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Abstract 

Medicago truncatula was proposed, about three decades ago, as a model legume to study the Rhizobium-

legume symbiosis. It has now been adopted to study a wide range of biological questions, including various 

developmental processes (in particular root, symbiotic nodule and seed development), symbiotic (nitrogen-

fixing and arbuscular mycorrhizal endosymbioses) and pathogenic interactions, as well as responses to abiotic 

stress. With a number of tools and resources set up in M. truncatula for omics, genetics, and reverse genetics 

approaches, massive amounts of data have been produced, as well as four genome sequence releases. Many of 

these data were generated with heterogeneous tools, notably for transcriptomics studies, and are 

consequently difficult to integrate. This issue is addressed by the LeGOO knowledge base 

(https://www.legoo.org ), which finds the correspondence between the multiple identifiers of a same gene. 

Furthermore, an important goal of LeGOO is to collect and represent biological information from peer-

reviewed publications, whatever the technical approaches used to obtain this information. The information is 

modelled in a graph-oriented database, which enables flexible representation, with currently over 200,000 

relations retrieved from 298 publications. LeGOO also provides the user with mining tools, including links to the 

Mt5.0 genome browser and associated information (on gene functional annotation, expression, methylome, 

natural diversity and available insertion mutants), as well as tools to navigate through different model species. 

LeGOO is therefore an innovative database that will be useful to the Medicago and legume community to 

better exploit the wealth of data produced on this model species.  

 

Keywords: Graph-based representation. Knowledge base. Medicago truncatula.  

Abbreviations: RNAseq, RNA sequencing; 
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Introduction 

The spectacular development of omics approaches in the past 20 years has generated a considerable amount 

of data, particularly on model species. This has been accompanied by rapid technical advances, notably for 

transcriptomics analyses. However, this progress has gone together with obvious difficulties for the integration 

of data obtained with different tools, such as different generations of microarrays and now massive parallel 

sequencing. An additional layer of complexity and confusion is often encountered when several successive 

genome sequence versions are released for a same organism, generally with different gene model annotations. 

As a consequence, much of the transcriptomics data generated with a given tool (generally found in 

supplementary tables) tend not to be taken into consideration and are usually not compared with those 

obtained with a different tool. This represents an obvious waste, considering the time, energy and money 

involved in the production of these data.  

Furthermore, besides transcriptomics data management, there are other challenges to try and combine various 

types of data and to set up tools to easily access and visualize multi-source knowledge, with the corresponding 

sources of information precisely indicated. 

Numerous databases have been developed for plant species in the past years, a number of which gather 

transcriptomics data and offer tools to analyze them in different ways. For example, TENOR (Kawahara et al. 

2016) and Plant/OryzaExpress (Kudo et al. 2017b) are dedicated to rice RNAseq and microarray-based data 

respectively, with tools to analyze gene expression networks. Similarly, RNAseq data and mining tools are 

found for tomato in TOMATOMICS (Kudo et al. 2017a) and TomExpress (Zouine et al. 2017). For Arabidopsis 

thaliana, Araport (Krishnakumar et al. 2015a) and HRGRN (Dai et al. 2016) integrate a lot of data, many of them 

collected from various remote sites. Thus, HRGRN uses graph-search empowered tools to analyze Arabidopsis 

signal transduction, metabolism and gene regulatory networks.  

For Medicago truncatula, a model legume species (Kang et al. 2016), a widely used gene atlas (MtGEA; 

https://mtgea.noble.org/v3/) gathers transcriptomic analyses performed with Affymetrix chips from a wide 

range of biological conditions (Benedito et al. 2008; He et al. 2009), while LegumeGRN generates gene network 

predictions, based on the Affymetrix data (Wang et al. 2013). Another database, SYMbiMICS 

(https://iant.toulouse.inra.fr/symbimics/), presents RNAseq data obtained so far from roots and symbiotic 

nodules, notably laser-microdissected samples (Roux et al. 2014; Jardinaud et al. 2016). Yet, other 

transcriptomics tools have been used, such as Mt6k (Kuster et al. 2004), Mt16k (Hohnjec et al. 2005) and 

Nimblegen microarrays (Verdier et al. 2013). Four M. truncatula genome sequences and corresponding gene 

annotations have been released, namely Mt3.5 (Young et al. 2011), JCVI Mt4.0 (Tang et al. 2014), Mt20120830 

(Roux et al. 2014) and Mt5.0 (Pecrix et al. 2018). Corresponding databases and genome browsers are the 

Medicago genome database [Mt3.5 and Mt4.0; http://www.medicagogenome.org/; (Krishnakumar et al. 

