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1. Introduction

ABSTRACT

Hemodialysis is an important therapy for treating patients with End Stage Renal Disease (ESRD). These patients
visit the hospital 3 times a week and each time their blood is cleansed during 4-hour dialysis sessions using a
hollow fiber membrane module; also called artificial kidney. This device mainly achieves removal of small
water-soluble toxins and a limited number of middle molecules. To improve the clearance of toxins, especially
middle molecules and protein bound toxins, longer treatment via nocturnal dialysis and/or the application of
portable/wearable artificial kidney is required. Such therapies require application of membranes with very low
fouling and very good blood compatibility. Current membranes often contain hydrophilic additives which could
elute during sterilization processes and/or during long-term filtration. In this study, we propose a simple method
for developing low fouling blood compatible membranes by blending of polyethersulfone (PES), a material
already used for fabrication of dialysis membranes, with small amounts of SlipSkin™ (SS), a blood compatible
random copolymer of hydrophilic N-vinylpyrrolidone (NVP) and hydrophobic N-butylmethacrylate (BMA). Our
results show that membranes with 2wt% of SS have high fouling resistance to proteins and middle-size mole-
cules and very good blood compatibility, making these membranes promising for application in dialysis therapy.

focus on longer treatment times, such as, nocturnal dialysis or even the
application of a portable or wearable artificial kidney [4-8]. For these

Hemodialysis is an important therapy for End Stage Renal Disease
(ESRD) patients if a donor kidney is not available. During four hours of
conventional therapy, small water-soluble toxins with molecular
weights (MW) lower than 500Da and a limited number of middle
molecules with MW in the range of 500-32,000Da are effectively re-
moved from the patients’ blood [1-3]. However, more time is needed to
improve the clearance of, for example, middle molecules such as f3;-
microglobulin, because these toxins are mainly present in the in-
tracellular space [4]. Therefore, many developments in hemodialysis

types of therapies, the contact time between the patients’ blood and the
dialyzer is prolonged and therefore, long-term membrane selectivity,
fouling resistance and blood compatibility are generally required [2].

Current hemodialysis membranes are often based on blends of hy-
drophobic polymers, such as, polysulfone (PSu) or polyethersulfone
(PES), with hydrophilic additives, such as, polyvinylpyrrolidone (PVP)
or polyethylene glycol (PEG) [9]. The creation of hydrophilic and hy-
drophobic patches, especially on the membrane surface in contact with
blood, decreases the protein adsorption there and therefore increases
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the membranes’ fouling resistance and blood compatibility [10-13].
However, the hydrophilic additives, such as PVP, can elute from the
membrane matrix due to wall shear stress during ultrafiltration or as
the result of some sterilization techniques [14-17]. For example,
membrane sterilization via autoclaving results in less cross-linked PVP
than sterilization via gamma-radiation, which could result in elution of
PVP during long-term dialysis therapy [18]. As a consequence, the
membrane’s structural characteristics and filtration performance would
be compromised [14,15,18,19]. Besides, the eluted PVP can be poten-
tially harmful to patients because it can accumulate in internal organs
and induce allergies and anaphylactic shock [19-21].

Alternative methods to improve membrane compatibility and
fouling resistance include coating or grafting of hydrophilic polymers
onto membranes’ surfaces. For example, coating a PES membrane with
graphene oxide and sulfonated polyanion hydrogel thin film c an en-
hance the membrane hydrophilicity [20,22,23]. However, the coating
there is not covalently bound and during dialysis sessions it can be
detached from the membrane due to the blood flow and the associated
shear stress [14,20,22]. Grafting of hydrophilic polymers onto mem-
branes’ surfaces, for example, heparin-mimicking polymer brushes onto
functionalized carbon nanotube/ PES composite membranes has also
been reported [24]. This method is more stable and can significantly
improve the anti-fouling performance of membranes. However, it re-
quires a rather elaborate chemistry which cannot be easily im-
plemented during the fabrication process of hollow fiber membranes
[24].

In this work, we investigate a simple method for preparing low
fouling blood compatible membranes for dialysis by blending PES with
SlipSkin™ (50:50) (indicated as PES-SS). The SlipSkin™ (50:50) (SS) is a
random copolymer of 50:50 ratio of hydrophilic N-vinylpyrrolidone
(NVP) and hydrophobic N-butylmethacrylate (BMA) originally devel-
oped for coating of catheters and guide wires for intravascular inter-
ventions (Fig. 1) [25-27]. The advantage of using SS for membrane
preparation is that both hydrophilic and hydrophobic blocks contribute
to the membranes’ blood compatibility and fouling resistance [2,28]. In
earlier work, we developed pristine SS membranes based on various
ratio of NVP and BMA. The membranes with 50:50 ratio showed ex-
cellent blood compatibility, but they had high water permeance, of
100-200Lm2h~'bar™! but also very high albumin leakage (BSA
sieving coefficient (SC) was 0.83). This is undesirable, since the typical
membranes for dialysis therapy should have little or no albumin
leakage (SC for albumin should be around 0.015) [29]. Besides, due to
the rather high amounts of the hydrophilic component NVP, these SS
membranes swell significantly in aqueous solutions and require delicate
handling for achieving stable filtration p erformance using t hese solu-
tions. Here, we investigate whether membranes based on PES-SS
polymer blends with low amounts of SS (2—-6 wt%) would combine the
positive characteristics of SS (high hydrophilicity, low fouling, good
blood compatibility) with the positive characteristics of PES (good
membrane formation, minimal swelling).

