

Wide band gap kesterite absorbers for thin film solar cells: potential and challenges for their deployment in tandem devices

Bart Vermang, Guy Brammertz, Marc Meuris, Thomas Schnabel, Erik Ahlswede, Leo Choubrac, Sylvie Harel, Christophe Cardinaud, Ludovic Arzel, Nicolas Barreau, et al.

▶ To cite this version:

Bart Vermang, Guy Brammertz, Marc Meuris, Thomas Schnabel, Erik Ahlswede, et al.. Wide band gap kesterite absorbers for thin film solar cells: potential and challenges for their deployment in tandem devices. Sustainable Energy & Fuels, 2019, 3 (9), pp.2246-2259. 10.1039/c9se00266a . hal-02291073

HAL Id: hal-02291073 https://hal.science/hal-02291073

Submitted on 5 Apr 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

I	WIDE BAND GAP KESTERITE ABSORBERS FOR THIN FILM SOLAR CELLS:
2	POTENTIAL AND CHALLENGES FOR THEIR DEPLOYMENT IN TANDEM DEVICES
3	
4 5	Bart Vermang ^{1,2,3} , Guy Brammertz ^{1,2,3} , Marc Meuris ^{1,2,3} , Thomas Schnabel ⁴ , Erik Ahlswede ⁴ , Leo Choubrac ⁵ , Sylvie Harel ⁵ , Christophe Cardinaud ⁵ , Ludovic Arzel ⁵ , Nicolas Barreau ⁵ ,
6	Joop van Deelen ⁶ , Pieter-Jan Bolt ⁶ , Patrice Bras ⁷ , Yi Ren ⁷ , Eric Jaremalm ⁷ , Samira Khelifi ^{8,9} ,
7	Sheng Yang ⁸ , Johan Lauwaert ⁸ , Maria Batuk ¹⁰ , Joke Hadermann ¹⁰ , Xeniya Kozina ¹¹ ,
8	Evelyn Handick ¹¹ , Claudia Hartmann ¹¹ , Dominic Gerlach ¹² , Asahiko Matsuda ¹³ ,
9 10	Shigenori Ueda ^{14,13} , Toyohiro Chikyow ^{12,13} , Roberto Félix ¹¹ , Yufeng Zhang ^{11,10} , Regan G. Wilks ^{11,17} , and Marcus Bär ^{11,17,18,19}
11	
12 13	¹ imec division IMOMEC – partner in Solliance, Wetenschapspark 1, 3590 Diepenbeek, Belgium
14	² Hasselt University – partner in Solliance, Martelarenlaan 42, 3500 Hasselt, Belgium
15	³ EnergyVille, Thorpark 8320, 3600 Genk, Belgium
16	⁴ ZSW, Meitnerstrasse I, 70563 Stuttgart, Germany
17 18	⁵ Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS, 2 rue de la Houssinière, 44322 Nantes, France
19	⁶ TNO – partner in Solliance, High Tech Campus 21, 5656 AE Eindhoven, The Netherlands
20	⁷ Midsummer AB, Elektronikhöjden 6, 175 43 Järfälla, Sweden
21 22	⁸ Department of Electronics and Information Systems (ELIS), Ghent University, Technologiepark Zwijnaarde 15, 9052 Gent, Belgium
23 24	⁹ Department of Solid State Sciences, Ghent University, Krijgslaan 281-S1, 9000 Gent, Belgium
25 26	¹⁰ Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
27 28	¹¹ Department Interface Design, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Hahn-Meitner-Platz I, 14109 Berlin, Germany
29 30	¹² International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), I-I Namiki, Tsukuba, Ibaraki 305-0044, Japan

I	¹³ Research and Services Division of Materials Data and Integrated System (MaDIS), National
2	Institute for Materials Science (NIMS), I-I Namiki, Tsukuba, Ibaraki 305-0044, Japan
3	¹⁴ Synchrotron X-ray Station at SPring-8, National Institute for Materials Science (NIMS), 1-1-
4	I Kouto, Sayo-cho, Hyogo 679-5148, Japan
5	¹⁵ Research Center for Advanced Measurement and Characterization, National Institute for
6	Materials Science (NIMS), 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047, Japan
7	¹⁶ College of Physical Science and Technology, Xiamen University (XMU), 361005, Xiamen,
8	China
9	¹⁷ Energy Materials In-Situ Laboratory Berlin (EMIL), Helmholtz-Zentrum Berlin für
10	Materialien und Energie GmbH (HZB), Albert-Einstein-Str. 15, 12489, Berlin, Germany
11	¹⁸ Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-
12	Nürnberg, 91058 Erlangen, Germany
13	¹⁹ Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (HI ERN), 12489 Berlin,
14	Germany
15	
16	CORRESPONDING AUTHOR – Bart Vermang, Martelarenlaan 42, 3500 Hasselt, Belgium

I BROADER CONTEXT

2 The power conversion efficiency of the dominant single junction photovoltaic technology is 3 approaching its theoretical limit. Further progress, with higher efficiencies and lower cost, requires improving current technologies in new ways, whilst using cheap, abundant materials. 4 5 An approach to increase the efficiency is the construction of double junction solar cells combining a top and bottom cell in a tandem device. If an established technology – such as 6 7 crystalline silicon – is used for the bottom cell, a relatively wide band gap material is needed 8 for the top cell. An ideal top cell would be low-cost and be made of abundant, non-toxic 9 materials. Typical top cell candidates that have been presented have some significant drawbacks: Perovskite top cells, for example, contain toxic elements and have well-known 10 П stability issues. III-V top cells are well studied for concentrators, but are too costly for tandem 12 applications. In this contribution, we report on our detailed fundamental analysis of a new 13 candidate absorber material, namely high band gap kesterite films. The Sn in the standard 14 $Cu_2ZnSn(S,Se)_4$ kesterite structure is replaced by Ge (or Si), increasing the band gap to a level where it is of interest in tandem configurations. This study describes the potential and the 15 16 challenges that are involved with the use of wide band gap kesterite absorbers in future 17 tandem devices.

18

19 ABSTRACT

20 This work reports on developments in the field of wide band gap Cu_2ZnXY_4 (with X = Sn, Si or Ge, and Y = S, Se) kesterite thin film solar cells. An overview on recent developments and 21 22 the current understanding of wide band gap kesterite absorber layers, alternative buffer layers, and suitable transparent back contacts is presented. $Cu_2ZnGe(S,Se)_4$ absorbers with absorber 23 24 band gaps up to 1.7 eV have been successfully developed and integrated into solar cells. 25 Combining a CdS buffer layer prepared by an optimized chemical bath deposition process with a 1.36 eV band gap absorber resulted in a record $Cu_2ZnGeSe_4$ cell efficiency of 7.6 %, 26 27 while the highest open-circuit voltage of 730 mV could be obtained for a 1.54 eV band gap 28 absorber and a Zn(O,S) buffer layer. Employing $InZnO_x$ or TiO_2 protective top layers on SnO₂:In transparent back contacts yields 85-90 % of the solar cell performance of reference 29 cells (with Mo back contact). These advances show the potential as well as the challenges of 30 wide band gap kesterites for future applications in high-efficiency and low-cost tandem 31 32 photovoltaic devices.

33

34 KEYWORDS

35 Thin-film solar cells, wide band gap, kesterite, germanium, semi-transparent

2 I. INTRODUCTION

3 World-record single-junction solar cell efficiencies of monocrystalline silicon-wafer (Si) and 4 thin-film (TF) solar cells are 26.7 % and 22.9 % [1,2], respectively, thus approaching their 5 theoretical (Shockley-Queisser) limit of 30 % under standard illumination conditions [3]. One approach to increase the efficiency of solar cells above this limit is the construction of tandem 6 devices. A tandem device consists of two solar cells: a wide band gap (E_G) solar cell (in which 7 the photovoltaically active absorber material has an optical band gap of 1.5-2.0 eV) harvests 8 9 the high-energy photons and a small band gap solar cell (in which the absorber has a band gap 10 of 1.0-1.5 eV) harvests the low-energy photons. This approach can lead to theoretical efficiencies of up to 44 % under 1-sun illumination [4]. П

12 With a band gap of 1.1 eV [4], Si-wafer-based devices are the ideal bottom cell candidate, but 13 many prominent top cell candidates have issues related to abundancy, toxicity, stability, or cost [5]. Therefore, we consider kesterite-based devices as potential top cells for tandem 14 15 device applications, because Cu₂ZnSn(S,Se)₄-type kesterite solar cells are stable, made out of 16 abundant and non-toxic components, and already achieve relatively high performance [1]. 17 Depending on the [S]/([S]+[Se]) composition, the band gap of the kesterite absorber can be tuned between 1.0 and 1.5 eV [6]. Highest efficiencies for $Cu_2ZnSn(S,Se)_4$ -based devices are 18 19 achieved when absorbers with band gaps between 1.1 and 1.2 eV are employed [7], which is 20 too low for efficient (top) tandem solar cell applications. However, (partially) replacing tin 21 atoms with silicon or germanium atoms has the potential to result in kesterite absorbers with 22 band gaps even above 1.5 eV [8,9]. This work aims to give an overview on the recent development and current understanding of (i) these wide band gap kesterite absorber layers, 23 (ii) alternative (non-toxic) buffer layer candidate materials, and (iii) suitable transparent back 24 25 contacts (TBCs) allowing tandem configuration. A summary of recently published results is 26 complemented with new experimental findings and a theoretical study of the efficiency 27 potential of devices based on wide band gap kesterite absorbers. Thus, the paper aims at 28 covering all aspects of deploying kesterite wide-band gap absorbers as top cells in tandem solar cell applications in order to identify inherent bottlenecks that may limit device 29 30 performance and present generally valid optimization approaches and first results to lay the 31 foundation and pave the way for future more detailed studies that undeniably have to follow.

32

33 2. EXPERIMENTAL, RESULTS, AND DISCUSSION

34 2.1.ABSORBER LAYER

First, we give an overview of the absorber layer formation, in which two main approaches are applied, i.e. sequential evaporation (Section 2.1.1) and solution-based deposition (Section

2.1.2). The first approach (respective samples are henceforth called \rightarrow EVAP-sample) is more L 2 convenient to study different metal components and is, therefore, used to investigate the replacement of Sn atoms with Si or Ge in EVAP-Cu₂ZnSn(S,Se)₄ absorber layers; while in the 3 second approach (\rightarrow SOL-sample), the focus is on the replacement of Sn with Ge and the 4 optimization of the involved wet chemistry. Note that there will inherently be variations in 5 properties of the kesterite absorbers deposited by the different methods (i.e., using sequential 6 7 evaporation or solution-based deposition), however the findings that are presented in the manuscript - while not exactly transferrable - mainly relate to universally relevant conditions 8 9 that will arise in cell production regardless of the absorber deposition method.

