
HAL Id: hal-02290797
https://hal.science/hal-02290797v4

Preprint submitted on 14 Apr 2022 (v4), last revised 22 Oct 2022 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Introduction to quantum groups
Teo Banica

To cite this version:

Teo Banica. Introduction to quantum groups. 2022. �hal-02290797v4�

https://hal.science/hal-02290797v4
https://hal.archives-ouvertes.fr


Introduction to quantum groups

Teo Banica

Department of Mathematics, University of Cergy-Pontoise, F-95000
Cergy-Pontoise, France. teo.banica@gmail.com



2010 Mathematics Subject Classification. 46L65

Key words and phrases. Quantum space, Quantum group

Abstract. The unitary group UN has a free analogue U+
N , and the closed subgroups

G ⊂ U+
N can be thought of as being the “compact quantum Lie groups”. We review

here the general theory of such quantum groups. We discuss as well a number of more
advanced topics, selected for their beauty, and potential importance.



Preface

A quantum group is something similar to a group, except for the fact that the functions
on it f : G→ C do not necessarily commute, fg 6= gf . As the name indicates, quantum
groups are meant to have something with do with quantum physics.

This book is an introduction to the quantum groups, or rather to the “simplest”
such quantum groups. Everything is accessible with a minimal knowledge of basic linear
algebra, basic group theory, basic functional analysis, and basic probability. The book
itself covers what can be taught during a 1-year graduate course.

The idea is that the unitary group UN has a certain free analogue U+
N , and the closed

quantum subgroups G ⊂ U+
N can be thought of as being the “compact quantum Lie

groups”. And it is about these latter quantum groups that the present book is about.
We will see, following work of Woronowicz from the late 80s, that a nice abstract theory,
including an existence result for the Haar measure, an analogue of the Peter-Weyl theory,
and an analogue of the Tannakian duality as well, can be developed for such quantum
groups. This is certainly less sharp that what can be done with the classical Lie groups,
but in what concerns everything algebra and probability, Tannakian duality, leading to
Brauer theorems and Weingarten calculus, will prove to be a quite efficient tool.

At the level of basic examples, we have of course the usual compact Lie groups G ⊂ UN ,

as well as, by an extension of the usual Pontrjagin duality, the abstract duals G = Γ̂ of
the finitely generated discrete groups, Γ =< g1, . . . , gN >. These latter examples are
quite interesting, philosophically speaking, because they suggest completing the general
theory mentioned above, for the arbitrary closed subgroups G ⊂ U+

N , with considerations

regarding the Kesten amenability, Cayley graph and growth for the duals Γ = Ĝ. This is
something which is not very hard to develop, and we will discuss this too.

At the level of the really new and interesting examples, we have U+
N itself, to start

with. There are in fact many other other objects of the same type, G+ ⊂ U+
N , obtained

by “liberating” suitable compact Lie groups G ⊂ UN . Variations of this construction can
be obtained by half-liberating instead of liberating, or twisting at q = −1, and so on. We
will end up in this way with a whole menagery of new quantum groups, waiting to be
further investigated, and applied to various questions in math and physics.
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4 PREFACE

So far, so good, obviously there is some nice mathematics going on here, worth ex-
plaining in a graduate textbook, and this is what we will do. As already mentioned, the
present book covers what can be taught during a 1-year graduate course, with each of the
4 parts corresponding to what can be taught during a half-semester, and with this being
certified information, based on my own experience with classes at Toulouse and Cergy,
and with various graduate school minicourses. For a 1-semester course, the lineup would
be Part I, then selected topics from Part II and Part III, and with a look into Part IV
as well. Finally, the overall content is mostly algebra and probability, with a flavor of
physics, and this can be taught in parallel or as a complement to topics of the same type,
such as Lie groups, Operator algebras, Free probability or Random matrices.

At the level of things which are not done in this book, there are of course so many
of them. In what regards the general theory, much work has gone into the study of the
quantum permutation group S+

N , and of its closed subgroups G ⊂ S+
N , and the present

book is only an introduction to the subject. There is certainly room for a second book
here, on precisely this topic, quantum permutation groups, but at a more advanced level,
and I would like to recommend here my future research monograph on the subject.

Also, and importantly, although quantum groups belong somewhat by definition to
mathematical physics, and the material presented here was developed by Woronowicz
and others with physics applications in mind, there will be no actual physics in this book.
Following Connes, Jones, Voiculescu and others, the potential applications of what we
do here are to statistical mechanics, then quantum mechanics of all types, concrete or
more speculative, and quantum information. However, all this is not really understood
and developed, and this is rather material to be hopefully explained in a future book.
For the interested young reader, the main problem, which is currently unsolved, is that
of developing a kind of Yang-Mills theory for S+

N , with the case N = 4 corresponding to
a modified QED, and with the case N = 9 corresponding to a modified QCD.

Getting back now to the present book, the mathematics here is based on a massive
number of research papers, starting with those of Woronowicz from the late 80s. I was
personally involved in all this, during the last 30 years, and it is a pleasure to thank
my coworkers, and particularly Julien Bichon, Benôıt Collins, Steve Curran and Roland
Speicher, for substantial joint work on the subject, and for having taught me so many
things. Finally, many thanks go as well to my cats, for sharing with me some of their
quantum mechanical knowledge, cat common sense, and other skills.
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Part I

Quantum groups



Country roads, take me home
To the place I belong

West Virginia, mountain mama
Take me home, country roads



CHAPTER 1

Quantum spaces

1a. Operator algebras

A quantum group G is something similar to a classical group, except for the fact that
the functions on it f : G→ C do not necessarily commute, fg 6= gf . Due to this fact, G
is not exactly a set of points, or transformations, but rather an abstract object, described
by the algebra A of functions on it f : G→ C, which can be noncommutative.

In order to introduce the quantum groups, we need some sort of algebraic geometry
correspondence, between spaces and algebras. We will use the space/algebra correspon-
dence coming from operator algebra theory. Here by “operator” we mean bounded linear
operator T : H → H on a Hilbert space, and as a starting point, we have:

Definition 1.1. A Hilbert space is a complex vector space H given with a scalar
product < x, y >, satisfying the following conditions:

(1) < x, y > is linear in x, and antilinear in y.
(2) < x, y > =< y, x >, for any x, y.
(3) < x, x >> 0, for any x 6= 0.
(4) H is complete with respect to the norm ||x|| = √< x, x >.

Here the fact that ||.|| is indeed a norm comes from the Cauchy-Schwarz inequality,
which states that if (1,2,3) above are satisfied, then we have:

| < x, y > | ≤ ||x|| · ||y||

Indeed, this inequality comes from the fact that the following degree 2 polynomial,
with t ∈ R and w ∈ T, being positive, its discriminant must be negative:

f(t) = ||x+ twy||2

In finite dimensions, any algebraic basis {f1, . . . , fN} can be turned into an orthonor-
mal basis {e1, . . . , eN}, by using the Gram-Schmidt procedure. Thus, we have H ' CN ,
with this latter space being endowed with its usual scalar product:

< x, y >=
∑
i

xiȳi

11



12 1. QUANTUM SPACES

The same happens in infinite dimensions, once again by Gram-Schmidt, coupled if
needed with the Zorn lemma, in case our space is really very big. In other words, any
Hilbert space has an orthonormal basis {ei}i∈I , and we have H ' l2(I).

Of particular interest is the “separable” case, where I is countable. According to the
above, there is up to isomorphism only one Hilbert space here, namely H = l2(N).

All this is, however, quite tricky, and can be a bit misleading. Consider for instance
the space H = L2[0, 1] of square-summable functions f : [0, 1]→ C, with:

< f, g >=

∫ 1

0

f(x)g(x)dx

This space is of course separable, because we can use the basis fn = xn with n ∈ N,
orthogonalized by Gram-Schmidt. However, the orthogonalization procedure is something
non-trivial, and so the isomorphism H ' l2(N) that we obtain is something non-trivial as
well. Doing some computations here is actually a very good exercise.

Let us get now into the study of operators. We first have:

Proposition 1.2. Let H be a Hilbert space, with orthonormal basis {ei}i∈I . The
algebra L(H) of linear operators T : H → H embeds then into the matrix algebra MI(C),
with T corresponding to the matrix Mij =< Tej, ei >. In particular:

(1) In the finite dimensional case, where dim(H) = N <∞, we obtain in this way a
usual matrix algebra, L(H) 'MN(C).

(2) In the separable infinite dimensional case, where I ' N, we obtain in this way a
subalgebra of the infinite matrices, L(H) ⊂M∞(C).

Proof. The correspondence T →M in the statement is indeed linear, and its kernel
is {0}. As for the last two assertions, these are clear as well. �

The above result is something quite theoretical, because for basic spaces like L2[0, 1],
which do not have a simple orthonormal basis, the embedding L(H) ⊂ M∞(C) that we
obtain is not very useful. Thus, while the operators T : H → H are basically some infinite
matrices, it is better to think of these operators as being objects on their own.

In what follows we will be interested in the operators T : H → H which are bounded.
Regarding such operators, we have the following result:

Theorem 1.3. Given a Hilbert space H, the linear operators T : H → H which are
bounded, in the sense that ||T || = sup||x||≤1 ||Tx|| is finite, form a complex algebra with
unit, denoted B(H). This algebra has the following properties:

(1) B(H) is complete with respect to ||.||, and so we have a Banach algebra.
(2) B(H) has an involution T → T ∗, given by < Tx, y >=< x, T ∗y >.

In addition, the norm and the involution are related by the formula ||TT ∗|| = ||T ||2.
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Proof. The fact that we have indeed an algebra follows from:

||S + T || ≤ ||S||+ ||T ||

||λT || = |λ| · ||T ||
||ST || ≤ ||S|| · ||T ||

(1) Assuming that {Tn} ⊂ B(H) is Cauchy, the sequence {Tnx} is Cauchy for any
x ∈ H, so we can define the limit T = limn→∞ Tn by setting:

Tx = lim
n→∞

Tnx

It is routine to check that this formula defines indeed a bounded operator T ∈ B(H),
and that we have Tn → T in norm, and this gives the result.

(2) Here the existence of T ∗ comes from the fact that ϕ(x) =< Tx, y > being a linear
map H → C, we must have a formula as follows, for a certain vector T ∗y ∈ H:

ϕ(x) =< x, T ∗y >

Moreover, since this vector is unique, T ∗ is unique too, and we have as well:

(S + T )∗ = S∗ + T ∗

(λT )∗ = λ̄T ∗

(ST )∗ = T ∗S∗

(T ∗)∗ = T

Observe also that we have indeed T ∗ ∈ B(H), because:

||T || = sup
||x||=1

sup
||y||=1

< Tx, y >

= sup
||y||=1

sup
||x||=1

< x, T ∗y >

= ||T ∗||
Regarding now the last assertion, we have:

||TT ∗|| ≤ ||T || · ||T ∗|| = ||T ||2

Also, we have the following estimate:

||T ||2 = sup
||x||=1

| < Tx, Tx > |

= sup
||x||=1

| < x, T ∗Tx > |

≤ ||T ∗T ||
By replacing in this formula T → T ∗ we obtain ||T ||2 ≤ ||TT ∗||. Thus, we have proved

both the needed inequalities, and we are done. �
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Observe that, in view of Proposition 1.2, we embeddings of ∗-algebras, as follows:

B(H) ⊂ L(H) ⊂MI(C)

In this picture the adjoint operation T → T ∗ constructed above takes a very simple
form, namely (M∗)ij = M ji, at the level of the associated matrices.

We will be interested here in the algebras of operators, rather than in the operators
themselves. The axioms here, coming from Theorem 1.3, are as follows:

Definition 1.4. A unital C∗-algebra is a complex algebra with unit A, having:

(1) A norm a→ ||a||, making it a Banach algebra (the Cauchy sequences converge).
(2) An involution a→ a∗, which satisfies ||aa∗|| = ||a||2, for any a ∈ A.

We know from Theorem 1.3 that the full operator algebra B(H) is a C∗-algebra, for any
Hilbert space H. More generally, any closed ∗-subalgebra A ⊂ B(H) is a C∗-algebra. The
celebrated Gelfand-Naimark-Segal (GNS) theorem states that any C∗-algebra appears in
fact in this way. This is something non-trivial, and we will be back to it later on.

For the moment, we will be interested in developing the theory of C∗-algebras, without
reference to operators, or Hilbert spaces. Our first task will be that of understanding the
structure of the commutative C∗-algebras. As a first observation, we have:

Proposition 1.5. If X is an abstract compact space, the algebra C(X) of continuous
functions f : X → C is a C∗-algebra, with structure as follows:

(1) The norm is the usual sup norm, ||f || = supx∈X |f(x)|.
(2) The involution is the usual involution, f ∗(x) = f(x).

This algebra is commutative, in the sense that fg = gf , for any f, g ∈ C(X).