We first produce flat-sheet PES-SS membranes, the morphology and
chemistry of which are thoroughly characterized via Scanning Electron
Microscopy (SEM) and Attenuated Total Reflectance-Fourier Transform
Infrared spectroscopy (ATR-FTIR), respectively. Their fouling resistance

NVP BMA

is investigated using model protein solutions of BSA (MW = 66 kDa),
which should be retained by the membrane, and of a-Lactalbumin
(LALBA, MW = 14kDa), as representative of middle size molecules
which should be removed during the dialysis treatment. Finally, we also
perform extensive blood compatibility studies of the optimal mem-
branes, following the ISO guideline 10993: ‘Biological evaluation of
medical devices, part 4, selection of tests for interactions with blood’
[30]. These blood compatibility tests include platelet adhesion and
aggregation tests (thrombosis category), classical and alternative
pathway complement activity tests (complement category), thrombin
generation tests (coagulation category), and adhesion of leukocytes and
hemolysis tests (hematology category). The results are compared to
custom-made PES and PES-PVP membranes as well as to commercially
available PES membranes.

2. Materials and methods
2.1. Materials

SlipSkin™ (50:50) (SS), a copolymer of N-vinylpyrrolidone (NVP)
and N-butylmethacrylate (BMA) (kindly provided by Interface
BlOmaterials BV, Geleen, The Netherlands), polyethersulfone (PES)
(ULTRASON, E6020P, BASF, Arnhem, The Netherlands) and poly-
vinylpyrrolidone (PVP) (K90, MW =360 000) (Fluka, Sigma-Aldrich,
Germany) were used to prepare the membranes. N-methyl-2-pyrroli-
done (NMP) (Acros Organics, Geel, Belgium) was used as solvent. PES
membranes (molecular weight cut-off, MWCO of 50 kDa), purchased
from Sartorius, Gottingen, Germany, indicated PES-50 kDa) were used
as reference. A Milli-Q purification unit (Merck Millipore, Czech
Republic) was used to prepare ultrapure water. Ultrapure water was
used as a non-solvent in the coagulation bath and for transport ex-
periments. Phosphate-buffered saline (PBS) (pH 7.45, GibCo, United
Kingdom), bovine serum albumin (BSA) and a-Lactalbumin (LALBA)
from bovine milk both purchased from Sigma-Aldrich (Zwijndrecht,
The Netherlands) were used to evaluate membranes’ transport proper-
ties and fouling resistance. An Atto 647 N Protein Labeling Kit was
purchased from Sigma-Aldrich (France) for the microchip fouling ex-
periments on the PES-50kDa and custom-made PES-SS membranes.
Glass coverslips (VWR, Amsterdam, The Netherlands) were used as
positive control. All chemicals necessary for the blood compatibility
tests, such as the thrombin generation tests, lactate dehydrogenase as-
says, hematology and complement tests, were the same as stated in
previous work [2].

2.2. Membrane preparation

Flat-sheet membranes were prepared by casting polymer solutions
dissolved in NMP. To obtain homogeneous polymer solutions, we
blended PES and small amounts of SS (2-6 wt%). As references, custom-
made flat-sheet membranes from 15wt% PES dissolved in NMP,
custom-made flat-sheet membranes from 15 wt% PES and 7 wt% PVP
dissolved in NMP and PES-50kDa membranes from Sartorius were
used. Membranes based on SS alone were also prepared for ATR-FTIR
studies. For this, 15 wt% SS was dissolved in NMP. All membranes used
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Fig. 1. Chemical structures of (A) SlipSkin™ copolymer with N-vinylpyrrolidone (NVP) and n-butylmethacrylate (BMA) and (B) polyethersulfone (PES).



Table 1
Codes and details of membranes used in this study.
Code Polymer (ratio in Additive (ratio Solvent Manufacturer
polymer solution)  in polymer
solution)
PES-PVP PES 15 wt% PVP 7 wt% NMP this work
PES-SS2 PES 15 wt% SlipSkin™ 2wt% NMP this work
PES-SS4 PES 15 wt% SlipSkin™ 4 wt% NMP this work
PES-SS6 PES 15 wt% SlipSkin™ 6 wt%  NMP this work
PES PES 15 wt% - NMP this work
PES-50kDa  PES - - Sartorius
SS SlipSkin™ 15wt% - NMP this work
RC58 regenerated - - Whatman, Sigma-
cellulose Aldrich
DE81 DEAE cellulose - - Whatman, Sigma-
Aldrich

are listed in Table 1. The number in the codes of the PES-SS blend
membranes refers to the weight percentage of SS used in the polymer
solution. The polymer solutions were mixed on a roller bank at room
temperature and degassed overnight before membrane preparation. All
membranes were prepared by phase inversion. The polymer solutions
were cast on a glass plate using a casting knife of 300 um thickness, and
afterwards immediately immersed in a non-solvent ultrapure water
coagulation bath. The membranes were rinsed thoroughly and stored in
ultrapure water for subsequent characterization.

Regenerated cellulose RC58 (Whatman, Sigma-Aldrich) and DEAE
cellulose DE81 (Whatman, Sigma-Aldrich) commercial membranes
were used, as controls, in the blood compatibility studies.

2.3. Membrane characterization

2.3.1. Scanning electron microscopy (SEM)

The membranes were dried overnight in air and broken cryogeni-
cally in liquid nitrogen to obtain cross-sections. The samples were
placed in SEM holders and gold coated using a Cressington 108 auto-
sputter coater. Then, the membranes (n = 3) were characterized using a
Jeol JSM-IT 100 LV scanning electron microscope and InTouchScope™
software.