2015b)], the Legume Information System [https://legumeinfo.org/ ; (Dash et al. 2016)], the M. truncatula A17 

r5.0 genome portal [https://medicago.toulouse.inra.fr/MtrunA17r5.0-ANR/; (Pecrix et al. 2018)], as well as a 

portal to explore the natural diversity of M. truncatula genomes [hapmap project; 

https://mtgea.noble.org/v3/
https://iant.toulouse.inra.fr/symbimics/
http://www.medicagogenome.org/
https://legumeinfo.org/
https://medicago.toulouse.inra.fr/MtrunA17r5.0-ANR/
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http://www.medicagohapmap2.org/ (Kang et al. 2015)]. The Mt5.0 genome browser integrates data from 

numerous sources for thorough and extended analyses: gene, transposon and long non-coding RNA 

annotations; protein annotation (blastp and blast2GO results, interproscan analyses); gene models from all 

previous genome sequence releases; positions of Affymetrix and Nimblegen probe sets, as well as Tnt1 

insertions in the mutant collection generated at the Noble Foundation (Cheng et al. 2014); natural diversity 

data [hapmap project; (Kang et al. 2015)]; mRNAseq, sRNAseq and methylome data. 

The LeGOO knowledge base presented here is based on different principles. It does not collect “raw” data but 

rather information manually extracted from publications. Thus, for transcriptomics data, only statistically 

relevant differentially regulated genes are used to feed LeGOO. This allows reliable knowledge generated with 

a variety of acquisition tools to be considered and integrated. This also implies that correspondences between 

all gene IDs and gene probes (used for microarrays) must be defined, which was performed using the last 

release (Mt5.0) of the M. truncatula genome sequence as the pivotal nomenclature. Furthermore, LeGOO is 

not limited to transcriptomics and incorporates a variety of data and information, e.g. obtained by genetics or 

molecular biology approaches. This information is modelled in a graph-oriented database (Miller 2013), 

similarly to HRGRN (Dai et al. 2016), with pairwise relations (edges) between objects (nodes).  

So far, data from about 300 publications, from different fields (symbiotic and pathogenic interactions, response 

to abiotic stress, plant developmental pathways) have been manually retrieved, leading to more than 200,000 

relations available in LeGOO. The LeGOO user can thus take advantage of mining tools to discover useful 

information on any gene of interest. The knowledge that is integrated and made accessible via LeGOO is a 

valuable addition for the Medicago community, as well as for other plant spp. by inference based on orthology 

groups. 

Results 

Tracking Medicago truncatula genes amongst different generations of datasets  

The exploration of the M. truncatula transcriptome was initiated years before the first release of the M. 

truncatula genome sequence, in contrast to Arabidopsis thaliana, for which a high quality genome sequence 

was available prior to the development of array technologies, thereby enabling the establishment and use of a 

stable nomenclature. Moreover, over almost two decades, several generations of macro and microarrays were 

produced along with several M. truncatula genome versions, with consequently several nomenclatures being 

used in articles reporting on mid to large-scale gene expression analyses. This led us to develop an "ID 

Converter" service to quickly find the different identifiers (IDs) representing a same gene. The ID Converter tool 

is an essential part of LeGOO, and it can be used independently to find the various names and codes given to 

the same gene. 

The ID Converter service manages most datasets that have been used for global M. truncatula gene expression 

analyses. It includes datasets built from Sanger Expressed Sequence Tags (EST) [TIGR/Dana Faber M. truncatula 

Gene Indices (MtGI) releases 5 to 11, EST MENS releases MtCDJan2003 (Journet et al. 2002) and  

http://www.medicagohapmap2.org/
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MtSCDJun2006 (Godiard et al. 2007)] and several sets of microarray probes, namely the Mt6k (Kuster et al. 