Proof. Almost everything here is trivial. Observe also that we have indeed:

||ff ∗|| = sup
x∈X
|f(x)f(x)|

= sup
x∈X
|f(x)|2

= ||f ||2

Finally, we have fg = gf , since f(x)g(x) = g(x)f(x) for any x ∈ X. �

Our claim now is that any commutative C∗-algebra appears in this way. This is a
non-trivial result, which requires a number of preliminaries. Let us begin with:

Definition 1.6. The spectrum of an element a ∈ A is the set

σ(a) =
{
λ ∈ C

∣∣∣a− λ 6∈ A−1
}

where A−1 ⊂ A is the set of invertible elements.
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As a basic example, the spectrum of a usual matrix M ∈ MN(C) is the collection of
its eigenvalues. Also, the spectrum of a continuous function f ∈ C(X) is its image. In
the case of the trivial algebra A = C, the spectrum of an element is the element itself.

As a first, basic result regarding spectra, we have:

Proposition 1.7. We have the following formula, valid for any a, b ∈ A:

σ(ab) ∪ {0} = σ(ba) ∪ {0}

Moreover, there are examples where σ(ab) 6= σ(ba).

Proof. We first prove that we have the following implication:

1 /∈ σ(ab) =⇒ 1 /∈ σ(ba)

Assume indeed that 1 − ab is invertible, with inverse c = (1 − ab)−1. We have then
abc = cab = c− 1, and by using these identities, we obtain:

(1 + bca)(1− ba) = 1 + bca− ba− bcaba
= 1 + bca− ba− bca+ ba

= 1

A similar computation shows that we have as well (1− ba)(1 + bca) = 1. We conclude
that 1− ba is invertible, with inverse 1 + bca, which proves our claim. By multiplying by
scalars, we deduce from this that we have, for any λ ∈ C− {0}, as desired:

λ /∈ σ(ab) =⇒ λ /∈ σ(ba)

Regarding now the last claim, let us first recall that for usual matrices a, b ∈ MN(C)
we have 0 ∈ σ(ab) ⇐⇒ 0 ∈ σ(ba), because ab is invertible if any only if ba is.

However, this latter fact fails for general operators on Hilbert spaces. As a basic
example, we can take a, b to be the shift S(ei) = ei+1 on the space l2(N), and its adjoint.
Indeed, we have S∗S = 1, and SS∗ being the projection onto e⊥0 , it is not invertible. �

Given an element a ∈ A, and a rational function f = P/Q having poles outside σ(a),
we can construct the element f(a) = P (a)Q(a)−1. For simplicity, we write:

f(a) =
P (a)

Q(a)

With this convention, we have the following result:

Theorem 1.8. We have the “rational functional calculus” formula

σ(f(a)) = f(σ(a))

valid for any rational function f ∈ C(X) having poles outside σ(a).
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Proof. In order to prove this result, we can proceed in two steps, as follows:

(1) Assume first that we are in the polynomial case, f ∈ C[X]. We pick λ ∈ C, and
we write f(X)− λ = c(X − r1) . . . (X − rn). We have then, as desired:

λ /∈ σ(f(a)) ⇐⇒ f(a)− λ ∈ A−1

⇐⇒ c(a− r1) . . . (a− rn) ∈ A−1

⇐⇒ a− r1, . . . , a− rn ∈ A−1

⇐⇒ r1, . . . , rn /∈ σ(a)

⇐⇒ λ /∈ f(σ(a))

(2) Assume now that we are in the general case, f ∈ C(X). We pick λ ∈ C, we write
f = P/Q, and we set F = P − λQ. By using (1), we obtain:

λ ∈ σ(f(a)) ⇐⇒ F (a) /∈ A−1

⇐⇒ 0 ∈ σ(F (a))

⇐⇒ 0 ∈ F (σ(a))

⇐⇒ ∃µ ∈ σ(a), F (µ) = 0

⇐⇒ λ ∈ f(σ(a))

Thus, we have obtained the formula in the statement. �

Given an element a ∈ A, its spectral radius ρ(a) is the radius of the smallest disk
centered at 0 containing σ(a). We have the following key result:

Theorem 1.9. Let A be a C∗-algebra.

(1) The spectrum of a norm one element is in the unit disk.
(2) The spectrum of a unitary element (a∗ = a−1) is on the unit circle.
(3) The spectrum of a self-adjoint element (a = a∗) consists of real numbers.
(4) The spectral radius of a normal element (aa∗ = a∗a) is equal to its norm.

Proof. We use the various results established above.

(1) This comes from the following formula, valid when ||a|| < 1:

1

1− a
= 1 + a+ a2 + . . .

(2) Assuming a∗ = a−1, we have the following norm computations:

||a|| =
√
||aa∗|| =

√
1 = 1

||a−1|| = ||a∗|| = ||a|| = 1

If we denote by D the unit disk, we obtain from this, by using (1):

||a|| = 1 =⇒ σ(a) ⊂ D

||a−1|| = 1 =⇒ σ(a−1) ⊂ D
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On the other hand, by using the rational function f(z) = z−1, we have:

σ(a−1) ⊂ D =⇒ σ(a) ⊂ D−1

Now by putting everything together we obtain, as desired:

σ(a) ⊂ D ∩D−1 = T

(3) This follows by using (2), and the rational function f(z) = (z + it)/(z − it), with
t ∈ R. Indeed, for t >> 0 the element f(a) is well-defined, and we have:(

a+ it

a− it

)∗
=
a− it
a+ it

=

(
a+ it

a− it

)−1

Thus f(a) is a unitary, and by (2) its spectrum is contained in T. We conclude that
we have f(σ(a)) = σ(f(a)) ⊂ T, and so σ(a) ⊂ f−1(T) = R, as desired.

(4) We have ρ(a) ≤ ||a|| from (1). Conversely, given ρ > ρ(a), we have:∫
|z|=ρ

zn

z − a
dz =

∞∑
k=0

(∫
|z|=ρ

zn−k−1dz

)
ak = an−1

By applying the norm and taking n-th roots we obtain:

ρ ≥ lim
n→∞

||an||1/n

In the case a = a∗ we have ||an|| = ||a||n for any exponent of the form n = 2k, and by
taking n-th roots we get ρ ≥ ||a||. This gives the missing inequality, namely:

ρ(a) ≥ ||a||

In the general case, aa∗ = a∗a, we have an(an)∗ = (aa∗)n. We obtain from this
ρ(a)2 = ρ(aa∗), and since aa∗ is self-adjoint, we get ρ(aa∗) = ||a||2, and we are done. �

Summarizing, we have so far a collection of useful results regarding the spectra of the
elements in C∗-algebras, which are quite similar to the results regarding the eigenvalues
of the usual matrices. We will heavily use these results, in what follows.

1b. Gelfand theorem

In this section we discuss the two main results regarding the C∗-algebras. First we
have the Gelfand theorem, which is particularly interesting for us, in view of our quantum
space and quantum group motivations. Then we have the GNS representation theorem,
that we will use less often, but which is something fundamental too.

The Gelfand theorem, from [62], is as follows:
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Theorem 1.10 (Gelfand). Any commutative C∗-algebra is the form

A = C(X)

with its “spectrum” X = Spec(A) appearing as the space of characters χ : A→ C.

Proof. Given a commutative C∗-algebra A, we can define indeed X to be the set
of characters χ : A → C, with the topology making continuous all the evaluation maps
eva : χ→ χ(a). Then X is a compact space, and a→ eva is a morphism of algebras:

ev : A→ C(X)

(1) We first prove that ev is involutive. We use the following formula, which is similar
to the z = Re(z) + iIm(z) formula for the usual complex numbers:

a =
a+ a∗

2
− i · i(a− a

∗)

2
Thus it is enough to prove the equality eva∗ = ev∗a for self-adjoint elements a. But this

is the same as proving that a = a∗ implies that eva is a real function, which is in turn
true, because eva(χ) = χ(a) is an element of σ(a), contained in R.

(2) Since A is commutative, each element is normal, so ev is isometric:

||eva|| = ρ(a) = ||a||
(3) It remains to prove that ev is surjective. But this follows from the Stone-Weierstrass

theorem, because ev(A) is a closed subalgebra of C(X), which separates the points. �

The Gelfand theorem suggests writing any C∗-algebra A, not necessarily commutative,
as A = C(X), with X being a “compact quantum space”. We will be back to this.

As a first consequence of the Gelfand theorem, we can extend Theorem 1.8 above to
the case of the normal elements (aa∗ = a∗a), in the following way:

Proposition 1.11. Assume that a ∈ A is normal, and let f ∈ C(σ(a)).

(1) We can define f(a) ∈ A, with f → f(a) being a morphism of C∗-algebras.
(2) We have the “continuous functional calculus” formula σ(f(a)) = f(σ(a)).

Proof. Since a is normal, the C∗-algebra < a > that is generates is commutative, so
if we denote by X the space formed by the characters χ :< a >→ C, we have:

< a >= C(X)

Now since the map X → σ(a) given by evaluation at a is bijective, we obtain:

< a >= C(σ(a))

Thus, we are dealing with usual functions, and this gives all the assertions. �

As another consequence of the Gelfand theorem, we can develop as well the theory of
positive elements, in analogy with the theory of positive operators, as follows:
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Theorem 1.12. For a normal element a ∈ A, the following are equivalent:

(1) a is positive, in the sense that σ(a) ⊂ [0,∞).
(2) a = b2, for some b ∈ A satisfying b = b∗.
(3) a = cc∗, for some c ∈ A.

Proof. This is something very standard, as follows:

(1) =⇒ (2) This follows from Proposition 1.11, because we can use the function
f(z) =

√
z, which is well-defined on σ(a) ⊂ [0,∞), and so set b =

√
a.

(2) =⇒ (3) This is trivial, because we can set c = b.

(2) =⇒ (1) Observe that this is clear too, because we have:

σ(a) = σ(b2)

= σ(b)2

⊂ [0,∞)

(3) =⇒ (1) We proceed by contradiction. By multiplying c by a suitable element of
< cc∗ >, we are led to the existence of an element d 6= 0 satisfying:

−dd∗ ≥ 0

By writing now d = x+ iy with x = x∗, y = y∗ we have:

dd∗ + d∗d = 2(x2 + y2) ≥ 0

Thus d∗d ≥ 0. But this contradicts the elementary fact that σ(dd∗), σ(d∗d) must
coincide outside {0}, coming from Proposition 1.7 above. �

Let us review now the other fundamental result regarding the C∗-algebras, namely the
representation theorem of Gelfand, Naimark and Segal. We first have:

Proposition 1.13. Let A be a commutative C∗-algebra, write A = C(X), with X
being a compact space, and let µ be a positive measure on X. We have then an embedding

A ⊂ B(H)

where H = L2(X), with f ∈ A corresponding to the operator g → fg.

Proof. Given f ∈ C(X), consider the following operator, on the space H = L2(X):

Tf (g) = fg

Observe that Tf is indeed well-defined, and bounded as well, because:

||fg||2 =

√∫
X

|f(x)|2|g(x)|2dµ(x) ≤ ||f ||∞||g||2

The application f → Tf being linear, involutive, continuous, and injective as well, we
obtain in this way a C∗-algebra embedding A ⊂ B(H), as claimed. �
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In general, the idea will be that of extending this construction. We will need:

Definition 1.14. Consider a linear map ϕ : A→ C.

(1) ϕ is called positive when a ≥ 0 =⇒ ϕ(a) ≥ 0.
(2) ϕ is called faithful and positive when a > 0 =⇒ ϕ(a) > 0.

In the commutative case, A = C(X), the positive linear forms appear as follows, with
µ being positive, and strictly positive if we want ϕ to be faithful and positive:

ϕ(f) =

∫
X

f(x)dµ(x)

In general, the positive linear forms can be thought of as being integration functionals
with respect to some underlying “positive measures”. We can use them as follows:

Proposition 1.15. Let ϕ : A→ C be a positive linear form.

(1) < a, b >= ϕ(ab∗) defines a generalized scalar product on A.
(2) By separating and completing we obtain a Hilbert space H.
(3) π(a) : b→ ab defines a representation π : A→ B(H).
(4) If ϕ is faithful in the above sense, then π is faithful.

Proof. Almost everything here is straightforward, as follows:

(1) This is clear from definitions, and from Theorem 1.12.

(2) This is a standard procedure, which works for any scalar product.

(3) All the verifications here are standard algebraic computations.

(4) This follows indeed from a 6= 0 =⇒ π(aa∗) 6= 0 =⇒ π(a) 6= 0. �

In order to establish the GNS theorem, it remains to prove that any C∗-algebra has a
faithful and positive linear form ϕ : A→ C. This is something more technical:

Proposition 1.16. Let A be a C∗-algebra.

(1) Any positive linear form ϕ : A→ C is continuous.
(2) A linear form ϕ is positive iff there is a norm one h ∈ A+ such that ||ϕ|| = ϕ(h).
(3) For any a ∈ A there exists a positive norm one form ϕ such that ϕ(aa∗) = ||a||2.
(4) If A is separable there is a faithful positive form ϕ : A→ C.

