.02%. It
is decreased by 9.72% when the main web page is in North
America, by 8.43% in Europe, by 11.84% in South America
and by 14.10% when the main web page is in Asia.
Websites belonging to the Shopping, Kids and Teens and
Games categories have the most significant decrease in the
number of downloaded objects and the PLT for websites be-
longing to these 3 categories are on average decreased by
39.96%. Regarding other website categories, blocked ob-
jects are mainly characterized as social network contents (e.g
Facebook, Twitter, LinkedIn, etc.).

5.4. Impact of the network access
End-users may be served by different network service

providers, along with different bandwidths and data commu-
nication technologies (e.g ADSL, Wi-Fi, Fiber). Our mea-
surements reflect observed web browsing quality where

BandwidtℎADSL < BandwidtℎWi-Fi < BandwidtℎFiber

The Fig.13 depicts the observed PLT loading times when re-
questing HTTP/1.1 following different network access. For
example, when the main web page is in North America, less
than 80% of the measurements have a PLT less than 6901
ms for ADSL network access, PLT less than 6000 ms for
Wi-Fi network access and PLT less than 4000 ms for Fiber
network access, thus representing a reduction of the loading
time of 42.03% when shifting from ADSL to Fiber network
access. When requesting the QUIC protocol, as shown in
Fig.14, the end-user’s QoE increases proportionally to band-
width increase, independently of the main web page conti-
nent location. On average depending on the network access
(ADSL vs Fiber), an end-user’s PLT is decreased by 30.25%.
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(a) ADSL network access (b) Wi-Fi network access (c) Fiber network access

Figure 14: PLT when requesting QUIC

Figure 15: Overall loading times

Increased end-user QoE is tightly linked to the corre-
sponding network access and requested protocol. When re-
questingHTTP/2 orQUIC, irrespective of themainweb page
location, web pages’ loading times are decreased on average
by 19.73% fromADSL toWi-Fi, 16.02% fromWi-Fi to Fiber
and 30.25% from ADSL to Fiber.

5.5. Impact of main web page location
Fig.15 depicts the overall web pages’ loading times, grouped

by estimated continents location of the home page. The over-
all centered (median) time follows the rule FP < TFV R <
PLT . Being in France when performing those measure-
ments, we noticed that the overall loading times for a Euro-
pean end-user are smaller for the websites located in North
America and Europe than for those located in South Amer-
ica and Asia. The 25tℎ percentile and 75tℎ percentile are
denoted by Q1 and Q3.

When the main web page is located in North America,
less than 50%of themeasurements have a PLT less than 2962
ms, Q1 and Q3 are respectively at 1753 ms and 4868 ms.
The parameters inducing the outliers are due to high num-
ber of domains (mainly Non-origin), high amount of down-
loaded objects and objects served over HTTP/1.1. The ex-
treme outliers are for those objects downloaded from South
America and Asia. When the main web page is located in
South America and Asia, the observed times are higher in
general but the number of outliers reduced since more re-
sources are downloaded from the same continent of the main
web page domain and the upper limit closer to the defined
timeout for every measurement.

Figure 16: PLT for different websites’ categories

5.6. Impact of websites’ referenced categories
Websites are all different among them composed of a

wide range and number of objects. Following their content,
they are referenced as belonging to different types of cate-
gories (e.g Alexa 17, QuantCast [46] or Web Filter 18). In
our study, we make use of Alexa referenced category listing
where websites are classified upon 17 different categories.
The Fig. 16 shows the overall observed PLT for different
categories. We can observe that the CDF is similar for many
categories except for 2 of them (Adult and Education). For
instance, for most categories, for 50% of our measurements,
the observed PLT is about 2500-3000 ms. Websites belong-
ing to theComputers, Reference and Shopping category have
loading times being close among them (compared to web-
sites belonging to the Recreation, Business and News cate-
gory) mainly due to objects MIME types composing the web
page. There is the biggest gap between the Adult and Educa-
tion category. While for less than 75% of our measurements,
websites belonging to the Adult category have a PLT less
than 3054 ms, websites belonging to the Education category
have a PLT less than 6816 ms. While these two categories
download on average the same types of objects (mainly im-
ages and videos), from our analysis in section 4.4 and 4.1,
the main difference which results in a higher observed PLT
is that objects for Adult categories are mainly downloaded

17https://www.alexa.com/topsites/category
18https://fortiguard.com/webfilter/categories
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(a) Main web page in NA (b) Main web page in SA (c) Main web page in EU (d) Main web page in AS

Figure 17: Impact of visible portion on TFVR

in HTTP/2 protocol (HTTP/1.1 for Education category) and
that images and videos for the Education category are bigger
in size.