10 2.1.1. EVAPORATION-BASED PROCESS

11 The polycrystalline absorber layers are fabricated using a two-step vacuum-based approach; 12 see Figure S1. Soda lime glass (SLG) substrates of 1.3 mm thickness are used, on which a 150nm-thick Si(O,N) diffusion barrier is first deposited, followed by a 400-nm-thick Mo layer. 13 The thin Si(O,N) diffusion barrier is deposited in order to avoid the diffusion of elements 14 15 from the glass substrate into the absorber. Early tests have shown that the evaporated absorber quality is better if this diffusion barrier is added. On top of this substrate, a multilayer 16 of different metals is deposited using a Pfeiffer PLS 500 evaporation system. For accurate layer 17 thickness control, a guartz microcrystal balance is used. This metal multilayer is then annealed 18 19 in an Annealsys As-One 150 rapid thermal annealing system that is equipped with a 10 % H₂Se 20 (diluted in N_2) gas line and a 100 % H_2S gas line. This way, the layers are selenized or sulfurized 21 under a continuous flow of H_2Se or H_2S . During this selenization/sulfurization step, a 22 polycrystalline layer is formed with typical grain sizes in the order of 0.5 to 1 μ m.

23 2.1.1.1. Si-BASED COMPOUNDS

We have used metal layer stacks, including Si, to explore the possibility of fabricating EVAP-24 $Cu_2ZnSiSe_4$, $-Cu_2Zn(Si,Sn)Se_4$, $-Cu_2SiSe_3$, $-Cu_2SiS_3$, $-Cu_8SiSe_6$, and $-Cu_8SiS_6$ layers [10]. 25 Unfortunately, the Si appears to be largely unreactive at processing temperatures below 26 27 600 °C, which is the maximum temperature allowed for SLG substrates. Only EVAP-Cu₈SiSe₆ 28 and EVAP-Cu₈SiS₆ could be produced in a reliable way, without significant presence of secondary phases, leading to polycrystalline absorber layers with high-intensity 29 photoluminescence (PL) peaks at energies of 1.35 (for EVAP-Cu₈SiSe₆) and 1.84 eV (EVAP-30 Cu₈SiS₆) [11]. However, no functioning solar cells could be fabricated with these absorber 31 layers, as the doping seemed to be too high (in the order of 10¹⁸ cm⁻³ or higher), and the 32 33 minority carrier lifetime seemed to be lower than 0.2 ns, leading to functioning diodes but no photocurrent. One observation that could also explain the absence of any photoactivity is the 34 35 formation of SiO₂ during absorber processing. Figure I shows hard x-ray photoelectron spectroscopy (HAXPES) survey spectra of an EVAP-Cu₈SiS₆ sample before (black) and after 36 37 (red) sulfurization treatment. Upon sulfurization, the O and Na (most likely diffused from the

SLG substrate) contents increase. The inset shows the region of the Si 2s and S 2p core level L 2 lines compared to reference positions of silicon compounds [12]. The Si 2s line of the sulfurized layer stack shifts to higher binding energies compared to the Si 2s peak before 3 sulfurization. The comparison with the reference positions indicates the conversion of Si-Si 4 into $Si-S_2$ and/or $Si-O_2$ bonds. The fact that the S 2p line can only be clearly observed on a 5 magnified (x 25) scale together with the high O Is intensity for the sample after sulfurization, 6 7 however, suggests that the surface region of the sulfurized sample has mainly a SiO_2 character, which would prevent efficient charge carrier transport. 8

9 2.1.1.2. Ge-BASED COMPOUNDS

For the fabrication of polycrystalline EVAP-Cu₂ZnGeSe₄ layers, we have used 180 nm of Ge, 10 125 nm of Zn and 170 nm of Cu as starting layers [13]. These layer thicknesses were chosen Ш in order to end up with a Zn-rich and Cu-poor composition of the absorber layer, with 12 Cu/(Zn+Ge) = 0.9 and Zn/Ge = 1.05. This metal stack was then selenized for 15 minutes in a 13 14 continuous flow of H_2 Se at a temperature of 460 °C. The resulting absorber layer is 15 polycrystalline with a typical grain size in the order of 500 nm. Figure S2 shows a cross-section 16 scanning electron microscopy (SEM) image of a finished solar cell stack, exemplifying the grain morphology of the absorber as well as the other layers of the solar cell stack. A Bragg 17 Brentano X-ray diffraction (XRD) measurement of a finished absorber layer on a Mo back 18 19 contact clearly shows the $Cu_2ZnGeSe_4$ peaks with a small contribution of a ZnSe secondary 20 phase, as a small shoulder of the main $Cu_2ZnGeSe_4$ peaks at angles around 27.3 and 45.3 degrees, shown in Figure 2. Due to the Zn-rich nature of the absorber layer, the presence of 21 22 ZnSe secondary phase has to be expected. $Cu_{2,x}Se$ and $GeSe_2$ secondary phases cannot be 23 identified within the accuracy of the XRD measurements. Also note that the peaks of the 24 ternary phase Cu_2GeSe_3 overlap with the main peaks of the $Cu_2ZnGeSe_4$ phase completely, making it impossible to distinguish these phases by XRD. To visualize the secondary phases, 25 26 cross-section energy dispersive X-ray spectroscopy (EDX) elemental maps of the absorber 27 were acquired in scanning transmission electron microscopy (STEM) mode, shown in Figure 28 3. The observed regions of elemental inhomogeneities are attributed to ZnSe – which seems to be present in large amounts at the top surface of the absorber – and Cu_2GeSe_3 / $Cu_{2x}Se_3$ 29 phases – which are present more at the grain boundaries and at the backside Mo interface. 30 31 Some of the absorbers were lift-off in order to record Raman spectra near the EVAP-32 $Cu_2ZnGeSe_4/Mo$ interface. Both sides (front absorber and at the back side, i.e. near the back 33 contact) were analyzed. At the front $Cu_2ZnGeSe_4$ side (as published in [29]), only $Cu_2ZnGeSe_4$ is clearly detected, but presence of Cu_2GeSe_3 and $Cu_{2-x}Se$ cannot be excluded as their Raman 34 peaks overlap with Cu₂ZnGeSe₄. At the back side only 2H-MoSe₂ related peaks are observed. 35 Time and energy resolved photoluminescence measurements (not shown) reveal a PL peak 36 37 at an energy of about 1.36 eV, with a decay time in the order of 2 ns. The band gap of this

absorber is thus too small to be employed as a top cell of tandem devices. However, due to the high throughput of the evaporation process route/equipment, a large number of respective EVAP-Cu₂ZnGeSe₄ samples are available and were thus (for practical reasons and to allow for good statistics) chosen for most of our optimization efforts with respect to the absorber surface treatment (see Section 2.2.1), the buffer layer (see Section 2.2.2), and the TBC (see Section 2.4).

7 2.1.2. Ge-BASED COMPOUNDS BY SOLUTION-BASED PROCESS

The SOL-Cu₂ZnGe(S,Se)₄ absorbers were deposited in a two-step process as schematically 8 drawn in Figure S3. A metal salt solution was deposited onto a Mo-coated SLG substrate by 9 doctor-blade coating with subsequent drying on a hot plate. Different solvents, metal salts 10 and chalcogen sources have been evaluated in a previous manuscript [14]. Here, the chemical Ш composition of the absorbers is Cu/(Zn+Ge)=0.7 and Zn/Ge=1.0 which is slightly more Cu-12 13 poor than the EVAP-Cu₂ZnGeSe₄ layers. The chemical and electronic structure of respective 14 $SOL-Cu_2ZnGe(S,Se)_4$ absorbers and, in particular, the impact of the absorber formation by annealing in Se-atmosphere has been monitored by lab-based soft x-ray photoelectron 15 16 spectroscopy (XPS) and synchrotron-based HAXPES. The XPS measurements were performed in the off-synchrotron analysis chamber at EMIL in ultra-high vacuum (base 17 pressure < 5×10^{-10} mbar) employing a non-monochromatized Mg K_a (1253.56 eV) x-ray tube 18 (PREVAC RS40BI) as excitation source. The photoelectrons were detected by a Scienta 19 Omicron Argus CU electron analyzer. HAXPES was measured at beamline BLI5XU at SPring-20 21 8 using an excitation energy of 6 keV and a Scienta R4000 electron analyzer (see [15,16] for more details on the experimental setup; same measurement conditions apply for the data 22 shown in Figure 1). Figure 4 shows the XPS S 2p/Se 3p (left panel) and HAXPES shallow core 23 24 level (right panel) spectra of a SOL-Cu₂ZnGe(S,Se)₄ sample prepared from a solution of Cu-, 25 Zn- and Ge-oxides in water and ammonium thioglycolate. Upon selenization, a clear Se 3d 26 signal in the shallow core level region and the Se 3p core level dominating the S 2p/Se 3p 27 energy region can be observed. The fit of the spectrum with S 2p and Se 3p doublets (see top spectrum in Figure 4 – left panel) reveals the presence of at least two Se species, and two S 28 29 species – where the secondary (S) peak most likely indicates the presence of $S-O_x$ and $Se-O_x$ 30 (with $x \ge 3$). The presence of Se-O_x is also indicated by the high-binding energy shoulder of 31 the Se 3d line in the shallow core level region (and depicted in the right panel of Figure 4). Quantifying the fit results yields a (surface) [S]/([S]+[Se])-ratio of approximately 0.1, 32 33 significantly lower than the bulk composition of 0.3 [14]. The chemical environment of S in 34 the absorber precursor layer (i.e., before selenization) is also rather complex – as indicated 35 by the broad S 2p spectrum with a low binding energy shoulder (in the bottom spectrum in 36 Figure 4 – left panel), which significantly deviates from the expected spectral shape of a S 2p doublet (see blue fit component on the top spectrum). The shallow core level photoemission 37

I lines additionally reveal that the selenization process impacts the Zn/Cu ratio (the Cu 3p line intensity is significantly increased) and the chemical bonding environment of Ge (see inset of Figure 4 – right panel). Presumably, oxidized Ge is converted to form Ge-Se bonds upon selenization. Finally, the location of the valence band maximum at 0.2 (\pm 0.1) eV (below the Fermi level), indicated by the arrow in Figure 4 (right panel), is in agreement with a p-type doped material, which can generally be observed for these kinds of absorbers.

