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ABSTRACT

To perform visual data exploration, many dimensionality reduction
methods have been developed. These tools allow data analysts to rep-
resent multidimensional data in a 2D or 3D space, while preserving
as much relevant information as possible. Yet, they cannot preserve
all structures simultaneously and they induce some unavoidable dis-
tortions. Hence, many criteria have been introduced to evaluate a
map’s overall quality, mostly based on the preservation of neighbour-
hoods. Such global indicators are currently used to compare several
maps, which helps to choose the most appropriate mapping method
and its hyperparameters. However, those aggregated indicators tend
to hide the local repartition of distortions. Thereby, they need to be
supplemented by local evaluation to ensure correct interpretation of
maps.

In this paper, we describe a new method, called MING, for “Map
Interpretation using Neighbourhood Graphs”. It offers a graphical
interpretation of pairs of map quality indicators, as well as local
evaluation of the distortions. This is done by displaying on the map
the nearest neighbours graphs computed in the data space and in the
embedding. Shared and unshared edges exhibit reliable and unreli-
able neighbourhood information conveyed by the mapping. By this
mean, analysts may determine whether proximity (or remoteness) of
points on the map faithfully represents similarity (or dissimilarity)
of original data, within the meaning of a chosen map quality criteria.
We apply this approach to two pairs of widespread indicators: preci-
sion/recall and trustworthiness/continuity, chosen for their wide use
in the community, which will allow an easy handling by users.

Index Terms: Evaluation—Qualitative Evaluation; Non-Spatial
Data and Techniques—Dimensionality Reduction; Visual Analysis
and Knowledge Discovery— Visual Knowledge Discovery

1 INTRODUCTION

Dimensionality reduction aims at representing N points &;, lying
in a high dimensional metric data space, by a set of corresponding
points x; = ®(&;) in an embedding space of lower dimensionality
(with @ a mapping). To obtain this mapping, many techniques have
been developed, including classical MDS [19], Isomap [18], DD-
HDS [11] and tSNE [20]. In order to perform visual exploration
of data, the embedding dimensionality is often chosen to be 2 or 3.
This task mainly relies on the hypothesis that two similar data points
must be embedded close from each other, whereas dissimilar points
must be represented far apart. However, the mapping process often
introduces distortions, which invalidate this premise. As a conse-
quence, the proximity or remoteness of points on a map alone is not
sufficient to infer information concerning structures (e.g. underlying
manifold, clusters or outliers [8, 13]) in the original data. The consid-
ered visualization must be enhanced with local evaluation, locating
precisely the distortions measured through global indicators.
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In the present article, we introduce a new local evaluation
method called MING, for “Map Interpretation using Neighbour-
hood Graphs”. This approach adapts global rank-based indicators
(e.g. precision and recall [22] or trustworthiness and continuity [21]),
designed for assessing overall performances of dimensionality re-
duction, to the needs of local evaluation. It displays on the map
neighbourhood graphs, which link each point to its K nearest neigh-
bours, in order to exhibit distortions. On these graphs (considered
successively in the embedding and data space), edges corresponding
to reliable or unreliable neighbours are then distinguished using
different colours, colour range being chosen so as to offer a local
representation of the selected global indicators.

1.1 Notations

A;j is the distance in the data space between two points &; and &;,
and p;; is the rank of &; in the neighbourhood of &;, meaning that
&j is the pg‘ nearest neighbour of &;, with p;; = 0 by convention.
Conversely to distances, ranks are not necessarily symmetric (p;;
may be different from pj;). Distances D;; and ranks r;; may be
defined equivalently in the embedding space. In the scope of this
article, the k neighbourhood of the i point in a given space is
defined as the set of its k nearest neighbours. It is denoted as a set
of those neighbours’ indices: v;(k) in the data space and n;(k) in
the embedding space.

1.2 Distortions as corruption of neighbourhood graphs

Herein, we define distortions as a defect of preservation of neigh-
bourhood relations. At a scale k, the relation (i, j) is said to exist in
a given space if the point j belongs to the k neighbourhood of point
i in that space. Those relations may easily be interpreted as edges of
neighbourhood graphs. For a specific mapping, the neighbourhood
relation (i, /) may be qualified as reliable if it exists in both spaces,
false if it exists only in the map, missed if it exists only in the data
space, or non-existent if it exists in neither of those. Figure 1 sums
up these various cases, k neighbourhoods being represented as balls
centred on i and whose radius is the distance to the k™ neighbour.

Data space Embedding space

Figure 1: Preservation and distortions of 4-neighbourhood relations
(i,j) for a point i (black), with reliable (green), false (blue), missed
(green) and non-existent (grey) neighbours, and 4-neighbourhoods
vi(4) and n;(4) materialized by the black sphere and circle.