Proof. The proof here, which is quite technical, inspired from the existence proof of
the probability measures on abstract compact spaces, goes as follows:

(1) This follows from Proposition 1.15, via the following inequality:

|ϕ(a)| ≤ ||π(a)||ϕ(1)

≤ ||a||ϕ(1)
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(2) In one sense we can take h = 1. Conversely, let a ∈ A+, ||a|| ≤ 1. We have:

|ϕ(h)− ϕ(a)| ≤ ||ϕ|| · ||h− a||
≤ ϕ(h)1

= ϕ(h)

Thus we have Re(ϕ(a)) ≥ 0, and it remains to prove that the following holds:

a = a∗ =⇒ ϕ(a) ∈ R

By using 1− h ≥ 0 we can apply the above to a = 1− h and we obtain:

Re(ϕ(1− h)) ≥ 0

We conclude that Re(ϕ(1)) ≥ Re(ϕ(h)) = ||ϕ||, and so ϕ(1) = ||ϕ||.
Summing up, we can assume h = 1. Now observe that for any self-adjoint element a,

and any t ∈ R we have the following inequality:

|ϕ(1 + ita)|2 ≤ ||ϕ||2 · ||1 + ita||2

= ϕ(1)2||1 + t2a2||
≤ ϕ(1)2(1 + t2||a||2)

On the other hand with ϕ(a) = x+ iy we have:

|ϕ(1 + ita)| = |ϕ(1)− ty + itx|
≥ (ϕ(1)− ty)2

We therefore obtain that for any t ∈ R we have:

ϕ(1)2(1 + t2||a||2) ≥ (ϕ(1)− ty)2

Thus we have y = 0, and this finishes the proof of our remaining claim.

(3) Consider the linear subspace of A spanned by the element aa∗. We can define here
a linear form by the following formula:

ϕ(λaa∗) = λ||a||2

This linear form has norm one, and by Hahn-Banach we get a norm one extension to
the whole A. The positivity of ϕ follows from (2).

(4) Let (an) be a dense sequence inside A. For any n we can construct as in (3) a
positive form satisfying ϕn(ana

∗
n) = ||an||2, and then define ϕ in the following way:

ϕ =
∞∑
n=1

ϕn
2n
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Let a ∈ A be a nonzero element. Pick an close to a and consider the pair (H, π)
associated to the pair (A,ϕn), as in Proposition 1.15. We have then:

ϕn(aa∗) = ||π(a)1||
≥ ||π(an)1|| − ||a− an||
= ||an|| − ||a− an||
> 0

Thus ϕn(aa∗) > 0. It follows that we have ϕ(aa∗) > 0, and we are done. �

With these ingredients in hand, we can now state and prove:

Theorem 1.17 (GNS theorem). Let A be a C∗-algebra.

(1) A appears as a closed ∗-subalgebra A ⊂ B(H), for some Hilbert space H.
(2) When A is separable (usually the case), H can be chosen to be separable.
(3) When A is finite dimensional, H can be chosen to be finite dimensional.

Proof. This result, from [63], follows indeed by combining the construction from
Proposition 1.15 above with the existence result from Proposition 1.16. �

Generally speaking, the GNS theorem is something very powerful and concrete, which
perfectly complements the Gelfand theorem, and the resulting compact quantum space
formalism. We can go back to good old Hilbert spaces, whenever we get lost.

1c. Algebraic manifolds

The Gelfand theorem has some important philosophical consequences. Indeed, in view
of this theorem, we can formulate the following definition:

Definition 1.18. Given an arbitrary C∗-algebra A, we write A = C(X), and call X
a compact quantum space. Equivalently, the category of the compact quantum spaces is
the category of the C∗-algebras, with the arrows reversed.

When A is commutative, the space X considered above exists indeed, as a Gelfand
spectrum, X = Spec(A). In general, X is something rather abstract, and our philosophy
here will be that of studying of course A, but formulating our results in terms of X. For
instance whenever we have a morphism Φ : A→ B, we will write A = C(X), B = C(Y ),
and rather speak of the corresponding morphism φ : Y → X. And so on.

We will see later on, after developing some more theory, that this formalism has its
limitations, and needs a fix. For the moment, however, let us explore the possibilities that
it opens up, and leave the technical issues and their fixes for later.

Inspired by the Connes philosophy [53], we have the following definition, which is
something quite recent, coming from the work in [4], [30], [64]:
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Definition 1.19. We have compact quantum spaces, constructed as follows,

C(SN−1
R,+ ) = C∗

(
x1, . . . , xN

∣∣∣xi = x∗i ,
∑
i

x2
i = 1

)

C(SN−1
C,+ ) = C∗

(
x1, . . . , xN

∣∣∣∑
i

xix
∗
i =

∑
i

x∗ixi = 1

)
called respectively the free real sphere, and the free complex sphere.

Here the C∗ symbols on the right stand for “universal C∗-algebra generated by”. The
fact that such universal C∗-algebras exist indeed follows by considering the corresponding
universal ∗-algebras, and then completing with respect to the biggest C∗-norm. Observe
that this biggest C∗-norm exists indeed, because the quadratic conditions give:

||xi||2 = ||xix∗i || ≤ ||
∑
i

xix
∗
i || = 1

Given a compact quantum space X, its classical version is the compact space Xclass

obtained by dividing C(X) by its commutator ideal, and using the Gelfand theorem:

C(Xclass) = C(X)/I , I =< [a, b] >

Observe that we have an embedding of compact quantum spaces Xclass ⊂ X. In this
situation, we also say that X appears as a “liberation” of X.

As a first result regarding the above free spheres, we have:

Proposition 1.20. We have embeddings of compact quantum spaces, as follows,

SN−1
C

// SN−1
C,+

SN−1
R

//

OO

SN−1
R,+

OO

and the spaces on the right appear as liberations of the spaces of the left.

Proof. The first assertion is clear. For the second one, we must establish the following
isomorphisms, where C∗comm stands for “universal commutative C∗-algebra”:

C(SN−1
R ) = C∗comm

(
x1, . . . , xN

∣∣∣xi = x∗i ,
∑
i

x2
i = 1

)

C(SN−1
C ) = C∗comm

(
x1, . . . , xN

∣∣∣∑
i

xix
∗
i =

∑
i

x∗ixi = 1

)
But these isomorphisms are both clear, by using the Gelfand theorem. �
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We can enlarge our class of basic manifolds by introducing tori, as follows:

Definition 1.21. Given a closed subspace S ⊂ SN−1
C,+ , the subspace T ⊂ S given by

C(T ) = C(S)
/〈

xix
∗
i = x∗ixi =

1

N

〉
is called associated torus. In the real case, S ⊂ SN−1

R,+ , we also call T cube.

As a basic example here, for S = SN−1
C the corresponding submanifold T ⊂ S appears

by imposing the relations |xi| = 1√
N

to the coordinates, so we obtain a torus:

S = SN−1
C =⇒ T =

{
x ∈ CN

∣∣∣|xi| = 1√
N

}
As for the case of the real sphere, S = SN−1

R , here the submanifold T ⊂ S appears by
imposing the relations xi = ± 1√

N
to the coordinates, so we obtain a cube:

S = SN−1
R =⇒ T =

{
x ∈ RN

∣∣∣xi = ± 1√
N

}
Observe that we have a relation here with group theory, because the complex torus

computed above is the group TN , and the cube is the finite group ZN2 .

In general now, in order to compute T , we can use the following simple fact:

Proposition 1.22. When S ⊂ SN−1
C,+ is an algebraic manifold, in the sense that

C(S) = C(SN−1
C,+ )

/〈
fi(x1, . . . , xN) = 0

〉
for certain noncommutative polynomials fi ∈ C < x1, . . . , xN >, we have

C(T ) = C∗
(
u1, . . . , uN

∣∣∣u∗i = u−1
i , gi(u1, . . . , uN) = 0

)
with the poynomials gi being given by gi(u1, . . . , uN) = fi(

√
Nu1, . . . ,

√
NuN).

Proof. According to our definition of the torus T ⊂ S, the following variables must
be unitaries, in the quotient algebra C(S)→ C(T ):

ui =
xi√
N

Now if we assume that these elements are unitaries, the quadratic conditions
∑

i xix
∗
i =∑

i x
∗
ixi = 1 are automatic. Thus, we obtain the space in the statement. �

Summarizing, we are led to the question of computing certain algebras generated by
unitaries. In order to deal with this latter problem, let us start with:
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Proposition 1.23. Let Γ be a discrete group, and consider the complex group algebra
C[Γ], with involution given by the fact that all group elements are unitaries:

g∗ = g−1 , ∀g ∈ Γ

The maximal C∗-seminorm on C[Γ] is then a C∗-norm, and the closure of C[Γ] with
respect to this norm is a C∗-algebra, denoted C∗(Γ).

Proof. In order to prove this, we must find a ∗-algebra embedding C[Γ] ⊂ B(H),
with H being a Hilbert space. For this purpose, consider the space H = l2(Γ), having
{h}h∈Γ as orthonormal basis. Our claim is that we have an embedding, as follows:

π : C[Γ] ⊂ B(H) , π(g)(h) = gh

Indeed, since π(g) maps the basis {h}h∈Γ into itself, this operator is well-defined,
bounded, and is an isometry. It is also clear from the formula π(g)(h) = gh that g →
π(g) is a morphism of algebras, and since this morphism maps the unitaries g ∈ Γ into
isometries, this is a morphism of ∗-algebras. Finally, the faithfulness of π is clear. �

In the abelian group case, we have the following result:

Theorem 1.24. Given an abelian discrete group Γ, we have an isomorphism

C∗(Γ) ' C(G)

where G = Γ̂ is its Pontrjagin dual, formed by the characters χ : Γ→ T.

Proof. Since Γ is abelian, the corresponding group algebra A = C∗(Γ) is commu-
tative. Thus, we can apply the Gelfand theorem, and we obtain A = C(X), with X =
Spec(A). But the spectrum X = Spec(A), consisting of the characters χ : C∗(Γ) → C,

can be identified with the Pontrjagin dual G = Γ̂, and this gives the result. �

The above result suggests the following definition:

Definition 1.25. Given a discrete group Γ, the compact quantum space G given by

C(G) = C∗(Γ)

is called abstract dual of Γ, and is denoted G = Γ̂.

This notion should be taken in the general sense of Definition 1.18. The same warning
as there applies, because there is a functoriality problem, which needs a fix. To be more
precise, in the context of Proposition 1.23, we can see that the closure C∗red(Γ) of the group
algebra C[Γ] in the regular representation is a C∗-algebra as well. We have a quotient
map C∗(Γ)→ C∗red(Γ), and if this map is not an isomorphism, we are in trouble.

We will be back later to this problem, with a fix for it.

By getting back now to the spheres, we have the following result:
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Theorem 1.26. The tori of the basic spheres are all group duals, as follows,

TN // F̂N

ZN2 //

OO

Ẑ∗N2

OO

where FN is the free group on N generators, and ∗ is a group-theoretical free product.

Proof. By using the presentation result in Proposition 1.24 above, we obtain that
the diagram formed by the algebras C(T ) is as follows:

C∗(ZN)

��

C∗(Z∗N)

��

oo

C∗(ZN2 ) C∗(Z∗N2 )oo

According to Definition 1.25, the corresponding compact quantum spaces are:

ẐN // Ẑ∗N

ẐN2 //

OO

Ẑ∗N2

OO

Together with the Fourier transform identifications from Theorem 1.24 above, and
with our free group convention FN = Z∗N , this gives the result. �

As a conclusion to these considerations, the Gelfand theorem alone produces out
of nothing, or at least out of some basic common sense, some potentially interesting
mathematics. We will be back later on to all this, on several occasions.

1d. Axiomatization fix

Let us get back now to the bad functoriality properties of the Gelfand correspondence,

coming from the fact that certain compact quantum spaces, such as the duals Γ̂ of the
discrete groups Γ, can be represented by several C∗-algebras, instead of one.

We can fix these issues by using the GNS theorem, as follows:
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Definition 1.27. The category of compact quantum measured spaces (X,µ) is the
category of the C∗-algebras with faithful traces (A, tr), with the arrows reversed. In the
case where we have a C∗-algebra A with a non-faithful trace tr, we can still talk about the
corresponding space (X,µ), by performing the GNS construction.

Observe that this definition fixes the functoriality problem with Gelfand duality, at
least for the group algebras. Indeed, in the context of the comments following Definition
1.25, consider an arbitrary intermediate C∗-algebra, as follows:

C∗(Γ)→ A→ C∗red(Γ)

If we perform the GNS construction with respect to the canonical trace, we obtain
the reduced algebra C∗red(Γ). Thus, all these algebras A correspond to a unique compact

quantum measured space in the above sense, which is the abstract group dual Γ̂. Let us
record a statement about this finding, as follows:

Proposition 1.28. The category of group duals Γ̂ is a well-defined subcategory of the

category of compact quantum measured spaces, with each Γ̂ corresponding to the full group
algebra C∗(Γ), or the reduced group algebra C∗red(Γ), or any algebra in between.

