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Abstract 

The flash method has been the standard technique for the measurement of thermal diffusivity since it 
was first developed by Parker and co-workers. Several modifications of the original method have been 
proposed in the literature, to deal with different physical situations and materials. In this work, we 
extend the front-face flash method for the simultaneous estimation of the thermal diffusivity and 
thermal conductivity of aerodynamically levitated spherical solid metal samples at high temperatures, 
with laser excitation and contactless temperature measurements taken with a pyrometer. The 
mathematical model associated to the physical problem is formulated as an axisymmetric heat 
conduction problem, with heat losses by radiation and convection. Since the measurements of a 
pyrometer are in fact radiative fluxes, the transfer function of the pyrometer is integrated in the 
mathematical model. A sensitivity analysis is performed and reveals that the thermal diffusivity and 
the thermal conductivity of the sample can be simultaneously estimated, provided that the other model 
parameters are known. The solution of the inverse problem is obtained with algorithms within the 
Bayesian framework of statistics, by using a heat conduction reduced model with linear boundary 
conditions, for which an analytical solution is developed for fast computations. The Bayesian 
Approximation Error Model is used to compensate for errors between a complete heat conduction 
model with nonlinear boundary conditions and a reduced heat conduction model with linear boundary 
conditions. Moreover, errors related to the inaccuracy and the uncertainties of all model parameters are 
accounted for in the inverse analysis. Simulated transient flux measurements are assumed available 
from a multi-spectral pyrometer and are used for the inverse problem solution. 
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NOMENCLATURE 

A Metropolis-Hastings ratio 

Bi Biot number 
f laser source spatial and temporal distribution  

1 2d
F −   form factor between a differential surface element and a finite surface 

HMi amplitude correction of the pyrometer transfer function 
J reduced dimensionless sensitivity coefficients 
J sensitivity matrix computed with the complete model 
k thermal conductivity 

0
Mλ  black body emittance  

P parameter 
P vector of sought parameters  
q0 maximum laser radiation flux  
r radial coordinate within the sphere 
r0 Gaussian radius of the laser beam  
R sphere radius 
Sref reference surface observed by the pyrometer 
SV surface observed by the pyrometer 
T temperature 
X sensitivity matrix computed with the reduced model 
Y vector of measurements 
Z vector of auxiliary parameters 
 

Greek Symbols 

α thermal diffusivity 
ε emissivity 
κ absorptivity 
θ polar angle in the sphere 
θspot location of the extreme point of the surface observed by the pyrometer 
λ wavelength 

µ transformed θ coordinate, defined as cos θ 
µ spot cosine of the location of the extreme point of the surface observed by the pyrometer 
µ0 cosine of the incidence angle of the beam 
τ dimensionless time 
φ spherical coordinates 
σ Stefan-Boltzmann constant 
Φ radiative flux 
Ψ vector of the complete set of parameters 

π(a|b) conditional probability density of a when b is given  
 
 

Subscripts and Superscripts  

conv convective 
eff combined convection and radiation 
F quasi-steady state problem 

H problem with homogeneous boundary conditions 
h pulse duration 
j parameter number 
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rad radiation 
red reduced 
* dimensionless 
0 initial or peak value 
λ spectral 
∞ ambient 
t state of the Markov chain 
i index of the measurement time 
s index of a spectral channel of the pyrometer 
ref reference value 
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1. INTRODUCTION 

The measurement of thermophysical properties of metallic materials at high temperatures 

is very challenging, due to possible chemical reactions between the sample and container, but 

also due to convection inside the sample in the case of molten metals [1–6]. As a 

consequence, literature data on the thermophysical properties of metals at high temperatures is 

far from complete. Accurate thermophysical properties of metals at high temperatures are of 

great importance for numerical simulations, used for analysis and design of engineering 

processes like welding and additive manufacturing. Levitation techniques, together with 

contactless excitation and measurements, have been proposed in order to avoid sample 

contamination during thermal characterization of metals at high temperatures [1–3,5,7–12]. 

By using levitation techniques, physical properties, like density, surface tension and viscosity, 

as well as some structural properties of liquid metals, were successfully measured under 

terrestrial and microgravity conditions [3,13–15] . On the other hand, as pointed out in the 

literature[3,16], the measurement of transport properties, like diffusion coefficient and 

thermal diffusivity of molten metals in containerless environment, are prone to measurement 

errors due to unavoidable convective effects.  

Thermal diffusivity is commonly measured with the flash method, a technique developed 

by Parker and co-workers [17], which is an ASTM standard [18]. The basic flash method 

consists in uniformly heating a thin sample with a short light pulse on its front surface and 

measuring the temperature rise at the rear surface. The measured temperature rise is then 

compared with a theoretical temperature profile obtained from the solution of a one-

dimensional heat conduction model and the thermal diffusivity can be identified from simple 

algebraic equations or via parameter estimation [2,19–26]. Extensions of the flash method 

were proposed in order to deal with different physical situations, including levitated metals, in 

solid and liquid states, at high temperatures [1,2,27]. In some of these works, advanced 

thermal models for the flash method, together with inverse parameter estimation techniques, 

were used for the estimation of the thermal diffusivity. These advanced thermal models 

require other auxiliary model parameters, which are not of primary interest but must be 

known for an accurate estimation of the thermal diffusivity. A common feature of these 

previous works is that the solution of the inverse problem was obtained by considering the 

auxiliary parameters as deterministically “known”. Therefore, the values estimated for the 

thermal diffusivity did not reflect actual uncertainties in the judged “known” model 

parameters. On the other hand, the solution of inverse problems within the Bayesian 
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framework of statistics can cope with uncertainties of all parameters appearing in the 

mathematical formulation of the physical problem [28,29]. Although very robust, the 

computational cost related to the solution of inverse problems within the Bayesian framework 

can be very high and one might need to use reduced order models. The proposed Bayesian 

Approximation Error approach, referred to as AEM [28], allows for the use of reduced order 

models by constructing a statistical model for the modelling errors, which are treated as an 

additional noise in the measurement model. Furthermore, the approach provides an effective 

way for the treatment of uncertainties related to auxiliary parameters [28–33]. 

In this paper, a methodology is proposed for the extension of the front-face flash method 

to aerodynamically levitated metal samples in the solid state and at high temperatures. The 

theoretical model is based on a transient two-dimensional heat conduction problem, with axial 

symmetry and with heat losses by radiation and convection. Simulated transient radiative flux 

measurements are assumed available from a multispectral pyrometer, for the inverse analysis. 

Since the pyrometer measures radiative fluxes, the approach developed here integrates its 

transfer function in the theoretical model. The inverse parameter estimation problem in this 

work deals with the simultaneous estimation of thermal diffusivity and thermal conductivity 

of the levitating metal sample. The inverse problem is solved within the Bayesian framework 

of statistics, which allows that uncertainties related to the auxiliary parameters be considered 

in the analysis. Similarly, modelling errors resulting from the use of a reduced model, instead 

of a complete model, are appropriately accounted for, with the Bayesian approximation error 

approach. The main purpose of this paper is to demonstrate the feasibility of the proposed 

methodology for estimating simultaneously the thermal diffusivity and the thermal 

conductivity of a levitating metal sample at high temperatures. This work is under 

development and is built upon the experimental facility described next. 

2. EXPERIMENTAL SETUP 

For the thermal characterization of metallic materials, in solid or liquid states at high 

temperatures, an experimental facility using aerodynamic levitation of samples was 

developed. Aerodynamic levitation is chosen as the containerless technique for this setup 

because it is independent of the heating system and of the acoustic excitation, which are used 

for the flash method and for the measurements of viscosity and surface tension. A gas (argon) 

is blown from below on a spherical-shaped sample of metal in the solid or liquid state, of a 

few millimeters in diameter, through a conical nozzle of 60°, in order to counterbalance the 

effect of gravity and to levitate the sample (see figure 1). The nozzle is made of boron nitride 
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because of its low wettability, which avoids attachment of the sample in the liquid state. 

Furthermore, the high melting point of boron nitride avoids a dedicated cooling system for the 

nozzle. Another choice of material for the nozzle is copper owing to its high thermal 

conductivity and low emissivity. A Ytterbium fibre laser (1 070 nm) of maximal output power 

300 W (CW mode) from IPG Photonics providing a Gaussian intensity distribution is used for 

heating the metal sample, as well as for providing the pulse for the Flash method.  