7 To fabricate solar cells, CdS buffer layers are deposited by chemical-bath deposition (CBD) 8 followed by a sputtered ZnO and ZnO:Al layer. Although the band alignment of 9 Cu₂ZnGe(S,Se)₄ with CdS is believed to be non-ideal, in a direct comparison with potential alternative buffer layer candidate materials a CdS buffer was found to result in the highest 10 П efficiencies [17]. The morphology of a SOL-Cu₂ZnGe(S,Se)₄ absorber with CdS buffer can be 12 seen in the cross-section transmission electron microscopy (TEM) image displayed in Figure 13 S4(a). It shows two distinct layers within the SOL-Cu₂ZnGe(S,Se)₄: larger grains on top and 14 smaller grains at the bottom. Note that the CdS layer on top of the absorber is only 50 nm thick and therefore hard to identify in this image. All elements are for the most part 15 16 homogeneously distributed within the absorber layer; therefore, only the distribution of Zn 17 signal is shown in Figure S4(b), where some brighter spots in the large-grain layer can be seen, 18 which we interpret as indication for the presence of a $Zn(S,Se)_2$ secondary phase. Additionally, 19 the signal of carbon residues that arise from thiourea is displayed in Figure S4(c). Here carbon 20 is only present in the small-grain layer, whereas the large-grain layer is mostly carbon-free. 21 With a higher magnification (not shown), an amorphous layer covering the Cu₂ZnGe(S,Se)₄ particles can be seen. The distribution of Cd [Figure S4(d)] shows that, in contrast to other 22 23 investigations of kesterite absorbers with a CBD-processed CdS buffer [18], no major 24 diffusion of Cd into the absorber layer can be detected.

25 Our standard solution-based deposition approach results in SOL-Cu₂ZnGe(S,Se)₄ absorber 26 material with a band gap of around 1.5 eV [14]. For application in tandem solar cells, a slightly 27 higher absorber band gap would be advantageous. One possible means to increase the band 28 gap would be a partial or complete cation substitution, e.g., Si for Ge [9], Ag for Cu [19], or 29 Ba for Zn [20]. However, a more complicated phase diagram is expected when using 30 additional elements, and so we focus on increasing the band gap by tuning the anion 31 composition (i.e., the [S]/([S]+[Se])-ratio), a well-established method for Cu₂ZnSn(S,Se)₄ 32 absorbers. In general, the anion composition can be controlled (i) in the metal salt solution 33 and/or (ii) during the annealing process. It is used in slight excess to ensure that enough S is present to form the kesterite phase during the drying step on a hot plate. If one would like 34 to lower the band gap of the SOL- $Cu_2ZnGe(S,Se)_4$ absorber, thiourea could partly or 35 completely be replaced by selenourea to decrease the [S]/([S]+[Se])-ratio or fabricate S-free 36 SOL-Cu₂ZnGeSe₄ absorbers. However, further increasing the amount of thiourea would only 37

lead to excess chalcogen that cannot be incorporated into the kesterite lattice (and also more L 2 residual carbon and nitrogen) and does, therefore, not lead to an increase of the 3 [S]/([S]+[Se])-ratio and thus absorber band gap. Therefore, we focus on increasing the [S]/([S]+[Se])-ratio during the annealing step, following approach (ii). The most obvious 4 procedure would be to anneal the sample in the simultaneous presence of Se and S. However, 5 the boiling point of S is 445°C [21], considerably lower than the annealing temperature of 6 7 550°C, and thereby does not allow a constant S supply during the annealing. Therefore, GeS is used as an additional sulfur source [22], which is expected to release S into the gas phase 8 9 via the following reaction:

10

$$GeS(s) + Se(g) \leftrightarrows GeSe(s) + S(g)$$

11 To allow for fine-tuning of the absorber band gap, the amount of GeS was varied between 0 12 and 100 mg. As a result, S is incorporated into the kesterite lattice, as can be seen from the shift of the 112-reflection in the XRD patterns displayed in Figure 5. Using Vegard's law the 13 [S]/([S]+[Se])-ratio can be estimated based on this data, revealing that it varies in a range 14 15 between 0.27 and 0.50 [22]. However, the peak shape of the 112-reflections slightly changes with the amount of GeS. Starting from 40 mg (resulting in an absorber with a band gap of 1.67 16 17 eV [22]), a shoulder at higher diffraction angles is visible, indicating the coexistence of an orthorhombic phase that is known to occur for high [S]/([S]+[Se])-ratios in Cu₂ZnGe(S,Se)₄ 18 19 absorbers [23].

To evaluate the influence on the solar cell performance, the current density-voltage [i.e., J(V)] 20 21 characteristics of the best solar cells from SOL-Cu₂ZnGe(S,Se)₄ absorbers with external 22 quantum efficiency (EQE)-derived band gaps of 1.5, 1.6 and 1.7 eV (corresponding to 23 [S]/([S]+[Se])-ratios of 0.27, 0.39, and 0.50, respectively) are compared in Figure 6; the corresponding cell parameters are listed in Table I. As expected, the short-circuit current 24 density (J_{sc}) decreases with increasing absorber band gap. The open circuit voltage (V_{oc}) 25 increases considerably from 617 to 683 mV when the absorber band gap is increased from 26 27 1.5 to 1.6 eV, but decreases for the 1.7 eV absorber. The fill factor (FF) shows a slight decrease with absorber band gap, and efficiency reducing from 6.0 to 2.7 %. The loss in V_{OC} for devices 28 based on absorbers with a band gap larger than 1.6 eV represents the most crucial loss in this 29 sample series, which might be linked to the above-mentioned coexistence of a kesterite and 30 31 an orthorhombic phase. However, the band alignment between absorber and buffer layer 32 might also become severely performance limiting, especially for solar cells based on 1.7 eV 33 band gap $Cu_2ZnGe(S,Se)_4$ absorbers. To make these absorbers viable for application as top cells for tandem configurations, significant efficiency enhancements are required (see 34 discussion below). In order to achieve this improvement of wide band gap kesterite solar cell 35 efficiencies, an optimization of all layers in the TF layer stack, especially the buffer/absorber 36 interface, has to be performed (see Section 2.2). 37

2 2.2.SURFACE TREATMENT AND BUFFER LAYER OPTIMIZATION

For the absorber layers discussed in Section 2.1, two paths toward optimization of performance were pursued: (i) selective etching of the ZnSe secondary phases (mentioned in Section 2.1.1.2) was successfully carried out and the impact on the final solar cell properties was determined (as discussed in Section 2.2.1). (ii) The CdS buffer layer deposition was optimized, and the employment of alternative buffer layers evaluated (as discussed in Section 2.2.2). Due to its better availability this work – unless stated otherwise – was done on evaporated EVAP-Cu₂ZnGeSe₄ absorbers.

10 2.2.1. A

2.2.1. ABSORBER SURFACE TREATMENT

П Various absorber characterizations techniques reveal the presence of ZnSe at the surface of EVAP-Cu₂ZnGeSe₄ kesterites prepared by the two-step process of evaporating metal layers 12 13 in vacuum with subsequent selenization of the layer stack (detailed in Section 2.1.1.2). The 14 presence of secondary phases at the absorber/buffer interface is usually reported to have a deleterious effect on the efficiency of the resulting solar cells [24]. To prevent this, a 15 16 (selective) chemical etching process for ZnSe is included as part of the standard procedure to 17 prepare efficient solar cells. To find the proper etching procedure, we identified two 18 previously reported etching strategies: (i) acidic etching with hot HCl, and (ii) an oxidation 19 route at room temperature with $KMnO_4$ in a sulfuric acid medium [25]. Raman spectroscopy with an excitation wavelength of 458 nm allows detection of even small traces of ZnSe due 20 to the resonant measurement conditions (i.e., excitation energy is close to the band gap of 21 22 ZnSe, \approx 2.7 eV) [26], hence, (resonant) Raman spectroscopy was used as the main 23 characterization tool to aid in determining the optimal experimental etching conditions 24 (temperature, concentration, duration) that result in a ZnSe-free EVAP-Cu₂ZnGeSe₄ surface. For approach (i), this means etching with a 12 wt% HCl solution, see Figure 7. For approach 25 (ii), a 2-minute etch at room temperature in an aqueous solution of 1 mol/L KMnO₄ in 1 mol/L 26 27 H_2SO_4 is sufficient to effectively remove ZnSe. Ultimately, the HCl etching was chosen as the 28 standard etching procedure based on practical arguments (parameter control, processing, and solution stability). The optimized HCl etching conditions used in standard solar cell 29 manufacturing have been determined to be: 15 min etching in a 12 wt% HCl solution at a 30 temperature of 80 °C. 31

Solar cells were prepared based on EVAP-Cu₂ZnGeSe₄ absorbers (from the same batch) grown on Mo coated Si(O,N)/SLG, followed by CBD of CdS buffer layer, sputtering of an i-ZnO/ZnO:Al window bi-layer and finalized by e-beam deposition of Ni/Al/Ni grids for the front contact. Two absorbers served as references (i.e., not etched) and three were HCl treated at 60, 70, and 80 °C. Resonant Raman spectra confirm that only the untreated

references contain ZnSe at the surface. The effect of this etching procedure on V_{OC} , FF, and L 2 EQE are presented in Figures 8 and 9. The V_{OC} of the cells prepared with untreated references are in the range of 500-550 mV, which corresponds to 45-50 % of the maximum achievable 3 V_{OC} (V_{OC.max}) for such an absorber band gap (i.e., PL peak at 1.36 eV). In comparison, high-4 efficiency $Cu_2ZnSn(S,Se)_4$ solar cells typically achieve 55-60% of $V_{OC,max}$ [27]. The lower V_{OC} 5 observed here with Ge-kesterite solar cells is suspected to partially originate from a non-ideal 6 7 buffer/absorber interface (allowing for charge carrier recombination). The presence of ZnSe on the surface of the absorber (or at the buffer/absorber interface) may explain the losses. 8 9 This explanation is supported by the fact that V_{OC} is significantly improved for solar cells for which the EVAP-Cu₂ZnGeSe₄ absorber underwent prior HCl etching (resulting in a ZnSe free 10 absorber surface), reaching around 55 % of $V_{OC,max}$. Despite this significant V_{OC} improvement, П 12 solar cells prepared with HCI-treated absorbers result in lower efficiencies due to a dramatic 13 FF loss and an EQE drop at longer wavelength (usually ascribed to a reduced collection length).