2 RELATED WORK

Several indicators are currently used in order to estimate a map’s
quality. They are generally based on the comparison of:

* distances A;; and D, used in stress functions of many dimen-
sionality reduction methods [4, 14, 19]

* ranks p;; and r;;, used in several rank-based quality criteria [9].
Due to their robustness to the phenomenon of norm concentra-
tion occurring in high dimensionality spaces, ranks tend to be
more considered.

Global and local evaluation consider the distortions at three levels
of aggregation.

1. Map-wise aggregation allows to produce global indicators for
evaluating mappings (see Section 2.1). Those are computed by
averaging point-wise values.

2. Point-wise aggregation of pairwise penalizations is often dis-
played by local evaluation methods, as mentioned in Section

3. Pairwise penalizations are constructed for each neighbourhood
relation (i, j), assessing its level of distortion. Though such
penalizations are commonly established, previous works tend
to either aggregate them, losing the pairwise information, or to
display them for only one reference point at a time. In Section
3, we introduce MING to display the pairwise penalizations on
neighbourhood graphs.

2.1 Global evaluation

In order to compare different mappings, quantitative measures have
been developed, producing scalar indicators. Many of these go by
pairs (ff" , JV[), with J penalizing false neighbours and M penalizing
missed neighbours. We focus here on widely used rank based criteria:
precision P and recall R [22], and trustworthiness J and continuity
C [21]. However, the adopted framework, and thus our proposed
method, may easily be extended to other rank based criteria, such as
Mean Relative Rank Error (MRRE) [8], or, with minor changes,
to distance based criteria (e.g. Curvilinear Component Analysis
(CCA) [4] and Sammon’s mapping [14] stress functions). At a
given scale k, the considered rank-based criteria are computed as
detailed below for each pair of indicators (F,M).

Pairwise penalizations J;;(x) and M;;(x) are defined for all
penalized neighbourhood relations (i, j), accounting for their distor-
tions. Those penalized relations are restricted for each point i to the
set of x neighbourhood relations existing at least in the embedding
space {(i,j) | j € ni(x)} for false neighbours indicator &, and to
the set of neighbourhood relations existing at least in the data space
{(i,7) | j € vi(x)} for missed neighbours indicator M. Table 1 sums
up the values of these pairwise penalizations for the two selected
pairs of indicators. With these penalizations, we can distinguish
reliable relations with null weights from distorted relations (false
or missed) with strictly positive weights. To calculate global indi-
cators, based on this pairwise information, point-wise (Equations 1
and 2) and map-wise (Equation 3) aggregations are then performed

successively:
?[(K)é Z Sjl'j(K'), (1)
Jj€ni(x)
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where C¢ (k) is the upper bound of the point-wise values, so that
criteria go from O for worst mapping (reversed ranks) to 1 for an
ideal mapping.

Table 1: Pairwise penalizations and sets of considered neighbours
indices for precision/recall and trustworthiness/continuity.
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2.2 Local Evaluation

Many existing evaluation methods tend to display point-wise es-
timations of local distortions [12, 16, 17]. Among them, Check-
Viz [10] provides simultaneously the values of &F; and M; with a
bi-dimensional colour scheme interpolated onto the background,
distinguishing areas with false/missed neighbours, or both. Yet
CheckViz fails to show which pairwise relations suffer from these
distortions.

Other approaches focus on a reference point to present its true
neighbourhood relations, by colouring the background (e.g. Prox-
ilens [2, 6]) or correcting distances [17]. These unveil reliable
relations and distortions but for only one point i at a time. Martins
et al. [12] also proposed to focus on subsets of reference points for
representing missed neighbours.

3 MarP INTERPRETATION NEIGHBOURHOOD

GRAPHS (MING)
In the present section, we describe a local evaluation method that:

USING

* is consistent with state of the art global rank based indicators,

» shows the reliability of k neighbourhood relations between
pairs of points (without any aggregation),

* can be directly applied to data visualization in a 3D embedding
space, while partially alleviating depth ambiguity and apparent
distances distortions that occur in 3D scatter plots [15].

In this approach, we represent the penalized neighbourhood relations
as edges of two directed graphs, each associated to one of the indica-
tors. Using the interpretation of data visualization as an information
retrieval task [22], the graph associated to the false neighbours indi-
cator J is called the retrieval graph, defined as follows:

G5 (k) = (V,E™"(x),Wg" (k). “)

In Equation 4, V are the vertices of the graph (corresponding to the
points), E* (k) £ {(i, j) € V?| j € ni(x) } the edges corresponding
to penalized neighbourhood relations for JF, i.e. relations existing
at least in the embedding space (reliable and false), and W{f"(K) =
{Fij(x) | (i, j) € E™"(x)} the weights associated with these edges
and corresponding to the pairwise penalizations defined for the
indicator.