2004), Mt16k (Hohnjec et al. 2005), Affymetrix (Benedito et al. 2008) and Nimblegen microarrays (Verdier et al. 

2013). The database also includes all successive M. truncatula genome sequence and annotation releases, 

namely Mt3.5 (Young et al. 2011), JCVI Mt4.0 (Tang et al. 2014), Mt20120830 (Roux et al. 2014) and Mt5.0 

(Pecrix et al. 2018). The current reference transcriptome from pea (Alves-Carvalho et al. 2015), Pisum sativum, 

a legume species closely related to M. truncatula, is also included to facilitate knowledge transfer between a 

model and a crop legume species. This particular dataset was processed like M. truncatula reference datasets 

with specific overlap parameters (see Methods). 

The method for establishing correspondences between all the IDs for a given gene (Table 1) was to map all 

corresponding sequences on the last reference genome sequence, Mt5.0 (see Methods). All "synonymy" links 

(Fig. 1) were then loaded into the LeGOO database to enable knowledge inference across the different 

generations of sequence datasets. Each pairwise comparison of ID sets is available as a spreadsheet table. It is 

also possible to search for all IDs of any single gene through the main search box or a dedicated search form 

(termed “ID converter”).   

The mapping criteria were defined to take into account the variable accuracy of the datasets (see Methods). 

Each M. truncatula dataset could be mapped over 88% with a global mapping rate of 95%. The most recent 

datasets (Mt4.0, Mt20120830 and small secreted peptide genes [SSPs; (de Bang et al. 2017)] have the highest 

mapping rates, confirming at the same time their high quality and the completeness of the Mt5.0 reference 

genome. We can also observe a good specificity of the mapping (more than 96% of mapped sequences are 

mapped at only one location) for all the datasets except for the Nimblegen array probes, probably because 

they also included a set of transposable elements. Overall 93% of the M. truncatula mapped sequences have at 

least one additional corresponding ID in another dataset, while the average number of synonymous IDs is 9.1 

per Mt4.0 locus.   

Elaborating a knowledge base associated with M. truncatula genes 

The aim of the LeGOO base is to retrieve knowledge, i.e. published information focused on scientific questions 

and validated through the publication process (with ad hoc statistical analyses and cross-validations when 

necessary). Non-curated raw data (e.g. raw transcriptomics, proteomics or interactome data) are therefore not 

taken into consideration. Importantly, results of a variety of targeted approaches, such as forward and reverse 

genetics or molecular biology (e.g. quantitative RT-PCR analyses, protein-protein or protein-DNA interactions…) 

are used to feed the LeGOO knowledge base, in addition to omics data. 

The way LeGOO is conceived therefore implies managing heterogeneous objects / data sets and defining 

appropriate representation tools. We chose a graph-based representation, structured as graph nodes and 

edges (Fig. 2), with Cytoscape.js library (Franz et al. 2016) to show relations (“encodes”, “induces”, “represses”, 

“is required for”, “modifies”, “binds”…) between different types of biological objects and processes 

(oligonucleotide, EST, gene, RNA, protein, metabolite, biological process…). 
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Content of the LeGOO knowledge base  

As of April 2019, data from 298 publications from peer-reviewed journals concerning M. truncatula were 

manually retrieved, the list of which is provided on the LeGOO site (KnowledgeBase / PubMed List). In total 

more than 200,000 relations have been entered in the database, using controlled vocabulary for objects, 

relations and processes (based on Gene Ontology terms whenever possible). Additional related information, 

especially details of experimental conditions, the magnitude of observed effects (e.g. fold change for induction 

or repression) and plant or interacting microbe species and genotypes, have also been indicated by the 

curators.  