Figure 1 presents the experimental setup. A cubical enclosure of dimension 

15cmx15cmx15cm keeps the sample in a non-oxidizing environment. Four windows of the 

enclosure, made of silicate boron or sapphire, enable the laser heating and the measurements. 

Through the top window, the sample can be heated continuously by the laser to temperatures 

ranging from 20 °C to 3 500 °C, then the heating is ceased and the sample is let to cool-down 

to the desired high initial temperature, which is below the melting point. With the heating 

ceased, the levitated sample of metal owing to its high thermal conductivity and its small size 

(3 mm) rapidly satisfy the lumped body assumption (Biot < 0.1). Thus, the initial temperature 

of the sample can be considered as uniform. When the sample reaches the desired initial 

temperature, a short laser pulse is used for the thermal diffusivity measurement, such as in the 

flash method. A fast optical camera (Photron SA5) is mounted with macro lenses at one of the 

lateral sides of the cubical enclosure. This fast optical camera operates at 1 kHz to measure 

morphological changes of the sample, or contamination of the sample surface. The analysis of 

the acquired optical images allow for the measurement of density as a function of 

temperature, as well as the viscosity and the surface tension through an oscillatory acoustic 

excitation of the sample in liquid state [34–36]. An infrared camera (FLIR X6580sc) is used 

for temperature measurements, through one of the lateral windows. Finally, part of the sample 

radiative emission goes through the sapphire window on the top of the cubical enclosure and 

is collected by a multispectral pyrometer, after passing through a collimator. With the help of 

dichroic mirrors, this pyrometer separates the collected radiative flux in the direction of six 

monochromatic filters with photodetectors that measure quasi-monochromatic fluxes at mean 

wavelengths of 480 nm, 530 nm, 680 nm, 850 nm, 940 nm and 1 550 nm.  

The pyrometer transfer function, which relates the theoretical flux at each photodetector 

to the flux emitted from the surface of the sample that reaches the pyrometer and is collected 

by the collimator, is given by assuming an opaque and diffuse surface and a nonparticipating 

surrounding medium as [37,38]: 
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where ,pyroλε  is the normal spectral emissivity of the sample at the mean wavelength of the 

photodetector, ( )0M Tλ  is the emittance of the sample at temperature T, 1 2d
F −  represents the 

view factor between a differential surface element on the sample surface seen by the 

pyrometer and the disk-shaped collimator, and is readily obtained from [39,40], while the 

exponential function represents the Gaussian-shaped monochromatic filters centred on iλ  and 

with standard deviation 
iλσ . HMi is an amplitude correction of the transfer function for each 

wavelength of the pyrometer, and accounts for radiative flux losses in the optical system of 

the pyrometer and other non-quantifiable factors. A calibration of the pyrometer was 

performed, aiming at obtaining an estimate of the parameters HMi, by comparing the 

theoretical flux given by equation (1) to the measured flux for selected experiments. This 

calibration procedure for the temperature range of 900°C - 2500°C, obtained with pure metals 

at their melting points, was reported by the authors in [38].  

3. PHYSICAL PROBLEM AND MATHEMATICAL FORMULATION 

 The physical model associated to the experimental setup described above for the 

extended front-face flash method assumes a levitating solid metal in the form of a sphere, 

initially at an elevated and uniform temperature T0, and then subjected to a short pulse laser 

irradiation with Gaussian spatial profile and temporal profile u(t) given as,  

2

0 2
0

2 b
b

r
Q( r ,t) q u(t)exp

r

 −=  
 

      (2) 

where q0 is the maximum laser radiation flux, rb is the radial distance from the center of the 

beam, and r0 is the Gaussian radius of the beam, as illustrated by figure 2(a). The temporal 

profile of the laser source is either a square pulse (figure 2(b)) or an exponentially decaying 

pulse (figure 2(c)).

 

The incident laser beam is assumed co-axial with the levitating metal, so 

that the problem can be formulated as two-dimensional with axial symmetry. The levitated 

solid metal exchange heat with the surroundings by radiation and convection [2]. The 

measurements used in this work are the radiative fluxes collected by the multispectral 

pyrometer. Hence, the approach proposed here integrates the pyrometer transfer functions (1) 

in the theoretical model. 
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Hereafter two models, referred to as the complete model and the reduced model, are used 

to describe the heat transfer process of the extended front-face flash method, for the 

characterization of metallic materials in solid state at high temperatures, as described below. 

The thermophysical properties of these two models were supposed constant, since the 

temperature increase provided by the flash laser is small.  

3.1 The complete model 

The mathematical formulation of the heat conduction problem in dimensionless form 

in spherical coordinates (r, θ, φ), with transformed polar angle µ = cos θ and associated initial 

and boundary conditions, is given by: 

( ) ( ) ( ) ( )* * * * * *

*2 2

* *2 * * *2

, , , , , ,1 1 1
1

T r T r T r
r

r r r r

µ τ µ τ µ τ
µ

α τ µ µ

   ∂ ∂ ∂∂ ∂
   = + −
   ∂ ∂ ∂ ∂ ∂
   

   

*0, 0 1, 1 1rτ µ> ≤ < − ≤ ≤    (3.a) 

( ) ( )( ) ( )( ) ( )
* *

* *4 * *4 * * * *
, 0 0*

, ,
, , , , , , ,

rad conv laser h

T r
k Bi T r T Bi T r T q f

r
λ

µ τ
µ τ µ τ κ µ τ µ τ∞ ∞

∂
+ − + − =

∂
* 1, 1 1, 0r µ τ= − ≤ ≤ >     (3.b) 

* * *( , , ) 1 , 0 1 , 1 1 , 0T r rµ τ µ τ= ≤ ≤ − ≤ ≤ =      (3.c) 

where, for the radiative transfer, it was assumed that the surrounding surface is in thermal 

equilibrium with the gas inside the enclosure. The dimensionless measured radiative flux 

given by: 

( )
2

13
2, 1 2* 0 2

i

3

( )

ii i

i

i Vi

pyro d

s M k

ref ref S

F
M T H e d S d

q S

λ
λ

λ

λ λλ σ
σλ

λ
λ σ

ε
τ λ

 −+  −
 −  

−

Φ = ∫ ∫     (4) 

The following dimensionless parameters were introduced for the model formulation: 

( )*

0

, ,
;

T r t
T

T

µ
=          (5.a) 

*

0

;
T

T
T

∞
∞ =         (5.b) 
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* ;
r

r
R

=            (5.c) 

2

ref t

R

α
τ =              (5.d) 

*

ref

αα
α

=            (5.e) 

* ;
ref

k
k

k
=             (5.f) 

;conv
conv

ref

h R
Bi

k
=            (5.g) 

3
0 ;losses

rad

ref

RT
Bi

k

ε σ=           (5.h) 

* 0
0

ref

q
q

q
=              (5.i) 

* s
s

ref refq S

ΦΦ =               (5.j) 

with, 

0ref

ref

k T
q

R
=               (5.k) 

22 (1 )
ref spot

S Rπ µ= −               (5.l) 

and the subscript ref denotes a reference value for the material being characterized. These 

reference values can be taken from the literature for similar materials. Sref  is a reference 

surface, given by the area of the spherical cap observed by the pyrometer around the 

symmetry axis. In the formulation of equation (3.b), the boundary heat source term 

( )0, , ,
h

f µ τ µ τ  represents the spatio-temporal profile of the laser excitation (2) written in 

terms of the transformed polar angle µ  and of the dimensionless time τ. The functional form 

of 
0( , , , )

h
f µ µ τ τ  was written in terms of the product of functions 

0( , )g µ µ  and ( , )
h

u τ τ , 

representing the spatial and temporal profile, respectively. These functions are given as, 

2

0 2
0

(1 )
( , ) exp 2

(1 )
g

µµ µ
µ

 −= − − 
        (6) 
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for the spatial distribution, while the temporal profile is either a square pulse represented by    

( ) ( )1 1
( , ) 1 ( ( )) 1 ( ( ))

2 2
h a d

u erf erfτ τ φ τ τ φ τ τ= + − − + −   (7.a) 

or an exponential decaying pulse 

2

2
( , ) exp 2

4
h

h h

u
τ ττ τ
τ τ

 
= − 

 
      (7.b) 

In the above equations, φ  is a smoothing parameter (φ=2700), while subscripts “a” and “d” 

refer to the ascent and descent time of the square pulse. 