14 To determine the origin of the FF and collection length losses after HCl etching, surface characterization by HAXPES has been performed at the HiKE endstation [15] equipped with 15 a Scienta R4000 electron analyzer and located at the BESSY II KMC-I beamline [16] at HZB, 16 17 using an excitation energy of 2.1 keV. The HAXPES survey spectra of an as-deposited (i.e., not etched; black spectrum) and a HCI etched EVAP-Cu₂ZnGeSe₄ sample (red spectrum) are 18 19 shown in Figure 10. All Cu₂ZnGeSe₄-related photoemission and Auger lines can be observed, 20 as expected. In addition, signals related to oxygen (O Is), carbon (C Is), and for the as-21 deposited EVAP-Cu₂ZnGeSe₄ also cadmium (Cd 3d) can be observed. The presence of oxygen 22 and carbon can be attributed to a surface contamination layer formed due to the (short) air 23 exposure of the samples. The significant increase of the C Is line upon HCl etching is most likely related to additional contamination during the etching procedure. The presence of 24 25 cadmium on the as-deposited sample is ascribed to cross contamination from CdS/EVAP-26 $Cu_2ZnGeSe_4$ samples that have been transported in the same sample box. Due to these varied 27 and significant states of surface contamination, we deliberately refrain from attempting to quantify the HAXPES data but rather discuss them qualitatively. The HAXPES survey spectrum 28 of the as-deposited EVAP-Cu₂ZnGeSe₄ sample is dominated by Zn and Se signals. Upon HCI 29 etching, the Zn- and Se-related signals are significantly reduced, and the Cu/Zn ratio is 30 31 enhanced, in good agreement with the Raman results discussed above, i.e. the presence of a 32 ZnSe (surface) phase before etching and its removal upon HCI-treatment. The inset of Figure 33 10 shows the related detail spectra of the Se $3d_{3/2}$ and $3d_{5/2}$ spin-orbit split doublet, having a 34 separation between 0.8 and 0.9 eV. The spectral shape of the Se 3d line significantly changes upon HCI etching. For the HCI-etched EVAP-Cu₂ZnGeSe₄ sample, the peak shape is 35 attributed to the presence of (at least) two species. The main species (indicated with "M" in 36 37 the inset; also dominating the spectrum of the as-deposited EVAP-Cu₂ZnGeSe₄ sample) is ascribed to a selenide, i.e., to selenium in a $Cu_2ZnGeSe_4$ and/or ZnSe environment – based 38

on the comparison of the Se 3d data with Ref. [12]. Based on this data it is not possible to L 2 unambiguously differentiate between ZnSe and Cu₂ZnGeSe₄. The low-intensity secondary species (indicated with "S" in the inset) that is responsible for the additional high-binding 3 energy spectral intensity can most likely be explained by oxidized selenium (SeO_x, $x \ge 3$). 4 However, note that due to the large spread of binding energy values found in published 5 references [12], the presence of a germanium selenide binary phase (with Ge being in an 6 7 oxidation state > 2+) and/or formation of Se-C bonds (in-line with the increased C signal) can 8 also not be ruled out as an explanation for the high-binding energy Se 3d contribution. 9 Whether and how this second Se species affects the chemical environment of additional Cu₂ZnGeSe₄ elements and/or the electronic structure of the absorber and how this is related 10 to the observed solar cell characteristics is the topic of ongoing research. Work on the device П 12 level is in progress with the goal of developing a wet-chemical treatment to remove the HCI-13 etch induced formation of the second Se species in order to recover the FF and collection 14 length, while keeping the V_{OC} gain resulting from HCl etching.

15 2.2.2. BUFFER LAYER DEVELOPMENT

The most widely used buffer layer for Cu chalcogenide thin film solar cells is CdS prepared 16 17 by CBD. This preparation process results in a highly defect-rich material, also containing oxygen (OH) and carbon impurities [28]. Some of the properties of CBD-grown CdS (e.g. 18 19 composition, defect nature, structure) depend on the experimental deposition parameters 20 (concentration of the precursors, temperature of the chemical bath, etc.). Consequently, the 21 CBD-CdS recipe needs to be adjusted for each absorber material for optimal solar cell 22 performance. Hence, we empirically tuned the experimental parameters of the CdS deposition on the evaporated EVAP-Cu₂ZnGeSe₄ absorbers. We observe a V_{OC} increase with 23 24 increasing deposition duration, accompanied with a decrease of FF and Jsc after a critical duration. More details about the buffer layer optimization, which resulted in a new record 25 26 efficiency of 7.6 % for Cu₂ZnGeSe₄ based solar cells, can be found in Ref. [29].

27 Although it is the most-used buffer material for kesterite solar cells, CdS has a quite low 28 optical band gap energy (2.4 eV) and high absorption coefficient for a material that would ideally be transparent. Consequently, there is a loss in current due to absorption of solar 29 30 radiation in the CdS is in the range of I-2 mA/cm². In case of a potential kesterite/Si tandem 31 configuration, this loss would manifest in a 4 to 14 % relative decrease of the theoretically 32 achievable $|_{SC}$ [3]. Moreover, another important prerequisite to reach high efficiency is an ideal 33 buffer/absorber interface that allows for lossless charge carrier transport without barriers for charge carriers and preventing high-rate charge carrier recombination routes. In order to 34 systematically optimize the buffer/kesterite interface, we prepared solar cells based on wet-35 chemical deposited (see Section 2.1.2) 1.5 (+/- 0.05) eV band gap SOL-Cu₂ZnGe(S,Se)₄ 36 37 absorbers (prepared according to the solution approach discussed in detail in Section 2.1.2)

and different buffer layer materials. The five different buffer materials used were: sputtered L 2 ("rf") Zn(O_{0.6},S_{0.4}), CBD-Zn(O,S), CBD-CdS, atomic layer chemical vapor deposited (ALCVD) In_2S_3 , and co-evaporated ("co-evap.") Cdln_2S_4. A detailed discussion can be found in Ref. [17], 3 briefly: Compared to the CdS reference, In_2S_3 and $Zn(O_{0.6},S_{0.4})$ buffers have a higher 4 transmission, i.e., less absorption in the buffer layer (in the 350-500 nm wavelength range), as 5 shown in Figure II. Solar cells with $Zn(O_{0.6},S_{0.4})$ buffers also yield higher V_{OC} values. For these 6 7 devices, a higher activation energy of the dominant recombination process was also derived 8 (compared to the CdS reference) [17], strongly suggesting a more preferable electronic 9 structure of the buffer/SOL-Cu₂ZnGe(S,Se)₄ interface. The sputtered-Zn(O_{0.6},S_{0.4}) buffered solar cells, however, achieve a lower overall efficiency, mainly due to reduced FF and J_{SC} , as 10 presented in Table SI [17]. We speculate that those losses originate from the nature of the П 12 deposition method, as all vacuum deposited buffer layers suffer from similar J_{SC} and FF losses, 13 compared to solution-prepared CdS. For that reason, we also investigated wet-chemically deposited Zn(O,S) buffers. With CBD-Zn(O,S) buffers, SOL-Cu₂ZnGe(S,Se)₄ based solar cells 14 15 achieve similar FF and J_{SC} values as the CdS reference, but lower V_{OC} values. A tentative explanation for this observation is the different composition of CBD-Zn(O,S) and sputtered-16 17 $Zn(O_{0.6},S_{0.4})$ buffers: certainly the O/S ratio, which determines the optical band gap of the Zn(O,S) material, can be different and the CBD-Zn(O,S) buffer may also contain oxide, 18 19 hydroxide (OH), and/or carbon impurities, which can also have an impact on the optoelectronic properties. Additional work is in progress to optimize the CBD-Zn(O,S) buffer 20 21 aiming at combining the good J_{sc} and FF values with the high V_{oc} that is obtained when sputtered- $Zn(O_{0.6}S_{0.4})$ is used as a buffer. 22

23

24 2.3. DEVICE SIMULATIONS

Numerical simulations were carried out using the SCAPS software [30] to determine the best 25 device design for $Cu_2ZnGe(S,Se)_4$ -based top cells in a tandem configuration, with a focus on 26 27 suggesting suitable TBCs. The parameters used in the simulations are listed in Table S2 28 [31,32]. Most of the parameters related to the absorber material, such as thickness, doping concentration, band gap, and absorption coefficient, were extracted from (our own) electrical 29 30 and optical measurements. Parameters related to MoSe₂ and MoO₃ were taken from 31 literature, and those related to CdS and ZnO:AI layers are already available in the SCAPS software. Two configurations were tested in the simulations: Cu₂ZnGe(S,Se)₄ substrate or 32 33 superstrate solar cells, as shown in Figure S5. In the standard configuration [substrate, Figure S5(a)], a thin layer of MoSe₂ was inserted in the model between the Cu₂ZnGe(S,Se)₄ absorber 34 layer and the Mo contact. The presence of MoSe₂ layer at the absorber/Mo interface was 35 previously reported for Cu(In,Ga)Se₂ [33] and Cu₂ZnSnSe₄ [34] TF solar cells. It was shown 36 to be beneficial for TF solar cells performance if its thickness is controlled to avoid detrimental 37

effects on series resistance. The improvement of the solar cell performance is mainly due to L 2 a reduction of the barrier height and better charge carrier collection at the interface between the absorber and the Mo contact if MoSe₂ is present. For tandem cells, the Mo back contact 3 needs to be replaced by a TBC, see Figure S5(b). However, most of the transparent 4 conductive oxides (TCOs) used in solar cells have a low work function (4.7-4.9 eV [35]) and 5 thus - if Anderson's rule holds true for these complex heterojunctions - may not result in a 6 7 preferable energy level alignment with the $Cu_2ZnGe(S,Se)_4$ absorber layer when used as back contact. In this case, the use of an intermediate layer, such as a thin MoSe₂ or MoO₃, can 8 9 mitigate this issue. MoO_x was successfully used in superstrate configuration as an interfacial layer between a transparent SnO₂:In (ITO) back contact and Cu(In,Ga)Se₂ absorbers [36] and 10 was shown to also be a good interfacial layer for the Cu₂ZnSnSe₄ based solar cells (applied П 12 either as a layer between the absorber and the Mo contact to improve the back contact 13 properties or as a primary back contact) [37-38].