Proof. This is more of an empty statement, coming from the above discussion. �

With this in hand, it is tempting to go even further, namely forgetting about the
C∗-algebras, and trying to axiomatize instead the operator algebras of type L∞(X). Such
an axiomatization is possible, and the resulting class of operator algebras consists of a
certain special type of C∗-algebras, called “finite von Neumann algebras”.

However, and here comes our point, doing so would be bad, and would lead to a weak
theory, because many spaces such as the compact groups, or the compact homogeneous
spaces, do not come with a measure by definition, but rather by theorem.

In short, our “fix” is not a very good fix, and if we want a really strong theory, we
must invent something else. In order to do so, our idea will be that of restricting the
attention to certain special classes of quantum algebraic manifolds, as follows:

Definition 1.29. A real algebraic submanifold X ⊂ SN−1
C,+ is a closed quantum sub-

space defined, at the level of the corresponding C∗-algebra, by a formula of type

C(X) = C(SN−1
C,+ )

/〈
fi(x1, . . . , xN) = 0

〉
for certain noncommutative polynomials fi ∈ C < x1, . . . , xN >. We denote by C(X) the
∗-subalgebra of C(X) generated by the coordinate functions x1, . . . , xN .

Observe that any family of noncommutative polynomials fi ∈ C < x1, . . . , xN >
produces such a manifold X, simply by defining an algebra C(X) as above.
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Observe also that the use of the free complex sphere is essential in all this, because
the quadratic condition

∑
i xix

∗
i =

∑
i x
∗
ixi = 1 implies by positivity ||xi|| ≤ 1 for any i,

and so guarantees the fact that the universal C∗-norm is bounded.

We have already met such manifolds, in the context of the free spheres, free tori, and
more generally in Proposition 1.22 above. Here is a list of examples:

Proposition 1.30. The following are algebraic submanifolds X ⊂ SN−1
C,+ :

(1) The spheres SN−1
R ⊂ SN−1

C , SN−1
R,+ ⊂ SN−1

C,+ .

(2) Any compact Lie group, G ⊂ Un, when N = n2.

(3) The duals Γ̂ of finitely generated groups, Γ =< g1, . . . , gN >.

Proof. These facts are all well-known, the proof being as follows:

(1) This is true by definition of our various spheres.

(2) Given a closed subgroup G ⊂ Un, we have indeed an embedding G ⊂ SN−1
C , with

N = n2, given in double indices by:

xij =
uij√
n

We can further compose this embedding with the standard embedding SN−1
C ⊂ SN−1

C,+ ,
and we obtain an embedding as desired. As for the fact that we obtain indeed a real
algebraic manifold, this is well-known, coming either from Lie theory or from Tannakian
duality. We will be back to this later on, in a more general context.

(3) This follows from the fact that the variables xi = gi√
N

satisfy the quadratic relations∑
i xix

∗
i =

∑
i x
∗
ixi = 1, with the algebricity claim of the manifold being clear. �

At the level of the general theory, we have the following version of the Gelfand theorem,
which is something very useful, and that we will use many times in what follows:

Theorem 1.31. When X ⊂ SN−1
C,+ is an algebraic manifold, given by

C(X) = C(SN−1
C,+ )

/〈
fi(x1, . . . , xN) = 0

〉
for certain noncommutative polynomials fi ∈ C < x1, . . . , xN >, we have

Xclass =
{
x ∈ SN−1

C

∣∣∣fi(x1, . . . , xN) = 0
}

and X appears as a liberation of Xclass.

Proof. This is something that already met, in the context of the free spheres. In
general, the proof is similar, by using the Gelfand theorem. Indeed, if we denote by X ′class
the manifold constructed in the statement, then we have a quotient map of C∗-algebras
as follows, mapping standard coordinates to standard coordinates:

C(Xclass)→ C(X ′class)
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Conversely now, from X ⊂ SN−1
C,+ we obtain Xclass ⊂ SN−1

C , and since the relations
defining X ′class are satisfied by Xclass, we obtain an inclusion of subspaces Xclass ⊂ X ′class.
Thus, at the level of algebras of continuous functions, we have a quotient map of C∗-
algebras as follows, mapping standard coordinates to standard coordinates:

C(X ′class)→ C(Xclass)

Thus, we have constructed a pair of inverse morphisms, and we are done. �

With these results in hand, we are now ready for formulating our second “fix” for the
functoriality issues of the Gelfand correspondence, as follows:

Definition 1.32. The category of the real algebraic submanifolds X ⊂ SN−1
C,+ is the

category of the universal C∗-algebras of type

C(X) = C(SN−1
C,+ )

/〈
fi(x1, . . . , xN) = 0

〉
with fi ∈ C < x1, . . . , xN > being noncommutative polynomials, with the arrows X → Y
being the ∗-algebra morphisms between ∗-algebras of coordinates

C(Y )→ C(X)

mapping standard coordinates to standard coordinates.

In other words, what we are doing here is that of proposing a definition for the mor-
phisms between the compact quantum spaces, in the particular case where these compact
quantum spaces are algebraic submanifolds of the free complex sphere SN−1

C,+ .

The point is that this “fix” perfectly works for the group duals, as follows:

Theorem 1.33. The category of finitely generated groups Γ =< g1, . . . , gN >, with
the morphisms being the group morphisms mapping generators to generators, embeds con-

travariantly via Γ→ Γ̂ into the category of real algebraic submanifolds X ⊂ SN−1
C,+ .

Proof. We know from Proposition 1.30 above that, given a finitely generated group

Γ =< g1, . . . , gN >, we have an embedding of algebraic manifolds Γ̂ ⊂ SN−1
C,+ , given by

xi = gi√
N

. Now since a morphism C[Γ] → C[Λ] mapping coordinates to coordinates

means a morphism of groups Γ → Λ mapping generators to generators, our notion of
isomorphism is indeed the correct one, as claimed. �

We will see later on that Theorem 1.33 has various extensions to the quantum groups
and quantum homogeneous spaces that we will be interested in, which are all algebraic
submanifolds X ⊂ SN−1

C,+ . We will also see that all these manifolds have Haar integration
functionals, which are traces, and so that for these manifolds, our functoriality fix from
Definition 1.32 coincides with the “von Neumann” fix from Definition 1.27.
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So, this will be our formalism, and operator algebra knowledge required. We should
mention that our approach heavily relies on Woronowicz’s philosophy in [99]. Also, part
of the above has been folklore for a long time, with the details worked out in [15].

1e. Exercises

Generally speaking, the best complement to the material presented in this section is
some further reading on operator theory and operator algebras. Here are some exercises
in direct relation with what has been said above:

Exercise 1.34. Find an explicit orthonormal basis of the separable Hilbert space

H = L2[0, 1]

by applying the Gram-Schmidt procedure to the polynomials fn = xn, with n ∈ N.

This is something quite tricky, and the answer can be found by doing an internet
search with the keyword “orthogonal polynomials”, then carefully reading what comes
out of that, and adapting it if needed to the H = L2[0, 1] situation.

Here is another exercise, this time in relation with operators and matrices:

Exercise 1.35. Given a Hilbert space H, prove that we have embeddings of ∗-algebras
as follows, which are both proper, unless H is finite dimensional:

B(H) ⊂ L(H) ⊂MI(C)

Also, prove that in this picture the adjoint operation T → T ∗ takes a very simple form,
namely (M∗)ij = M ji at the level of the associated matrices.

Here the embedding assertions are elementary, and so is the fact that we have isomor-
phisms when H is finite dimensional. The counterexamples in the infinite dimensional
case are both instructive. As for the last assertion, this is something that must be worked
out first in the finite dimensional case, the proof in general being similar.

Going ahead with spectra, here is a key exercise:

Exercise 1.36. Prove that for the usual matrices A,B ∈MN(A) we have

σ+(AB) = σ+(BA)

where σ+ denotes the set of eigenvalues, taken with multiplicities.

As a remark, we have seen in the above that σ(AB) = σ(BA) holds outside {0}, and
the equality on {0} holds as well, because AB is invertible if and only if BA is invertible.
However, in what regards the eigenvalues taken with multiplicities, things are more tricky
here, and the answer should be somewhere inside your linear algebra knowledge.

In relation now with abstract spectra, here is a useful exercise:
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Exercise 1.37. Draw the picture of the following rational function, and of its inverse,

f(z) =
z + it

z − it
with t ∈ R, and prove that for t >> 0 and a = a∗, the element f(a) is well-defined.

This is something that we actually used, in the proof of the spectral radius theorem,
and the problem is that of working out all the details.

Here is an exercise in relation with the notion of positivity:

Exercise 1.38. Prove that an operator T ∈ B(H) satisfies the condition

< Tx, x >≥ 0

for any x ∈ H precisely when it is positive in our sense, σ(T ) ∈ [0,∞).

In one sense this is normally something quite clear, and in the other sense this needs
some tricks with vectors and scalar products, such as the polarization identity. Working
out first the case of the usual matrices, M ∈ MN(C), with not much advanced linear
algebra involved, is actually a very good preliminary exercise.

In relation now with the various quantum manifolds, the most important examples
are the group duals. Here is a first exercise regarding them:

Exercise 1.39. Prove that the Pontrjagin dual of the cyclic group ZN is this group
itself

ẐN = ZN
and work out the details of the subsequent isomorphism C∗(ZN) ' C(ZN).

Here some knowledge of the roots of unity is needed, and in case you forgot this, the
thing to know is that the barycernter of a regular polygon is the obvious center.

Here is now a second exercise, which is more difficult, or at least which needs good
algebra knowledge, and which comes as a continuation of the above one:

Exercise 1.40. Prove that the Pontrjagin dual of a finite abelian group G is the group
itself

Ĝ = G

and work out the details of the subsequent isomorphism C∗(G) ' C(G).

This is definitely something more difficult. In case you have troubles with this, an
internet search with the keyword “finite abelian group” is the thing to start with.

And here is a third and last exercise about group duals, which is undoable:
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Exercise 1.41. Find a discrete group Γ such that the quotient map

C∗(Γ)→ C∗red(Γ)

is not an isomorphism.

In case you do not find a solution here, this should be not a source of worries. Such
things are difficult, and fall into a delicate mathematical subject, called “amenability”.
We will be back to this, directly in the quantum group setting, later on.



CHAPTER 2

Quantum groups

2a. Hopf algebras

We have seen so far that the Gelfand philosophy, based on the operator algebra for-
malism, allows the construction of a number of interesting compact quantum spaces, such
as the free versions SN−1

R,+ and SN−1
C,+ of the real and complex spheres. We have as well the

duals Γ̂ of the discrete groups Γ, which can be thought of as being “quantum tori”.

In this chapter we keep building on this, by introducing the compact quantum groups.
Let us start with the finite case, which is elementary, and easy to explain. The idea will
be that of calling “finite quantum groups” the quantum spaces G appearing via a formula
as follows, with A being finite dimensional, and having some suitable extra structure:

A = C(G)

In order to simplify the presentation, we use the following terminology:

Definition 2.1. Given a finite dimensional C∗-algebra A, any morphisms of type

∆ : A→ A⊗ A

ε : A→ C

S : A→ Aopp

will be called comultiplication, counit and antipode.

The terminology comes from the fact that in the commutative case, A = C(X), the
morphisms ∆, ε, S are transpose to group-type operations, as follows:

m : X ×X → X

u : {.} → X

i : X → X

The reasons for using Aopp instead of A will become clear in a moment. Now with
these conventions in hand, we can formulate our definition, as follows:

33
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Definition 2.2. A finite dimensional Hopf algebra is a finite dimensional C∗-algebra,
with a comultiplication, counit and antipode, satisfying the following conditions,

(∆⊗ id)∆ = (id⊗∆)∆

(ε⊗ id)∆ = id

(id⊗ ε)∆ = id

m(S ⊗ id)∆ = ε(.)1

m(id⊗ S)∆ = ε(.)1

along with the condition S2 = id. Given such an algebra we write A = C(G) = C∗(H),
and call G,H finite quantum groups, dual to each other.

In this definition everything is standard, except for our choice to use C∗-algebras in
all that we are doing, and also for the last axiom, S2 = id. This axiom corresponds to
the fact that, in the corresponding quantum group, we have:

(g−1)−1 = g

It is possible to prove that this condition is automatic, in the present C∗-algebra
setting. However, this is something non-trivial, and since all this is just a preliminary
discussion, not needed later, we have opted for including S2 = id in our axioms.