For the solution of the complete model given by equations (3), the finite element method 

was used through the COMSOL Multiphysics® 4.3b commercial package.  

3.2 The Reduced Model 

Some attempts were made in using the solution of the complete model described above 

for the solution of the inverse problem, but they have resulted in a high computational cost 

(several days). For the purpose of speeding-up the inverse problem solution, a reduced model 

is proposed here. This reduced model involves linear boundary conditions, with a combined 

heat transfer coefficient that takes into account heat losses by radiation and convection. The 

mathematical formulation for such a linearized problem in dimensionless form is given by: 

( ) ( ) ( ) ( )* * * * * *

*2 2

* *2 * * *2

, , , , , ,1 1 1
1

T r T r T r t
r

r r r r

µ τ µ τ µ
µ

α τ µ µ

   ∂ ∂ ∂∂ ∂
   = + −
   ∂ ∂ ∂ ∂ ∂
   

   

*0, 0 1, 1 1rτ µ> ≤ < − ≤ ≤  (8.a) 

( ) ( )( ) ( )
* *

* * * * *
, 0 0*

, ;
, ; , , ,

eff laser h

T r
k Bi T r T q f

r
λ

µ τ
µ τ κ µ µ τ τ∞

∂
+ − =

∂
     

* 1, 1 1, 0r µ τ= − ≤ ≤ >  (8.b) 

* * *( , , ) 1 , 0 1 , 1 1 , 0T r rµ τ µ τ= ≤ ≤ − ≤ ≤ =      (8.c) 

An analytical solution of the heat conduction problem (8) is obtained through the 

Classical Integral Transform Technique[41]. In order to reduce the importance of the 

nonhomogeneous boundary condition (eq. 8.b) on the convergence of the series solution, the 

solution of the problem is defined as the sum of the solutions of a quasi-steady state heat 

conduction problem with nonhomogeneous boundary condition (filtering problem) and a 
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transient heat conduction problem with homogeneous boundary conditions (filtered problem) 

by assuming [42,43]: 

( ) ( ) ( )* * * * * *, , , , , ;H FT r T r T rµ τ µ τ µ τ= +       (9) 

where ( )* * , ;FT r µ τ  and ( )* *, ,HT r µ τ  are respectively the solutions of the following problems : 

( ) ( ) ( )* * * *

*2 2

*2 * * *2

, ; , ;1 1
1 0

F F
T r T r

r
r r r r

µ τ µ τ
µ

µ µ

   ∂ ∂∂ ∂
   + − =
   ∂ ∂ ∂ ∂
   

    

*0, 0 1, 1 1rτ µ> ≤ < − ≤ ≤       (10.a) 

( ) ( ) ( )
* *

* * * * *
, 0 0*

, ;
, ; , , ;

F

eff F laser h eff

T r
k Bi T r q f Bi T

r
λ

µ τ
µ τ κ µ τ µ τ ∞

∂
+ = +

∂     

*0, 0 1, 1 1rτ µ> ≤ < − ≤ ≤       (10.b) 

and  

( ) ( ) ( ) ( )* * * * * *

*2 2

* *2 * * *2

, , , , , ,1 1 1
1

H H HT r T r T r
r

r r r r

µ τ µ τ µ τ
µ

α τ µ µ

   ∂ ∂ ∂∂ ∂
   = + −
   ∂ ∂ ∂ ∂ ∂
   

   

( )* *

*

*

, ;1
, 0, 0 1, 1 1

FT r
r

µ τ
τ µ

α τ
∂

− > ≤ < − ≤ ≤
∂

   (11.a) 

( ) ( )
* *

* * * *

*

, ,
, , 0 , 1, 1 1, 0

H

eff H

T r
k Bi T r r

r

µ τ
µ τ µ τ

∂
+ = = − ≤ ≤ >

∂
 (11.b) 

( ) ( )* * * * *, , 1 , ; , 0 r 1, 1 1, 0H FT r T rµ τ µ τ µ τ= − ≤ ≤ − ≤ ≤ =   (11.c) 

The solution of the quasi-steady state problem given by equations (10) is obtained as [41]: 

( ) ( )
( ) ( ){ }

*( )

* * * *
, 0*

0

2 1
, ; , ( ) ( )

2

n

n

F laser h eff

n eff

P rn
T r q u g n Bi T p n

k n Bi
λ

µ
µ τ κ τ τ

∞

∞
=

+ = +  + 
∑   (12) 

where n = 0,1,2,3… are the eigenvalues associated to the eigenfunctions ( )
n

P µ , which are 

Legendre polynomials of order n. The integral transformed terms ( )g n  and ( )p n  appearing in 

equation (12) are defined respectively as, 
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( ) ( )
1

0

' 1

( ) , ng n g P d
µ

µ µ µ µ
=−

′ ′ ′= ∫      (13.a) 

( )
1

' 1

( ) np n P d
µ

µ µ
=−

′ ′= ∫        (13.b) 

 The solution of the transient heat conduction problem with homogeneous boundary 

conditions given by equations (11) is obtained as [41]: 

( ) ( ) ( )

( ) ( )
( ) ( ) ( )* 2

* * * 1/2 *
1/2

0 1

*
3/2, 0

*

2 1
, , ,

2 ( )

,np

H n n np

n p np

n nplaser

np np

npeff

n
T r r P J r

N

Jq
e F n g n L

k n Bi

α λ τ λ

µ τ µ λ
λ

λκ
λ λ

λ

∞ ∞
−

+
= =

+−

 +=   
 

  − 
+  

∑∑

   (14) 

with the terms ( , )
np

F nλ , ( )npL λ , ( )npN λ  given respectively by: 

( ) ( )

( )
( ){ }

1 1
*3/2 * *

1/2

0 ' 1

3/2 * *
, 0*

, ( , )

( , ) ( ) ( )

np n n np

n np

laser h eff

np eff

F n r P J r d dr

J
q u g n Bi T p n

k n Bi

µ

λ

λ µ λ µ

λ
κ τ τ

λ

+
=−

+
∞

′ ′=

− +
+

∫ ∫

(15.a) 

( ) ( )* 2 ( )

' 0

,
np h

np

u
L e d

τ
α λ τ τ

τ

τ τ
λ τ

τ
′− −

=

′∂
′=

′∂∫      (15.b) 

 

( ) ( )
2

*2
1/2

2 2

*

1 2

2 ( 1/ 2)

np

np n np
eff

np

kN J
Bi

n
k

λ
λ λ

λ
+

=
−

+ − +

    (15.c) 

 

where 
*

1/2( )
n np

J rλ+  is the Bessel function of order n+1/2, and the terms ( )g n , ( )p n  are given by 

equations (13). 

The eigenvalues 
n pλ  are obtained from the following transcendental equation [41]:  

( ) ( )
*

1/2

1/2*
2 0

eff
n np

np n np

np

k
BidJ

J
d k

λ
λ λ

λ
+

+

−
+ =      (16) 
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It is worth mentioning that, for computational efficiency, the double summation in equation 

(14) was rearranged in the form of a single summation by reordering the eigenvalues 
2
np

λ  in 

increasing order [44]. Furthermore, the different integrals appearing in the analytical solution 

were precomputed using MATLAB® symbolic computation capabilities. 

4. DIRECT PROBLEM AND INVERSE PROBLEM 

The direct problem, associated with the above physical problem consists in determining 

the temperature distribution at discrete angular positions on the surface seen by the pyrometer 

and the corresponding flux collected by the multispectral pyrometer, from the knowledge of 

initial, boundary conditions, heat source, geometry and thermophysical properties of the solid 

metal sample.  

Regarding the inverse problem, the objective is the estimation of the thermal diffusivity 

of the solid metal from the measured flux by the multispectral pyrometer. However, the lack 

of knowledge and/or the uncertainties on the parameters appearing in the mathematical 

formulation, like the thermal conductivity of the solid metal, its total hemispherical 

emissivity, the heat losses and the laser parameters (irradiance, spot size, pulse width), must 

be taken into account. A sensitivity analysis is later performed to determine whether these 

parameters can be estimated together with the parameter of interest. For the solution of the 

inverse problem, techniques within the Bayesian framework of statistics are used here. These 

techniques are described next. 