2.3.2. Attenuated total reflectance-Fourier transform infrared spectroscopy
(ATR-FTIR)

Analysis of the membrane surface was performed on dried samples
by ATR-FTIR spectroscopy (Spectrum Two, PerkinElmer) and Spectrum
Quant software. All scans were performed in triplicate on various parts
of the membrane surface (n = 3), at a resolution of 4 cm ™! and at room
temperature.

2.3.3. Membrane transport properties

To determine the membranes’ transport properties, an air-pressur-
ized dead-end Amicon ultrafiltration cell (3mL, Amicon®- Merck
Millipore) with a 0.9 cm? effective membrane area was used. The se-
lective layer of the membrane was exposed to the (protein) solutions.
First, the membranes were pre-compacted with ultrapure water at a
transmembrane pressure (TMP) of 1500 mmHg for 30 min. Then, the
amount of permeated water was measured over time at TMPs of 375,
750, 1125 and 1500 mmHg. The ultrafiltration (UF) coefficient (L m
2h~!mmHg ') was calculated as the slope of the linear fit of the flux
(Lm?h~") versus TMP graph. After this, the sieving and anti-fouling
properties of the membranes were determined. First, the membranes
were wetted and pre-compacted using ultrapure water at transmem-
brane pressure (TMP) of 1 bar for 30 min. After this, ultrapure water
was pressurized through the membranes at 1 bar for 1 h and the flux, J
(Lm2h™1), of the water through the membranes was determined by
taking the permeated water volume, membrane surface area and time at
each pressure into account. Then, the ultrapure water was replaced

rapidly by a protein solution — either a BSA solution of 1 mg/mL or a
LALBA solution of 1 mg/mL — and the solution was stirred at a 300-rpm
stirring rate. A pressure of 1 bar was applied for 1 h and the permeate
was collected in order to calculate the protein solutions’ flux. After the
experiment with proteins, the Amicon cell was filled with ultrapure
water again and the membranes were washed for 30 min. Finally, the
clean water flux of the membranes after protein solution transport was
investigated using ultrapure water and a pressure of 1 bar for 1 h. The
fouling resistance of the membranes was assessed in triplicate via the
flux recovery ratio:

flux recovery ratio (FRR) = ﬂ~100%

Jwa (@)
where J, ; is the first clean water flux measurement (L m?h™!) and
Jw,2 is the clean water flux measurement (L m2h™1') after the protein
filtration experiment. The higher the FRR the higher the membrane
fouling resistance.

To determine the protein sieving coefficient (SC) of the membranes
(n = 3), 2mL samples of the permeate and retentate solutions were
taken as soon as the protein solution transport measurements were
completed. The BSA and LALBA concentrations were determined using
a UV-spectrophotometer (Varian, Cary 300 Scan UV-visible spectro-
photometer) at 280 nm. The SC was calculated as follows:

Cpermeale

Crelemate (2)

where Cpermeate iS the concentration of BSA or LALBA (mg/mL) in the
permeate solution and Cieentate iS the BSA concentration or LALBA
concentration (mg/mL) in the retentate solution. A SC of 1 means that
the proteins pass freely through the membrane, while a SC of 0 means
that all proteins are fully retained by the membrane.

SC =

2.3.4. Microfluidic chip fouling experiments

To monitor the fouling of LALBA to the membranes over time at
zero transmembrane pressure (TMP), we used a microchip. All mem-
branes were measured in triplicate. LALBA was first labelled following
the protocol proposed by Greene et al. [31]. More information about
this protocol can be found in Appendix A. The final conjugate solution
was diluted with PBS to achieve a concentration of 50 mg/L, corre-
sponding to clinically relevant median concentrations of (,-micro-
globulin in human blood [3]. Then, the microfluidic chips were con-
nected to a pressure-flow controller and placed on a microscope stage.
More information about the experimental set-up can be found in
Appendix A and Fig. Al.

Before the fouling resistance experiment was started, the mem-
branes were wetted for 1 h. For this, pure PBS was flowed through the
microchip at 130 uL/min (this flow rate corresponds to a Reynolds
number of 4.7) and zero pressure was applied from the permeate side.
Next, the labelled LALBA was flowed through the microchip at three
different flow rates (35, 75 and 130 pL/min), all in a single pass, which
means that the feed solution, after reaching the retentate reservoir, was
not resupplied to the system. The control over the cross-flow velocity
TMP was done by adjustments of the pressures at the inlet, the re-
tentate, and the permeate reservoirs. Finally, the fluorescence on the
membrane surface at the retentate compartment of the microchip was
estimated: images of the whole channel were acquired every 5min
using a Cy5 filter. The gray value as a unit of fluorescence intensity was
measured using ImageJ software. A high gray value corresponds to high
fluorescence (more white pixels). To evaluate the effect of flow rate on
membrane fouling, three feed flow rates of 35, 75, and 130 pL/min
were applied. Moreover, the spatial distribution of fouling along the
membrane was evaluated using gray value analysis at three different
positions in the channel: at the inlet, in the middle, and at the outlet.
The gray value of each pixel along the line of the channel was mea-
sured, yielding an average gray value with its respective standard de-
viation.



