Daniel Brooks

Olivier Schwander

Frédéric Barbaresco

Jean-Yves Schneider

Matthieu Cord

Second-order networks in PyTorch

Keywords: SPD matrix, covariance, second-order neural network, Riemannian machine learning

Classification of Symmetric Positive Definite (SPD) matrices is gaining momentum in a variety machine learning application fields. In this work we propose a Python library which implements neural networks on SPD matrices, based on the popular deep learning framework Pytorch.

Introduction

Information geometry-based machine learning has recently been rapidly emerging in a broad spectrum of learning scenarios, and deep learning has been no exception. Notably, works such as [START_REF] Huang | Deep Learning on Lie Groups for Skeleton-based Action Recognition[END_REF], [START_REF] Huang | Building Deep Networks on Grassmann Manifolds[END_REF] and [START_REF] Huang | A Riemannian Network for SPD Matrix Learning[END_REF] introduce neural networks respectively operating on Lie groups, Grassmann spaces, and SPD matrices. Tthe natural representation of any temporally or spatially structured signal as a Gaussian process allows for a near universal possible interpretation of the signal as its temporal or spatial covariance, which is an SPD matrix, i.e. which belongs to the SPD Riemannian manifold, which we note S + * . Previous works make use of the SPD representation in other contexts than deep learning: for instance, Riemannian metric learning on S + * is developed in [START_REF] Yger | Supervised LogEuclidean Metric Learning for Symmetric Positive Definite Matrices[END_REF], while [START_REF] Yger | A review of kernels on covariance matrices for BCI applications[END_REF] review kernel methods on S + * , with a primary applicative focus on electro-encephalogram/cardiogram (EEG/ECG) classification. In a similar vein, [START_REF] Barachant | Classification of covariance matrices using a Riemannian-based kernel for BCI applications[END_REF] and [START_REF] Barachant | Multiclass BrainComputer Interface Classification by Riemannian Geometry[END_REF] extend barycenter-based classification methods to the SPD Riemannian framework. On the other hand, [START_REF] Faulkner | A Study of the Region Covariance Descriptor: Impact of Feature Selection and Image Transformations[END_REF] propose the usage of SPD matrices as a region descriptor in images, with applications in image segmentation. The work in [START_REF] Ionescu | Training Deep Networks with Structured Layers by Matrix Backpropagation[END_REF] pushed the idea further by allowing the region covariance descriptor to be appended to a deep neural representation of an image, and by doing so introduced the first hints of automatic backpropagation in a Riemannian setting. Finally, the older theoretical developments in [START_REF] Edelman | The Geometry of Algorithms with Orthogonality Constraints[END_REF] notably allowed the extension of optimization methods to manifoldvalued neural networks as later utilized in [START_REF] Huang | A Riemannian Network for SPD Matrix Learning[END_REF], [START_REF] Gao | Learning a Robust Representation via a Deep Network on Symmetric Positive Definite Manifolds[END_REF] and [START_REF] Engin | DeepKSPD: Learning Kernel-matrix-based SPD Representation for Fine-grained Image Recognition[END_REF]. Even more recent works, namely [START_REF] Acharya | Covariance Pooling for Facial Expression Recognition[END_REF] and [START_REF] Yu | Second-order Convolutional Neural Networks[END_REF] have appended SPD neural networks to classical, Euclidean ones, by considering the second-order moments of the learnt feature representations as a suitable representation for the data.

In this environment of popularization of deep learning on SPD matrices, we propose torchspdnet, a Python library featuring many relevant modules necessary to build a neural network operating on SPD matrices. We do so in the popular PyTorch framework [START_REF] Paszke | Automatic differentiation in PyTorch[END_REF]. While other libraries were proposed for general learning on manifolds (Geomstats [START_REF] Miolane | geomstats: a Python Package for Riemannian Geometry in Machine Learning[END_REF]), deep learning on manifolds (McTorch [START_REF] Meghwanshi | Mc-Torch, a manifold optimization library for deep learning[END_REF]), optimization on manifolds (Manopt [START_REF] Boumal | Manopt, a Matlab Toolbox for Optimization on Manifolds[END_REF]) and SPD matrix manipulation (PyRiemann [START_REF]Python package for covariance matrices manipulation and Biosignal classification with application in Brain Computer interface: alexandrebarachant/pyRiemann[END_REF]), ours focusses exclusively on deep learning architectures for SPD matrices, providing seamless integration with any PyTorch development framework. In the following section we describe the core components of a SPD neural network, which we may call SPDNet. The third section deals with the optimization of a manifold-valued network. Finally, we show some use cases.