5. SOLUTION OF THE INVERSE PROBLEM 

Differently from classical inverse problem methodologies, techniques within the 

Bayesian framework consist of a probabilistic approach with prior and measurement error 

modelling, which offers a natural support for uncertainties quantification related to the 

solution of the inverse problem [28,29]. Consider, for the sake of generality, the vector of 

parameters appearing in the mathematical formulation of the physical problem as: 

ΨT = [Ψ1, Ψ2,…, ΨN]         (17) 

and the vector of the available measurements as  

YT = [Y1, Y2, ..., YI]        (18) 

where N is the number of parameters and Yi are vectors of size Sx1, with S the number of 

measurements sensors, while I is the number of measurements taken with each sensor.  
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The Bayes theorem is given by: 

( ) ( )
( ) ( )

( )

priori

posteriori

π π
π π

π
= =

Ψ Y Ψ
Ψ Ψ Y

Y
     (19) 

where, ( )π YΨ   is the likelihood function, which is the statistical model of the measurement 

errors; and ( )prioriπ Ψ   is the prior probability density of the parameter vector Ψ , which 

corresponds to the information available for Ψ  before the measurements are taken. The 

marginal probability density of the measurements ( )π Y  plays the role of a normalizing 

constant, its calculation is difficult and generally not needed. The posterior probability density 

( )posterioriπ Ψ  combines the prior probability density of Ψwith the information provided by the 

measurements Y [28,29,45].  

We assume in this work additive measurement errors, so that we can write: 

*( )= +Y Φ Ψ e         (20) 

where *
Φ  is the solution of the forward problem, given either by equations (3) or equations 

(8), and e is a vector that represents the measurement noise. Assuming that e is Gaussian [28], 

with mean e  and covariance matrix eW , the likelihood function is given as: 

1/2/2 * 1 *1
( ) (2 ) exp [ ( ) ] [ ( ) ]

2
D Tπ π −− − = − −Φ − −Φ − 

 
e eY Ψ W Y Ψ e W Y Ψ e   (21) 

where, D=SI is the number of measurements. 

A common assumption made in the definition of the measurement model given by 

equations (20) and (21), hereafter referred to as Conventional Error Model (CEM), is that 

*( )Φ Ψ  actually represents all the physical phenomena involved in the problem, that is, it is 

computed with an extremely accurate solution of a hypothetical perfect mathematical model. 

In this work, we assume that such is the case with the numerical solution obtained with the 

complete model formulation given by equations (3). Therefore, when the complete model is 

used to compute 
*( )Φ Ψ , we assume that the mean of e is zero ( 0=e ) and that eW  is the 

covariance matrix of the measurement errors. 

However, obtaining sufficiently accurate solutions in many engineering applications 

requires the use of complex physical models with sufficiently refined meshes, thus leading to 
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computational times that are extremely large even with nowadays computer power. Since 

inverse algorithms usually require several evaluations of the forward problem, the 

computational cost of the inverse problem solution can be prohibitive, if such complete 

models are used. A clear solution for these situations is the use of reduced order models. 

However, the approximation errors between the solutions of the complete and reduced models 

needed to be accounted for in the likelihood function, as described next. 

6. APPROXIMATION ERROR MODEL 

In the Approximation Error Model (AEM) proposed by Kaipio and Sommersalo [28], the 

errors related to the use of the reduced model, instead of the complete model, are treated as 

Gaussian variables that are added to the measurement noise. Statistics of the Approximation 

Error are computed via Monte Carlo simulations before the solution of the inverse problem, 

based on the prior distributions for the model parameters that need to have finite variances. In 

the so called Enhanced Approximation Error Model [28,30,31,46–49], the statistics of the 

approximation error are assumed independent of the model parameters. These offline Monte 

Carlo simulations can also be used for pre-marginalization of parameters that are not of 

primary interest for the inverse problem solution [28]. In other words, the approximation error 

model, besides accounting for modelling errors, may incorporate uncertainties associated with 

some model parameters that are not really sought in the inverse problem solution. 

 Consider [ , ]T T T=ψ P Z , where Z is the vector containing the parameters that are not of 

primary interest and P is the vector of sought parameters that are the target of the inverse 

problem solution. For the problem under study, these are defined respectively as 

*
, , 0 i 1 2[ ]T

rad pyro laser conv M d
Bi q Bi H Fλ λε κ −=Z  and 

* *[ ]T
kα=P . Equation (20) is then 

rewritten as: 

*( , )= +Y Φ P Z e         (22) 

Instead of using the complete model 
*( , )Φ P Z  for the solution of the inverse problem 

(equations (3) in the present work) and treat P and Z as unknown, we set the values of Z as Z0 

and make use of the reduced model given by equations (8) to compute 
*

0( , )redΦ P Z . The 

analytical solutions given by equations (12) – (16), with a small number of terms in the 
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eigenfunction expansion, are used to compute 
*

0( , )redΦ P Z  with low computational times. 

Thus, equation (22) becomes 

*
0( , ) ( , )red= +Y Φ P Z η P Z        (23) 

with  

( , ) ( , )= +η P Z υ P Z e              (24) 

Therefore: 

* *
0( , ) ( , ) ( , )red= −υ P Z Φ P Z Φ P Z        (25) 

represents the combined errors resulting from model reduction and pre-marginalization of Z.  

It is worth noting that, the modelling error υ  is dependent on the sought parameters P. 

Since Bayesian inference makes use of probabilistic modelling of the prior information, an 

estimation of the modelling error can be obtained a priori with a Monte Carlo simulation 

based on the prior distributions for P and Z. Then, the solution of the inverse problem can be 

obtained with the reduced model and the statistics of the modelling and pre-marginalization 

errors [28–33,47–50]. By assuming that the modelling and the measurements errors are 

Gaussian with mean | ,P Zη and covariance matrix ηW , the likelihood function based on 

*
0( , )redΦ P Z is given by: 

1/2/2 * 1 *
0 0 | , 0 | ,

1
( , ) (2 ) exp [ ( , ) ] [ ( , ) ]

2
D T

red redπ π
−− − = − − − − − 

 
η P Z η P ZY P Z W Y Φ P Z η W Y Φ P Z η  

            (26) 

where: 

| , ≈ +P Zη υ e           (27) 

≈ +η υ eW W W         (28) 

In equations (27) and (28), υ and e are the means, while υ
W  and eW  are the covariance 

matrices of υ  and e, respectively. Such as in the Conventional Error Model described above, 

the mean e of the measurement uncertainties can be set to zero after calibration of the 
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observation sensors. We note that the linear dependence between υ  and (P, Z) was neglected 

in equations (27) and (28), which is referred as the Enhanced Error Model [28].  

 With the solutions of the complete and reduced models, given respectively by equations 

(3) and (12)-(16), the samples ( )mυ  representing the approximation error can be obtained with 

Monte Carlo simulations as [28]: 

* *
( ) ( ) ( ) ( ) 0( , ) ( , )
m m m red m

= −υ Φ P Z Φ P Z       (29) 

with   1, 2,...,m M= . ( )mP  and ( )mZ  are sampled from the prior probability densities assumed 

for the parameters P and Z, respectively. With the samples ( )mυ  of the approximation error, 

the mean υ and the covariance matrix υ
W  of the approximation error can be computed as: 

( )
1

1 M

m

mM =
= ∑υ υ       (30) 

( )( ) ( )( )
1

1

1

M T

m m
mM =

= − −
− ∑υW υ υ υ υ     (31) 

By assuming Gaussian prior probability density with mean * *T
kα =  μ  and 

covariance matrix 
*

*

2

2

0

0
k

α
σ

σ
 

=   
 

V  for the vector of unknown parameters P, and that the 

likelihood function is given by equation (26), then the posterior probability density of P is 

also Gaussian and can be written as: 

[ ] 0

1
ln ( | ) ( ) ln 2π ln | | ln | | ( , )

2
MAP

D N Sπ  ∝ − + + + + η
P Y W V P Z  (32.a) 

where: 

* 1 * 1
0 0 | , 0 | ,( , ) [ ( , ) ] [ ( , ) ] [ ] [ ]T T

MAP red red
S − −= − − − − + − −P Z η P ZP Z Y Φ P Z η W Y Φ P Z η P μ V P μ

  

           (32.b) 

 A point estimate can be obtained for P at the maximum of the posterior probability 

density (MAP). Hence, the estimation procedure becomes an optimization problem, which 
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consists in the minimization of the maximum a posteriori objective function 0( , )
MAP

S P Z  

[28,30], that is,  

0arg min ( , )
KMAP MAP

R
S

∈
=

P
P P Z       (33) 

Such a maximum a posteriori objective function is referred as MAP-AEM in the sequel [28]. 