Furthermore, continuing efforts have been made to compile gene names used in publications, whether defined 

from phenotypes, genetic screens or systematic surveys of gene families and to establish their correspondence 

with genomic loci (> 2,500 genes are currently listed with corresponding publication identifiers as well as 

Mt5.0, Mt4.0, Mt3.5, Mt20120830, Affymetrix and Nimblegen probe IDs, a list which is regularly updated). This 

resource (termed Gene Acronyms vs. IDs, in the ID converter tool) is very valuable when analyzing any 

transcriptome or proteome data set, to quickly find relevant information on regulated genes of interest, and 

also to avoid renaming entities already reported in the literature.  

A large fraction (140) of the publications used to feed LeGOO deal with transcriptomics analyses, which 

generated 98% of the relations and involved 88,250 different biological entities. Symbiosis-related publications 

(N-fixing and arbuscular mycorrhizal symbioses) are the most represented in the knowledge base with 125 

publications and 71,626 relations, due to the scientific interests of the curators, but other processes are also 

documented (Table 2). 

Retrieving gene-associated knowledge  

LeGOO is queried using a full-text search (gene name or genomic locus). A small object list is obtained in return, 

corresponding to the subtype(s) (gene, transcript, protein) documented in LeGOO, based on the number of 

curated relations. Once one or several object(s) has/have been selected, the entire set of synonymous IDs is 

collected by LeGOO, and used to produce a knowledge graph, integrating the information collected for all 

synonymous identifiers. 

To visually simplify the graphs, by default LeGOO collapses all equivalent targets (i.e. involving a same relation), 

and all synonymous entities into a single meta-node, which can be unraveled. Similarly, when a hub (i.e. an 

object with a high number of relations of the same kind) is retrieved, its targets are not collected but their 

number is displayed in red in an information panel next to the graph (Fig. 2). This information panel, posted 

when clicking on any node or relation, makes a series of metadata directly available, including a link to the 

original dataset and to the publication used to document the relation. 

Organizing the layout of the knowledge graph 

The output graph can be easily modified by the user to make it simpler or clearer (e.g. by moving or deleting 

any element). While the system offers by default a condensed view of synonymous objects and multiple targets 
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(display of the most informative object in terms of knowledge), several layouts are available to automatically 

organize the graph, and the user still has the ability to move, delete and cancel changes on the fly. 

A contextual menu on all graph nodes makes several options available, namely building a new graph centered 

on this node and linking an object to the Mt5.0 genome browser (to access numerous additional types of 

information). It is also possible to expand a knowledge graph by simply "double-clicking" on a node, leading to 

the addition of all the relations corresponding to this object.  

Finally, a search box makes it possible to highlight nodes or edges matching a word. 

Discovering new indirect links between genes 

LeGOO uses the shortest path algorithm (implemented in the Neo4J database engine) to provide an original 

service. This functionality aims at finding a shortest path between two biological entities without any a priori 

about their connection. To run it, the user selects two objects and the maximum number of paths that should 

be retrieved. The result is a knowledge graph representing all the paths and intermediate nodes that connect 

the two objects (Fig. 3), as well as a table indicating all paths when several are found. As with all LeGOO 

graphical outputs, additional information on any objects (e.g. list of best blastp hits in several legume and non-

legume plant genomes, Interpro domains, existence of Tnt1 insertion mutants, RNAseq and methylome data…) 

can be obtained via a link to the Mt5.0 genome browser (using a contextual menu; Fig.3). In spite of obvious 

limitations (e.g. the existence of hubs that connect hundreds of objects, or the fact that relation orientation is 

not taken into account), this tool may allow unexpected relations to be discovered or co- or anti-regulated 

genes to be identified. Such information is generally difficult to find directly from publications, due to 

nomenclature issues and the mass of information to be integrated. 

Mining tools and interoperability with Medicago community resources 

Users can enter LeGOO using any keyword, gene name, domain annotation, Gene Ontology term to retrieve 

biological entities. Pubmed IDs can also be used to get the list of relations extracted from a specific publication. 

Thanks to an automatic detection of patterns corresponding to known IDs, LeGOO proposes links to reference 

resources such as the Medicago Gene Atlas (Benedito et al. 2008) or MedicMine (Krishnakumar et al. 2015b). 