Second order networks

Here we describe the architecture of an SPDNet. We begin with the core building blocks, then show how to build a network using these blocks in various scenarios. Following the logic of most modern deep learning frameworks including PyTorch, the core building blocks, or layers of the network, are implemented as individual modules.

SPD layers

Similarly to a classical neural network, an SPDNet aims at building a hierarchical sequence of more compact and discriminative manifolds as illustrated in figure 1. Three main layers are introduced in [13], described below.

Transformations Projection

Fig. 1. Illustration of a generic SPD neural network. Successive bilinear layers followed by activations build a feature SPD manifold, which is then transformed to a Euclidean space to allow for classification.

BiMap The bilinear mapping (BiMap) layer transforms an input matrix X (l-1) of size n (l-1) at layer (l -1) into an SPD matrix X (l) of size n (l) at layer (l) using a basis change matrix W (l) , required to be full-rank, which in turn constrains n (l) ≤ n (l-1) . In practice W (l) is in fact constrained to be semi-orthogonal:

X (l) = W (l) T X (l-1) W (l) with W (l) ∈ O(n (l-1) , n (l)) (1)
In the equation above, O(n (l-1) , n (l)) is the manifold of semi-orthogonal rectangular matrices, also called Stiefel manifold, and X (l-1) = U (l-1) Σ (l-1) U (l-1) T designates the eigenvalue decomposition of X (l-1)

ReEig The transformation layer is followed by an activation, in this case a rectified eigenvalues (ReEig) layer:

X (l) = U (l-1) max(Σ (l-1) , I n (l-1))U (l-1) T with P (l-1) = U (l-1) Σ (l-1) U (l-1) T (2)
The ReEig layer also makes use of an eigenvalue decomposition as it operates directly on the eigenvalues, with being a fixed threshold set to a default value of 1e -4.

LogEig After a succession of transformations and activations, the final feature manifold is then transformed via a logarithmic mapping to a Euclidean space (LogEig layer) to perform the actual classification:

X (l) = vec(U (l) log(Σ (l))U (l) T
) , with

P (l) = U (l) Σ (l) U (l) T (3)
The LogEig layer is justified in the Log-Euclidian Metric (LEM) framework, independently introduced in [START_REF] Pennec | A Riemannian Framework for Tensor Computing[END_REF] and [START_REF] Harris | The average eye[END_REF], which shows a correspondence from the manifold S + * to the Euclidean space S + of symmetric matrices through the matrix logarithm. The vec operator denotes matrix vectorization.

Training

The main difficulties of learning an SPDNet lie both in the backpropagation through structured Riemannian functions [START_REF] Ionescu | Matrix Backpropagation for Deep Networks with Structured Layers[END_REF] [START_REF] Brodski | Thirteen Papers on Functional Analysis and Partial Differential Equations[END_REF], and in the manifold-constrained optimization [START_REF] Edelman | The Geometry of Algorithms with Orthogonality Constraints[END_REF].

Structured derivatives

Manifold-valued functions, such as the LogEig and ReEig layers, require a generalization of the chain rule, key to the backpropgation algorithm. Both these layers can be represented in a unified fashion as a non-linear function f acting directly on the eigenvalues of the input matrix X (l-1) = U (l-1) Σ (l-1) U (l-1) T . Then, the backpropagation goes as follows: given the succeeding gradient ∂L (l) ∂X (l) , the output gradient ∂L (l-1) ∂X (l-1) is:

∂L (l-1) ∂X (l-1) = U L (U T (∂L (l) ∂X (l))U) U T (4)
In the previous equation, the Loewner matrix of finite differences L is defined as:

L ij = f (σi)-f (σj) σi-σj if σ i = σ j f (σ i) otherwise (5)

Constrained optimization

In the specific case of the BiMap layer, the transformation matrix W is constrained to the Stiefel manifold. The Euclidean gradient ∂L ∂G of the loss function L does not respect the geometry of the manifold: as such the gradient descent is ill-defined. ∂L ∂G . The correct Riemannian gradient is obtained by tangent projection ΠT W on the manifold at W . The update is then obtained by computing the geodesic on the manifold from W towards the Riemannian gradient, also called exponential mapping Exp W (X). We illustrate this process in figure 2. Both the tangent projection and geodsic are known on the Stiefel manifold [START_REF] Edelman | The Geometry of Algorithms with Orthogonality Constraints[END_REF]: ction Exp W have a closed form [START_REF] Edelman | The Geometry of Algorithms with Orthogonality Constraints[END_REF]: Fig. 2. Illustration of manifold-constrained gradient update. The Euclidean gradient is projected to the tangent space, then mapped to the manifold.