We say that A as above is cocommutative if, with Σ(a⊗ b) = b⊗ a, we have:

Σ∆ = ∆

With this convention made, we have the following result, which summarizes the basic
theory of finite quantum groups, and justifies the terminology and axioms:

Theorem 2.3. The following happen:

(1) If G is a finite group then C(G) is a commutative Hopf algebra, with

∆(ϕ) = (g, h)→ ϕ(gh)

ε(ϕ) = ϕ(1)

S(ϕ) = g → ϕ(g−1)

as structural maps. Any commutative Hopf algebra is of this form.
(2) If H is a finite group then C∗(H) is a cocommutative Hopf algebra, with

∆(g) = g ⊗ g
ε(g) = 1

S(g) = g−1

as structural maps. Any cocommutative Hopf algebra is of this form.
(3) If G,H are finite abelian groups, dual to each other via Pontrjagin duality, then

we have an identification of Hopf algebras C(G) = C∗(H).
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Proof. These results are all elementary, the idea being as follows:

(1) The fact that ∆, ε, S satisfy the axioms is clear from definitions, and the converse
follows from the Gelfand theorem, by working out the details, regarding ∆, ε, S.

(2) Once again, the fact that ∆, ε, S satisfy the axioms is clear from definitions, with
the remark that the use of the opposite multiplication (a, b)→ a · b in really needed here,
in order for the antipode S to be an algebra morphism:

S(gh) = (gh)−1

= h−1g−1

= g−1 · h−1

= S(g) · S(h)

For the converse, we use a trick. Let A be an arbitrary Hopf algebra, as in Definition
2.2, and consider its comultiplication, counit, multiplication, unit and antipode maps.
The transposes of these maps are then linear maps as follows:

∆t : A∗ ⊗ A∗ → A∗

εt : C→ A∗

mt : A∗ → A∗ ⊗ A∗

ut : A∗ → C

St : A∗ → A∗

It is routine to check that these maps make A∗ into a Hopf algebra. Now assuming that
A is cocommutative, it follows that A∗ is commutative, so by (1) we obtain A∗ = C(G)
for a certain finite group G, which in turn gives A = C∗(G), as desired.

(3) This follows from the discussion in the proof of (2) above. �

This was for the basic theory of the finite quantum groups, and it is possible to further
build on this, but we will discuss this directly in the compact or discrete quantum group
setting, whenever such quantum groups, that we will meet, will be finite.

Let us mention as well that Definition 2.2 is the most rigid definition for the finite
quantum groups. It is possible to play with the axioms, and introduce more general
objects, but whether these more general objects can be called or not “quantum groups”
is subject to debate. In any case, our quantum groups are quantum groups for sure.
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2b. Axioms, theory

With this discussion made, let us get now into the compact quantum Lie group case.
Thinks are quite tricky here, with the origin of the modern theory going back to the work
of the Leningrad School of physics, by Faddeev and others. From that work emerged
a mathematical formalism, explained and developed in the papers of Drinfeld [59] and
Jimbo [66], and in parallel, in the papers of Woronowicz [99], [100].

For our purposes here, which are post-modern, we will only need a “light” version
of all this, somewhat in the spirit of Definition 2.2, and of old-style mathematics such
as that of Brauer [48] and Weyl [97]. The idea is very simple, coming from the usual
multiplicative formulae for the unitary matrices, namely:

(UV )ij =
∑
k

UikVkj

(1N)ij = δij

(U−1)ij = U∗ji
A bit of Gelfand duality thinking, to be explained in the proof of Proposition 2.5

below, leads from this to the following definition, due to Woronowicz [99]:

Definition 2.4. A Woronowicz algebra is a C∗-algebra A, given with a unitary matrix
u ∈MN(A) whose coefficients generate A, such that:

(1) ∆(uij) =
∑

k uik ⊗ ukj defines a morphism of C∗-algebras A→ A⊗ A.
(2) ε(uij) = δij defines a morphism of C∗-algebras A→ C.
(3) S(uij) = u∗ji defines a morphism of C∗-algebras A→ Aopp.

In this case, we write A = C(G), and call G a compact matrix quantum group.

In this definition A⊗A is the universal C∗-algebraic completion of the usual algebraic
tensor product of A with itself, and this choice will be explained later. Also, Aopp denotes
as usual the opposite C∗-algebra, with multiplication a · b = ba.

The above morphisms ∆, ε, S are called comultiplication, counit and antipode. Ob-
serve that if these morphisms exist, they are unique. This is analogous to the fact that a
closed set of unitary matrices G ⊂ UN is either a compact group, or not.

The motivating examples are as follows:

Proposition 2.5. Given a closed subgroup G ⊂ UN , the algebra A = C(G), with the
matrix formed by the standard coordinates uij(g) = gij, is a Woronowicz algebra, and:

(1) For this algebra, the morphisms ∆, ε, S appear as functional analytic transposes
of the multiplication, unit and inverse maps m,u, i of the group G.

(2) This Woronowicz algebra is commutative, and conversely, any Woronowicz alge-
bra which is commutative appears in this way.
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Proof. Since we have G ⊂ UN , the matrix u = (uij) is unitary. Also, since the
coordinate functions uij separate the points of G, by the Stone-Weierstrass theorem we
obtain that the ∗-subalgebra A ⊂ C(G) generated by them is dense. Finally, the fact
that we have morphisms ∆, ε, S as in Definition 2.4 follows from the proof of (1) below.

(1) We use the multiplication formulae for the elements of UN , namely:

(UV )ij =
∑
k

UikVkj

(1N)ij = δij

(U−1)ij = U∗ji

The fact that the transpose of the multiplication mt satisfies the condition in Definition
2.4 (1) follows from the following computation, with U, V ∈ G:

mt(uij)(U ⊗ V ) = (UV )ij

=
∑
k

UikVkj

=
∑
k

(uik ⊗ ukj)(U ⊗ V )

Regarding now the transpose of the unit map ut, the verification of the condition in
Definition 2.4 (2) is trivial, coming from the following equalities:

ut(uij) = 1ij = δij

Finally, the transpose of the inversion map it verifies the condition in Definition 2.4
(3), because we have the following computation, valid for any U ∈ G:

it(uij)(U) = (U−1)ij = Ūji = u∗ji(U)

(2) By using the Gelfand theorem, we can write A = C(G), with G being a certain
compact space. By using now the coordinates uij, we obtain an embedding as follows:

G ⊂ UN

Finally, by using the maps ∆, ε, S, it follows that the subspace G ⊂ UN that we have
obtained is in fact a closed subgroup, and we are done. �

Let us go back now to the general setting of Definition 2.4. According to Proposition
2.5, and to the general C∗-algebra philosophy, the morphisms ∆, ε, S can be thought of
as coming from a multiplication, unit map and inverse map, as follows:

m : G×G→ G

u : {.} → G

i : G→ G
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Here is a first result of this type, expressing in terms of ∆, ε, S the fact that the
underlying maps m,u, i should satisfy the usual group theory axioms:

Proposition 2.6. The comultiplication, counit and antipode have the following prop-
erties, on the dense ∗-subalgebra A ⊂ A generated by the variables uij:

(1) Coassociativity: (∆⊗ id)∆ = (id⊗∆)∆.
(2) Counitality: (id⊗ ε)∆ = (ε⊗ id)∆ = id.
(3) Coinversality: m(id⊗ S)∆ = m(S ⊗ id)∆ = ε(.)1.

In addition, the square of the antipode is the identity, S2 = id.

Proof. Observe first that the result holds in the case where A is commutative. In-
deed, by using Proposition 2.5 we can write:

∆ = mt , ε = ut , S = it

The above 3 conditions come then by transposition from the basic 3 group theory
conditions satisfied by m,u, i, which are as follows, with δ(g) = (g, g):

m(m× id) = m(id×m)

m(id× u) = m(u× id) = id

m(id× i)δ = m(i× id)δ = 1

Observe that S2 = id is satisfied as well, coming from i2 = id, which is a consequence
of the group axioms. In general now, the proof goes as follows:

(1) We have indeed the following computation:

(∆⊗ id)∆(uij) =
∑
l

∆(uil)⊗ ulj

=
∑
kl

uik ⊗ ukl ⊗ ulj

We have as well the following computation:

(id⊗∆)∆(uij) =
∑
k

uik ⊗∆(ukj)

=
∑
kl

uik ⊗ ukl ⊗ ulj

(2) The proof here is quite similar. We first have:

(id⊗ ε)∆(uij) =
∑
k

uik ⊗ ε(ukj) = uij

On the other hand, we have as well the following computation:

(ε⊗ id)∆(uij) =
∑
k

ε(uik)⊗ ukj = uij
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(3) By using the fact that the matrix u = (uij) is unitary, we obtain:

m(id⊗ S)∆(uij) =
∑
k

uikS(ukj)

=
∑
k

uiku
∗
jk

= (uu∗)ij

= δij

Similarly, we have the following computation:

m(S ⊗ id)∆(uij) =
∑
k

S(uik)ukj

=
∑
k

u∗kiukj

= (u∗u)ij

= δij

Finally, the formula S2 = id holds as well on the generators, and we are done. �

Let us discuss now another class of basic examples, namely the group duals:

Proposition 2.7. Given a finitely generated discrete group Γ =< g1, . . . , gN >, the
group algebra A = C∗(Γ), together with the diagonal matrix formed by the standard gen-
erators, u = diag(g1, . . . , gN), is a Woronowicz algebra, with ∆, ε, S given by:

∆(g) = g ⊗ g
ε(g) = 1

S(g) = g−1

This Woronowicz algebra is cocommutative, in the sense that Σ∆ = ∆.

Proof. Since the involution on C∗(Γ) is given by g∗ = g−1, the standard generators
g1, . . . , gN are unitaries, and so must be the diagonal matrix formed by them:

u =

g1

. . .
gN


Also, since g1, . . . , gN generate Γ, these elements generate the group algebra C∗(Γ) as

well, in the algebraic sense. Let us verify now the axioms in Definition 2.4:

(1) Consider the following map, which is a unitary representation:

Γ→ C∗(Γ)⊗ C∗(Γ)

g → g ⊗ g
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This representation extends, as desired, into a morphism of algebras, as follows:

∆ : C∗(Γ)→ C∗(Γ)⊗ C∗(Γ)

∆(g) = g ⊗ g
(2) The situation for ε is similar, because this comes from the trivial representation:

Γ→ {1}

g → 1

(3) Finally, the antipode S comes from the following unitary representation:

Γ→ C∗(Γ)opp

g → g−1

Summarizing, we have shown that we have a Woronowicz algebra, with ∆, ε, S being
as in the statement. Regarding now the last assertion, observe that we have:

Σ∆(g) = Σ(g ⊗ g)

= g ⊗ g
= ∆(g)

Thus Σ∆ = ∆ holds on the group elements g ∈ Γ, and by linearity and continuity,
this formula must hold on the whole algebra C∗(Γ), as desired. �

We will see later on that any cocommutative Woronowicz algebra appears in fact as
above, up to a standard equivalence relation for such algebras. In the abelian group case
now, we have a more precise result, as follows:

Proposition 2.8. Assume that Γ as above is abelian, and let G = Γ̂ be its Pontrjagin
dual, formed by the characters χ : Γ→ T. The canonical isomorphism

C∗(Γ) ' C(G)

transforms then the comultiplication, counit and antipode of C∗(Γ), given by

∆(g) = g ⊗ g

ε(g) = 1

S(g) = g−1

into the comultiplication, counit and antipode of C(G), given by:

∆ϕ(g, h) = ϕ(gh)

ε(ϕ) = ϕ(1)

Sϕ(g) = ϕ(g−1)

Thus, the identification G = Γ̂ is a compact quantum group isomorphism.
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Proof. Assume indeed that Γ =< g1, . . . , gN > is abelian. Our claim is that with

G = Γ̂ we have a group embedding G ⊂ UN , constructed as follows:

χ→

χ(g1)
. . .

χ(gN)


Indeed, this formula defines a unitary group representation, whose kernel is {1}.
Summarizing, we have two Woronowicz algebras to be compared, namely C(G), con-

structed as in Proposition 2.5, and C∗(Γ), constructed as in Proposition 2.7.
We already know from chapter 1 above that the underlying C∗-algebras are isomorphic.

Now since the morphisms ∆, ε, S agree on the standard generators g1, . . . , gN , they agree
everywhere, and we are led to the conclusions in the statement. �

As a conclusion to all this, we can supplement Definition 2.4 with:

Definition 2.9. Given a Woronowicz algebra A = C(G), we write as well

A = C∗(Γ)

and call Γ = Ĝ a finitely generated discrete quantum group.

As usual with this type of definition, this comes with a warning, because we still
have to divide the Woronowicz algebras by a certain equivalence relation, in order for our
quantum spaces to be well-defined. We will be back to this in a moment, with the fix.

Let us develop now some further general theory. We first have:

Proposition 2.10. Given a Woronowicz algebra (A, u), we have

ut = ū−1

so the matrix u = (uij) is a biunitary, meaning unitary, with unitary transpose.