These links are displayed on the main page of search results in the form of an identity card or in additional links 

on the information panel of the knowledge graph. 

A tool for mining open access publications, complementary to other tools such as PubMed, is also provided in 

LeGOO for gene queries. The system collects the set of corresponding synonyms and uses the API of Europe 

PMC to retrieve up to last 100 publications in which at least one of the synonyms appears. As an example of 

the usefulness of this tool, when using MtEFD as a query, three publications were found when searching in 

PubMed (as of May 29
th

 2019) vs. 10 using LeGOO. Publications already curated and available in the LeGOO 

database are indicated with the number of relations that were extracted per publication by the curators.  



9 
 

Navigating through different plant model species 

In addition to the current reference transcriptome from pea 

(http://bios.dijon.inra.fr/FATAL/cgi/PsUniLowCopy.cgi ), LeGOO offers a service to search for potential 

orthologs or recent paralogs to M. truncatula proteins (from the latest annotation release (Pecrix et al. 2018)) 

of identifiers from reference organisms (Table 3) such as A. thaliana. This functionality provides a way to 

benefit from the knowledge acquired on M. truncatula for the purpose of translational research, or reciprocally 

to help curators and users to identify relations missing in the LeGOO system. For any other organism that is not 

available among the reference list, users can enter the system via a blast search against all M. truncatula 

datasets used for the ID Converter service. 

Discussion 

Here, we describe LeGOO, a database centered on information retrieved from publications, with a graph-based 

structuration of knowledge acquired by the M. truncatula community. LeGOO provides: a comprehensive ID 

converter that considerably facilitates the mining and comparison of data produced over about two decades 

with different tools; a list of gene acronyms used in publications, along with the corresponding gene identifiers 

in successive genome sequence releases and microarrays; a text mining tool to find publications where a gene 

of interest is cited (with a search of all synonymous IDs corresponding to the gene). 

The interests of a knowledgebase such as LeGOO are that: (i) information and data obtained by a variety of 

approaches can be integrated and represented; (ii) information is already filtered and validated by the 

publication process, which ensures quality standards and reliability, and decreases the level of “noise” caused 

by spurious data that may be found in raw data. Thanks to LeGOO, the user may find out valuable information 

outside his/her field of expertise or data of direct interest that is buried in supplementary tables of 

publications. For example, while MtEFD is known to be important for the regulation of nodulation (Vernié et al. 

2008) and pathogenesis induced by the bacteria Ralstonia solanacearum (Moreau et al. 2014), data mining via 

LeGOO revealed that MtEFD expression is also activated by the oomycete Aphanomyces euteiches, inhibited 

during flower and fruit development, and positively or negatively impacted by phytohormone treatments 

(abscisic acid and jasmonic acid, respectively) (Fig. 2). 

LeGOO is currently updated and maintained by manual curation by biologists, which is quite time consuming. In 

the future it would be very interesting to develop semi-automated text mining methods to facilitate the regular 

integration of published results. 

Materials and Methods 

Computing of synonymy links 

The gene models (release 5.1.6) of the high quality reference genome (Pecrix et al. 2018) were used as pivotal 

sequences and nomenclature. All datasets were mapped on the Mt5.0 genome using GMAP (Wu and 

Watanabe 2005) (gmap.version = 2017-09-05, gmap.parameters = --gff3-add-separators=0 --mapboth --

npaths=10 --suboptimal-score=1.0 -L 100000 --min-intronlength=35 -K 25000 --trim-end-exons=25). Then, 

http://bios.dijon.inra.fr/FATAL/cgi/PsUniLowCopy.cgi
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corresponding biological objects were identified with the bedtools intersect command combined with custom 

Perl scripts to define the following spanning thresholds: minimal query coverage of 30% for EST and gene 

queries and 80% for oligonucleotide, Affymetrix and Nimblegen probe queries; minimal subject coverage of 

30% for EST and genes (same orientation as queries). For the P. sativum transcriptome data set (assemblies 

from short RNAseq reads), the threshold for subject coverage (i.e. the P. sativum sequences) was limited to 

150% to avoid artefactual gene fusions between co-localized paralog genes.  