For nonlinear estimation problems, such is the case under study, the iterative procedure of 

the Gauss-Newton method for the minimization of the MAP-AEM objective function is given 

by: 

1 1 1 1 1 * 1
0 | ,[ ] { [ ( , ) ] ( )}k k T T k k

red

+ − − − − −= + + − − + −
η η P ZP P X W X V X W Y Φ P Z η V Pµ  (34) 

where the subscript k refers to the iteration number and X is the sensitivity matrix computed 

with the estimate Pk defined by,  

**
,11,11

1

* *
,S1 ,S1

1*
,

**
,1,1

1

* *
,S ,S

1

redred
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red red

T N
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     (35) 

Approximate posterior covariance estimates for MAP
P  can be obtained as follows [28]: 

1 1 1
|

ˆ [ ]T − − −= +
P Y η

W X W X V        (36) 

On the other hand, if the chosen estimator is the mean of the posterior probability density, 

the estimation procedure yields an integration problem and Markov Chain Monte Carlo 

Methods (MCMC) are used to obtain samples distributed like the posterior. In order to 

implement the Markov Chain, a probability density q(P**,P
(t-1)

) is required, which gives the 

probability of moving from the current state in the chain P
(t−1)

 to a new state P**. The 
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Metropolis-Hastings algorithm [28,51,52] was used in this work to implement the MCMC 

method, in addition to the MAP estimator. It can be summarized by the following steps: 

1. Sample a Candidate Point P** from a proposal distribution q(P**,P
(t-1)

) 

2. Calculate: 

( )( )
( ) ( )( )

1 **

1 1*

*

*

*( | ) ,
min 1,

( | ) ,

t

t t

q

q
A

π

π

−

− −

 
 =
 
 

P P

P P P

P Y

Y
  

3. Generate a random value U which is uniformly distributed on (0,1). 

4. If U ≤ A, define P
(t)

 = P**. Otherwise, define P
(t)

 = P
(t-1). 

5. Return to step 1 in order to generate the sequence {P
(1)

,P
(2)

,…, P
(n)

}. 

Therefore, a sequence that represents the posterior distribution is generated and inference 

on this distribution is obtained from inference on the samples  

{P
(1)

 , P
(2)

 , …, P
(n)

}. We note that the values of P
(i)  

must be ignored until the chain has 

converged to equilibrium. For more details on theoretical aspects of the Metropolis-Hastings 

algorithm and MCMC methods, the reader should consult references [28,51,53,54]  

It is worthwhile mentioning that, when the posterior probability density is Gaussian, such 

as the case herein (see equation (32.a)), the MAP estimate and the posterior mean estimate are 

the same. We notice also that, while the MAP-estimate obtained with the Gauss-Newton 

minimization algorithm is generally computationally more appealing than posterior mean 

estimates obtained with MCMC methods, it provides only a single point estimate in contrast 

to MCMC methods. Indeed, MCMC methods provide useful information regarding the 

posterior probability density of the sought parameters from which better decisions can be 

undertaken. 

7. RESULTS AND DISCUSSIONS 

 In order to generate the simulated measurements for the cases examined below, we 

consider an AISI stainless steel ball of 3 mm of diameter at uniform initial temperature T0 = 1 

000 °C. At time t = 1 ms, the steel ball is exposed to a square pulse of a Gaussian laser beam 

of radius  

r0 = 1.3 mm and duration th = 15 ms, with power P = 30 W. Part of the radiant flux emitted 

from a spherical cap of 1 mm diameter centred around θ = 0° on the surface of the steel ball is 
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observed by the multispectral pyrometer. The absorptivity of the metal sample at the 

wavelength of the incident laser, its total hemispherical emissivity and its normal spectral 

emissivities at the different wavelengths of the multispectral pyrometer, are taken as 0.3 [40]. 

The thermal conductivity and the thermal diffusivity are taken as k = 23 Wm-1K-1 and  

α = 5.76 mm2s-1, respectively [55]. These values are also defined as the reference values. The 

ambient temperature is taken as T∞ =20 °C and assumed to remain constant during the flash 

experiment. The polar angle spotθ entering in the definition of the reference surface (equation 

(5.l)) is taken as 19.47°.  

7.1 Solution verification 

The solution of the complete forward model given by equations (3) is obtained with the 

finite element software COMSOL Multiphysics®. In order to verify the numerical solution of 

the problem and to ensure the correct choice of the mesh parameters [56], the numerical 

solution is compared with the analytical solution of the problem, given by equations (12-16) 

by assuming a global heat transfer coefficient heff = 40 Wm-1K-1, for both solution 

methodologies. The analytical solution is implemented with MATLAB®. Figure 3(a) presents 

a comparison of the temperatures computed with the analytical solution and with COMSOL 

Multiphysics, for different angular positions θ, at the radial position r = R. The relative errors 

on the computed temperatures are given in figure 3(b), and are smaller than  

0.2 %. The fluxes computed at the wavelengths λ = 940 nm and λ = 1 550 nm of the 

multispectral pyrometer with the complete model are presented by figure 4.  

Tables 1 and 2 illustrate the convergence behaviour of the temperature eigenfunction 

expansion with the increasing number of terms used in the series solution (equations 12-16), 

for selected angular positions at r = R, at times t = 6 ms and t = 16 ms. As it can be noticed in 

these tables, convergence is achieved with a small number of terms for time t = 6 ms, while 

more than one hundred terms are required to achieve convergence for time t = 16 ms. Note 

that, the time t = 16 ms corresponds to a discontinuity in the imposed heating, when the laser 

heating is turn off. Similar behaviour was observed for time t = 1 ms, which is not presented 

here for the sake of brevity. 

Table 3 compares the computational cost of the numerical and analytical solutions. This 

table also presents the number of mesh elements used in the discretization of the numerical 

solution, as well as, the number of eigenfunctions used to compute both quasi-steady state and 

transient heat conduction problems. The computations were performed in a computer with a 

processor Intel® i5-6500 CPU, 320 GHz and 16 Gb of RAM. Although the analytical solution 
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of the reduced model is evaluated only at the radial position r = R for different angular 

positions, its computational cost is higher as compared to the numerical solution of the 

complete model obtained with COMSOL Multiphysics®. It is worth mentioning that the 

commercial code COMSOL Multiphysics® makes an optimal use of the processing unit. We 

note also that, attempts in using the numerical solution obtained with COMSOL 

Multiphysics® for the solution of the inverse problem of interest have resulted in a high 

computational cost. With the aim of reducing this cost for the solution of the inverse problem, 

the analytical solution given by equations (12-16) is used for the solution of the direct 

problem, by using a preset fixed low truncation order in the eigenfunction expansion. That is, 

instead of the prescribed convergence criterion on the relative error (10-5) used for the results 

given in tables 1 and 2, the number of terms used in the temperature eigenfunction is set 

arbitrarily. It is worthwhile noting in table 3 that, the relative high computational cost of the 

analytical solution is essentially due to the computation of the solution of the transient heat 

conduction problem with homogeneous boundary conditions. Thus, the number of terms used 

in the eigenfunction expansion of the latter was set to 10, leading to a computation cost of 11 

s for the reduced model with low truncation order.  

7.2 Sensitivity analysis and D-Optimal Design 

Before the solution of the inverse parameter estimation problem is investigated, an 

analysis of the sensitivity coefficients must be performed. It is desirable to have linearly 

independent sensitivity coefficients with large magnitudes, for an accurate estimation of the  

parameters [57,58]. We make use of reduced sensitivity coefficients in the analysis presented 

below. The reduced sensitivity coefficients are defined as the original sensitivity coefficients 

multiplied by their corresponding parameters, so that the measured flux can serve as a basis of 

comparison to identify small magnitudes and linearly dependent parameters [57,58]. In this 

work, the reduced dimensionless sensitivity coefficients Jij with respect to parameters Ψj of the 

complete forward model are defined as: 

*
si

ij j

j

J Ψ
Ψ

∂ Φ=
∂

      (37) 

and were computed with forward finite differences. 