We can then see that the category can play a role in the
web browsing quality, but it is limited and less than the sizes
of downloaded objects and the protocol through which they
are downloadedwhich contributemost of the time to a higher
PLT value.

5.7. Impact of visible portion on its corresponding
loading time

Our measurements have been performed following dif-
ferent web browsers’ window sizes and the Fig. 8 has shown
that depending on the main web page continent location and
corresponding web browser window size, an end-user might
have a larger overview of the web page without scrolling.
We focus in this section on the impact of this visible portion
on the time to load it. The default logical assumption would
be that the time to load � % of a web page would be pro-
portional. The Fig. 17 (Heatmap : Dark green represents
higher concentration of values and light green lower con-
centration of values together with the corresponding TFVR)
depicts the concentration of websites following their visible
portion (without scrolling the web page) and corresponding
time to be loaded (TFVR). As discussed in section 4.4, web-
sites having their main web page in North America share
the particularity of having higher visible portions (mainly
Search-Engines) and the Fig. 17a show that the correspond-
ing TFVR ranges from 400 ms to 700 ms when the visible
portion is 100% and ranges from 1200 ms to 1875 ms when
the visible portion is between 11% and 20%. The Fig. 17d
depicts websites whose main web page is in Asia, where we
can see that these web pages have a visible portion massively
ranging from 13% to 17% with loading times between 2700
ms and 5000 ms (apart from a limited number of web pages
having a visible portion of 100% and TFVR between 1815
ms and 2104 ms).

The TFVR is not proportional to the visible portion since
different actors contribute to this loading time (type and num-
ber of objects in the visible portion, the network download
time, etc.).

5.8. Impact of time of day
Our measurements have been performed round the clock

all day long, since following different times of the day a web-

Figure 18: Loading time of different websites at different times
of the day

site might be visited by a larger number of end-users, and
thus increasing the time needed for the servers to deliver
different objects. Furthermore, the overall network state to
reach the remote serversmight be overloaded (e.g peak hours
versus off-peak hours). We thus assess in this section the im-
pact of the time of day on the perceived page load time. The
Fig. 18 depicts a set of websites’ loading times at different
times of the day. While somewebsites’ loading time stay rel-
atively the same all day long (e.g wikipedia.org), other web-
sites depending on their category (thus content) may have
their inner structure change several times per day (e.g News:
chinatimes.com or Entertainment: twitch.tv). Our measure-
ments have been performed in Europe, and we can notice
that the website chinatimes.com average PLT increases dras-
tically at 04H CET (12H in Asia) and 08 CET (16H in Asia).
We can thus suppose following these times of the day in Asia
that the website has a higher visit rate in Asia, and an Euro-
pean end-user experiences the side effects. In overall, we
can notice that between 12H CET - 14 CET or 20H CET -
22H CET, the average loading times perceived by end-users
also increase which is most of the time due to the network
state.

Web pages loading times are impacted following differ-
ent times of the daymainly due to their visit rate (web servers
impacted) and network state (overloaded during peak hours).
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Parameters FP TFVR PLT
Main web page location ✓ ✓ ✓

Requested protocol ✓ ✓

Round Trip Time ✓ ✓ ✓

Website category ✓ ✓ ✓

Number of objects ✓ ✓ ✓

Main HTML page size ✓ ✓ ✓

Size of objects ✓ ✓

Types of objects ✓ ✓

Visible Portion ✓

Number of domains ✓ ✓

Use of ad blocker ✓ ✓

Time of day ✓ ✓ ✓

Network access ✓ ✓ ✓

Table 1
Parameters influencing web browsing quality

The corresponding loading times might also fluctuate de-
pending upon thewebsite category since the number of down-
loaded objects (and MIME type and size) might increase.

5.9. Which parameters can influence Web
Browsing quality?

Based on our statistical measurements analysis, the Ta-
ble 1 represents the different parameters to be taken into
consideration when investigating the FP (First Paint), TFVR
(Time for Full Visual Rendering) and PLT (Page Load Time)
loading times. As per our geographic location (Europe),
main web pages located in South America and Asia bring
higher loading times (compared to main web pages in North
America and Europe). The network access and requested
protocol are tightly linked to an increased quality. The num-
ber, size and type of objects and the main HTML page size
have a strong link with the website’s Alexa-referenced cate-
gory listing (e.g Search Engine category websites are com-
posed of small number of objects of small size, News cate-
gory websites are longer in scrollHeight, thus composed of
many objects and served by a large number of domains, etc.).
Finally, other factors like the time of day or the visible por-
tion can have an impact on the quality but at a lower degree.