Knowledge extraction from publication and formatting 

The “knowledge” extracted from each publication was modelled as a relation between one source object (e.g. a 

gene, a protein or a biological process) and a list of targets (biological objects or processes). Each object is 

defined with a type (controlled vocabulary), a name, an organism and a genotype. Additional optional fields can 

be attached to the object, such as a subtype (e.g. mRNA or ncRNA for the RNA type), a description or a link to a 

database. The relation is labelled using a controlled vocabulary describing the type of the relation (e.g. 

induces). Additional metadata are attached to the relation, such as experimental conditions, the presence of 

other organisms (e.g. pathogen/symbiont) or a molecule of biological interest, as well as metadata related to 

the score (p-value, fold change), the source of information within the publication or the curator’s name. To 

facilitate the entry of new relations, Excel©-formatted templates are used, containing pre-filled options with 

frequently used values (organism names, genotypes) and controlled vocabulary for object and relation types. 

Controlled vocabulary relies as much as possible on ontologies (Sequence Ontology (Eilbeck et al. 2005) for 

object types) and established terms from Gene Ontology (Harris et al. 2004) to describe biological processes 

whenever possible. 

Data wrangling and database setup 

The construction of a new release of the database is left to the LeGOO administrator. All files uploaded by 

curators, as well as lookup tables, reference files, and annotation files are collected. Automatic corrections are 

made to fix case errors or use common identifiers (using mapping files). Biological objects are identified 

through the calculation of a unique signature composed of the type, name, organism and genotype in which 

the object is observed. Synonymy links are automatically inserted to link analog objects in different genotypes, 

or to model the Gene -> Transcript -> Protein relations. The set of relations is loaded into a Neo4J graph 

database (https://neo4j.com/). Nodes and edges are annotated and indexed using ElasticSearch 

(https://www.elastic.co/) allowing full-text searches. 

Web service implementation 

The web service is developed in Perl and accesses the database using the Neo4J Rest API and the Elasticsearch 

CPAN module. The data is exposed as JSON documents via a Rest-like API. Hypermedia links provide pointers to 

related pages such as the external resources. Documents are formatted in Javascript using the JQuery library 

for interactivity and Cytoscape.js components for the graph layout.  

https://neo4j.com/
https://www.elastic.co/
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Computation of orthology links  

Orthology links between the proteins of the M. truncatula genome (proteome release 5.1.6) and a set of 14 

selected plant proteomes were computed with Orthofinder software (v 2.2.0) (Emms and Kelly 2015). The files 

of the putative orthologs of M. truncatula (https://github.com/davidemms/OrthoFinder#results-files-

orthologues) were analyzed with a Perl script (https://framagit.org/LIPM-

BIOINFO/KGB/blob/master/bin/int/kgb_convert_orthofinder-files.pl ) and loaded into a SQLite database 

allowing queries with non Medicago protein accessions 
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Tables 

 

Dataset Size 
[1]

 Mapped 
[2]

 
Uniquely 

Mapped 
[3]

 ID linked 
[4]

 