The sensitivity analysis is performed with the complete forward model and the effects of 

the laser beam size incident on the steel ball, the temporal profile of the pulse and the position 

of the surface seen by the pyrometer (surface S1 centred on θ1 = 0°, surface S2 centred on  

θ2 = 20°, surface S3 centred on θ3 = 60°), as illustrated in figure 5, were investigated. In order 
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to perform the sensitivity analysis, the maximum temperature increase of the heated surface 

was set to 50 °C to have a reasonable approximation of the assumption of constant physical 

properties with respect to the temperature variation. The sensitivity coefficients computed for 

the different wavelengths of the multispectral pyrometer presented the same behaviour, with 

the largest flux magnitudes obtained for the wavelength λ = 1550 nm. Therefore, the analysis 

below is presented only for this wavelength. Moreover, for the case under study, flux 

measurements obtained at the wavelength λ = 1 550 nm and λ = 940 nm are the only useful 

information, since the lower measured threshold power of the multispectral pyrometer is 50 

nW. 

The influence of the incident laser beam size on the sensitivity coefficients was examined 

for beam diameters of 1 mm and 2.6 mm, for square pulses with P = 13 W and th = 3 ms, as 

well as for P = 30 W and th= 15 ms. These values were chosen so that the maximum 

temperature increase of the heated surface was limited to 50 °C. Figures 6 present the 

transient behaviour of the sensitivity coefficients of the different model parameters, computed 

by considering measurements taken over the surface S1. The dimensionless flux is also 

presented in figures 6. It can be noticed in these figures that, the sensitivity coefficients of 

thermal diffusivity and thermal conductivity obtained for the incident laser beam size of 2.6 

mm are of larger magnitudes than those corresponding to the laser beam size of 1 mm. This is 

due to the fact that more energy is provided to the steel ball in the case of an incident laser 

beam size of 2.6 mm for the same maximum temperature increase of 50 °C. The beam size of 

2.6 mm is therefore favourable for the estimation of the parameters of interest, because the 

sensitivity coefficients present large magnitudes. It can be observed in figures 6 that the 

sensitivity coefficients of the parameters of interest (thermal diffusivity and thermal 

conductivity) are an order of magnitude smaller than the dimensionless flux and than the 

sensitivity coefficients of the emissivity ,pyroλε , the form factor 1 2d
F −  and the flux losses HMi. 

The analysis of the sensivitity coefficients suggests the possibility of simultaneously 

estimating the thermal diffusivity and the thermal conductivity of the steel ball. However, the 

remaining model parameters have to be known, since they are correlated and the magnitudes 

of their sensitivity coefficients are one order larger or of the same order of those for the 

parameters of interest.  

For the analysis of the effect of the position of the surface where the measurements are 

taken by the pyrometer on the sensitivity coefficients, a square pulse of power P = 30 W, with 

pulse duration th = 15 ms is considered, with the laser beam diameter of 2.6 mm. Figures 6(b), 
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7 (a),(b) present the transient behaviour of the sensivitiy coefficients computed at surfaces S1, 

S2 and S3, respectively. It can be noticed in these figures that the magnitudes of the sensivity 

coefficients calculated at surface S1 are the largest. The sensitivity coefficients computed at 

surface S2 present a similar behaviour, but with magnitudes smaller than those at S1, in 

particular those of the thermal diffusivity and of the thermal conductivity. Although the 

sensitivity coefficients of the thermal diffusivity and of the thermal conductivity computed at 

surface S3 seem less correlated, they are two orders of magnitude smaller than the flux 

observed by the pyrometer. The measurements of the flux obtained at surface S1 are therefore 

more appropriate for the estimation of the parameters of interest, because the sensitivity 

coefficients of the parameters of interest present large magnitudes. 

Regarding the effect of the temporal profile of the incident laser pulse on the sensitivity 

coefficients, a square pulse and an exponentially decaying pulse were examined (see 

equations 7.a and 7.b). Figures 8 present the sensitivity coefficients for the case of an 

exponentially decaying pulse (P=30 W, th = 15 ms), while the case of a square pulse is given 

in figure 6(b). It can be noticed in these figures that the case of a square pulse presents 

sensitivity coefficients of the same magnitude with those of the exponentially decaying pulse. 

Moreover, one can note in figure 8 that the thermal diffusivity and the thermal conductivity 

are strongly correlated in the case of the exponentially decaying pulse. It is also clear from 

these figures that the thermal diffusivity and the thermal conductivity tend to be uncorrelated 

after the heating is ceased.  

From the foregoing analysis of the sensitivity coefficients, it can be concluded that the 

measurements taken at the surface S1, with a square pulse and an incident beam size of 2.6 

mm, result in better conditions for the simultaneous estimation of the thermal diffusivity and 

thermal conductivity of the levitated metal sample. However, the remaining model parameters 

should be known, due to their relative high sensitivity coefficients. 

 Together with the sensitivity analysis, the maximization of the determinant of the Fisher 

information matrix (|JTJ|) plays an important role in inverse parameter estimation [57,58]. 

Optimum experiments can be designed by maximizing the determinant of the information 

matrix, in addition to the analysis of the sensitivity coefficients performed above.  

For a case involving two sensors, each element of the information matrix Fm,n, 

m,n=1,…,N, of the matrix F=JTJ is given by [57,58]:  

* *2

, ,
1 1

[ ] , 1,...,
I

T si si
m n m n

s i m n

m n N
P P= =

   ∂Φ ∂Φ= = =   ∂ ∂   
∑∑F J J    (38) 
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where I is the number of measurements taken with each sensor and N is the number of 

unknown parameters. Such an analysis is performed for the parameters of interest, namely the 

thermal diffusivity and the thermal conductivity of the levitating metal sample. 

 The maximization of the determinant of the Fisher information matrix is performed by 

assuming available flux measurements from the multispectral pyrometer at the wavelengths 

 λ = 1 550 nm and λ = 940 nm, at a rate of 0.5 kHz on surface S1. In order to evaluate the 

effect of the heating rate, different laser powers with different pulse durations were 

considered, again with the maximum temperature rise at the heated of 50 °C. Figure 9 

presents the variation of the determinant of the Fisher information matrix with respect to time 

for different heating rates. Note in this figure that the heating rate has  no significant effects 

on the determinant of the Fisher information matrix, although P = 30 W and th = 15 ms yields 

the maximum of information. We note that, the minimum output power of the available laser 

is P = 30 W. 

 In order to investigate the effect of the pulse duration on the determinant of the Fisher 

information matrix, the maximum temperature rise of the heated surface is now allowed to 

reach 100 °C. This temperature increase amounts to 10 % of the initial temperature, as 

suggested by Bayazitoglu and co-workers [1]. The analysis is performed for a fixed laser 

output power P = 30 W, with beam width of 2.6 mm. Figure 10 presents the effect of the 

variation of the pulse duration on the determinant of the Fisher information matrix. It can be 

noticed in this figure that the increase of the pulse duration increases the determinant of the 

Fisher information matrix and such a positive effect is less significant for t > 45 ms. It can 

also be noticed that the variation of the determinant is quite small for t > 150 ms,. Thus, the 

final time of the experiment can be taken as 150 ms and the pulse duration as 60 ms, which 

results in a maximum temperature increase of 90 °C in the sample. 