In the same way, the graph associated to the missed neighbours
indicator M is called the relevance graph and may be defined by:

Gl (k) 2 (V,E™ (), Wi (x)), )

with E™ (k) £ {(i, j) € V?|j € vi(k)} the penalized edges for M,
i.e. relations existing at least in the data space (reliable and missed),
and Wi j(K) £ M;j(x) their associated weights.

The graphs are then visualized by successively superimposing
them on the map (namely, positioning vertices i € V using coor-
dinates of points in the embedding). Distortions introduced by
the mapping are shown by colouring the edges depending on their
weights. In order to stress the differences between the two graphs,
the two kinds of penalizations are colour-coded differently, using
GnBu for the retrieval graph and OrRd for the relevance graph (those



two colour maps from ColorBrewer [1] being colour-blind safe).
Thus, reliable edges are displayed as white, while false neighbours
are shown in shades of green and blue, and missed neighbours in
shades of orange and red.

Neighbourhood relations being asymmetrical, directed edges (i, j)
and (j,7) are different. Thus the line connecting points i and j on the
map is split into two segments coloured independently. The colour
closer from a point i corresponds to the weight of the edge (i, j) (in
the direction from i to j), and equivalently, the color closer from
point j shows the weight in the other direction (i, j). For relations
existing only in one direction, as is common for outliers, the second
part of the segment, associated with the non-existent direction is
materialized by a dotted line. The best illustration of this may be
found on Figure 4.

4 EXPERIMENTS
4.1 Considered datasets

To illustrate our method, we consider two datasets. The first consists
in 200 randomly selected samples from the handwritten digits dataset
[5] (8 x 8 grey level images, seen as data points in a space of 64
dimensions). These are embedded in a 2D space using DD-HDS [11]
(as shown in Figures 2, 3, 4 and 6). This dataset has a high intrinsic
dimensionality, so that the mapping process has to introduce many
distortions. The second is the coil-20 dataset, which consists in
128 x 128 images of 20 different objects continuously rotated around
an axis. Consequently, its intrinsic dimensionality is intuitively very
low, since the generation of images for one object has only one
degree of freedom (which is the rotation angle). Thus, its embedding,
performed using t-SNE, may be relatively good.

One key advantage of choosing these images datasets, is that we
may use the actual images as markers for points on the map, allowing
the reader to assess visually whether two items are similar or not in
the data space (within the meaning of Euclidean distances). Note
that for a better rendering of these images, the coil-20 data set has
been sampled by removing one in two elements (artificially leading
to a bigger angular step). Finally, the use of circular backgrounds,
in the presented maps, intends to remind viewers that axes obtained
by MultiDimensional Scaling have no directly accessible meaning
[3]. Indeed, such a map may be translated, rotated or symmetrized
without any effect on the information that it conveys.

4.2 Choice of x

In MING, as in CheckViz, the user remains free to set the parameter
k, depending on the number of neighbours they judge relevant.
Several values may also be used successively during users interaction
with the representation, in order to get information for different
scales, and on the hierarchical organization of data. However, with
too high values of x, MING figures tends to be less readable due
to visual clutter, especially for the relevance graph, which may be
considerably entangled. A similar phenomenon occurs for severely
distorted mappings, which provide very few reliable neighbourhood
relations.

For the digits dataset, a setting of k = 10 has been selected, so
that the majority of edges remains intra-classes. For the coil-20
data set however, points form continuums, so that only a few closest
neighbours are sufficient to illustrate the quality of the mapping.
Thus, we used a value of K = 4 for this dataset.

4.3 MING interpretation guidelines

For the sake of comparison, Figure 2 shows CheckViz on the back-
ground of the same map used for illustrating MING. Results are
coherent with MING about neighbourhood distortions for each point,
but it fails to inform on which pairwise relations are distorted.

Missed Both
neighbours

distortions

No False
distortion neighbours

Figure 2: CheckViz with trustworthiness and continuity weights and
x = 10, for 200 handwritten digits data mapped using DD-HDS.

Figure 3: From left to right: MING retrieval graph Gi5"(10) and rele-
vance graph G%!(10) with precision and recall weights, for 200 hand-
written digits data mapped using DD-HDS.

Figure 4: From left to right: MING retrieval graph G5 (10) and rele-
vance graph G%!(10) with trustworthiness and continuity weights, for
200 handwritten digits data mapped using DD-HDS.