2.3.5. Blood compatibility tests

We performed extensive blood compatibility studies of the mem-
branes following the ISO guideline 10993: ‘Biological evaluation of
medical devices, part 4, selection of tests for interactions with blood’.
We examined the following:

— Platelet adhesion and aggregation, for the thrombosis category

— Classical and alternative pathway complement activity, for the
complement category

— Thrombin generation, for the coagulation category

— Adhesion of leukocytes and hemolysis, for the hematology category

The detailed protocols for the biocompatibility tests were published
earlier [2]. Here, we present a few adjustments done. For the qualita-
tive platelet adhesion tests, fresh blood from three healthy volunteers
(donors, 4, 5 and 6; all donors gave informed consent) was taken in
Vacuette precitrated tubes. The whole blood was anticoagulated with
citrate (11 mM) and platelet rich plasma (PRP) was obtained by cen-
trifugation. Then, 300 uL of PRP was added to the membranes and glass
coverslips (positive control) on the bottom of 24 well plates in duplo.
The PRP was removed after 45 min incubation time at 37 °C and the
samples were washed three times using PBS. Then, all samples were
incubated with 900 pL of 2.5% glutaraldehyde and after 1 h at 4 °C the
samples were washed with 0.1 M phosphate buffer (pH = 7.2) and ul-
trapure water. Finally, the samples were dried and analysed using SEM.
For the quantitative platelet adhesion tests using the lactate dehy-
drogenase (LDH) assay, 250 uL PRP from donors 4, 5 and 6 was added
to all samples on the bottom of 96 well plates for 60 min at 37 °C in
duplo. After removal of the PRP, the samples were washed with PBS
three times and incubated in 200 pL lysis buffer for 60 min at room
temperature. Then, 50 uL of supernatant and 50 pL substrate mix were
added to the wells of a clean 96 well plate (in duplo). After 30 min
incubation time in the dark, 50 L stop solution was added to all wells.
Subsequently, the optical density was measured at 490 nm using a
microplate reader and the platelets were quantified using a standard
curve.

For the complement activation tests, fresh blood from donors 1, 2
and 3 (healthy volunteers, all donors gave informed consent) was col-
lected in BD Vacutainer SSTII Advance tubes (BD Plymouth, UK). Then,
800 pL of serum was used to incubate the samples on the bottom of 24
well plates (in duplo) for one hour at 37 °C under gentle shaking. The
non-incubated serum control samples were frozen immediately. The
activation of the classical and alternative pathway of the complement
system were measured and analysed by ELISA using the WIESLAB®
complement system kits for classical and alternative pathway (Euro
Diagnostica, Sweden). For both the classical pathway and alternative
pathway kit, the amount of C5b-9 complex formed on the plate surface
was detected with a specific alkaline phosphatase labelled antibody to
the C5b-9 neoantigen formed during membrane attack complex for-
mation.

For the thrombin generation test, triplicates of membrane pieces
and glass cover slips were put on the bottom of 24 well plates. Fresh
blood was obtained from three healthy volunteers (donors 1, 2 and 3;
all donors gave informed consent) and collected in Venosafe terumo
citrated tubes (final citrate concentration 3.2 w/v%) (Terumo Europe
N.V., Leuven, Belgium). Fresh platelet poor plasma (PPP) was obtained
by a centrifugation step. The samples were submerged in 300 puL of PPP
and incubated for 30 min. After the incubation time, 80 pL of the in-
cubated PPP of all samples was put into round bottom 96 well plates
and 20 pL. MP reagent was added to all wells. The plates were placed on
a heater at 37 °C for 10 min subsequently. Then, 20 uL of FluCa reagent
was used to start the thrombin generation and the calibrated automated
thrombogram (CAT) assay was carried out as published earlier [2].

The leukocyte adhesion test was performed using the blood of do-
nors 4, 5 and 6 in 4mL sodium heparin tubes (final concentration
681U) (Becton & Dickinson, Franklin Lakes, USA) and experiments

were done in triplicate. The samples of the leukocyte adhesion test were
washed twice with sterile physiological saline solution and then in-
cubated with 750 pL of blood for one hour at room temperature under
gentle shaking. The incubated blood was analysed using a Sysmex XE-
5000 (Germany).

For the hemolysis test, fresh blood of three other donors (donors 7, 8
and 9; all donors gave informed consent) was collected in 4 mL sodium
heparin tubes (final concentration 68 IU) (Becton & Dickinson, Franklin
Lakes, USA) as well. Then, 600 uL of blood was added to the membrane
samples and controls, in duplo. The samples were incubated for one
hour at room temperature under gentle shaking. Then, the incubated
blood was centrifuged at 4000 rpm for 6 min and the supernatant was
analysed using light absorbance at 542 nm. The percentage of hemo-
lysis was calculated as follows:

Csamplc -

C
"% % 100%

hemolysis percentage =
Cpos - Cncg (3)

where Cgampie is the concentration of free hemoglobin in the sample
(umol L), Creg is the free hemoglobin concentration in the negative
saline control (umol LY and Cpos is the concentration of free he-
moglobin in the positive water control (umol LY.

For all tests, except for the lactate dehydrogenase assay (LDH), the
complement tests and the hemolysis test, o-rings were used to keep the
samples on the bottom of the well plates. The interaction of blood to the
o-rings alone was taken into account as a control of the experiments.
Furthermore, the PES-PVP membranes were used as a negative control
for every blood compatibility test, except for the hemolysis test, where
saline was used as a negative control. The positive controls varied and
were adjusted to the type of blood compatibility tests. The glass cov-
erslips were used as positive control for the qualitative platelet adhe-
sion tests and thrombin generation tests. The PES-50 kDa membranes
were used as controls for the quantitative platelet adhesion and leu-
kocyte adhesion tests. Sterile ultrapure water was used as positive
control for the hemolysis tests and RC58, DE81 and PES-50 kDa mem-
branes were used for the complement activation experiments.