14 Figure S6 shows the I(V) curves calculated for different device configurations. The solar cell parameters are given in Table 2. For the Cu₂ZnGe(S,Se)₄ substrate configuration (a), the 15 calculated I(V) curve is based on series resistance and shunt resistance values of 4.7 and 16 17 365 Ω cm², respectively. These resistances have been extracted from the J(V) curve of one of the most efficient EVAP-Cu₂ZnGeSe₄ substrate solar cells (5.4 % power conversion efficiency). 18 19 In the configurations (b)-(d), the J(V) curves were calculated after the (simulated) optimization of the absorber doping concentration $(10^{16} \text{ cm}^{-3})$ and of the values for series and shunt 20 resistance ($R_s \le 0.5 \ \Omega \text{cm}^2$; $R_{sh} \ge 800 \ \Omega \text{cm}^2$). In case of a superstrate with TBC [configuration] 21 (c)], the low solar cell performance is due to a strong reduction of the V_{OC} caused by the low 22 work function of ZnO:AI (AZO). The best configuration for superstrate solar cell was 23 obtained by considering a thin "buffer layer" of MoO₃ between the absorber and a TCO back 24 25 contact (d). It should be noticed that an ITO back contact acts also as a Na barrier. If 26 insufficient Na content limits the device performance, however, Na needs to be deliberately 27 added in a controlled way, e.g. by means of post-deposition treatment [39].

28

29 2.4. TRANSPARENT BACK CONTACTS

TBCs for potential use in the wide band gap Cu₂ZnGe(S,Se)₄ kesterite top cell of a four 30 terminal photovoltaic tandem cell with a c-Si bottom cell have been studied. In addition to 31 the electronic structure considerations in the previous section, the back contact must be 32 transparent for photons with an energy below the band gap of the absorber layer and stable 33 under its processing conditions. Independent of the processing route [evaporation-based (see 34 35 Section 2.1.1) or solution-based (see Section 2.1.2.)], the kesterite absorber is formed by hightemperature annealing of the precursor layer stack in H_2Se and/or H_2S atmosphere. It is 36 expected that this selenization/sulfurization will be the most critical processing step that the 37

1 TBC has to withstand. H_2Se is a more powerful reducing agent than is H_2S [40], and so we 2 focus on the impact of annealing in H_2Se atmosphere on the optoelectronic and chemical 3 properties of the TBCs in the following. The most widely used TCOs: ITO, AZO, and SnO₂:F 4 (FTO) – were selected for exposure tests [41,42]. It is assumed that the S-containing 5 atmosphere during annealing required to achieve the [S]/([S]+[Se]) composition necessary for 6 the desired higher absorber band gap will have similar effects.

7 In order to simulate the impact of H_2 Se exposure during a $Cu_2ZnGe(S,Se)_4$ deposition process, 8 the optical and chemical properties of the selected TCOs have been tested before and after 9 exposure to a 20 sccm H_2 Se flow for 15 min at various treatment temperatures (400 and 450 °C). A first screening showed that ITO had the highest likelihood for yielding working 10 devices but would require a protective top layer (to make it more stable during absorber Ш 12 processing). Furthermore, our SCAPS simulations (see Section 2.3) of Cu₂ZnSn(S,Se)₄ devices 13 had shown that employing ITO instead of Mo (which is the standard back contact for single-14 junction devices) would result in an efficiency drop of 60 rel.% (see Table 2). The same simulations showed that this deterioration may be fully prevented by using an additional MoO_3 15 16 interlayer between ITO and absorber resulting even in an efficiency gain of 80 rel.% (see Table 17 2). Hence, thin sputtered MoO₃ layers applied on top of a 135-nm-thick sputtered ITO before absorber deposition – as protection layer and for improved energy level alignment – were 18 19 first explored. However, MoO_3 is significantly reduced upon H_2Se exposure; in Section 2.4.1, 20 we explore alternative protective layers.

21 2.4.1. PROTECTIVE TOP LAYERS

In this section, the effectiveness of Al_2O_3 , $InZnO_x$ (IZO), and TiO_2 as protection of ITO during selenization/sulfurization is explored. The study is conducted by means of H_2Se exposure tests at 400°C and 450°C (i.e., annealing temperatures relevant for absorber formation), as well as by experiments on the device level. The top layers were deposited by means of atmospheric pressure spatial atomic layer deposition (S-ALD, plasma enhanced for IZO) [43].

27 2.4.1.1.LAYER PROPERTIES

 Al_2O_3 is known to be an excellent passivation and barrier (i.e., protective layer) material of 28 29 high chemical stability; it is however electrically insulating. IZO and TiO₂ are candidates for 30 forming more conductive protective layers. In order to determine the minimum thickness for 31 being a sufficient protective top layer and to test if such a thickness would yield a working device, a set of Al₂O₃ (1-30 nm), IZO (1-120 nm), and TiO₂ (2-60 nm) layers of different 32 thicknesses were deposited by means of S-ALD on ITO coated SLG substrates. The 33 34 absorption spectra (derived from reflectance and transmittance) shown in Figure 12 suggest that the decrease of ITO transmittance (i.e., increase of absorption) induced by H₂Se exposure 35 could (to some degree) be prevented with $a > 2 \text{ nm Al}_2O_3$ (not shown), > 30 nm IZO, or > 36

1 60 nm TiO₂ top layer. However, the TiO₂ layers are less effective at temperatures of 450°C 2 and higher [see Figure 12(c)]. After H₂Se exposure at 450°C, the average absorption for an 3 135-nm-thick ITO layer with a 30-nm-thick IZO and 60-nm-thick TiO₂ protective layer is 8

4 and 18 %, respectively, in the near infra-red regime (between 750 nm and 1100 nm).

5 HAXPES was used for chemical structure analysis of the IZO/ITO back contact configuration and its changes upon H₂Se exposure in order to probe the deterioration of ITO and the 6 7 protection mechanism of IZO. Note that same measurement conditions apply as for the 8 HAXPES data shown in Figures I and 4. The Sn 3d XPS spectra of a bare ITO sample and ITO samples with either a 10 or a 30 nm protective IZO top layer before and after H_2 Se treatment 9 at 450 °C are shown in Figure 13. Before the H₂Se treatment, for the bare ITO and 10 nm 10 П IZO/ITO sample, Sn resides in a chemical environment best described by a combination of ITO, SnO, and SnO₂. However, note that asymmetric core level lines are generally found for 12 13 (highly conductive) ITO and are generally attributed to final-state effects [44]. No Sn signal is 14 observed for the 30 nm IZO/ITO sample, due to insufficient probing depth and complete coverage of the ITO by the IZO. (The inelastic mean free path of the Sn 3d photoelectrons 15 16 excited with 6 keV photons in In_2O_3 is around 7 nm [45]). After H₂Se treatment, the spectral 17 intensity of the Sn 3d line is significantly redistributed, indicating that the chemical 18 environment of Sn has changed; SnSe and/or SnSeO_x are likely present. Furthermore, the Sn 19 3d intensity increases after the H₂Se treatment for the 10 nm IZO/ITO sample, suggesting 20 either that Sn diffuses into the IZO layer and/or the degree of ITO coverage decreases. If the 21 protective layer does not completely cover the ITO, it will not prevent the chemical reaction between ITO and H₂Se, the evidence of which is the formation of Sn-Se bonds. Additional 22 HAXPES data suggest a significant chemical interaction between IZO and H₂Se, implying that 23 IZO acts as a sacrificial agent to protect ITO from H₂Se. Note that additional measurements 24 25 on TiO₂/ITO test structures (not shown) reveal a different protection mechanism: TiO₂ is 26 largely unaffected by H_2 Se annealing.

27 2.4.1.2. SOLAR CELL DEVICES

EVAP-Cu₂ZnGeSe₄-based devices were manufactured on sputtered ITO/SLG substrates with 28 S-ALD deposited Al₂O₃, IZO, and TiO₂ protective layers. As references, similarly prepared 29 30 devices with a standard Mo back contact on a Si(O,N)/SLG substrate were also fabricated and 31 tested. A CBD-CdS buffer and a sputtered i-ZnO/AZO bi-layer emitter was used as the front 32 window. The (5×5 cm²) EVAP-Cu₂ZnGeSe₄ cell stack samples were finished by applying a 33 Ni/Ag grid for local J(V) measurements. Table 3 depicts measured J(V) parameters of the champion cells. As stated earlier, an Al_2O_3 thickness above 2 nm is needed for an effective 34 H_2 Se protection of ITO. However, the 3 nm thick Al_2O_3 layer used here already reduces the 35 cell performance dramatically due to its insufficient conductivity. This issue could be 36 37 overcome by using a perforated Al_2O_3 layer, which (through the formed point contacts) allows

sufficient charge carrier transport while also acting as a passivation and barrier layer. Devices L 2 with an ITO back contact with or without either a 30 nm TiO_2 or IZO protective top layer function better, yielding efficiencies of about 85-90 % of that of reference cells with a Mo back 3 electrode. The lower efficiencies likely result from a higher sheet resistance of the back 4 contact and a presumably less ideal energy level alignment at the absorber/back contact 5 interface compared to the Mo back electrode. The combination of ITO back electrode with 6 7 TiO_2 protection layer results in a higher V_{OC} than an ITO back electrode with or without IZO protection layer, but not in a higher J_{sc} value – finding an explanation for this observation is a 8 9 subject of ongoing discussion.

Figure 14 depicts the absorption (derived from reflectance and transmittance) for a complete 10 П EVAP-Cu₂ZnGeSe₄ solar cell layer stack on a 60 nm TiO₂ protected ITO back electrode. The absorption of the complete cell stack for energies directly below E_G (Cu₂ZnGeSe₄) is 65 % for 12 13 60 nm TiO₂/ITO and 55 % for 30 nm IZO/ITO (not shown) back contacts. These values are 14 higher than the sum computed from the absorption of the individual layers (i.e., back contact after H₂Se exposure, absorber, and front window), as illustrated in Figure 14 for the 60 nm 15 TiO₂/ITO back contact. This may be due to slightly varying absorber layer deposition and/or 16 17 selenization process conditions, annealing-induced formation of species at the absorber 18 (precursor)/TBC interface, or internal reflections and higher absorption of the front window 19 when deposited on the actual (rough) absorber layer. In order to reduce the optical losses in 20 a complete device, more analysis of the composition and morphology of the layers and their 21 interfaces in the cell stack will be needed. To reduce near-infrared absorption due to free 22 charge carriers in both the highly-doped back and front contact, more effort is required to 23 develop transparent materials with high mobilities and reasonable charge carrier densities.