Proof. The idea is that ut = ū−1 comes from u∗ = u−1, by applying the antipode.
Indeed, by denoting (a, b)→ a · b the multiplication of Aopp, we have:

(uu∗)ij = δij =⇒
∑
k

uiku
∗
jk = δij

=⇒
∑
k

S(uik) · S(u∗jk) = δij

=⇒
∑
k

u∗ki · ukj = δij

=⇒
∑
k

ukju
∗
ki = δij

=⇒ (utū)ji = δij
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Similarly, we have the following computation:

(u∗u)ij = δij =⇒
∑
k

u∗kiukj = δij

=⇒
∑
k

S(u∗ki) · S(ukj) = δij

=⇒
∑
k

uik · u∗jk = δij

=⇒
∑
k

u∗jkuik = δij

=⇒ (ūut)ji = δij

Thus, we are led to the conclusion in the statement. �

By using Proposition 2.10 we obtain the following theoretical result, which makes the
link with the algebraic manifold considerations from chapter 1:

Proposition 2.11. Given a Woronowicz algebra A = C(G), we have an embedding

G ⊂ SN
2−1

C,+

given in double indices by xij =
uij√
N

, where uij are the standard coordinates of G.

Proof. This is something that we already know for the classical groups, and for the
group duals as well, from chapter 1. In general, the proof is similar, coming from the fact
that the matrices u, ū are both unitaries, that we know from Proposition 2.10. �

In view of the above result, we can take some inspiration from the Gelfand correspon-
dence “fix” presented in chapter 1, and formulate:

Definition 2.12. Given two Woronowicz algebras (A, u) and (B, v), we write

A ' B

and indentify as well the corresponding compact and discrete quantum groups, when we
have an isomorphism of ∗-algebras

A ' B
mapping standard coordinates to standard coordinates.

In view of the various results and comments from chapter 1, the functoriality problem
for the compact and discrete quantum groups is therefore fixed. To be more precise, any
compact or discrete quantum group corresponds to a unique Woronowicz algebra, up to
equivalence. We will be back to this later, with a number of supplementary comments,
and some further results on the subject, when talking about amenability.
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2c. Product operations

We have seen so far that the compact quantum Lie groups can be axiomatized, and
that as a bonus, we obtain in this way a definition as well for the finitely generated discrete
quantum groups. The axiomatization uses Hopf algebra maps ∆, ε, S, and at the level of
the general theory, the idea is that we can play with these maps exactly as we play with
the multiplication, unit and inverse maps m,u, i of a usual compact Lie group.

Let us get now into a more exciting question, namely the construction of examples.
We first have the following construction:

Proposition 2.13. Given two compact quantum groups G,H, so is their product
G×H, constructed according to the following formula:

C(G×H) = C(G)⊗ C(H)

Equivalently, at the level of the associated discrete duals Γ,Λ, we can set

C∗(Γ× Λ) = C∗(Γ)⊗ C∗(Λ)

and we obtain the same equality of Woronowicz algebras as above.

Proof. Assume indeed that we have two Woronowicz algebras, (A, u) and (B, v).
Our claim is that the following construction produces a Woronowicz algebra:

C = A⊗B , w = diag(u, v)

Indeed, the matrix w is unitary, and its coefficients generate C. As for the existence
of the maps ∆, ε, S, this follows from the functoriality properties of ⊗, which is here, as
usual, the universal C∗-algebraic completion of the algebraic tensor product.

With this claim in hand, the first assertion is clear. As for the second assertion, let us
recall that when G,H are classical and abelian, we have the following formula:

Ĝ×H = Ĝ× Ĥ
Thus, our second assertion is simply a reformulation of the first assertion, with the ×

symbol used there being justified by this well-known group theory formula. �

Here is now a more subtle construction, due to Wang [93]:

Proposition 2.14. Given two compact quantum groups G,H, so is their dual free
product G ∗̂H, constructed according to the following formula:

C(G ∗̂H) = C(G) ∗ C(H)

Equivalently, at the level of the associated discrete duals Γ,Λ, we can set

C∗(Γ ∗ Λ) = C∗(Γ) ∗ C∗(Λ)

and we obtain the same equality of Woronowicz algebras as above.
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Proof. The proof here is identical with the proof of Proposition 2.13, by replacing
everywhere the tensor product ⊗ with the free product ∗, with this latter product being
by definition the universal C∗-algebraic completion of the algebraic free product. �

Here is another construction, which once again, has no classical counterpart:

Proposition 2.15. Given a compact quantum group G, so is its free complexification

G̃, constructed according to the following formula, where z = id ∈ C(T):

C(G̃) ⊂ C(T) ∗ C(G) , ũ = zu

Equivalently, at the level of the associated discrete dual Γ, we can set

C∗(Γ̃) ⊂ C∗(Z) ∗ C∗(Γ) , ũ = zu

where z = 1 ∈ Z, and we obtain the same Woronowicz algebra as above.

Proof. This follows from Proposition 2.14. Indeed, we know from there that C(T) ∗
C(G) is a Woronowicz algebra, with matrix of coordinates w = diag(z, u). Now, let us
try to replace this matrix with the matrix ũ = zu. This matrix is unitary, and we have:

∆(ũij) = (z ⊗ z)
∑
k

uik ⊗ ukj =
∑
k

ũik ⊗ ũkj

Similarly, in what regards the counit, we have the following formula:

ε(ũij) = 1 · δij = δij

Finally, recalling that S takes values in the opposite algebra, we have as well:

S(ũij) = u∗ji · z̄ = ũ∗ji

Summarizing, the conditions in Definition 2.4 are satisfied, except for the fact that
the entries of ũ = zu do not generate the whole algebra C(T) ∗ C(G). We conclude that

if we let C(G̃) ⊂ C(T) ∗C(G) be the subalgebra generated by the entries of ũ = zu, as in
the statement, then the conditions in Definition 2.4 are satisfied, as desired. �

Another standard operation is that of taking subgroups:

Proposition 2.16. Let G be compact quantum group, and let I ⊂ C(G) be a closed
∗-ideal satisfying the following condition:

∆(I) ⊂ C(G)⊗ I + I ⊗ C(G)

We have then a closed quantum subgroup H ⊂ G, constructed as follows:

C(H) = C(G)/I

At the dual level we obtain a quotient of discrete quantum groups, Γ̂→ Λ̂.

Proof. This follows indeed from the above conditions on I, which are designed pre-
cisely as for ∆, ε, S to factorize through the quotient. As for the last assertion, this is just
a reformulation, coming from the functoriality properties of the Pontrjagin duality. �
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In order to discuss now the quotient operation, let us agree to call “corepresentation”
of a Woronowicz algebra A any unitary matrix v ∈Mn(A) satisfying:

∆(vij) =
∑
k

vik ⊗ vkj , ε(vij) = δij , S(vij) = v∗ji

We will study in detail such corepresentations in chapter 3 below. For the moment,
we just need their definition, in order to formulate the following result:

Proposition 2.17. Let G be a compact quantum group, and v = (vij) be a corepre-
sentation of C(G). We have then a quotient quantum group G→ H, given by:

C(H) =< vij >

At the dual level we obtain a discrete quantum subgroup, Λ̂ ⊂ Γ̂.

Proof. Here the first assertion follows from the above definition of the corepresen-
tations, and the second assertion is just a reformulation of it, coming from the basic
functoriality properties of the Pontrjagin duality. �

Finally, here is one more construction, which is something more tricky, and which will
be of importance in what follows:

Theorem 2.18. Given a compact quantum group G, with fundamental corepresenta-
tion denoted u = (uij), the N2 ×N2 matrix given in double index notation by

via,jb = uiju
∗
ab

is a corepresentation in the above sense, and we have the following results:

(1) The corresponding quotient G→ PG is a compact quantum group.

(2) Via the standard embedding G ⊂ SN
2−1

C,+ , this is the projective version.

(3) In the classical group case, G ⊂ UN , we have PG = G/(G ∩ TN).

(4) In the group dual case, with Γ =< gi >, we have P̂Γ =< gig
−1
j >.

Proof. The fact that v is indeed a corepresentation is routine, and follows as well
from the general properties of such corepresentations, to be discussed in chapter 3 below.
Regarding now other assertions, the proofs go as follows:

(1) This follows from Proposition 2.17 above.

(2) Observe first that, since the matrix v = (via,jb) is biunitary, we have indeed an

embeddingG ⊂ SN
2−1

C,+ as in the statement, given in double index notation by xia,jb =
via,jb
N

.
Now with this formula in hand, the assertion is clear from definitions.

(3) This follows from the elementary fact that, via Gelfand duality, w is the matrix
of coefficients of the adjoint representation of G, whose kernel is the subgroup G ∩ TN ,
where TN ⊂ UN denotes the subgroup formed by the diagonal matrices.

(4) This is something trivial, which follows from definitions. �
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As a comment here, since the variables uij, u
∗
ab do not commute, it is possible to talk

as well about projective versions defined by using the matrix v′ia,jb = u∗ijuab. Thus, we
have in fact “left” and “right” projective versions, and the group dual examples, (4) in
the above statement, show that these are not necessarily isomorphic. All this is quite
technical, and for our purposes here, Theorem 2.18 as formulated is what we need.

2d. Free constructions

At the level of the really “new” examples now, we have basic liberation constructions,
going back to the pioneering work of Wang [93], [94], and to the subsequent papers [1],
[2] as well as several more recent constructions. We first have, following Wang [93]:

Theorem 2.19. The following universal algebras are Woronowicz algebras,

C(O+
N) = C∗

(
(uij)i,j=1,...,N

∣∣∣u = ū, ut = u−1
)

C(U+
N ) = C∗

(
(uij)i,j=1,...,N

∣∣∣u∗ = u−1, ut = ū−1
)

so the underlying compact quantum spaces O+
N , U

+
N are compact quantum groups.

Proof. This follows from the elementary fact that if a matrix u = (uij) is orthogonal
or biunitary, then so must be the following matrices:

u∆
ij =

∑
k

uik ⊗ ukj , uεij = δij , uSij = u∗ji

Consider indeed the matrix U = u∆. We have then:

(UU∗)ij =
∑
klm

uilu
∗
jm ⊗ ulku∗mk

=
∑
lm

uilu
∗
jm ⊗ δlm

= δij

In the other sense the computation is similar, as follows:

(U∗U)ij =
∑
klm

u∗klukm ⊗ u∗liumj

=
∑
lm

δlm ⊗ u∗liumj

= δij
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The verification of the unitarity of Ū is similar. We first have:

(ŪU t)ij =
∑
klm

u∗ilujm ⊗ u∗lkumk

=
∑
lm

u∗ilujm ⊗ δlm

= δij

In the other sense the computation is similar, as follows:

(U tŪ)ij =
∑
klm

uklu
∗
km ⊗ uliu∗mj

=
∑
lm

δlm ⊗ uliu∗mj

= δij

Regarding now the matrix uε = 1N , this is clearly biunitary. Regarding the matrix
uS, there is nothing to prove here either, because its unitarity its clear too.

Thus, we can indeed define morphisms ∆, ε, S as in Definition 2.4, by using the uni-
versal properties of C(O+

N), C(U+
N ), and this gives the result. �

Let us study now the above quantum groups, with the techniques that we have. As a
first observation, we have embeddings of compact quantum groups, as follows:

UN // U+
N

ON
//

OO

O+
N

OO

The basic properties of O+
N , U

+
N can be summarized as follows:

Theorem 2.20. The quantum groups O+
N , U

+
N have the following properties:

(1) The closed subgroups G ⊂ U+
N are exactly the N × N compact quantum groups.

As for the closed subgroups G ⊂ O+
N , these are those satisfying u = ū.

(2) We have liberation embeddings ON ⊂ O+
N and UN ⊂ U+

N , obtained by dividing the
algebras C(O+

N), C(U+
N ) by their respective commutator ideals.

(3) We have as well embeddings L̂N ⊂ O+
N and F̂N ⊂ U+

N , where LN is the free
product of N copies of Z2, and where FN is the free group on N generators.

Proof. All these assertions are elementary, as follows:

(1) This is clear from definitions, and from Proposition 2.10.
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(2) This follows from the Gelfand theorem, which shows that we have presentation
results for C(ON), C(UN) as follows, similar to those in Theorem 2.19:

C(ON) = C∗comm

(
(uij)i,j=1,...,N

∣∣∣u = ū, ut = u−1
)

C(UN) = C∗comm

(
(uij)i,j=1,...,N

∣∣∣u∗ = u−1, ut = ū−1
)

(3) This follows from (1) and from Proposition 2.7 above, with the remark that with
u = diag(g1, . . . , gN), the condition u = ū is equivalent to g2

i = 1, for any i. �

As an interesting philosophical conclusion, if we denote by L+
N , F

+
N the discrete quan-

tum groups which are dual to O+
N , U

+
N , then we have embeddings as follows:

LN ⊂ L+
N

FN ⊂ F+
N

Thus F+
N is a kind of “free free group”, and L+

N is its real counterpart. This is not
surprising, since FN , LN are not “fully free”, their group algebras being cocommutative.