2.4. Statistics

Statistical analyses were performed using GraphPad PRISM version
5.00 software package. ANOVA and post-Tuckey with significance level
set to p < 0.05 was used to determine statistical difference.

3. Results and discussion
3.1. Membrane characterization

Fig. 2 presents typical SEM images of the cross-sections of the flat-
sheet membranes studied here. All membranes were mechanically
stable and could be handled well in all characterisation tests.

The PES-PVP and PES membranes (Fig. 2A, E) both have an asym-
metric pore morphology: a dense selective layer and finger-like pores
on the air-side and a layer with macrovoids on the glass-side, as a result
of the slower exchange between NMP and water, the solvent in the
polymer solution and the non-solvent in the coagulation bath, respec-
tively. The addition of 2 wt% SS to PES also results in membranes (PES-
SS2 in Fig. 2B) with a dense selective layer and finger-like pores on the
air-side, but with larger macrovoids on the glass-side. By increasing the
amount of SS from 2 wt% to 4 and 6 wt%, the membranes’ glass-sides
present smaller and more finger-like macrovoids (Fig. 2B, C and D),
similar to the pristine PES membrane of Fig. 2E. This is possibly due to
the higher amount of polymer present in the PES-SS4 and PES-SS6
membranes. Fig. 2F presents the PES-50 kDa membrane with a selective
layer and small finger-like pores on top of a support layer.

Fig. 3 shows typical ATR-FTIR spectra of the prepared flat-sheet
membranes which were used to investigate the distribution of SS in the
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Fig. 2. Typical SEM images of the flat-sheet membranes: PES-PVP (A), PES-SS2 (B), PES-SS4 (C), PES-SS6 (D), PES (E) and PES-50 kDa (F). The magnifications are:
images of column 1:350 X, size bar 50 um and images of columns 2 and 3:2500 X, size bar 10 ym. Images of column 2 show the glass-side, whereas the images of

column 3 show the air-side/selective layer.

PES-SS blend membranes. Just like the PES-PVP membranes, the SS
membranes show a characteristic peak at 1680 cm ™! corresponding to
the carbonyl groups of NVP (the hydrophilic block of SS). Besides, the
SS membranes show another characteristic peak at 1740 cm ™! corre-
sponding to the ester group of BMA (the hydrophobic block of SS) [32].

As expected, the spectrum of the pure PES membranes shows no peaks
at these wavelengths, because PES has no carbonyl or ester groups
(Fig. 3A). However, the peak at 1680 cm ™! suggests the presence of a
hydrophilic additive inside the commercial PES-50 kDa membranes.
The characteristic SS peaks at 1680 cm ™! and 1740 cm ™~ are observed
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Table 2

Transport data of PES-PVP, PES-SS2, PES and PES-50 kDa membranes, measured at 1 bar (n = 3).

SCLALBA

FRRafter 1aLBA (%)

Jiazga LMZh™Y)  Jyaer Cm2h™1)

Jwater L.mZh™1)

Jwater LMZh™1) Jgsa LmZh™)  Jyarer @mM>h™")  FRR aper psa (%)  SCasa

UF coefficient (mLh~!m~™2mmHg ")

Membrane

0.42 = 0.01
0.49 = 0.27
0.80 = 0.23
0.87 = 0.21

47
76
59
29

197 = 12

210 = 20

36 =5

0.02 = 0.01 419 = 92

0.30 = 0.11

64
82
59
34

220 = 33
46 + 16

+ 46

79

346 = 10

461

PES-PVP
PES-SS2
PES

29 =1

38 £ 3

49 + 16

56 = 17

75

217 = 10

191 = 32
159 + 33

0.01 = 0.02 367 * 50

131 = 32
249 + 42

117 = 17

93 +7

221 * 35

295

182 = 16

0.02 = 0.01 634 + 198

736 * 273

PES-50kDa 981

in the spectra of the PES-SS blend membranes, as well (Fig. 3A and B).
The intensity of the peaks increases with an increase in SS concentra-
tion inside the membrane: the highest intensity is found in PES-SS6
membranes and lowest in PES-SS2 membranes (Fig. 3B). Importantly,
the PES-SS2 spectra (Fig. 3B) show that there is a higher amount of
carbonyl and ester groups on the air-side than on the glass-side of the
membrane. This indicates that during membrane formation, SS polymer
migrates towards the water non-solvent phase and, thus, resulting in
membranes with higher SS concentration in the selective layer [33].
Similar phenomenon is also observed for PES-SS4 and PES-SS6 mem-
branes where higher concentrations of SS are found at the selective
layer of the membrane.

3.2. Membrane transport properties

During membrane preparation, we noticed that the polymer solu-
tions of PES-SS4 and PES-SS6 were somewhat turbid indicating phase
separation in solution, similar to the observations of Song et al. for
blends with copolymer amounts higher than 5 wt% [33]. Based on this
apparent immiscibility issue, the PES-SS2 membranes were selected for
further studies concerning membrane fouling and were compared to the
controls, PES-PVP, PES and PES-50 kDa membranes.

