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Abstract:

Our work builds temporal deep learning architectures for the classification of time-frequency
signal representations on a novel model of simulated radar datasets. We show and compare the
success of these models and validate the interest of temporal structures to gain on classification
confidence over time.

1. Introduction

With the popularization of ever-more diverse and miniaturized Unmanned Aircraft Vehicles
(UAVs, commonly known as drones), keeping an updated knowledge of airspace occupation
has recently evolved to a much more complex challenge. Modern targets require finer analysis,
for instance exploiting micro-Doppler signatures [5]. As an illustration, figure 1 shows the three
drones we aim at classifying: The Vario helicopter and DJI’s Phantom2 and S1000+. The task
considers surface radars aiming at UAVs, be it for counter-UAV military applications or civil
Unmanned Aircraft Systems (UAS) traffic management applications.

Previous work on radar classification with classical [9] [15] or deep learning techniques ex-
plore fully-connected or convolutional classification architectures. Our work also builds on deep
learning but focusses on modern techniques adapted to capture temporal fluctuation informa-
tion, which we consider a key feature in radar signals as it is in [18]. Lack of much real data
inspires building simulations to emulate data at will, in order to gain in expressivity. Moreover,
the proliferation of UAV models begs for generic and flexible modelling of intra and inter-class
variations, key to building powerful learning models further on. In section 2 we describe a rather
simple yet expressive model, which amounts to the paper’s first contribution. The second is the
comparison of two deep learning architectures on classification, related in section 3. Section 4
describes experiments to validate both contributions and is followed by the conclusion.
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Figure 1: From left to right: The Vario helicopter, DJI’s Phantom2 and S1000+. Scale is not
respected.

2. Radar Signal and Simulation

In its raw form, a radar signal is the result of an emitted wave reflected off a target, sampled
at a given pulse repetition frequency (PRF ), which yields a numerical time series of complex
points (amplitude and phase) of intrinsic time-frequency nature [4]. Figure 2 shows how a mere
fixed-time spectrum already allows for human interpretation and important feature extraction
such as blade rotation speed Ω = RPM

60
expressed in rad.s−1, Radar Cross-Section (RCS),

number Nb and length Lb of blades and radial velocity Vr. However, the extraction will likely
not be robust to real-world variations, thus nor will any subsequent classification algorithm.

2.1. A Physical Drone Model

In this section we introduce a simple yet expressive drone simulator. Firstly, the UAV is mod-
elled by a discrete set of Np scattering points disseminated along its physical structure. Figure
3 shows the distribution of the scattering points, their reflection direction and RCS along with
their temporal evolution. Note the model is 2-D as we consider the UAV to remain roughly in
the same plane wrt the radar. Slight changes in inclination can be modelled by variations in the
RCS. Future work may include simulating roll, yaw and pitch and corresponding individual
blade rotation speeds.

The Np scattering points moving in time yield a set of Np series of 2-D coordinates, which
are then fed to wave equations which return a temporal series of complex points. Finally, the
signal is immersed in a noisy and cluttered environment. The noise is unavoidable white thermic
noise from the sensing mechanism, the clutter sums up the influence the outside environment on
the signal of interest; Billingsley’s model was used to model ground clutter [2]. The following
section extends the simulator to account for unpredictible behavior, thereby introducing intra-
class variety.

2.2. Dataset Generation

The simulator described above gives a deterministic output given one configuration. Real data
are however subject to multiple variations even within one single measurement, whether it be
responses to an unkown controller, alterations of the environment or the data acquisition itself,
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Figure 2: Illustration of the simulated signal. Here, a PRF of 8kHz on a signal of 250ms yields
a time series of 2000 complex points, jointly drawn as modulus and real part. From a simple
analysis of the featured spectrum, we can deduce three important characteristics of the UAV:
rotation speed Ω, number Nb and length Lb of blades. To the left: zoom-in of the original signal
(SNR = 50dB). Top right: complete Fourier transform (PRF = 8kHz), where we define B
as the signal’s bandwidth (the plateau in the spectrum). Bottom right: zoom-in of the spectrum,
where we define ν the observed period of its assumed periodicity. Then we have ν = NbΩ and
B = 4LbΩfe