The last assertion in Theorem 2.20 suggests the following construction:

Proposition 2.21. Given a closed subgroup G ⊂ U+
N , consider its “diagonal torus”,

which is the closed subgroup T ⊂ G constructed as follows:

C(T ) = C(G)
/〈

uij = 0
∣∣∣∀i 6= j

〉
This torus is then a group dual, T = Λ̂, where Λ =< g1, . . . , gN > is the discrete group
generated by the elements gi = uii, which are unitaries inside C(T ).

Proof. Since u is unitary, its diagonal entries gi = uii are unitaries inside C(T ).
Moreover, from ∆(uij) =

∑
k uik ⊗ ukj we obtain, when passing inside the quotient:

∆(gi) = gi ⊗ gi
It follows that we have C(T ) = C∗(Λ), modulo identifying as usual the C∗-completions

of the various group algebras, and so that we have T = Λ̂, as claimed. �

With this notion in hand, Theorem 2.20 (3) tells us that the diagonal tori of O+
N , U

+
N

are the group duals L̂N , F̂N . We will be back to this later.

Here is now a more subtle result on O+
N , U

+
N , having no classical counterpart:

Proposition 2.22. Consider the quantum groups O+
N , U

+
N , with the corresponding

fundamental corepresentations denoted v, u, and let z = id ∈ C(T).

(1) We have a morphism C(U+
N )→ C(T) ∗ C(O+

N), given by u = zv.

(2) In other words, we have a quantum group embedding Õ+
N ⊂ U+

N .
(3) This embedding is an isomorphism at the level of the diagonal tori.
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Proof. The first two assertions follow from Proposition 2.15 above, or simply from
the fact that u = zv is biunitary. As for the third assertion, the idea here is that we have a
similar model for the free group FN , which is well-known to be faithful, FN ⊂ Z∗LN . �

We will be back to the above morphism later on, with a proof of its faithfulness, after
performing a suitable GNS construction, with respect to the Haar functionals.

As a conclusion here, modulo some results which are still to be worked out, the re-
lation between O+

N , U
+
N is in fact simpler than the one between ON , UN , which appears

by complexification at the Lie algebra level. We will see later on that, from many other
points of view, the quantum groups O+

N , U
+
N are in fact “simpler” than ON , UN .

Let us construct now some more examples of compact quantum groups. As a basic
construction here, coming however from the work in [25], [35], [37], [44], which is quite
advanced, we can introduce some intermediate liberations, as follows:

Proposition 2.23. We have intermediate quantum groups as follows,

UN // U∗N
// U+

N

ON
//

OO

O∗N
//

OO

O+
N

OO

with ∗ standing for the fact that uij, u
∗
ij must satisfy the relations abc = cba.

Proof. This is elementary, by using the fact that if the entries of u = (uij) half-
commute, then so do the entries of the following matrices:

u∆
ij =

∑
k

uik ⊗ ukj , uεij = δij , uSij = u∗ji

Thus, we have indeed morphisms ∆, ε, S, as in Definition 2.4. See [35], [37]. �

In the same spirit, we have as well intermediate spheres as follows, with the symbol ∗
standing for the fact that xi, x

∗
i must satisfy the relations abc = cba:

SN−1
C

// SN−1
C,∗

// SN−1
C,+

SN−1
R

//

OO

SN−1
R,∗

//

OO

SN−1
R,+

OO

At the level of the diagonal tori, we have the following result:
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Theorem 2.24. The tori of the basic spheres and quantum groups are as follows,

ẐN // Ẑ◦N // Ẑ∗N

ẐN2 //

OO

Ẑ◦N2 //

OO

Ẑ∗N2

OO

with ◦ standing for the half-classical product operation for groups.

Proof. The idea here is as follows:

(1) The result on the left is well-known.

(2) The result on the right follows from Theorem 2.20 (3).

(3) The middle result follows as well, by imposing the relations abc = cba. �

Let us discuss now the relation with the noncommutative spheres. Having the things
started here is a bit tricky, and as a main source of inspiration, we have:

Proposition 2.25. Given an algebraic manifold X ⊂ SN−1
C , the formula

G(X) =
{
U ∈ UN

∣∣∣U(X) = X
}

defines a compact group of unitary matrices (a.k.a. isometries), called affine isometry
group of X. For the spheres SN−1

R , SN−1
C we obtain in this way the groups ON , UN .

Proof. The fact that G(X) as defined above is indeed a group is clear, its compact-
ness is clear as well, and finally the last assertion is clear as well. In fact, all this works
for any closed subset X ⊂ CN , but we are not interested here in such general spaces. �

We have the following quantum analogue of the above construction:

Proposition 2.26. Given an algebraic manifold X ⊂ SN−1
C,+ , the category of the closed

subgroups G ⊂ U+
N acting affinely on X, in the sense that the formula

Φ(xi) =
∑
j

xj ⊗ uji

defines a morphism of C∗-algebras as follows,

Φ : C(X)→ C(X)⊗ C(G)

has a universal object, denoted G+(X), and called affine quantum isometry group of X.
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Proof. Observe first that in the case where the above morphism Φ exists, this mor-
phism is automatically a coaction, in the sense that it satisfies the following conditions:

(Φ⊗ id)Φ = (id⊗∆)Φ

(id⊗ ε)Φ = id

In order to prove now the result, assume that X ⊂ SN−1
C,+ comes as follows:

C(X) = C(SN−1
C,+ )

/〈
fα(x1, . . . , xN) = 0

〉
Consider now the following variables:

Xi =
∑
j

xj ⊗ uji ∈ C(X)⊗ C(U+
N )

Our claim is that G = G+(X) in the statement appears as follows:

C(G) = C(U+
N )
/〈

fα(X1, . . . , XN) = 0
〉

In order to prove this claim, we have to clarify how the relations fα(X1, . . . , XN) = 0
are interpreted inside C(U+

N ), and then show that G is indeed a quantum group.
So, pick one of the defining polynomials, f = fα, and write it as follows:

f(x1, . . . , xN) =
∑
r

∑
ir1...i

r
sr

λr · xir1 . . . xirsr

With Xi =
∑

j xj ⊗ uji as above, we have the following formula:

f(X1, . . . , XN) =
∑
r

∑
ir1...i

r
sr

λr
∑
jr1 ...j

r
sr

xjr1 . . . xjrsr ⊗ ujr1 ir1 . . . ujrsr irsr

Since the variables on the right span a certain finite dimensional space, the relations
f(X1, . . . , XN) = 0 correspond to certain relations between the variables uij.

Thus, we have indeed a closed subspace G ⊂ U+
N , coming with a universal map:

Φ : C(X)→ C(X)⊗ C(G)

In order to show now that G is a quantum group, consider the following elements:

u∆
ij =

∑
k

uik ⊗ ukj , uεij = δij , uSij = u∗ji

Consider the following associated elements, with γ ∈ {∆, ε, S}:

Xγ
i =

∑
j

xj ⊗ uγji

From the relations f(X1, . . . , XN) = 0 we deduce that we have:

f(Xγ
1 , . . . , X

γ
N) = (id⊗ γ)f(X1, . . . , XN) = 0
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Thus, for any γ ∈ {∆, ε, S}, we can map uij → uγij. It follows that G is indeed a
quantum group, and we are done. �

We can formulate a quantum isometry group result, from [4], as follows:

Theorem 2.27. The quantum isometry groups of the basic spheres are

UN // U∗N
// U+

N

ON
//

OO

O∗N
//

OO

O+
N

OO

modulo identifying, as usual, the various C∗-algebraic completions.

Proof. Let us first construct an action U+
N y SN−1

C,+ . We must prove here that the

variables Xi =
∑

j xj ⊗ uji satisfy the defining relations for SN−1
C,+ , namely:∑

i

xix
∗
i =

∑
i

x∗ixi = 1

But this follows from the biunitarity of u. We have indeed:∑
i

XiX
∗
i =

∑
ijk

xjx
∗
k ⊗ ujiu∗ki

=
∑
j

xjx
∗
j ⊗ 1

= 1⊗ 1

In the other sense the computation is similar, as follows:∑
i

X∗iXi =
∑
ijk

x∗jxk ⊗ u∗jiuki

=
∑
j

x∗jxj ⊗ 1

= 1⊗ 1

Regarding now O+
N y SN−1

R,+ , here we must check the extra relations Xi = X∗i , and
these are clear from uia = u∗ia. Finally, regarding the remaining actions, the verifications
are clear as well, because if the coordinates uia and xa are subject to commutation relations
of type ab = ba, or of type abc = cba, then so are the variables Xi =

∑
j xj ⊗ uji.

We must prove now that all these actions are universal:
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SN−1
R,+ , SN−1

C,+ . The universality of U+
N y SN−1

C,+ is trivial by definition. As for the uni-

versality of O+
N y SN−1

R,+ , this comes from the fact that Xi = X∗i , with Xi =
∑

j xj ⊗ uji
as above, gives uia = u∗ia. Thus Gy SN−1

R,+ implies G ⊂ O+
N , as desired.

SN−1
R , SN−1

C . We use here a trick from [39]. Assuming first that we have an action

Gy SN−1
R , consider the following variables:

wkl,ij = ukiulj

pij = xixj

In terms of these variables, which can be thought of as being projective coordinates,
the corresponding projective coaction map is given by:

Φ(pij) =
∑
kl

pkl ⊗ wkl,ij

We have the following formulae:

Φ(pij) =
∑
k<l

pkl ⊗ (wkl,ij + wlk,ij) +
∑
k

pkk ⊗ wkk,ij

Φ(pji) =
∑
k<l

pkl ⊗ (wkl,ji + wlk,ji) +
∑
k

pkk ⊗ wkk,ji

By comparing these two formulae, and then by using the linear independence of the
variables pkl = xkxl with k ≤ l, we conclude that we must have:

wkl,ij + wlk,ij = wkl,ji + wlk,ji

Following now a well-known trick from [39], let us apply the antipode to this formula.
For this purpose, observe first that we have:

S(wkl,ij) = S(ukiulj) = S(ulj)S(uki) = ujluik = wji,lk

Thus by applying the antipode we obtain:

wji,lk + wji,kl = wij,lk + wij,kl

By relabelling the indices, we obtain from this:

wkl,ij + wkl,ji = wlk,ij + wlk,ji

Now by comparing with the original relation, we obtain:

wlk,ij = wkl,ji

But, recalling that we have wkl,ij = ukiulj, this formula reads:

uliukj = ukjuli

We therefore conclude we have G ⊂ ON , as claimed. The proof of the universality of
the action UN y SN−1

C is similar.



54 2. QUANTUM GROUPS

SN−1
R,∗ , S

N−1
C,∗ . Assume that we have an action G y SN−1

C,∗ . From Φ(xa) =
∑

i xi ⊗ uia
we obtain then that, with pab = zaz̄b, we have:

Φ(pab) =
∑
ij

pij ⊗ uiau∗jb

By multiplying these two formulae, we obtain:

Φ(pabpcd) =
∑
ijkl

pijpkl ⊗ uiau∗jbukcu∗ld

Φ(padpcb) =
∑
ijkl

pilpkj ⊗ uiau∗ldukcu∗jb

The left terms being equal, and the first terms on the right being equal too, we deduce
that, with [a, b, c] = abc− cba, we must have the following equality:∑

ijkl

pijpkl ⊗ uia[u∗jb, ukc, u∗ld] = 0

Since the variables pijpkl = ziz̄jzkz̄l depend only on |{i, k}|, |{j, l}| ∈ {1, 2}, and this
dependence produces the only relations between them, we are led to 4 equations:

(1) uia[u
∗
jb, uka, u

∗
lb] = 0, ∀a, b.

(2) uia[u
∗
jb, uka, u

∗
ld] + uia[u

∗
jd, uka, u

∗
lb] = 0, ∀a, ∀b 6= d.

(3) uia[u
∗
jb, ukc, u

∗
lb] + uic[u

∗
jb, uka, u

∗
lb] = 0, ∀a 6= c, ∀b.

(4) uia([u
∗
jb, ukc, u

∗
ld]+[u∗jd, ukc, u

∗
lb])+uic([u

∗
jb, uka, u

∗
ld]+[u∗jd, uka, u

∗
lb]) = 0, ∀a 6= c,∀b 6=

d.