ΠT W (X) = X -W W T X Exp W (X) = Orth(W + X) (6)
The operator Orth represents the orthonormalization of a free family of vectors, i.e. the Q matrix in the QR decomposition.

Summary

The library we propose seamlessly integrates orthogonally-constrained optimization on S + * : the code for setting up the learning of a model in PyTorch is only modified in the usage of the MixOptimizer class, which mixes a conventional optimizer with the Riemannian ones: import t o r c h . nn a s nn from m i x o p t i m i z e r import MixOptimizer . . . model = . . . #d e f i n e t h e model . . . l=nn . Cross EntropyLoss () opt=MixOptimizer (model . p a r a m e t e r s () , l r=l r , momentum=0.9 , w e i g h t d e c a y=5e -4) #d e f i n . . . l . backward () opt . s t e p () #i n t h e t r a i n i n g l o o p , compute g r a d i e n t s and u p d a t e w e i g h t s as u s u a l l

Use cases

Here we show how to use the library in practice. Following the PyTorch logic, elementary functions are defined in torchspdnet.functional and high-level modules in torchspdnet.nn.

Basic SPDNet model

Here we give the most basic use case scenario: given input covariance data of size 20 × 20, we build an SPDNet which reduces its size to 15 then 10 through two BiMaps and a ReEig activation, followed by the LogEig and vectorization. Finally, a standard fully-connected layer allows for classification over the 3 classes import t o r c h . nn a s nn import t o r c h s p d n e t . nn a s nn spd model=nn . S e q u e n t i a l (nn spd . BiMap (1 , 1 , 2 0 , 1 5) , nn spd . ReEig () , nn spd . BiMap (1 , 1 , 1 5 , 1 0) , nn spd . LogEig () , nn spd . V e c t o r i z e () , nn . L i n e a r (1 0 * * 2 , 3)) Note that our implementation of the BiMap module supports an arbitrary number of channels, represented by the additional parameters all set to 1 in this example.

4.2 First-order and second-order combined In a more complex example, an SPDNet acts upon the features maps of a convolutional network. For an image recognition task, these features may come from a pre-trained deep network but nothing keeps from training the whole network in an end-to-end fashion or to fine-tune the parameters. Here we describe the combination of a pre-trained ResNet-18 [START_REF] He | Deep Residual Learning for Image Recognition[END_REF] on the CIFAR10 [START_REF] Krizhevsky | Learning Multiple Layers of Features from Tiny Images[END_REF] challenge and of SPDNet layers. We call such a model a second-order neural network (SOCNN).

Conclusion

We have proposed a PyTorch library for deep learning on SPD matrices. We hope its versatility and natural integration in any PyTorch workflow will allow future projects to more readily make use of the potential of exploiting covariance structure in data at any level.

 import t o r c h . nn a s nn import t o r c h s p d n e t . nn a s nn spd from r e s n e t import ResNet18 c l a s s SOCNN(nn . Module) : def i n i t (s e l f) : super (c l a s s , s e l f) . i n i t () s e l f . m o d e l f o=ResNet18 () #f i r s t -o r d e r model s e l f . m o d e l f o . l o a d s t a t e d i c t (th . l o a d (' p r e t r a i n e d / ResNet18 . pth ') [' s t a t e s e l f . c o n n e c t i o n=nn . Conv2d (5 1 2 , 2 5 6 , k e r n e l s i z e = (1 , 1)) #c o n v o l u t i o n a l c o n n s e l f . m o d e l s o=nn . S e q u e n t i a l (#second-o r d e r model nn spd . BiMap (1 , 1 , 2 5 6 , 1 2 8) , nn spd . ReEig () , nn spd . BiMap (1 , 1 , 1 2 8 , 6 4) ,) . t o (s e l f . d e v i c e s o) s e l f . d e n s e=nn . S e q u e n t i a l (nn . L i n e a r (6 4 * * 2 , 1 0 2 4) , nn . L i n e a r (1 0 2 4 , 1 0)) def f o r w a r d (s e l f , x) : x f o= s e l f . m o d e l f o (x) x c o= s e l f . c o n n e c t i o n (x f o) x sym=nn spd . CovPool () (x c o . view (x c o . shape [0] , x c o . shape [1] , -1)) x s o= s e l f . m o d e l s o (x sym) x v e c=nn spd . LogEig () (x s o) . view (x s o . shape [0] , x s o . shape [-1] * * 2) y= s e l f . d e n s e (x v e c) return y