7.3 Parameter estimation 

 The robustness of the proposed methodology for the simultaneous estimation of the 

thermal diffusivity and thermal conductivity with respect to the noise level on the 

experimental data, as well as with the quality of the prior information on the model’s 

parameters, is now investigated with synthetic data. The synthetic data are generated by 

adding zero mean Gaussian random noise e with standard deviation σ to the solution of the 

complete forward problem as follows: 

*( , )= +Y Φ P Z e        (39) 
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where ,P Z represent the vectors of “true” parameters. The objective of the inverse problem is 

to obtain an estimate for [ ]T
kα=P  from the synthetic data Y, by using the reduced forward 

model 
*

0( , )redΦ P Z , while accounting for the uncertainties on the auxiliary parameters 

*
, , 0 1 2[ ]T

rad pyro laser conv Mi d
Bi q Bi H Fλ λε κ −=Z . We recall that Z0 is a vector containing point 

values of Z. It is also worth recalling that the sensitivity analysis has revealed that these 

parameters are correlated, thus, they cannot be estimated simultaneously with the parameters 

of primary interest. Moreover, the magnitudes of the sensitivity coefficients of these auxiliary 

parameters are of the same order of magnitude or larger than those of the parameters of 

interest [ ]T
kα=P . As a consequence, estimates of these parameters with associated 

uncertainties have to be obtained from other sources, independent of the experiment of the 

front-face flash method under study. These estimates could be obtained from literature or 

through dedicated experiments. For instance, the irradiance 
*
0q can be calculated from both 

measurements of the laser output power and of the beam size, respectively, with a power 

meter and a beam analyser. Likewise, the parameters HMi are obtained from the calibration of 

the multispectral pyrometer and were reported in [38]. The heat losses by radiation and 

convection, characterized respectively by Birad and Biconv could be determined from a cooling 

experiment of the levitating sample of metal in the same experimental conditions, prior to the 

flash experiment itself. This would be similar to the two-step procedure for thermal diffusivity 

estimation of levitating sample of metal suggested in [1,2], where the heat losses, essentially 

by radiation, were obtained by calibrating a lumped capacity model for a cooling experiment. 

It is worth noting that, for the case under study, the heat losses by radiation and convection 

are correlated. Hence, they need to be estimated in separate experiments. Two approaches are 

envisioned in order to determine the heat losses for the proposed  experiment. The first 

consists in using radiative flux measurements taken at different wavelengths of the 

multispectral pyrometer, in order to estimate simultaneously the transient temperature and the 

emissivity [52]. Given, the estimates of the emissivity and of the transient temperature, the 

heat losses by convection can be obtained from the heat balance equation, assuming valid the 

lumped capacity formulation, either through a simple algebraic calculation [59,60] or via a 

parameter estimation technique. The second approach relies on the Bayesian calibration of a 

conjugated heat transfer model for the estimation of the total hemispherical emissivity, given 

uncertainties on the remaining thermophysical properties and on the surface temperature 
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measurements taken during the cooling. The convective heat losses can thus be computed 

from the conjugate heat transfer model with the estimated emissivity. Such a detailed physical 

model of the cool-down experiment of the levitated sample of metal was developed in 

COMSOL Multiphysics and solves a non-isothermal flow problem with temperature-

dependent properties. As a consequence, one evaluation of the direct problem presents a high 

computational cost, thus, the Bayesian inversion algorithm proposed in [61] is being 

investigated for computational efficiency. Irrespective of the approach adopted to obtain the 

heat losses, the heat capacity and the density of the material being characterized are required. 

On the other hand, some data on heat capacities of metallic materials at high temperatures can 

be found in the literature[8,9,11,55].  

 Figure 11 presents a comparison of the flux obtained from the solution of the complete 

forward model and the reduced forward model at the wavelength λ = 1 550 nm of the 

multispectral pyrometer. One can note some discrepancies between the fluxes. It is worth 

recalling that, the analytical solution defined as the reduced model is computed with a few 

number of terms in the eigenfunction expansion and that the heat losses by radiation and 

convection are defined with a global heat transfer coefficient. The complete forward model 

given by equations (3) is solved with COMSOL Multiphysics® and the solution is considered 

sufficiently accurate. The synthetic data included in figure 11 are obtained according to 

equation (39), by adding Gaussian random noise of zero mean and standard-deviation 

*1 % max( )σ = Φ  to the solution of the complete forward model obtained with COMSOL 

Multiphysics®. In order to avoid an inverse crime [28], a more refined finite element mesh is 

used for the generation of the synthetic data than that used for the computation of the 

approximation error statistics. 

For the calculation of the statistics of the approximation error, the Gaussian prior 

probability densities given by table 4 were considered. We note in this table that the means of 

the prior probability densities of all the parameters are purposely set to values larger than 

those used to generate the synthetic data, except for the irradiance and the absorptivity. The 

computed statistics of the modelling errors account not only for the model reduction error, but 

also for the uncertainties/misspecification on the auxiliary parameters contained in Z0. Monte 

Carlo simulations are then performed from the prior probability densities given in table 4 and 

the statistics of the approximation error are computed according to equations (30) and (31), by 

using both complete forward and reduced models. The number of samples used in the 

calculation of the statistics of the approximation error is set to 10 000.  
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For the solution of the inverse problem of simultaneous estimation of the thermal 

diffusivity and thermal conductivity of the steel sphere, the prior probability densities 

associated to the thermal diffusivity and thermal conductivity given in table 4 were used. Both 

Newton-Gauss algorithm for the minimization of MAP objective function and the Metropolis-

Hastings algorithm were used, jointly with the Approximation Error Model, for the solution of 

the inverse problem.  

Given the synthetic measurements obtained with the complete model, the reduced model 

and the statistics of the approximation error, which include the model reduction errors and 

errors related to the inaccurately known auxiliary parameters, the thermal diffusivity and the 

thermal conductivity obtained with both estimation algorithms are given below. Table 5 

presents the results obtained with the Newton-Gauss minimization of the MAP-AEM 

objective function, including the initial guess for the parameters. One can note that accurate 

estimates of the sought parameters were obtained. The latter are close to their exact values, 

and present relatively small standard deviations. These results demonstrate the effectiveness 

of the proposed methodology for the simultaneous estimation of the thermal diffusivity and 

thermal conductivity through the minimization of the MAP-AEM objective function. 

Figure 12 presents the states of the Markov chains for the thermal conductivity and the 

thermal diffusivity. One can note a rapid convergence of the states of the Markov chain to an 

equilibrium distribution around the exact values of the sought parameters. Figure 13 compares 

the prior distributions of the parameters and the posterior distributions obtained from the 

MCMC samples. The histograms of the marginal posteriors for the thermal diffusivity and 

thermal conductivity are also shown in this figure. The first 1 000 states of the Markov chain 

were discarded (burn-in period) for the computation of the statistics. One can note in these 

figures that the information provided by the measurements has resulted in a considerable 

reduction of the initial uncertainties on the thermal diffusivity and thermal conductivity. 

Moreover, the most likely values of these parameters are concentrated around their exact 

values. Table 6 presents the posterior mean estimates of the thermal diffusivity and thermal 

conductivity, as well as, the associated standard deviations, which are relatively small. 

 It can be noticed in tables 5 and 6 that the estimated thermal conductivities and thermal 

diffusivities are very close to their exact values, and present relatively small standard 

deviations. Furthermore, the results obtained by combining the AEM and the Newton-Gauss 

or MCMC-MH algorithms demonstrate the robustness of the proposed methodology, given 

that the auxiliary parameters, except the irradiance and the absorptivity, where pre-

marginalized around inaccurate values (overestimated at 5 % of their exact values) and with 
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large uncertainties (10 %). Regarding, the computational cost, while the MAP estimate is 

obtained in five minutes, the Markov chains were generated in about eight hours. However, as 

mentioned earlier, one might be interested in obtaining detailed statistical information on the 

estimates, which are readily made available from MCMC sampling methods, but not with 

MAP. 

8. CONCLUSIONS  

 In this work, techniques within the Bayesian framework, namely the Gauss-Newton 

minimization of the maximum a posteriori objective function and the Markov chain Monte 

Carlo method, coded in the form of the Metropolis-Hastings algorithm, were used for the 

thermal characterization of aerodynamically levitated solid sample of metals at high 

temperatures. The proposed methodology is based on the front-face flash method with laser 

excitation and contactless transient flux measurements available from a multispectral 

pyrometer. An analysis of the sensitivity coefficients with respect to the model parameters 

reveals that the thermal diffusivity and the thermal conductivity of the levitated metal sample 

can be estimated, provided that other auxiliary parameters are known. These auxiliary 

parameters are correlated and with magnitude of their sensitivity coefficients comparable to 

those of the sought parameters. In order to deal with the possible sources of inaccuracies and 

uncertainties of the auxiliary parameters, the approximation error model is jointly used with 

the estimation algorithms. Moreover, modelling errors between the actual heat conduction 

model with nonlinear boundary conditions and the heat conduction with linear boundary 

conditions are accounted for, as well as, the low truncation order of the analytical solution 

developed for the heat conduction model with linear boundary conditions. Simulated transient 

flux measurements were used in the inverse analysis. The proposed methodology enables to 

get accurate and simultaneous estimates of the thermal diffusivity and thermal conductivity of 

the sample of metal, given the specified prior information. This work has provided the 

theoretical background and also highlighted the measurements necessary to estimate the 

thermal properties of interest. Future works will be directed on the experimental validation of 

the proposed methodology. 
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TABLE CAPTIONS 

Table 1. Illustration of convergence behaviour of temperature field eigenfunction expansion  

(t = 6 ms) 

Table 2: Illustration of convergence behaviour of temperature field eigenfunction expansion  

(t = 16 ms)  

Table 3: Mesh/Number of eigenfunctions and computation cost of the numerical and 

analytical solutions. 