affx-1 (S. meliloti and M. sativa probes 
excluded) 51063 48597 47361 45037 

DeBang_PlantPhysiol2017-Currated-SSP 1970 1970 1925 1879 

IMGA-Mt3.5.5-gene 77464 76730 74828 71717 

JCVI-Mt4.0v2-gene 50444 50119 49301 47393 

Mt16kOLIplus-2004 16780 16201 15654 15764 

Mt20120830.gene-ncrna-missing 82940 82678 79150 67371 

Mt6kRIT-Jan2003 4143 3941 3899 3929 

MtCDJan2003 37413 33730 32638 33407 

MtGI5 33765 30161 29352 29861 

MtGI6 36235 31906 31040 31708 

MtGI7 36976 32509 31593 32259 

MtGI8 36878 33355 32479 33068 

MtGI9 67463 63189 61227 62859 

MtGI10 68848 64519 62543 64272 

MtGI11 68814 64496 62522 64227 

MtSCDJun2006 43398 39260 37769 38264 

NCR-2003 311 311 300 311 

Nimblegen-GPL16373-
IRHS_Medtr_102K_v1 102123 101634 94179 82110 

Clusters_PsUniLowCopy 40395 30571 26783 12312 

Table 1. Sources of identifiers used in the LeGOO knowledge base; the Pea transcriptome dataset 
(Clusters_PsUniLowCopy; (Alves-Carvalho et al. 2015)) has been compared only to Mt5.0 gene models. [1] 
number of unique IDs in fasta file; [2] number of sequences mapped onto the genome; [3] number of 
sequences mapped at only one position with highest score; [4] number of IDs with a correspondence in at least 
one dataset.  
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Category Publications Relations 

N-fixing and arbuscular mycorrhizal symbioses 125 71627 

organ development, except nodule 38 13820 

response to abiotic factors 31 46112 

phytohormone-related 31 10429 

response to biotic factors, except N-fixing and arbuscular 
mycorrhizal symbioses 22 35130 

biosynthetic process 4 6 

suppression of host defenses 3 3 

developmental process 2 678 

response to endogenous stimulus 2 3 

growth 2 2 

metabolic processes, except phytohormone-related 1 1 

ANNOTATION 193 2424 

Table 2- Number of curated publications and relations extracted per category. 

 

Organism Genotype Version 

Brassica oleracea var. oleracea TO1000 2.1.31 

Brachypodium distachyon Bd21 Phytozome.12.314_3.1 

Arabidopsis thaliana Col-0 Araport11 

Zea mays B73 Phytozome.12.284 

Vitis vinifera PN40024 Phytozome.12 

Solanum lycopersicum Heinz 1706 ITAG.3.2 

Phaseolus vulgaris BAT93 EnsemblPlants.38 

Nicotiana benthamiana Nb-1 Solgenomics.1.0.1 

Lotus japonicus Miyakojima MG-20 3.0 

Helianthus annuus XRQ 1.2 

Glycine max Williams 82 Phytozome.12 

Brassica rapa Chiifu-401 EnsemblPlants.38 

Triticum aestivum Chinese Spring EnsemblPlants.38 

Hordeum vulgare Morex EnsemblPlants.38 

Table 3: List of target proteomes used to infer orthologs or recent paralogs. 
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Figure legends  

 
Figure 1. Example of various identifiers (ESTs, microarray probes and locus from different genome sequence 

releases) corresponding to a same gene, MtEFD [Ethylene response Factor required for nodule Differentiation;  

(Vernié et al. 2008)]. Each relation corresponds to an overlap between objects based on their mapping onto the 

Mt5.0 genome sequence (https://medicago.toulouse.inra.fr/MtrunA17r5.0-ANR/ ). 

 

Figure 2. Example of relations retrieved from the LeGOO base, depicted using a graph representation, here 

using the MtEFD transcription factor as a query. The relation types along with associated information are 

indicated on the edges and depicted with different colors (e.g. blue for represses and yellow for induces). 

https://medicago.toulouse.inra.fr/MtrunA17r5.0-ANR/
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Additional information (such as experimental conditions, a link to the corresponding publication…) can be 

found on a panel on the side of the graph. Dashed lines indicate several relations of a same type; details on 

those relations can be obtained by expanding the synonymous nodes (“Synonymous Display” menu).  

Figure 3. Example of shortest paths (top right panel) found between two proteins (MtEFD and MtDME) 

(number of paths set to five). A contextual menu (long click on any object; here Mt0127_00021) gives access to 

the Mt5.0 genome browser and numerous associated data: here Mt5.0 and Mt4.0 gene models, Affymetrix and 

Nimblegen gene probe location, position of TnT1 insertions in the TnT1 mutant population (Tadege et al. 2008; 

Cheng et al. 2011), nodule and root RNAseq data; three bottom right panels: annotation information accessed 

through a right click on the Mt5.0 gene model, with links to different databases (here ThaleMine, to access 

information on Arabidopsis thaliana BLASTp hits). 

 

 

 

 

 

 