24

25 3. OUTLOOK

The bottom cell in a tandem configuration will only receive the illumination transmitted 26 27 through the top cell, and so a good transmission at hv < than the top cell absorber band gap is crucial for the top cell structure to successfully be employed in tandem configurations, as 28 29 discussed in the previous section. A thin top cell combined with a TBC is generally used to 30 assure this. To investigate the effect of the top cell transparency on the performance of the bottom cell (c-Si), we calculated the efficiency of the bottom cell as a function of the light 31 32 transmitted through the top cell, as shown in Figure 15. The bottom cell is modeled as a 25 % efficient silicon cell with rear locally diffused contacts (PERL technology [46]) and 33 Lambertian light trapping [47-48]. For the tandem cell, a four-terminal mechanically stacked 34 35 configuration is considered. In Figure 15, the efficiency of the c-Si bottom cell under the absorbing 1.5 eV band gap Cu₂ZnGe(S,Se)₄-based cell is shown as a function of top cell 36

transmission. Furthermore, the total efficiency of the tandem configuration assuming a top L 2 cell efficiency of 8, 15, and 22 % is shown. In the case of a $Cu_2ZnGe(S,Se)_4(1.5 \text{ eV})$ -based top 3 cell of 8 % efficiency (i.e., a performance level similar to the one reached as a result of joint research efforts of this consortium, see Section 2.2.2), a transparency higher than 80 % is 4 required to achieve a total tandem device efficiency that is higher than the efficiency of the c-5 Si bottom cell alone (25 %, horizontal dashed line in Fig. 21). In case the efficiency of the top 6 7 cell can be increased to 15 % (a performance level that seems feasible based on our device simulation in Section 2.3, see Table 2), a transparency above 50 % is sufficient for viable 8 9 tandem application. Finally, for a 22 % efficient top cell (a performance level that has been 10 shown for other polycrystalline chalcogenide-based absorbers [2]) respective tandem devices would reach efficiencies > 25% with even more relaxed top cell transparency requirements. Ш

A maximal transparency of approximately 40 % for a real-world Cu₂ZnGe(S,Se)₄/TBC layer 12 13 stack was shown in this contribution (see Fig. 20 and discussion in Section 2.4.1.2); there is a 14 realistic potential to increase this to 60 % if chemical reactions at the interfaces and/or internal reflections can be minimized. Hence, wide band gap kesterites might very well represent a 15 16 material class that may be used as absorber in tandem device top cells if further significant advancements in cell performance (8 \rightarrow 15%) and transmission (40 \rightarrow 60%) are achieved. 17 18 Based on the progress presented in this paper (compare status 2015 and 2018 indicated as 19 **1** and **2** in Figure 15), it indeed seems feasible to reach the realistic performance scenario 20 (in Figure 15) if optimization efforts continue.

21

4. CONCLUSIONS

Absorbers in which Sn had been substituted by Si did not result in functioning solar cells; most 23 likely due to too high doping (in the order of 10^{18} cm⁻³) and/or the formation of SiO₂ at the 24 absorber surface. However, Cu₂ZnGe(S,Se)₄ absorbers with band gaps above 1.5 eV have 25 been successfully developed and integrated into solar cells. Typically, ZnSe is present in large 26 27 amounts on the top surface of these absorbers; it is shown here that this impurity can be 28 selectively removed with chemical etching: (i) with 12 wt% HCl at a temperature of 60-85 °C, and (ii) in IM KMnO₄ / IM H_2SO_4 aqueous solution. The standard CBD-CdS has been 29 optimized, resulting in a record efficiency of 7.6 % for EVAP-Cu₂ZnGeSe₄ based solar cells 30 (with Mo back contact). In_2S_3 , Zn(O,S), and $CdIn_2S_4$ alternative buffer layers were also tested, 31 where the highest V_{OC} and presumably the best electronic buffer/absorber interface structure 32 could be obtained with sputtered Zn(O,S). 33

34 The solar cell performance of substrate/superstrate $Cu_2ZnGe(S,Se)_4$ solar cells with TBC for

35 tandem application was simulated using SCAPS to evaluate various configurations and identify

36 performance-limiting factors. It was found that when low work function, TCO-based, TBCs

1 (like ITO) are used, an "interlayer" is required to reduce the blocking barrier at the 2 absorber/TCO interface, ideally achieving an Ohmic contact. The device simulation suggests 3 MoO_x as an ideal interlayer candidate material for $Cu_2ZnGe(S,Se)_4$ superstrate cells for 4 tandem applications. MoO_x is, however, unstable under real-world absorber processing 5 conditions; the use of an alternative, stable material causes the majority of respective 6 (transparent) cells to be still limited by a low V_{OC} .

7 ITO was shown to be a well-performing candidate for a TBC, but it requires a protective top layer (i.e., Al_2O_3 , IZO, or TiO₂) if it is to remain transparent after exposure to the Se (and/or 8 9 S) atmosphere needed for the absorber deposition process. ITO back contacts with a protective layer of 30-nm-thick IZO or 60-nm-thick TiO_2 have an average absorption of 8 and 10 П 18 %, respectively, in the near infra-red regime. The efficiency of solar cells using an ITO with IZO or TiO₂ protective layers achieves 85-90 % of the performance of reference cells with 12 13 Mo back contact (at a maximal transparency of 40 %). 14 In summary, Cu₂ZnGe(S,Se)₄ absorbers with potential for future application as top cell in 15 tandem configurations have been developed. Different optimization routes mostly addressing

the buffer/absorber interface have been developed. Different optimization routes mostly addressing the buffer/absorber interface have been suggested and proven to be effective to advance device performance. In order to make wide band gap kesterites a prime candidate absorber material for the top cell in tandem devices, similar approaches are crucially needed extending the efforts to all aspects of the complete cell stack, tackling interface *and* bulk properties in order to improve cell efficiency and transmission. In order to accomplish this challenge, it is proposed to focus future research on increasing the solar cell performance before addressing

22 the transparency of these solar cell devices.

I ACKNOWLEDGEMENTS

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement N° 640868. The synchrotron radiation experiments were performed at the SPring-8 beamline BL15XU with the approval of the NIMS Synchrotron X-ray Station (Proposals 2016A4600, 2016B4601, and 2017A4600) and at BESSY Il with the approval of HZB. B. Vermang has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement n° 715027).

- 9
- 10

II REFERENCES

- 12 [1] M.A. Green, S. Hishikawa, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, A.W.Y. Ho-Baillie,
- 13 Prog. Photovoltaics Res. Appl., 2018, 26, 3-12.
- 14 [2] Solar Frontier Achieves World Record Thin-Film Solar Cell Efficiency of 22.9 %, Solar
- Frontier press release, http://www.solar-frontier.com/eng/news/2017/1220_press.html, last
 accessed May 23rd 2018.
- 17 [3] W. Shockley, H.J. Queisser, J. Appl. Phys., 1961, 32, 510-519.
- 18 [4] T.P. White, N.N. Lal, K.R. Catchpole, IEEE J. Photovoltaics, 2014, 4, 208-214.
- [5] T.K. Todorov, D.M. Bishop, Y. Seog Lee, Sol. Energy Mater. Sol. Cells, 2018, 180, 350 357.
- 21 [6] S. Siebentritt, S. Schorr, Prog. Photovoltaics Res. Appl., 2012, 20, 512-519.
- 22 [7] W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi,
- 23 Adv. Energy Mater., 2014, 4, 1301465.
- 24 [8] M. León, S. Levcenko, R. Serna, G. Gurieva, A. Nateprov, J.M. Merino, E. J. Friedrich, U.
- 25 Fillat, S. Schorr, E. Arushanov, J. Appl. Phys., 2010, 108, 093502.
- [9] Q. Shu, J.-H. Yang, S. Chen, B. Huang, H. Xiang, X.-G. Gong, S.-H. Wei, Phys. Rev. B,
 2013, 87, 115208.
- 28 [10] G. Brammertz, B. Vermang, H. Elanzeery, S. Sahayaraj, S. Ranjbar, M. Meuris, J.
- 29 Poortmans, Thin Solid Films, 2016, 616, 649-654.
- 30 [11] G. Brammertz, B. Vermang, H. Elanzeery, S. Sahayaraj, S. Ranjbar, M. Meuris, J.
- 31 Poortmans, Phys. Status Solidi C, 2017, 14, 1600162.