c
, which gives access to the three unkowns up to a hypothesis on the number of

blades, clean analysis pending. Note that for the sake of clear figures, the signal representation
parameters such as as the PRF and the signal to noise ratio (SNR) were set to wishfully
accomodating values. It is also important to point out that a gain in SNR of 10log(nfft) ≈
15dB is achieved in performing the Fourier transform. The given SNR values take that gain
into account.

Figure 3: Evolution of the scattering points and normals for the Vario, Phantom2 and S1000+
drones for a total simulation time of 250ms, of which we only illustrate the first 3ms (corre-
sponding to 7 frames) for the sake of visual simplicity. The body is modelled as an isotropic
reflector whereas blades are scattered with directional punctual reflectors in the direction of
the normals, the length of which are proportional to the points’ reflectance. Notice the multi-
copters’ helices alternatively turn clockwise and counter-clockwise. The 2-D scale is in meters;
dimensions and distances are accurate wrt reality. Time goes from red to green.
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Figure 4: Spectrograms of noisy and uncluttered signals for the three drones mentioned above,
from left to right: the Vario, the Phantom2 and the S1000+. Each group is organized as follows:
four varying spectrograms of the same class are displayed; the top-left one always corresponds
to a version constant in time. Below we plot an arbitrary time cut of one of the varying spec-
trograms. Important parameters of the representation are: SNR = 40 dB, PRF = 8 kHz,
Simulation time T = 250 ms, Nfft = 64 points and window overlap percentage pov = 50%.
Again, we take into account the gain in the Fourier transform and chose very forgiving config-
uration parameters for the sake of visual clarity.

all in all to non-cooperative behavior. These variations will define the intra-class disparity and
thus the inter-class separability. We have chosen four parameters to model disparity: RCS, Vr,
Ω and flight curvature κ. Their values are found or estimated from drone specifications while
their variations still need to be heuristically estimated in order to allow for more expressive
sampling. For instance, the RPMs in rad.s−1 are constrained as follows:

1. Vario: RPM ∈ [1550; 1650]

2. Phantom: RPM ∈ [4250; 5750]

3. S1000+: RPM ∈ [3250; 4750]

Figure 4 shows intra and inter-class variations for the three drones Vario, Phantom2 and S1000+
for a given set of representation parameters. Intra-class variety is achieved by sampling pairs of
drone parameter values in their acceptable ranges and linearly interpolating the resulting values
in time. Visible temporal variations are as accurate as possible, although exaggerated, wrt re-
ality. They exhibit discriminative behaviours which we hope to capture in learning algorithms.
The reader may observe that the S1000+, under strong variations, bypasses the allowed band-
width set by the PRF , which leads to the well known frequency folding phenomenon [19],
or Doppler ambiguity, which in turn can hurt the representationss credibility as a robust one.
Unfortunately, though we can set the parameter arbitrarily high in simulations (again, which
we do here for the sake of visual clarity), real-world radar costs constrain the PRF to possibly
sub-optimal thresholds.
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3. Deep learning on radar signals

This section gives an overview of the base concepts of statistical learning developed in our
classification algorithms. The simplest form of such algorithms is linear classification such as
logistic regression [8], a stacking of which amounts to the simplest form of neural networks, the
multi-layer perceptron (MLP) [16]. Contrary to MLPs, convolutional neural networks (CNNs,
first introduced in [13] and popularized in [12]) exhibit shared and locally connected filters, ie
convolutions, to exploit spatial locality in images.