Protein transport studies - membrane fouling studies: Membrane fouling
due to, for example, protein adsorption on the surface or pore blocking
remains as one of the key factors that hampers membrane performance
over time. Self-evidently, hemodialysis membranes work in direct
contact with blood, so high membrane resistance to protein fouling can
only benefit this application. In this section, we measured the transport
of water, BSA and LALBA solutions through our membranes and we
evaluated the fouling resistance by measuring the FRR of PES-PVP, PES-
SS2, PES and PES-50 kDa membranes after permeation of BSA and
LALBA solutions. Fig. 4 and Table 2 present the change of membrane
flux due to protein transport as well as the change of water flux before
and after the protein transport. Moreover, Table 2 presents the mem-
branes’ ultrafiltration (UF) coefficient.

For the PES-SS2 membranes, there is no significant difference be-
tween the permeance of BSA solution and LALBA solution and both
clean water permeance values (the first and third bar of Fig. 4) in-
dicating very low membrane - protein interaction. This happens even
though both BSA and LALBA can penetrate into the membrane pores
(sieving coefficient of BSA is 0.30 and of LALBA is 0.49, respectively).
In contrast, the BSA solution permeance of the PES-PVP, PES and PES-
50 kDa membranes is much lower than the clean water permeance. This
can be due to either the impact a higher flux has on membrane fouling,
or to the protein interaction with the membranes. Moreover, the sig-
nificant difference between the first and third clean water permeance of
PES-50 kDa membranes shows that these membranes without hydro-
philic additive have poor flux recovery. The low membrane - protein
interaction of the PES-SS2 membranes is also still evident when the
smaller protein LALBA is used. In fact, the results of membrane se-
lectivity (see sieving coefficients in Table 2) show that LALBA can pe-
netrate into the pores of all membranes, though the flux recovery of the
PES-SS2 membranes is the highest (PES-SS2, FRR ~ 80% whereas PES-
PVP, PES and PES-50 kDa membranes have FRR ~ 50%, FRR ~ 60%
and FRR ~ 30%, respectively). The improvement concerning fouling
behaviour could be attributed to the presence of SS, especially its hy-
drophilic NVP block, on the selective layer and inside the pores of PES-
SS2 membranes which prevents protein adsorption. For comparison,
Susanto et al. developed PES-PVP and PES-PEG blend membranes with
similar BSA SC to this study (SC = 0.29 and SC = 0.28 respectively),
but they have much lower BSA FRR than our PES-SS2 membranes
(approximately 28% and 15%, respectively) [9]. Furthermore, the PES-
copolymer 3 wt% blend membranes reported by Song et al. have lower
BSA SC (0.05) than our PES-SS2 membranes and have BSA FRR in the
same range (81.97% for PES-copolymer 3 wt% blend membranes) [33].
This study has shown that the BSA SC can be decreased from 0.83
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(pristine SS membrane [2]) to 0.30 by blending SS and PES. Since he-
modialysis membranes should have little or no albumin leakage, we
plan to develop PES-SS2 hollow fiber membranes suitable for hemo-
dialysis with even lower albumin SC in order to retain albumin in the
future.

All the above results clearly show that the PES-SS2 membranes have
higher fouling resistance in comparison to the control membranes.
However, all these experiments were done using dead-end filtration at a
1 bar transmembrane pressure and for a certain time period. During
dialysis, the proteins flow across the surface of the membrane. It is
therefore important that one also evaluates the protein adhesion during
flow of the solutions above the membrane surface. To achieve this, we
used a microchip device and fluorescent-labelled LALBA under cross-
flow conditions at TMP = 0. To mimic, as close as possible the dialysis
process, we designed the chip channel dimensions and selected the flow
rates of the applied protein solutions (35-130 pL/min) in order to ob-
tain Reynolds numbers of 1.3-4.7, which are in the same range to the
Reynolds numbers in a dialyzer membrane module (0.5-2, corre-
sponding to blood flow rates 150-400 mL/min) [34]. Fig. 5 compares
the results for the PES-50 kDa and PES-SS2 membranes. In Fig. 5A, the
adhesion of the protein onto the membrane channel is presented in
form of the grey scale values (high values indicate higher adhesion of
the LALBA on the membrane surface), whereas in Fig. 5B, it is presented
in form of dye staining (intense membrane coloration demonstrates a
higher concentration of LALBA on membrane surface). The results of
Fig. 5 clearly show that the PES-SS2 membrane has much lower inter-
action with the LABLA (corresponding to much lower grey scale and
lower dye staining) in comparison to the commercial PES-50kDa
membrane, clearly indicating again the higher fouling resistance of the
PES-SS membrane. For both membrane types, an increase in flow rate
results in an increase in gray value (Fig. 5A). Possibly, the increase of
the flow rate and the corresponding reduction of the thickness of the
diffusive boundary layer leads to an increase of the adsorption rate.
Besides, LALBA might suffer from higher shear stress at higher flow
rates, resulting in unfolding of the protein and facilitated membrane —
protein interactions [35]. Nevertheless, for both flow rates the perfor-
mance of the PES-SS is superior to the performance of the PES-50 kDa
membrane.