4.3.1 Precision and recall weights

Figure 3 shows the retrieval and relevance graphs for precision
and recall weights. On the retrieval graph (left panel), the visually
discernible group of 2 at the bottom right of the map is confirmed by
the numerous white edges connecting points together. Conversely,
this group is linked to the adjacent 6, 8 and 1 by a majority of blue
edges, which shows that they are clearly separated in the data space.
Note that without the superimposed graphs, a visual clustering could
easily lead to wrongly splitting this group of 2 along its central
vertical gap. A similar reasoning allows to locate the isolated pair
of 2 circled on Figure 3 and lost between 4, 3, 8 and 6. Moreover,
on the relevance graph, these two 2 are linked to the rest of their
class by many red edges, indicating that they have been torn apart
by the mapping. Thus, an analyst could safely conclude with MING
that all the 2 are part of the same cluster, and should have been
mapped together. In the same way, we may identify the 1 (top left),
4 (bottom left) and 4 U 9 (top) clusters. In the mapping, legitimate
proximities among distinct classes, supported on Figure 3 by visual
similarity of digits, are also presented by the retrieval graph (left
panel), for example between the 1 and the 4 U 9 clusters, or inside
the latter. On another note, the relevance graph (right panel) shows
points placed between several attracting clusters mapped at distant



Figure 5: From top to bottom: MING graphs G%(4) and G&!(4) with
trustworthiness and continuity weights, for half of the coil-20 dataset
mapped with t-SNE.

locations, such as the isolated 4 linked by numerous red edges to the
4U9 and 4 clusters.

4.3.2 Trustworthiness and continuity weights

Since precision and recall weights are binary, slight rank distortions
around the cut-off k (e.g. tenth neighbour becoming the eleventh)
are displayed the same way as severe distortions. Thereby, some
undesired blue and red edges appear inside clusters on Figure 3.
To allow a softer behaviour, we use trustworthiness and continuity
weights (as presented in Table 1). In order to increase colour gradient,
the colour map is saturated at 20 (namely, all penalizations above
this limit are represented with the colour corresponding to maximum
penalization), so that rank variations beyond the 30 neighbourhood
(3x) are ignored. We may note that the choice of colour saturation is
critical in the perception of penalizations, a lower saturation inducing
a higher perceived severity for an identical distortion. With this
weighting, presented by Figure 4, edges inside clusters turn to lighter
shades (green for formerly blue edges, and orange for red), as may be
observed by zooming in on the cluster of 0. Hence, severely distorted
neighbourhood relations tend to stand out, while light distortions are
still noticeable through a thorough observation.

The coil-20 dataset forms cyclic continuums in the data space,
the image of an object changing just slightly from one angular step
to another. However, for some classes such as the different models

of cars, images are more similar between classes for a specific
angle, than they are for the same class with very different rotations.
Thus, the mapping cannot perfectly preserve those cycles. Figure 5
presents MING graphs for the coil-20 dataset (with colour saturation
at a penalization of 16, namely for ranks beyond 5x). On the retrieval
graph (top panel), white edges highlight well-represented parts of
continuums, but also reliable proximities between different classes.
Blue edges show isolated images torn from their group and cycles
not closing well (e.g. souvenir pigs) or placed too close from another
different class (such as the cats). On the relevance graph (bottom
panel), red edges show the right way of closing cycles (e.g. for pigs
or cats), and link isolated images to their main group.

4.4 Edge bundling

In order to reduce the visual clutter occasioned by the method,
edge bundling was experimented with a variant of the KDEEB
algorithm [7], using the previously considered embedding of digits
data for the sake of comparison. For bundling together edges whose
weights individually convey information, we segregated them in
four groups (for each graph) by their associated penalizations value,
using the bins {0}, ]0;10], ]10;20] and ]20;+o0[. We then drew
the corresponding bundles using the central colour of each group,
resulting in the display shown Figure 6.

The obtained visualization is effectively less cluttered, with the
structure of frontiers between clusters remaining visible on the re-
trieval graph. However, the relevance graph suffers from confusion
between long red edges, sometimes losing the local information
about their source and target. It is for example the case for the edges
linking the aforementioned isolated pair of 2 to their main cluster,
which are diverted when crossing orthogonal edges starting from
the cluster of 6. Hence, density-based bundling may not be the best
suited solution to visual clutter.

Another simple way of reducing the impact of visual clutter could
be to interactively draw the edges sorted by increasing penalization.
By tuning a penalization threshold, the analyst could first discover
the reliable edges, and then add on top of them the more distorted
edges, which tend to induce the most clutter in the relevance graph.

5 CONCLUSIONS

In this paper, we proposed a new method for interpreting mappings
while accounting for distortions by superimposing two colour-coded
graphs. These graphs allow to diagnose reliable and distortion-
induced neighbourhood relations, while quantifying those distortions
through a colour scale based on classical map evaluation criteria.
Therefore, our pairwise display allows to interpret locally the map-
wise results obtained for global indicators. Future work may extend
MING to other pairs of indicators, such as MRRE or CCA and
Sammon stresses, or search for ways of reducing visual clutter with
the minimal loss of information, especially for missed neighbours
edges.

Figure 6: Edge bundling with a variant of KDEEB on the trustworthi-
ness and continuity weighted retrieval and relevance graphs for the
digits dataset.
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