3.1. Fully-convolutional networks for signal classification

Seeing a time-frequency representation as an image to be analyzed via a CNN constitutes a
first attempt at deep radar classification. One first subtlety to handle is that choosing the same
representation for input signals of potentially different lengths will lead to frequency dilution.
The more natural solution is to use the same projection instead of the same representation, eg
a spectrogam of fixed window size and overlap. This of course allows input data of different
dimensions, not easily handled by standard CNNs. A natural bypass is to consider the problem
as Multiple Instace Learning [20], or MIL. In this framework, one input data point is seen as
a collection of multiple atomic instances of the same class. Concretely, we divide spectrogams
in segments of equal length, which we denote as τ . We define these segments as noisemes
(in analogy to phonemes in speech recognition). The choice of τ is rather arbitrary, and is
interpreted as the minimal duration one must observe the signal to accurately determine its
class.

There exists a modification of CNNs which, although seemingly trivial, allows for semantic
segmentation, ie pixel-level, or, in the case of radar classification, timestep-level classification:
Fully-convolutional networks (FCNs), introduced in 2016 by [14], where dense layers of size
n are replaced with convolutional layers of size 1 and depth n. This artificial transformation
is referred to in the paper as the “convolutionalization trick”. Additionally, a Global Average
(or Max) Pooling (GAP) layer ensures correct dimensionality before final classification. Impor-
tantly, the neural network now naturally deals with inputs of varying size and outputs temporal
semantic feature maps when fed with longer signals. It is also worth noting the computational
advantage of an FCN over, say, a sweeping of the original CNN on patches of data: indeed the
architecture is highly optimized for parallel computation, which amounts to high training and
testing speed on GPU, which allows for a variety of challenging applications such as image seg-
mentation [10]. We design such a network, which we may name temporal fully-convolutional
network or TFCN, illustrated in figure 5.

The choice of hyperparameters for the network directly influences the inherent temporal pre-
cision achieved by the TFCN, in particular the filter and pooling sizes and associated strides.
Since the FCN is built upon the CNN classifier, the temporal feature map length lo equals 1

when given an input of length li = τ . We note S(li) := lo the global sizing function of the net-
work, composed of L layer-wise such functions Sl such that Sl(n) := nl+1 =

⌊
nl−kl+2pl

sl

⌋
+ 1,
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Figure 5: The proposed architecture for radar signal segmentation,where the boxes represent the
successive filter banks. Horizontal is time, vertical is frequency. C is the number of classes, ie 3
if we consider the Vario, Phantom2 and S1000+. In this example we feature a similar 10-class
problem which has more visual interest. Contrary to Computer Vision, where the feature maps
are spatial, our feature maps extend solely in time. We fix the noiseme length τ to 20 timesteps.
Note that we omit pooling layers, strides, batchnorms, dropouts and non-linearities in the figure
for visual simplicity.

where nl and nl+1 are the input and output size at layer l and kl, pl and sl respectively the filter
size, pad and stride at layer l. In the case of the proposed architecture 5, we have:

∀k ∈ N∗, S(kτ) = SL ◦ · · · ◦ S1(kτ) = b5
2
kτ − 5

2
c+ 1 := bf(k − 1)τc+ 1 (1)

We introduced in the above equation 1 the finesse coefficient f which quantifies the super-
resolution reached within a noiseme. By construction, f ∈ [1; τ ], and its explicit formula is
simply f = (

∏L
l=1 sl)

−1 (again, sl being the stride at layer l). For instance with τ = 20 and
f = 5

2
, we can classify the signal every 8 timesteps instead of 20, ie perform classification of

controled precision. Overlapping receptive fields are one way to do so, we will see in the next
section how neural networks can inherently support time dependency.

3.2. Recurrent neural networks for signal classification

Recurrent neural networks (RNNs) originally stem from standard perceptrons, but loop the inner
states to learn on sequences of data rather than on individual, unordered points [7]. The core
equation for RNNs is quite similar to that of perceptrons for it only adds the hidden state time
dependency. RNNs do not naturally handle out time-frequency images as they are vector-based.
Nonetheless, by considering the spectrogam no longer as an image but rather as a series of 1-D
spectrums, which in essence it is, we face no more concern. In the recurrent framework, the
finesse coefficient f is equal to its maximal value τ as we are dealing with individual spectrums.
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We can nonetheless relax f by adding a stride in the sequential spectrums, which amounts to
subsampling the original time-frequency representation. In practice we implement a two-layer
more sophisticated version of recurrent networks, Long Short Term Memory networks [11]
(LSTM) which are able to learn longer time dependecies [3] and seem robust to slight time
warpings in input signals [21], with 256 units at each layer.