6. Machine Learning Techniques to predict
web browsing quality
With our statistical analysis, we are able to know the

factors impacting the web browsing quality, but we can not
manually identify the thresholds or the values leading to a
good or a bad quality. For this, we have applied different
Machine Learning techniques on our dataset, namely Clus-
tering (and BiClustering), Covariance or Density estimation,
Principal Component Analysis (PCA) and Decision Trees.
As identified in the previous sections, the factors influenc-
ing QoE are linked together and decision tree is revealed
to be the most adequate non-parametric supervised learning
method. In our study, decision tree rules are detected from
40% of the entire dataset that we denote by training dataset
and the other 60% is used to validate the rules, denoted by

validation dataset. Indeed, defining rules with only the Top
500 or Top 1,000 Alexa is not efficient due to the diversity of
the websites structure in the Top 10,000. The decision tree
enables us to predict the estimated end-user quality by ap-
plying decision rules which are computed from our dataset.

6.1. Decision Tree based on satisfaction degrees
Several studies regarding theMOS (MeanOpinion Score)

during web browsing sessions [47, 48, 32, 37] provide vis-
ible web page loading times. Table 2 presents the different
degrees of satisfaction based on end-user sociological per-
ceived feelings [49] coupled to these MOS studies. Instant
response indicates a high responsiveness from the visited
web page, Seamless response indicates that the end-user is
happy with the overall experience, Average response indi-
cates that the end-user feels the delay for the web page to
load acceptable, Critical response indicates that the end-user
strongly feels the bad side effects of the long web page load-
ing and Bad response indicates that the end-user is not happy
at all and can give up the browsing.
Based on the time values mentioned for these satisfaction
degrees and the values of the TFVR for our measurements,
we hereafter expose the corresponding sets of rules obtained
from Decision Trees applied to our training dataset for the
5 classes. The full obtained decision tree is represented by
184 different nodes.

Instant response. Our measurements do not have any
TFVR loading time lower than 100 ms and make this class
unnecessary.

Seamless response. 24.32% of the training dataset has a
TFVR in this range and the main impacting factors for this
classification are the main web page located in North Amer-
ica or Europe, a lowRTT value for themain web page, QUIC
Repeat as requested protocol and a Fiber network access.

Average response. 30.67% of our training values belongs
to this class and the main factors are the main web page lo-
cated in North America or Europe, the requested Internet
protocol being HTTP2, QUIC or QUIC Repeat, a Wi-Fi net-
work access, the use of an ad blocker and RTT value between
18.65 ms and 101.5 ms.

Critical response. 43.78% of the training measurements
have a TFVR in this class, impacted by the main web page
located in Europe, South America or Asia, the visible por-
tion between 22.76% and 41.39% (these web pages have a
larger scroll height), the objects served by various content
servers mainly located in Asia and Wi-Fi or ADSL as net-
work access.

Bad response. 1.23% of the training dataset is classified
asBad response, mainly because of the use ofWi-Fi network
access and HTTP/1.1 as requested protocol.

Once this decision tree has been built based on the train-
ing dataset, we evaluated it with the validation dataset. The
Table 3 depicts the obtained classification confusion matrix,
where the diagonal represents the percentage of measure-
ments correctly predicted. We can see that 84.79% of the
predictions are good, but more than 15% of the validation
dataset is wrongly predicted. Looking at the matrix, the val-

A. Saverimoutou, B. Mathieu, S. Vaton: Preprint submitted to Elsevier Page 11 of 15



A 6-month Analysis of Factors Impacting Web Browsing Quality for QoE Prediction

Satisfaction degrees Loading Times (ms)
Instant response < 100
Seamless response 100 - 1000
Average response 1000 - 3000
Critical response 3000 - 10000
Bad response > 10000

Table 2
User satisfaction degrees, based on [49]

Actual class
Predicted

class
Instant Seamless Average Critical Bad

Instant 0 0.15% 0 0 0
Seamless 0 22.21% 1.60% 0 0
Average 0 1.96% 29.01% 8.07% 0
Critical 0 0 0.04% 32.35% 0.01%
Bad 0 0 0.02% 3.36% 1.22%

Table 3
Classification confusion matrix of the validation dataset based
on user satisfaction degrees

ues identified in Table 2 and the real TFVR values, we can
say that the Instant Response class is unnecessary (no mea-
surement in this class) and that the prediction error rate for
the Critical response class is important (about 10%) because
the loading time range is too wide.