- I [12] NIST X-ray Photoelectron Spectroscopy Database, version 3.5, National Institute of
- 2 Standards and Technology, Gaithersburg, 2003, https://srdata.nist.gov/xps/, last accessed
- 3 May 23rd 2018.
- 4 [13] G. Brammertz, B. Vermang, M. Meuris, J. Poortmans, Thin Solid Films, 2019, 670, 765 79.
- 6 [14] T. Schnabel, M. Seboui, E. Ahlswede, RSC Adv., 2016, 7, 26-30.
- 7 [15] S. Ueda, Y. Katsuya, M. Tanaka, H. Yoshikawa, Y. Yamashita, S. Ishimaru, Y. Matsushita,
- 8 K. Kobayashi, AIP Conference Proceedings, 2010, 1234, 403-406.
- 9 [16] S. Ueda, J. Electron Spectrosc. Relat. Phenom., 2013, 190 Part B, 235-241.
- 10 [17] T. Schnabel, M. Seboui, L. Choubrac, L. Arzel, S. Harel, N. Barreau, E. Ahlswede, RSC
- II Adv., 2017, **7**, 40105-40110.
- 12 [18] M. Werner, D. Keller, S.G. Haass, C. Gretener, B. Bissig, P. Fuchs, F. La Mattina, R.
- 13 Erni, Y.E. Romanyuk, A.N. Tiwari, ACS Appl. Mater. Interfaces, 2015, 7, 12141-12146.
- 14 [19] T. Gershon, K. Sardashti, O. Gunawan, R. Mankad, S. Singh, Y.S. Lee, J.A. Ott, A.
- 15 Kummel, R. Haight, Adv. Energy Mater., 2016, **6**, 1601182.
- 16 [20] J. Ge, Y. Yu, Y. Yan, ACS Energy Lett., 2016, 1, 583-588.
- [21] Y. Zhang, J.R.G. Evans, S. Yang, Journal of Chemical & Engineering Data, 2011, 56, 328337.
- 19 [22] T. Schnabel, M. Seboui, E. Ahlswede, Energies, 2017, 10, 1813.
- 20 [23] J. Chen, W. Li, C. Yan, S. Huang, X. Hao, J. Alloys Compd., 2015, 621, 154-161.
- [24] M. Kumar, A. Dubey, N. Adhikari, S. Venkatesan, and Q. Qiao, Energy Environ. Sci.,
 2015, 8, 3134-3159.
- [25] E.M. Gavrishchuk, E.Y. Vilkova, O.V. Timofeev, U.P. Borovskikh, E.L. Tikhonova, Inorg.
 Mater., 2007, 43, 579-583.
- 25 [26] S. López-Marino, Y. Sánchez, M. Placidi, A. Fairbrother, M. Espindola-Rodríguez, X.
- 26 Fontané, V. Izquierdo-Roca, J. López-García, L. Calvo-Barrio, A. Pérez-Rodríguez, E.
- 27 Saucedo, Chemistry: A European Journal, 2013, 19, 14814-14822.
- 28 [27] S. Bourdais, C. Choné, B. Delatouche, A. Jacob, G. Larramona, C. Moisan, A. Lafond, F.
- 29 Donatini, G. Rey, S. Siebentritt, A. Walsh, G. Dennler, Adv. Energy Mater., 2016, 6,
- 30 1502276.
- 31 [28] P. O'Brien, J. McAleese, J. Mater. Chem., 1998, 8, 2309-2314.

- I [29] L. Choubrac, G. Brammertz, N. Barreau, L. Arzel, S. Harel, M. Meuris, B. Vermang,
- 2 Phys. Status Solidi A, 2018, **215**, 1800043.
- 3 [30] M. Burgelman, K. Decock, S. Khelifi, A. Abass, Thin Solid Films, 2013, 535, 296-301.
- 4 [31] A. Jäger-Waldau, M.Ch. Lux-Steiner, R. Jäger-Waldau, E. Bucher, Springer Proceedings
- 5 in Physics, Polycrystalline Semiconductors II, 1991, **54**, 397-402.
- [32] H. Simchi, B.E. McCandless, T. Meng, J.H. Boyle, W.N. Shafarman, J. Appl. Phys., 2013,
 114, 013503.
- 8 [33] D. Abou-Ras, G. Kostorz, D. Bremaud, M. Kälin, F.V. Kurdeseau, A.N. Tiwari, M.
- 9 Döbeli, Thin Solid Films, 2005, **480-481**, 433-438.
- [34] B. Shin, Y. Zhu, N.A. Bojarczuk, S. J. Chey, S. Guha, Appl. Phys. Lett., 2012, 101,
 053903.
- 12 [35] A. Klein, C. Körber, A. Wachau, F. Säuberlich, Y. Gassenbauer, S.P. Harvey, D.E. Proffit,
- 13 T.O. Mason, Materials, 2010, **3**, 4892-4914.
- 14 [36] H. Simchi, J.K. Larsen, K. Kim, W. Shafarman, IEEE J. Photovoltaics, 2014, 4, 1630-1635.
- 15 [37] S. Lopez-Marino, M. Espindola-Rodriguez, Y. Sanchez, X. Alobé, F. Olivia, H. Xie, M.
- 16 Neuschitzer, S. Giraldo, M. Placidi, R. Caballero, V. Izquierdo-Roca, A. Pérez-Rodriguez, E.
- 17 Saucedo, Nano Energy, 2016, 26, 708-721.
- [38] J. Park, J. Huang, K. Sun, Z. Ouyang, F. Liu, C. Yan, H. Sun, A. Pu, M. Green, X. Hao,
- 19 Thin Solid Films, 2018, **648**, 39-45.
- 20 [39] D. Rudmann, A.F.d. Cunha, M. Kaelin, F. Kurdesau, H. Zogg, A.N. Tiwari, G. Bilger,
- 21 Appl. Phys. Lett., 2004, **84**, 1129-1131.
- 22 [40] S. Oae, J.T. Doi, Heteroat. Chem, 1991, 4, 531.
- [41] I. Volintiru. A. de Graaf, J. van Deelen, P. Poodt, Thin Solid Films, 2011, 519, 62586263.
- [42] J. van Deelen, A. Illiberi, B. Kniknie, H. Steijvers, A. Lankhorst, P. Simons, Surf. Coat.
 Technol., 2013, 230, 239-244.
- 27 [43] P. Poodt, D.C. Cameron, E. Dickey, S.M. George, V. Kuznetsov, G.N. Parsons, F.
- Roozeboom, G. Sundaram, A. Vermeer, J. Vac. Sci. Technol., A, 2012, **30**, 010802.
- 29 [44] C. Körber, V. Krishnakumar, A. Klein, G. Panaccione, P. Torelli, A. Walsh, J.L.F. Da
- 30 Silva, S.-H. Wei, R.G. Egdell, D.J. Payne, Phys. Rev. B, 2010, 81, 165207.

- [45] H. Shinotsuka, S. Tanuma, C.J. Powell, D.R. Penn, Surf. Interface Anal., 2015, 47, 871 888.
- 3 [46] J. Zhao, A. Wang, P.P. Altermatt, S.R. Wenham, M.A. Green, Sol. Energy Mater. Sol.
- 4 Cells, 1996, **41-42**, 87-99.
- 5 [47] M.A. Green, Prog. Photovoltaics Res. Appl., 2009, 17, 183-189.
- [48] S. Khelifi, J. Verschraegen, M. Burgelman, A. Belghachi, Renewable Energy, 2008, 33,
 293-298.
- 8

I

Figure 1: Hard x-ray photoelectron survey spectra of an EVAP-Cu₈SiS₆ sample before (black)
and after (red) sulfurization treatment (spectra are offset for clarity). Due to the
sulfurization, the oxygen and sodium (most likely diffused from the soda-lime glass
substrate) contents increase. The inset shows the region of the Si 2s and S 2p core level
lines compared to reference positions [12] of silicon compounds (note that the order of
appearance is different compared to the survey spectra for better visibility). The S 2p line
can only be clearly observed on a magnified (x 25) scale.

I

2 Figure 2: X-ray diffraction pattern of the EVAP-Cu₂ZnGeSe₄ absorber layer fabricated by

- 3 selenizing the precursor stack for 15 min at 460°C on a Mo back contact together with
- 4 reference positions for $Cu_2ZnGeSe_4$ and Mo (PDF card 00-052-0867).

- Figure 3: Cross-section STEM-EDX elemental map of a complete EVAP-Cu₂ZnGeSe₄ solar
 cell sample with CdS buffer layer and ZnO window, showing in some regions
 inhomogeneous elemental distributions, most likely caused by secondary phases. Regions
 attributed to ZnSe- (blue arrows), Cu₂GeSe₃- (pink arrows), and Cu_{2-x}Se-like (yellow
 arrows) phases are indicated. See also [13].
- 7

- Figure 5: 112-reflection of XRD patterns from SOL-Cu₂ZnGe(S,Se)₄ absorbers processed in
 the presence of different amounts of GeS (0-100 mg).
- 4

2 Figure 6: J(V)-characteristics of the best solar cells that were prepared from SOL-

- 3 $Cu_2ZnGe(S,Se)_4$ absorbers with band gaps of 1.5, 1.6, and 1.7 eV, respectively, as
- 4 determined from EQE. The corresponding [S]/([S]+[Se)]-ratios are 0.27, 0.39, and 0.50.
- 5

E_{G} (eV)	1.5	1.6	1.7
Eff. (%)	6.0	3.6	2.7
V _{oc} (mV)	617	683	669
J _{sc} (mA/cm²)	18.0	11.9	10.3
FF (%)	54.I	44. I	39.7

Table I: Solar cell parameters of solar cells with SOL-Cu₂ZnGe(S,Se)₄ absorbers with band
 gaps of 1.5, 1.6, and 1.7 eV, respectively.

2 Figure 7: Raman spectra recorded with an excitation wavelength of 458 nm of EVAP-

3 $Cu_2ZnGeSe_4$ samples that underwent HCl etching (T = 75°C, 12 wt% HCl) for different

4 durations (from 0 to 600 s). Intensities are normalized to the most intense $Cu_2ZnGeSe_4$

peak (≈ 204 cm⁻¹).

6

5

Figure 8: V_{oc} and FF mean values of EVAP-Cu₂ZnGeSe₄ based solar cells prepared using notetched absorbers and absorbers HCl etched (using a 12 wt% HCl solution) at different
temperatures (60 min a 60°C, 40 min at 70°C, 15 min at 80°C; 8-12 cells per sample, solar
cell area ≈ 0.5 cm²).

Figure 9: Representative EQE spectra of EVAP-Cu₂ZnGeSe₄ solar cells based on not-etched
 absorbers and absorbers HCl etched (using a 12 wt% HCl solution) at different
 temperatures (60 min a 60°C, 15 min at 80°C).

I

I

Figure 10: HAXPES survey spectra of an as-deposited / not etched (black spectrum) and HCl etched (red spectrum) EVAP-Cu₂ZnGeSe₄ absorber. Spectra are offset for clarity and all prominent lines are labelled. Inset: Detail spectra of the related Se 3d energy region, with the 3/2 and 5/2 spin-orbit split doublet indicated. Further, the approximate positions of the Se $3d_{3/2}$ and $3d_{5/2}$ lines of the main ("M") and secondary ("S") selenium species are depicted.

2 Figure 11: Representative EQE spectra of solar cells with SOL-Cu₂ZnGe(S,Se)₄ absorber and

different buffer layers: sputtered (rf) $Zn(O_{0.6},S_{0.4})$, CBD-Zn(O,S), CBD-CdS, atomic layer

4 chemical vapor deposited (ALCVD) In_2S_3 , and co-evaporated ("co-evap.") CdIn₂S₄.