4. Experiments

In this section we validate experimentally the classification of simulated data and study the
influence of important parameters. To achieve this we build several datasets corresponding to
different configurations.

4.1. Experimental setup

All datasets contain N = 1000 examples for each of the C = 3 classes, of which we reserve
25% for testing. We perform a 64-point sliding Fourier transform with Hamming windowing.
We choose the noiseme length τ = 20 spectrogram timesteps, which corresponds to ≈ 15ms

in real life (the choice is rather arbitrary though guided by the largest approximate period in all
signals). Throughout the experiments we train the three classifiers (MLP, RNN and FCN) with
the same strategy to remain consistent: stochastic gradient descent (SGD) with initial learning
rate α = 0.5 for the MLP, RMSProp [17] with α = 2e− 3 and decay β = 1e− 6 for the RNN,
and accelerated SGD with α = 4e− 3 and momentum µ = 0.9 for the FCN. All optimizations
are initialized by Glorot uniform sampling and run for K = 100 epochs without early stopping
nor cross-validation (except manual hyper-parameter finetuning). All learning rates are divided
by 2 every 25 epochs. Models were implemented using the Keras [6] library with Tensorflow [1]
backend and trained on a single Nvidia GTX 1070M GPU. Training a model takes less than an
hour with all models.

4.2. General performance and robustness

First we train the classifiers multiple times on a standard configuration to evaluate overall perfor-
mance and robustness to initialization to evaluate the simulator’s expressivity, seen in figure 6.
Running the training 20 times for each classifier (we actually test three FCN architectures with
different finesse coefficients), we observe consistent accuracy results, the most consistent being
the FCN, which exhibits the smallest spread. In terms of accuracy, the MLP falls way behind
the RNN and FCNs, which are close though the FCNs seem to generally perform better.

4.3. Impact of radar configuration parameters

Here we train all models in different configurations; specifically we vary SNR and PRF from
extremely challenging to wishfully accomodating. Results are found in figure 7. The most chal-
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Figure 6: Classification accuracies for three learning models. Here we chose a setup of cluttered,
noisy signals with SNR = 30dB on the left and SNR = 10dB to the right (PRF = 4kHz),
which is more than reasonable from a practicioner’s point of view.

Figure 7: Performance of the learning models for increasingly good conditions. The graphs show
intuitive behavior wrt the configurations.

lenging configuration being at SNR = 0dB and PRF = 4kHz, we nevertheless achieve
≈ 58% with the FCN, versus total confusion (≈ 33%)) with the MLP. Note this is an unreal-
istically challenging configuration, as an SNR of 0dB means an original signal to noise ratio
before Fourier transform of ≈ −15dB. Again, the FCN seems to be more robust to bad quality
signals, although this should eventually be validated on real data.
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5. Conclusion

We have introduced an expressive simulator for blade-propelled engines such as drones with
sufficiently realistic variational characteristics, which we have shown to be suited for machine
learning on three distinct models: MLPs, RNNs and FCNs, which in turn we have experimen-
tally validated to perform well even in harsh simulation conditions. We have furthermore jus-
tified the assumption that RNNs and FCNs that, because they can inherently learn temporal
fluctuations, are particularly appropriate to the task of radar classification as they are able to
handle signals of increasing length over time. Further developments for the simulator include
its refinement to real-life subtleties and its extension to other kinds of UAVs. As for machine
learning, the temporal architectures pave the way to more difficult tasks than classification, for
instance detection, labelling and segmentation.
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