6.2. Decision Tree based on estimated satisfaction
degrees from clustering

Having seen that the proposed classification of the sat-
isfaction degrees from literature is not optimal for current
Web Browsing experience, we decided to define a new one,
based on our huge dataset of web browsing measurements
on the top 10,000 Alexa web sites. We thus look for the best
satisfaction degrees using clustering (K-Means) to identify
the different classes. The KMeans algorithm divides a set
of samples X into K disjoint clusters C , where each cluster
is described by the mean �j of the different samples in the
cluster itself. In order to determine the value K , we use the
Elbow method where we assess the percentage of explained
variance (ratio between-group variance to the total variance)
as a function of the number of clusters. As seen in Fig.19,
the value 5 seems to be the good Elbow Criterion, and us-
ing it, we can identify the 5 clusters representing the differ-
ent satisfaction degrees, illustrated in Table 4. The first and
second satisfaction degrees from Table 2 have been merged
into one degree and the Critical response satisfaction degree
is distributed and split into two degrees. The estimated sat-
isfaction degrees illustrated in Table 4 are more uniformly
distributed, compared to Table 2.

We hereafter describe the impacting factors leading to
the classification of one measurement into one class, learned
from our training dataset by the decision tree model, repre-
sented by 176 different nodes.

Good response. 23.32% of the training dataset has a
TFVR in this range and the main factors are the main web

Figure 19: Explained variance

Estimated satisfaction degrees Loading Times (ms)
Good response < 1232
Fair response 1232 - 3486
Moderate response 3486 - 6715
Worse response 6715 - 9281
Poor response > 9281

Table 4
Estimated satisfaction degrees derived from our measurements

page located in North America or Europe, a low RTT and
number of domains serving contents from North America or
Europe, with replies delivered over the QUIC protocol.

Fair response. 27.31% of the training measurements are
classified in this class and the main impacting factors are
namely the main web page located in North America, a RTT
value less than 105.5 ms, a Wi-Fi or Fiber network access,
resources downloaded from North America, Europe or Asia
in HTTPS, together with a low number of domains serving
contents.

Moderate response. 31.26% of our training dataset leads
to Moderate response, mainly based on the main web page
located in Europe or Asia, the requested Internet protocol
being HTTP/1.1, HTTP/2 or QUIC, the visible portion of the
websites less than 13.25% and objects delivered from Asia
or South America.

Worse response. 12.09% of the training dataset has a
TFVR in this range with the main factors being the main
web page located in South America or Asia, the number
of downloaded resources between 45 and 85 (mainly down-
loaded from Asia), RTT value greater than 185.5 ms and the
number of domains from Asia greater than 4.

Poor response. 6.02% of the training measurements lead
to a poor quality, mainly because of the main web page lo-
cated in Asia, HTTP/1.1 used as requested protocol, a high
number of downloaded objects and the use of an ADSL net-
work access.

We evaluate the accuracy of our decision tree with the
rest of our dataset (i.e., 60% of our measurements) and the
Table 5 depicts the obtained classification confusion matrix
when applying the obtained rules on this validation dataset.
We can see, looking at the diagonal representing the percent-
age of measurements correctly predicted, that our rules can
efficiently predict 94.17% of the dataset. Only 5.83% of the
validation dataset is wrongly predicted, which is 2.61 times
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Actual class
Predicted

class
Good Fair Moderate Worse Poor

Good 22.19% 0.04% 0 0 0
Fair 1.13% 25.17% 0.82% 0 0

Moderate 0 2.10% 29.22% 0.43% 0
Worse 0 0 1.20% 11.63% 0.06%
Poor 0 0 0.02% 0.03% 5.96%

Table 5
Classification confusion matrix of the validation dataset based
on estimated satisfaction degrees

Actual class
Predicted

class
Good Fair Moderate Worse Poor

Good 6.51% 0.16% 0 0 0
Fair 0.76% 21.09% 0.72% 0 0.02

Moderate 0.01% 1.96% 35.02% 0.12% 0.01%
Worse 0 0 3.60% 17.74% 1.03%
Poor 0 0 0 1.21% 10.04%

Table 6
Classification confusion matrix to validate the accuracy of our
rules-based model, based on estimated satisfaction degrees

less when compared to the rules-based model obtained in
section 6.1. We can then think that this model is better.