3.3. Blood compatibility studies

Besides the high fouling resistance, an excellent membrane blood
compatibility is a crucial perquisite for application in dialysis therapy.
Therefore, we performed here an extensive study of the blood com-
patibility of the developed PES-SS2 membranes and we compared it to
benchmark membranes. Fig. 6(A) presents typical SEM images of pris-
tine surfaces (Fig. 6(A, column 1)) and adhered platelets on the mate-
rials’ surfaces "(Fig. 6(A, columns 2—4)). In addition to platelet adhe-
sion, both platelet aggregation and activation were investigated too.
When platelets adhere onto dialyzer membranes, they can form for
instance aggregates that block the blood flow or cause neutrophils to
generate reactive oxygen species [2]. The PES-SS2 membranes show
little platelet adhesion, aggregation and activation. Besides, the plate-
lets that do adhere to the surface are flat and roundly shaped without
pseudopodia (Fig. 6B2-4). In contrast, the PES-50kDa membranes
(Fig. 6C2-4) demonstrate higher platelet adhesion with platelets having
both a more spherical shape and small pseudopodia. Moreover, deposits
of both single adhered platelets as well as clusters of platelets with long
pseudopodia and spherical shapes are observed on the surfaces of PES-
PVP membranes (Fig. 6A2-4) and glass (Fig. 6D2-4), indicating acti-
vation of the adhered platelets. Apparently, the optimal distribution of
hydrophobic and hydrophilic patches in PES-SS2 membranes, prevents
protein adhesion onto the surface and for this reason platelet adhesion
and activation is averted as well. The quantitative test results of
Fig. 6(B,C) show similar trend in platelet adhesion for all membranes,
though one could argue that the LDH assay results show that platelets
adhere less onto PES-PVP membranes. However, the SEM images
(Fig. 6A3-4 and B3-4) show that the adhered platelets of the PES-PVP
membrane in contrast to the adhered platelets of the PES-SS2 mem-
brane, have changed into their activated state. This means that in time,
the adhered platelets of the PES-PVP membrane would release the
contents of their granules, resulting in the activation and eventually
adhesion of more platelets and other cells as well [36,37].

In addition to platelet adhesion, any activation of the patients’
complement system because of blood-membrane contact is an im-
portant indicator of blood compatibility as well. Therefore, the average
percentage of the classical and alternative pathway complement
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activation is shown in Fig. 7. For both pathways, there is no significant
difference between the complement activity of the non-incubated
serum samples and the control samples (incubated serum samples), see
first two bars in Fig. 7. Therefore, any observed decrease in activity
originates from the membrane activating the complement system via
either the classical pathway, the alternative pathway or both. None of
the investigated membranes is likely to activate the complement system
via the classical or alternative pathway, except the DE81 and RC58
membranes of Fig. 7A and B respectively. These cellulose membranes
show a significant decrease in complement activity.

Furthermore, a thrombin generation test is used to evaluate whether
or not the membrane materials trigger the coagulation of patients’
blood. If they do, the enzyme thrombin is generated and it converts,
among other things fibrinogen into fibrin, the primary ingredient of a
clot [38]. A prothrombotic state is defined by (1) a short lag time,
which is the initiation phase of thrombin generation and is the time that
is necessary for the generated thrombin to reach 1/6 of the peak con-
centration, and (2) a high thrombin peak height, which is the rapid
thrombin concentration increase in the propagation phase of thrombin
generation [38]. Fig. 1A and B of Appendix B show a significant dif-
ference between both the lag time and peak height of the glass samples
(positive control) and the incubated PPP controls (negative control).
The lag time of our PES-SS2 membranes is between the negative and

positive control. Moreover, the thrombin peak height of the PES-SS2
membranes is significantly lower than the peak height of the positive
glass control, indicating that the PES-SS membranes do not activate the
intrinsic coagulation pathway.

The PES-SS2 membranes performed very well in the haematology
tests too. The average number of leukocytes that are present in the
blood after incubation with PES-PVP, PES-SS2 and PES-50 kDa mem-
branes is comparable for all membranes (see Appendix B, Fig. 2). Fur-
thermore, the number of leukocytes present in every donors’ blood is in
the normal range (see Appendix B, first bar in Fig. 2). Moreover, the
number of leukocytes in the non-incubated blood samples and their
controls, the incubated blood samples, are in similar range. This means
that the well plates and rubber rings have no influence on the adhesion
of the leukocytes. Finally, the results of the hemolysis test are presented
in the Table B.1. All tested membranes have an average hemolysis
percentage lower than 5% and therefore considered as non-toxic, ac-
cording to the ASTM F-756-08 standard [2]. The PES-SS2 membranes
have comparable good results for the hemolysis percentage as the
benchmark PES-PVP membranes.

Overall, all the above studies show that the PES-SS2 membranes
have very good blood compatibility performance and therefore are
suitable for application in dialysis therapy.



Fig. 8. SEM images of hollow fiber PES-SS2 membranes. Images show cross-sections with magnifications of 200 X, size bar 100 pm (A) and 1000 X, size bar 10 um

(B), zoom-in.

4. Conclusions and outlook

This study presents for the first time the successful development of
low fouling, blood compatible membranes based on blends of PES and
SlipSkin™. Our results show that the membranes with SS of 2 wt% (PES-
SS2) have increased hydrophilicity, higher fouling resistance to pro-
teins and middle-size molecules (better than benchmark membranes)
and very good blood compatibility, comparable to benchmark mem-
branes.

Based on the protocol for fabrication of flat-sheet PES-SS2 mem-
branes (see earlier) we actually also performed preliminary studies for
fabricating PES-SS2 hollow fiber membranes, see Fig. 8 (details about
their fabrication is given in the Appendix C).