Table 4: Prior Probability Densities used in the computation of the Approximation Error 

Table 5: Results obtained with the Gauss-Newton minimization of the MAP-AEM objective 

function 

Table 6: Results obtained with the MCMC-MH-AEM 

FIGURE CAPTIONS 

Figure 1: Experimental facility  

Figure 2: Physical Model  

Figure 3: Dimensional Transient Temperatures at Selected Angular Positions for r = R (a); 

with Associated Relative Errors (b) 

Figure 4: Calculated flux at 
5λ  = 940 nm (a), 

6λ  = 1 550 nm (b)  

Figure 5: Surfaces observed by the pyrometer 

Figure 6: Effect of the incident laser beam size on the sensitivity coefficients (top) 1 mm; 

(bottom) 2.6 mm 

Figure 7: Effect of the position of the surface seen by the pyrometer on the sensitivity 

coefficients, (top) surface S2; (bottom) surface S3  

Figure 8: Effect of the temporal profile of the pulse on the sensitivity coefficients for an 

exponentially decaying pulse. 

Figure 9: Effect of the heating rate on the determinant of the Fisher information matrix 

Figure 10: Effect of the pulse duration on the determinant of the Fisher information matrix  

Figure 11: Comparison of the dimensionless fluxes computed with the complete and reduced 

forward models at the wavelength λ = 1 550 nm of the multispectral pyrometer  

Figure 12: States of the Markov Chain for the thermal diffusivity and for the thermal 

conductivity 

Figure 13: Scatter Distribution of the Samples representing: The Prior Distribution with 

Associated Marginal (a); the Posterior Distribution with Associated Marginal (b)  
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Table 1: Illustration of convergence behaviour of temperature field eigenfunction expansion  

(t = 6 ms), with associated relative error (%) 

θ (°) N= 30 N= 48 N= 66 N= 84 N= 102 N= 120 

0  1031.052(0.17)  1029.420(0.01) 1029.326(0.00)   1029.321(0.00) 1029.321(0.00) 1029.321 

3.5  1029.606(0.15)   1028.114(0.01)   1028.036(0.00)   1028.032(0.00)   1028.032(0.00) 1028.032    

7 1027.941(0.14)   1026.590(0.01)   1026.525(0.00) 1026.521(0.00)   1026.521(0.00) 1026.521 

11 1026.320(0.13) 1025.096(0.01) 1025.039(0.00) 1025.035(0.00) 1025.035(0.00) 1025.035 

19 1023.378(0.10)   1022.366(0.01)   1022.317(0.00)   1022.314(0.00)   1022.314(0.00) 1022.314    
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Table 2: Illustration of convergence behaviour of temperature field eigenfunction expansion  

(t = 16 ms) , with associated relative error (%) 

θ (°) N= 30 N= 48 N= 66 N= 84 N= 102 N= 120 

0  1042.087(0.55) 1045.334(0.24) 1046.652(0.12)   1047.191(0.06) 1047.629(0.02) 1047.871 

3.5 1040.433(0.51)   1043.515(0.22)   1044.644(0.11)   1045.135(0.06)   1045.550(0.02) 1045.774    

7 1038.591(0.47)   1041.478(0.20)   1042.467(0.10) 1042.917(0.06)   1043.310(0.02) 1043.517    

11 1036.797(0.44) 1039.486(0.18) 1040.385(0.09) 1040.801(0.05) 1041.176(0.02) 1041.369 

19 1033.466(0.38)   1035.775(0.16)   1036.574(0.08)   1036.939(0.05)   1037.281(0.02) 1037.453    
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Table 3: Mesh/Number of eigenfunctions and computation cost of the numerical and 

analytical solutions. 

Solutions Number of mesh 
elements/ 

eigenfunctions 

Computational 
time (s) 

Complete model 1595 elements 50  

Quasi steady-state problem 18 terms 1 

Transient Problem with 
Homogeneous boundary 

conditions 

102 terms 76  

Reduced Model with low 
truncation order 

28 terms 11 
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Table 4: Prior Probability Densities used in the computation of the Approximation Error 

Property / Parameter 

 

Dimensionless 

Parameter 

Prior 

Distribution 

Mean Standard 

deviation 

Thermal diffusivity *α  Gaussian *α =1.09
*α  0.15

*α  

Thermal conductivity *
k  Gaussian *

k =1.09
*

k  0.15
*

k  

Irradiance *
0q  

Gaussian *
0q =

*
0q  0.05

*
0q  

Radiative Biot number 
rad

Bi  
Gaussian 

radBi =1.05
radBi  0.05 radBi  

Absorptivity at λlaser = 1 060 nm 
,laserλκ  

Gaussian 
,laserλκ = ,laserλκ  0.05 ,laserλκ  

Normal spectral emissivity at λfilter  
,pyroλε  

Gaussian 
,pyroλε =1.05 ,pyroλε  0.05 ,pyroλε  

Amplitude correction 
M i

H  Gaussian 
MiH =1.05

M i
H  0.1 MiH  

Form factor 
1 2d

F −  
Gaussian 

1 2dF − =1.05 1 2d
F −  0.1 1 2dF −  

Convective Biot number 
conv

Bi  
Gaussian 

convBi =1.05 conv
Bi  0.1 convBi  
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Table 5: Results obtained with the Gauss-Newton minimization of the MAP-AEM objective 

function 

 

  

  
MAP-AEM –Reduced model with overestimated and uncertain 

auxiliary parameters 
 

Parameter Exact Initial guess Estimate Standard deviation 
k(Wm-1K-1) 23 18.4 23.55 1.04 
α (mm2s-1)  5.76 4.61 5.81 0.21 
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Table 6: Results obtained with the MCMC-MH-AEM 

 

  

  
MCMC-MH – Reduced model + AEM and overestimated auxiliary 

parameters 
 

Parameter Exact Initial state Estimate Standard deviation 
k(Wm-1K-1) 23 18.4 23.56 0.96 
α (mm2s-1)  5.76 4.61 5.71 0.19 
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Figure 1: Experimental facility  
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Figure 2: Physical Model  
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                         (a)                                                                       (b) 

Figure 3: Dimensional Transient Temperatures at Selected Angular Positions for r = R (a); 

with Associated Relative Errors (b)  
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(a) (b) 
Figure 4: Calculated radiative flux at 

5λ  =940 nm (a), 
6λ  =1 550 nm (b)  

 

  



47 

 

 

 

 

 

 

 

 

 

 
Figure 5: Surfaces observed by the pyrometer 
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(a) 

 
(b) 

Figure 6: Effect of the incident laser beam size on the sensitivity coefficients (a) 1 mm; (b) 

2.6 mm 
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(a) 

 
(b) 

Figure 7: Effect of the position of the surface seen by the pyrometer on the sensitivity 

coefficients, (a) surface S2; (b) surface S3  
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Figure 8: Effect of the temporal profile of the pulse on the sensitivity coefficients for 

an exponentially decaying pulse  
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Figure 9: Effect of the heating rate on the determinant of the Fisher information matrix 
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Figure 10: Effect of the pulse duration on the determinant of the Fisher information matrix  
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Figure 11: Comparison of the dimensionless fluxes computed with the complete and reduced 

forward models at the wavelength λ = 1 550 nm of the multispectral pyrometer  
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Figure 12: States of the Markov Chain for the thermal diffusivity and for the thermal 
conductivity 
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(a)                                                                        (b) 

Figure 13: Scatter Distribution of the Samples representing: The Prior Distribution with 

Associated Marginal (a); the Posterior Distribution with Associated Marginal (b)  

 

 