6.3. Accuracy of our rules-based model
In order to verify the correctness of the obtained decision

tree from section 6.2, we have performed in February 2019
measurements on theAlexawebsites ranging from rank 10,000
to 15,000. The dataset sums up to the measurement of 4861
never-assessed before distinct websites, which represent 2.7
Million different measurements. The Table 6 illustrates the
obtained classification confusion matrix for these measure-
ments when applying our rules-based model.
Among our measurements, 6.51% of the measurements pro-
vide a Good response (low RTT and small number of ob-
jects), 21.09% for Fair response (low RTT and main web
page in Europe), 35.02% for Moderate response (large num-
ber of domains serving contents fromEurope andAsia), 17.04%
for Worse response and finally 10.04% of the measurements
yield a Poor response (high HTTP/1.1 reply distribution and
objects mainly delivered from South America and Asia).
In short, 90.4% of the overall new dataset was correctly pre-
dicted. This is a bit less than with the validation dataset, but
it is related to websites which have never been accessed be-
fore, in contrast to the validation dataset, composed of web-
sites being also in the training dataset. We can then con-
clude that our rules-based model can efficiently predict web
browsing quality for any website for an end-user located in
France.
We have presented in this paper the results of the analy-
sis based on our measurements, performed by the probes in
France (Europe). Our model has been proved to be correct
for this configuration but it has to be adapted to other situa-
tions, e.g., end-user in another location. Indeed, as seen in
Fig. 1a and Fig. 2, when visiting different websites having

their main web page located in specific continent-geographic
locations, resources are downloaded from different conti-
nents (e.g for a European end-user visiting a web page in
Asia, resources are downloaded from Europe, North Amer-
ica and Asia), which impacts the quality. As depicted in
Table. 1, the impact of parameters to be re-assessed will
be the Round-Trip-Time (network path taken through dif-
ferent Asynchronous Systems), number and types of objects
(mainly due to advertising), the number of domains (specif-
ically the location of web servers delivering content), time
of the day and corresponding network access (the through-
put offered by network operators from different regions are
different).

7. Conclusion and Future work
In this paper we have shown the importance of taking

into account diverse parameters to better quantify and qual-
ify web browsing. We have used all the web metrics iden-
tified by the W3C or the research community and real on-
market web browsers together with user-representative res-
idential network access. Our study has brought light on the
wide range of factors which can improve or decrease an end-
user’s web browsing quality. The identified impacting fac-
tors are then used as inputs to a rule-based model obtained
from Decision Tree, in order to efficiently predict the web
browsing quality.
Our measurements have been performed in France and an
ongoing and future work is focused on performing measure-
ments from different locations and using different network
providers all around the world, to confirm the impacting fac-
tors to be taken into consideration, to refine the estimated
satisfaction degrees for end-users’ perceived web browsing
quality and to validate our model. The obtained loading
times contributing to the different estimated satisfaction de-
grees will also be assessed through a MOS study with real
end-users.
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APPENDIX

Indicators
wwwName Assessed website name
ranking Alexa referenced ranking
preferredProtocol The requested protocol
addBlock The use (or not) of an adblocker

netwIface
The used network interface
(ADSL, Wi-Fi, Fiber)

timeDay Time measesurement performed
browserWidth Width of the used browser
browserHeight Height of the used browser
pingValue Round Trip Time upon main web page

visiblePortion
Visible portion of the web page at first
glance(no scrolling)

mainWWWLocation Main web page continent location
h1Share HTTP/1.1 overall replies distribution
h2Share HTTP/2 overall replies distribution
hqShare QUIC overall replies distribution
pushShare SERVER PUSH replies distribution
nbRess Number of downloaded objects

nbObjNA
Number of objects downloaded from
North America

nbObjSA
Number of objects downloaded from
South America

nbObjEU
Number of Objects downloaded from
Europe

nbObjOrigin
Number of objects downloaded from
Same-Origin server

nbObjNonOrigin
Number of objects downloaded from
Non-Origin server

nbDomains Number of domains serving contents
nbDomNA Number of domains in North America
nbDomEU Number of domains in Europe
nbDomAS Number of domains in Asia

h1ShareBFP
HTTP/1.1 replies distribution
before the First Paint

h2ShareBFP
HTTP/2 replies distribution
before the First Paint

hqShareBFP
QUIC replies distribution
before the First Paint

pushShareBFP
SERVER PUSH replies
distribution before the First Paint

h1ShareBTFVR
HTTP/1.1 replies distribution
before the TFVR

h2ShareBTFVR
HTTP/2 replies distribution
before the TFVR

hqShareBTFVR
QUIC replies distribution
before the TFVR

% Obj before FP
Percentage of objects downloaded
before FP

% Obj before TFVR
Percentage of objects downloaded
before TFVR

categoryType Website category referenced by Alexa

Table 7
Decision Tree main factors’ acronyms
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