5

	Cell configurations					
Solar cell parameters	(a)	(b)	(c)	(d)		
Back contact	MoSe ₂ /Mo	MoSe ₂ /Mo ^(O)	TCO ^(O)	MoO ₃ /TCO ^(O)		
V _{oc} (mV)	553	572	287	1000		
J _{sc} (mA/cm ²)	19.70	20.00	17.60	22.00		
FF (%)	56.30	71.00	65.54	67.90		
Eff. (%)	6.22	8.14	3.31	15.00		

- 2 Table 2: Solar cell parameters calculated for the different configurations as derived from the J(V) data shown in Figure S6. $^{\rm (O)}$ Results from device simulation employing optimized 3 parameters (see Table S2). 4 5
- 6

450°C.

Figure 13: Sn 3d_{5/2} HAXPES spectra of the ITO, 10 nm, and 30 nm IZO/ITO samples before
("As-depos.") and after H₂Se treatment at 450 °C. The curve fit was done by using one
linear background and three Voigt profiles. The grey boxes indicate the Sn 3d_{5/2} energetic
position for reference compounds [12].

Back	Protective	Eff. _{max}	Jsc	V _{oc}	FF
contact	top layer	(%)	(mA/cm ²)	(mV)	(%)
ITO	None	3.6	19.9	487	37.6
ITO	IZO (30 nm)	4.0	27.1	471	31.2
ITO	Al ₂ O ₃ (3.5 nm)	0.8	9.3	364	23.9
ITO	TiO ₂ (30 nm)	4.3	17.3	600	41.3
SiON/Mo	None	4.7	18.6	600	42.3

2 Table 3: Overview of the J(V) parameters of the manufactured EVAP-Cu_2ZnGeSe_4 devices

(best cells).

3

I

2 Figure 14: Absorption spectra of the (complete) front electrode/EVAP-Cu₂ZnGeSe₄/60 nm

3 TiO₂/ITO cell stack and of the individual stack components: (i) ZnO:Al front electrode, (ii)

4 60 nm TiO₂/ITO back electrode after H_2 Se exposure at 450°C, (iii) EVAP-Cu₂ZnGeSe₄

5 absorber (as-deposited on quartz glass substrate) compared to their spectral sum := (i) + (ii)

+ (iii).

6

2 Figure 15: The efficiency of a four-terminal mechanically stacked geometry c-Si bottom+top 3 cell as function of the light transmitted through the top cell (T for $\lambda \ge hc/Eg_{Top}$). As top cell, 4 8 and 15 % CZGSe and 22 % CIGS cells are used. The horizontal dashed line indicates the efficiency of the c-Si bottom cell alone and serves as a performance reference. • and • 5 6 indicate the performance situation in 2015 ($\eta \approx 3$ % and T ≈ 17 %, calculated for measured 7 transparency of CZGSe on TBC (ITO/TiO₂)) and 2018 (as reported in this publication: $\eta \approx$ 8 8 % and T \approx 40 %). Θ indicates a realistic performance scenario for which η and T have to 9 be increased to 15 % and 60 %, respectively.

SUPPLEMENTARY MATERIAL FOR

2	
3	WIDE BAND GAP KESTERITE ABSORBERS FOR THIN FILM SOLAR CELLS:
4	POTENTIAL AND CHALLENGES FOR THEIR DEPLOYMENT IN TANDEM DEVICES
5	
6	Bart Vermang ^{1,2,3} , Guy Brammertz ^{1,2,3} , Marc Meuris ^{1,2,3} , Thomas Schnabel ⁴ , Erik Ahlswede ⁴ ,
7	Leo Choubrac ⁵ , Sylvie Harel ⁵ , Christophe Cardinaud ⁵ , Ludovic Arzel ⁵ , Nicolas Barreau ⁵ ,
8	Joop van Deelen ⁶ , Pieter-Jan Bolt ⁶ , Patrice Bras ⁷ , Yi Ren ⁷ , Eric Jaremalm ⁷ , Samira Khelifi ^{8,9} ,
9	Sheng Yang ⁸ , Johan Lauwaert ⁸ , Maria Batuk ¹⁰ , Joke Hadermann ¹⁰ , Xeniya Kozina ¹¹ ,
10	Evelyn Handick ¹¹ , Claudia Hartmann ¹¹ , Dominic Gerlach ¹² , Asahiko Matsuda ¹³ ,
П	Shigenori Ueda ^{14,15} , Toyohiro Chikyow ^{12,13} , Roberto Félix ¹¹ , Yufeng Zhang ^{11,16} ,
12	Regan G. Wilks ^{11,17} , and Marcus Bär ^{11,17,18,19}
13	
14	¹ imec division IMOMEC – partner in Solliance, Wetenschapspark 1, 3590 Diepenbeek,
15	Belgium
16	² Hasselt University – partner in Solliance, Martelarenlaan 42, 3500 Hasselt, Belgium
17	³ EnergyVille, Thorpark 8320, 3600 Genk, Belgium
18	⁴ ZSW, Meitnerstrasse 1, 70563 Stuttgart, Germany
19	⁵ Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS, 2 rue de la
20	Houssinière, 44322 Nantes, France
21	⁶ TNO – partner in Solliance, High Tech Campus 21, 5656 AE Eindhoven, The Netherlands
22	⁷ Midsummer AB, Elektronikhöjden 6, 175 43 Järfälla, Sweden
23	⁸ Department of Electronics and Information Systems (ELIS), Ghent University,
24	Technologiepark Zwijnaarde 15, 9052 Gent, Belgium
25	⁹ Department of Solid State Sciences, Ghent University, Krijgslaan 281-S1, 9000 Gent,
26	Belgium
27	¹⁰ Electron Microscopy for Materials Science (EMAT), University of Antwerp,
28	Groenenborgerlaan 171, 2020 Antwerp, Belgium
29	¹¹ Department Interface Design, Helmholtz-Zentrum Berlin für Materialien und Energie
30	GmbH (HZB), Hahn-Meitner-Platz I, 14109 Berlin, Germany

۱	¹² International Center for Materials Nanoarchitectonics (MANA), National Institute for
2	Materials Science (NIMS), I-I Namiki, Tsukuba, Ibaraki 305-0044, Japan
3	¹³ Research and Services Division of Materials Data and Integrated System (MaDIS), National
4	Institute for Materials Science (NIMS), I-I Namiki, Tsukuba, Ibaraki 305-0044, Japan
5	¹⁴ Synchrotron X-ray Station at SPring-8, National Institute for Materials Science (NIMS), 1-1-
6	I Kouto, Sayo-cho, Hyogo 679-5148, Japan
7	¹⁵ Research Center for Advanced Measurement and Characterization, National Institute for
8	Materials Science (NIMS), 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047, Japan
9	¹⁶ College of Physical Science and Technology, Xiamen University (XMU), 361005, Xiamen,
10	China
	¹⁷ Energy Materials In-Situ Laboratory Berlin (EMIL), Helmholtz-Zentrum Berlin für
2	Materialien und Energie GmbH (HZB), Albert-Einstein-Str. 15, 12489, Berlin, Germany
13	¹⁸ Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-
14	Nürnberg, 91058 Erlangen, Germany
15	¹⁹ Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (HI ERN), 12489 Berlin,
16	Germany
17 18	CORRESPONDING AUTHOR – Bart Vermang, Martelarenlaan 42, 3500 Hasselt, Belgium
19	

Figure S1: Schematic representation of the two-step selenization process used for EVAP Cu₂ZnGeSe₄ absorber fabrication.

T

2 Figure S2: Cross-section scanning electron microscopy image of a finished EVAP-

3 Cu₂ZnGeSe₄ solar cell sample, showing the grain morphology of the absorber and contact

layer.

5

4

- I
- 2 Figure S3: Schematic illustration of the solution process of preparing a SOL-Cu₂ZnGe(S,Se)₄
- 3 absorber: a) metal salt solution, b) doctor blade coating, c) annealing in Se atmosphere.
- 4

- 2 Figure S4: Cross-section high angle annular dark field (HAADF) STEM image of a SOL-
- Cu₂ZnGe(S,Se)₄-based solar cell with CdS buffer and ZnO window (a), and the elemental
 maps of Zn (b), C (c) and Cd (d).
- 5

Buffer layer	V _{oc}	FF	J _{sc}	E _G	Eff.
	(mV)	(%)	(mA/cm ²)	(eV)	(%)
CBD CdS ^[17]	617	54.I	18.0	I.47	6.0
CBD Zn(O,S)	512	51.2	17.7	1.51	4.6
rf-Zn(O _{0.6} S _{0.4}) ^[17]	730	48.3	13.0	1.54	4.6
ALCVD In ₂ S ₃ ^[17]	469	48.2	14.9	1.49-1.54	3.4
Co-evap. CdIn ₂ S ₄ ^[17]	354	49.6	14.7	1.44	2.6

2 Table S1: Electrical parameters for the most efficient buffer/SOL-Cu₂ZnGe(S,Se)₄ solar cells.

Parameter	ZnO:Al	CdS	Cu ₂ ZnGe(S,Se) ₄	MoSe ₂ ^[31]	MoO ₃ ^[32]
d (µm)	0.120	0.050	1-2	0.04-0.10	0.04
E _G (eV)	3.3	2.4	1.47-1.5	1.1	2.85
χ (eV)	4.4	4.2	4.54	4.14	2.6
μ_n (cm ² /V.s)	100	100	10	100	100
$\mu_{\rm P}$ (cm ² /V.s)	25	25	2	25	20
N _d (cm ⁻³)	10 ¹⁸	3x10 ¹⁷	-	-	-
N _A (cm⁻³)	-	-	2x10 ¹⁵ / 10 ^{16(O)}	1016	10 ¹⁸
$R_{s} (\Omega.cm^{-1})$	4.7 / 0.5 ^(O)				
$R_{sh} (\Omega.cm^{-1})$	365 / 800 ^(O)				

Table S2: Parameters used in the simulations at standard solar cell test conditions.

^(O) Optimized parameters.

I

- Figure S5: Schematic of the two different configurations considered in the device
 simulations: (a) substrate and (b) superstrate.
- 4

Figure S6: Calculated J(V) curves for different substrate/superstrate configurations: (a)
 substrate = Cu₂ZnGe(S,Se)₄/MoSe₂/Mo/glass, (b) same configuration as (a) but using
 optimized device simulation parameters (see Table S2), (c) superstrate =
 Cu₂ZnGe(S,Se)₄/TCO, and (d) superstrate = Cu₂ZnGe(S,Se)₄/MoO₃/TCO. For
 configurations (c) and (d) also optimized parameters were used in the device simulation.