These first PES-SS2 fibers have dense inner and outer layers and in
between finger- like pores and larger macrovoids. Despite that, their
mechanical properties are quite good and the membranes can be

handled easily. Their clean water permeanceis7 = 3Lm~2h ™! bar~!
(measured at the TMP-range of 1-2 bar) and it is lower than that of the
PES-SS2 flat-sheet membranes (56 = 17Lm~ 2h~ !'bar™!). Future
studies will focus on further optimization of these fibers and to the
detailed investigation of their performance for filtration of uremic
toxins from human plasma and full blood.
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Appendix A. Microfluidic chip fouling experiments
A.1. Labelling of LALBA

In order to monitor the LALBA distribution and adhesion over time at zero TMP with the microchip, the proteins need to be labelled first
following the protocol of Greene et al. [31]. In short, LALBA was dissolved in sodium bicarbonate buffer to obtain a concentration of 10 mg/mL.
Subsequently, reactive dye was dissolved in 20 uL of DMSO of the labelling kit. After dissolution of both protein and corresponding dye, two mixtures
were transferred into the same vial and stirred gently for 2 h. As the finishing step in the procedure, protein-dye conjugates were separated from free
excess dye by gel filtration columns (size exclusion limit 5 kDa). To start the elution 5 mL of PBS was added. Solvent flow in the column was achieved
by gravity only, without addition of extra pressure. The final protein concentration (mg/mL) was calculated as follows:

Ajgp — 0.05-A o
M-wamtem-dllutlon factor
Eprotein (A~1)

Cprotein =

where Ag,7 is absorbance of the conjugate at 647 nm, Ag, is the absorbance of the conjugate at 280 nm, ep,rein is the molar extinction coefficient of
protein (27,400 cm ™' M~ !) at 280 nm, MWorotein is the molecular weight of the protein (g/mol) and the dilution factor is the dilution of the labelled
conjugate prior to the absorbance measurement. A dilution factor of 10 was used in order to obtain a maximum absorbance in the range from 0.5 to
1. The absorbance of the conjugates was measured with a Libra S12 UV-spectrophotometer (Biochrom, UK). The final conjugate solution was diluted
with PBS in order to achieve a concentration of 50 mg/L as it corresponds to clinically relevant median concentrations of (3,-microglobulin in human
blood [35].

A.2. Experimental set-up

The filtration experiments were performed with two systems: (1) a Zeiss Axio Observer.zlm inverted microscope equipped with a HXP 120C
power supply (Zeiss Axio Vision Software), a filter set 38 (to detect the fluorescence of a-lactalbumin-Atto-647 N), and an automated stage and (2) a
Fluigent MFCS-Flex pressure controller, combined with a FLOWELL flow-controller (MAESFLO software). A total of 3 pressure and 3 flow controllers
were used. Two pressure controllers can supply a pressure of up to 1000 mbar, while the other one goes up to 350 mbar. As for the flow controllers,
the first one can operate at a maximum flow of 7715 pL/min, the second one at maximum flow of 55 pL/min, and the last one at a maximum flow of
1100 pL/min. The microfluidic chips were connected to the tubes of the pressure-flow controller and placed on the microscope stage to start the
experimental protocol (Fig. Al).
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Appendix B. Biocompatibility tests
B.1. Coagulation - thrombin generation

Here, the intrinsic coagulation pathway is studied, because thrombin formation is triggered with phospholipids and calcium ions in this test,
rather than with tissue factor [2]. Fig. BIA and B show the thrombin lag time and peak height of the different samples, respectively.

B.2. Hematology - leukocyte adhesion and hemolysis

Fig. B2 shows the average number of leukocytes (as percentage of initial value) that are present in the blood after incubation with PES-PVP, PES-
SS2 and PES-50 kDa membranes. In general, the adhesion of leukocytes to the PES-SS2 membranes is comparable to the PES-PVP membranes.

Table B.1presents the average hemolysis percentage of the membranes and controls. The well-plate has little effect on the average hemolysis
percentage, as shown by the non-incubated and incubated blood samples (Table B.1). More importantly, the average hemolysis percentage of all
membranes is lower than 5%, indicating their non-toxicity [2].

Table B1
Average percentage hemolysis (%) * standard deviation (n = 2 of
donors 7, 8 and 9).

Membrane Hemolysis (%)
Non-incubated sample 0.01 = 0.01
Control (incubated blood) 0.09 + 0.03
PES-PVP 1.01 = 0.17
PES-SS2 0.96 + 0.17

PES-50 kDa 0.6 = 0.05
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Appendix C. Fabrication of PES-SS2 hollow fibers

PES-SS2 hollow fiber membranes were prepared by dry-wet spinning via immersion precipitation. First, 15 wt% PES was dissolved in NMP and
then 2 wt% SS was added. The polymer solution was mixed on a rollerbank for at least 48 h and degassed for 24 h before the spinning process.

The polymer solutions were pumped through the spinneret using a speed of 1 mL/min at room temperature (the dimensions of the spinneret are
listed in Table C1 below). To create the bore, ultrapure water was pumped through the spinneret with a speed of 5.8 mL/min. After an airgap of
10 cm between the spinneret and the ultrapure water - coagulation bath, the fiber was collected using a pulling wheel with a speed of 18.6 m/min.

Table C1

Fabrication conditions of the PES-SS2 hollow fiber membranes.

Spinning parameters

PES-SS2

Inner diameter needle of spinneret
Outer diameter needle of spinneret

Inner diameter first orifice of spinneret
Outer diameter first orifice of spinneret
Inner diameter second orifice of spinneret

Polymer dope pumping speed
Bore liquid pumping speed
Air gap

Pulling wheel speed

0.2mm
0.5mm

0.8 mm
1mm

1.0 mL/min
5.8 mL/min
10cm

18.6 m/min

Appendix D. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.seppur.2019.05.049.
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