From (1,2) we conclude that (2) holds with no restriction on the indices. By multi-
plying now this formula to the left by u∗ia, and then summing over i, we obtain:

[u∗jb, uka, u
∗
ld] + [u∗jd, uka, u

∗
lb] = 0

By applying now the antipode, then the involution, and finally by suitably relabelling
all the indices, we successively obtain from this formula:

[udl, u
∗
ak, ubj] + [ubl, u

∗
ak, udj] = 0

=⇒ [u∗dl, uak, u
∗
bj] + [u∗bl, uak, u

∗
dj] = 0

=⇒ [u∗ld, uka, u
∗
jb] + [u∗jd, uka, u

∗
lb] = 0

Now by comparing with the original relation, above, we conclude that we have:

[u∗jb, uka, u
∗
ld] = [u∗jd, uka, u

∗
lb] = 0

Thus we have reached to the formulae defining U∗N , and we are done.
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Finally, in what regards the universality of O∗N y SN−1
R,∗ , this follows from the univer-

sality of U∗N y SN−1
C,∗ and of O+

N y SN−1
R,+ , and from U∗N ∩O+

N = O∗N . �

As a conclusion to all this, we have now a simple and reliable definition for the compact
quantum groups, in the Lie case, namely G ⊂ U+

N , covering all the compact Lie groups,

G ⊂ UN , covering as well all the duals Γ̂ of the finitely generated groups, FN → Γ, and
allowing the construction of several interesting examples, such as O+

N , U
+
N .

In respect to the noncommutative geometry questions raised in chapter 1 above, we
have some advances. In order to further advance, we would need representation theory
results, in the spirit of [97], for our quantum isometry groups.

2e. Exercises

In connection with quantum groups, a good familiarity with the Hopf algebra ∆, ε, S
calculus is one of the main needed things. Here is a first exercise:

Exercise 2.28. Given a finite dimensional Hopf algebra A, prove that its dual A∗ is
a Hopf algebra too, with structural maps as follows:

∆t : A∗ ⊗ A∗ → A∗

εt : C→ A∗

mt : A∗ → A∗ ⊗ A∗

ut : A∗ → C
St : A∗ → A∗

Also, check that A is commutative if and only if A∗ is cocommutative, and also discuss
what happens in the cases A = C(G) and A = C∗(H), with G,H being finite groups.

This is actually something that we already discussed, but a bit in a hurry, just as a
preliminary to the compact and discrete quantum groups that we are interested in here,
in this book, and the problem is that of filling all the details.

Here is another ∆, ε, S exercise, this time making the relation with the Woronowicz
axioms for the compact and discrete quantum groups:

Exercise 2.29. Prove that the compact quantum groups G which are finite, in the
sense that dimC(G) <∞, coincide with the discrete quantum groups Γ which are finite,
in the sense that dimC∗(Γ) <∞, and coincide as well with the finite quantum groups.

This might sound obvious, but in practice, all this needs a proof. The first step is that
of clearly formulating, in terms of algebras, what exactly we want to prove.

Here is another abstract exercise, this time in relation with product operations:
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Exercise 2.30. Clarify the discrete quantum group formulation of the various compact
quantum group product operations, namely taking subgroups, quotients, dual free products,
free complexifications and projective versions.

This is something that was discussed in the above, but rather quickly, our general
policy here being rather of insisting on the compact quantum group formulation of the
things. The problem is that of working out all the details, in dual formulation.

In relation with free quantum groups, here is a first exercise:

Exercise 2.31. Prove that the free complexification embedding

Õ+
N ⊂ U+

N

is an isomorphism at the level of the associated diagonal tori.

As before, this is something that we talked about, but rather quickly, and this because

we will prove anyway, later on, that the embedding Õ+
N ⊂ U+

N itself is an isomorphism.
However, this is something non-trivial, and this exercise is a good introduction to this.
In practice, the thing to be proved is something group-theoretical, about free groups.

Here is another exercise, on the same topic, but of Lie group flavor:

Exercise 2.32. Find the correspondence ON → UN , by using linear algebra, or Lie
algebras, or whatever other means.

This latter exercise is actually something quite tricky, not to say of undoable type. On
the menu, you can either learn some Lie algebras and then solve it, or simply not solve
it and not worry, because we will be mainly interested here in free quantum groups, and
we will see that the correspondence O+

N → U+
N is something much simpler.



CHAPTER 3

Representation theory

3a. Representations

In order to reach to some more advanced insight into the structure of the compact
quantum groups, we can use representation theory. We follow Woronowicz’s paper [99],
with a few simplifications coming from our S2 = id formalism. We first have:

Definition 3.1. A corepresentation of a Woronowicz algebra (A, u) is a unitary ma-
trix v ∈Mn(A) over the dense ∗-algebra A =< uij >, satisfying:

∆(vij) =
∑
k

vik ⊗ vkj

ε(vij) = δij

S(vij) = v∗ji
That is, v must satisfy the same conditions as u.

As basic examples here, we have the trivial corepresentation, having dimension 1, as
well as the fundamental corepresentation, and its adjoint:

1 = (1) , u = (uij) , ū = (u∗ij)

In the classical case, we recover in this way the usual representations of G:

Proposition 3.2. Given a closed subgroup G ⊂ UN , the corepresentations of the
associated Woronowicz algebra C(G) are in one-to-one correspondence, given by

π(g) =

v11(g) . . . v1n(g)
...

...
vn1(g) . . . vnn(g)


with the finite dimensional unitary smooth representations of G.

Proof. With A = C(G), consider the unitary matrices v ∈ MN(A) satisfying the
equations in Definition 3.1. By using the computations from chapter 2, performed when
proving that any closed subgroup G ⊂ UN is indeed a compact quantum group, we
conclude that we have a correspondence v ↔ π as in the statement, between such matrices,
and the finite dimensional unitary representations of G.

57
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Regarding now the smoothness part, this is something more subtle, which requires
some knowledge of Lie group theory. The point is that any closed subgroup G ⊂ UN is a
Lie group, and since the coefficient functions uij : G→ C are smooth, we have:

A ⊂ C∞(G)

Thus, when assuming v ∈ MN(A), the corresponding representation π : G → Un is
smooth, and the converse of this fact is known to hold as well. �

In general now, we have the following operations on the corepresentations:

Proposition 3.3. The corepresentations are subject to the following operations:

(1) Making sums, v + w = diag(v, w).
(2) Making tensor products, (v ⊗ w)ia,jb = vijwab.
(3) Taking conjugates, (v̄)ij = v∗ij.

Proof. Observe that the result holds in the commutative case, where we obtain the
usual operations on the representations of the corresponding group. In general now:

(1) Everything here is clear, as already mentioned in chapter 2 above, when using such
corepresentations in order to construct quantum group quotients.

(2) First of all, the matrix v ⊗ w is unitary. Indeed, we have:∑
jb

(v ⊗ w)ia,jb(v ⊗ w)∗kc,jb =
∑
jb

vijwabw
∗
cbv
∗
kj

= δac
∑
j

vijv
∗
kj

= δikδac

In the other sense, the computation is similar, as follows:∑
jb

(v ⊗ w)∗jb,ia(v ⊗ w)jb,kc =
∑
jb

w∗bav
∗
jivjkwbc

= δik
∑
b

w∗bawbc

= δikδac

The comultiplicativity condition follows from the following computation:

∆((v ⊗ w)ia,jb) =
∑
kc

vikwac ⊗ vkjwcb

=
∑
kc

(v ⊗ w)ia,kc ⊗ (v ⊗ w)kc,jb

The proof of the counitality condition is similar, as follows:

ε((v ⊗ w)ia,jb) = δijδab = δia,jb
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As for the condition involving the antipode, this can be checked as follows:

S((v ⊗ w)ia,jb) = w∗bav
∗
ji = (v ⊗ w)∗jb,ia

(3) In order to check that v̄ is unitary, we can use the antipode, exactly as we did in
section 2 above, for ū. As for the comultiplicativity axioms, these are all clear. �

We have as well the following supplementary operation:

Proposition 3.4. Given a corepresentation v ∈Mn(A), its spinned version

w = UvU∗

is a corepresentation as well, for any unitary matrix U ∈ Un.

Proof. The matrix w is unitary, and its comultiplicativity properties can be checked
by doing some computations. Here is however another proof of this fact, using a useful
trick. In the context of Definition 3.1, if we write v ∈Mn(C)⊗ A, the axioms read:

(id⊗∆)v = v12v13

(id⊗ ε)v = 1

(id⊗ S)v = v∗

Here we use standard tensor calculus conventions. Now when spinning by a unitary
the matrix that we obtain, with these conventions, is w = U1vU

∗
1 , and we have:

(id⊗∆)w = U1v12v13U
∗
1

= U1v12U
∗
1 · U1v13U

∗
1

= w12w13

The proof of the counitality condition is similar, as follows:

(id⊗ ε)w = U · 1 · U = 1

Finally, the last condition, involving the antipode, can be checked as follows:

(id⊗ S)w = U1v
∗U∗1 = w∗

Thus, with usual notations, w = UvU∗ is a corepresentation, as claimed. �

As a philosophical comment, the above proof might suggest that the more abstract our
notations and formalism, the easier our problems will become. This is wrong. Bases and
indices are a blessing: they can be understood by undergraduate students, computers,
fellow scientists, engineers, and of course also by yourself, when you’re tired or so.

In addition, in the quantum group context, we will see later on, starting from section
4 below, that bases and indices can be turned into something very beautiful and powerful,
allowing us to do some serious theory, well beyond the level of abstractions.

Back to work now, in the group dual case, we have the following result:
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Proposition 3.5. Assume A = C∗(Γ), with Γ =< g1, . . . , gN > being a discrete
group.

(1) Any group element h ∈ Γ is a 1-dimensional corepresentation of A, and the
operations on corepresentations are the usual ones on group elements.

(2) Any diagonal matrix of type v = diag(h1, . . . , hn), with n ∈ N arbitrary, and with
h1, . . . , hn ∈ Γ, is a corepresentation of A.

(3) More generally, any matrix of type w = Udiag(h1, . . . , hn)U∗ with h1, . . . , hn ∈ Γ
and with U ∈ Un, is a corepresentation of A.

Proof. These assertions are all elementary, as follows:

(1) The first assertion is clear from definitions and from the comultiplication, counit
and antipode formulae for the discrete group algebras, namely:

∆(h) = h⊗ h

ε(h) = 1

S(h) = h−1

The assertion on the operations is clear too, because we have:

(g)⊗ (h) = (gh)

(g) = (g−1)

(2) This follows from (1) by performing sums, as in Proposition 3.3 above.

(3) This follows from (2) and from the fact that we can conjugate any corepresentation
by a unitary matrix, as explained in Proposition 3.4 above. �

Observe that the class of corepresentations in (3) is stable under all the operations
from Propositions 3.3 and 3.4. When Γ is abelian we can apply Proposition 3.2 with

G = Γ̂, and after performing a number of identifications, we conclude that these are all
the corepresentations of C∗(Γ). We will see later that this holds in fact for any Γ.

Summarizing, the representations of a compact quantum group can be defined as in the
classical case, but by using coefficients, and in the group dual case we obtain something
which is a priori quite simple too, namely formal direct sums of group elements.

3b. Peter-Weyl theory

In this section and the next two ones we develop the Peter-Weyl theory for the rep-
resentations of the compact quantum groups, following [99]. There is quite some work
to be done here, and we will do it in 3 parts, first with some algebraic results, which are
quite elementary, and then with more advanced results, mixing algebra and analysis.

Let us start with the following definition:
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Definition 3.6. Given two corepresentations v ∈Mn(A), w ∈Mm(A), we set

Hom(v, w) =
{
T ∈Mm×n(C)

∣∣∣Tv = wT
}

and we use the following conventions:

(1) We use the notations Fix(v) = Hom(1, v), and End(v) = Hom(v, v).
(2) We write v ∼ w when Hom(v, w) contains an invertible element.
(3) We say that v is irreducible, and write v ∈ Irr(G), when End(v) = C1.

In the classical case A = C(G) we obtain the usual notions concerning the represen-
tations. Observe also that in the group dual case we have:

g ∼ h ⇐⇒ g = h

Finally, observe that v ∼ w means that v, w are conjugated by an invertible matrix.
Here are a few basic results, regarding the above Hom spaces:

Proposition 3.7. We have the following results:

(1) T ∈ Hom(u, v), S ∈ Hom(v, w) =⇒ ST ∈ Hom(u,w).
(2) S ∈ Hom(p, q), T ∈ Hom(v, w) =⇒ S ⊗ T ∈ Hom(p⊗ v, q ⊗ w).
(3) T ∈ Hom(v, w) =⇒ T ∗ ∈ Hom(w, v).

In other words, the Hom spaces form a tensor ∗-category.

Proof. The proofs are all elementary, as follows:

(1) By using our assumptions Tu = vT and Sv = Ws we obtain, as desired:

STu = SvT = wST

(2) Assume indeed that we have Sp = qS and Tv = wT . With tensor product
notations, as in the proof of Proposition 3.4 above, we have:

(S ⊗ T )(p⊗ v) = S1T2p13v23

= (Sp)13(Tv)23

We have as well the following computation:

(q ⊗ w)(S ⊗ T ) = q13w23S1T2

= (qS)13(wT )23

The quantities on the right being equal, this gives the result.

(3) By conjugating, and then using the unitarity of v, w, we obtain, as desired:

Tv = wT =⇒ v∗T ∗ = T ∗w∗

=⇒ vv∗T ∗w = vT ∗w∗w

=⇒ T ∗w = vT ∗
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Finally, the last assertion follows from definitions, and from the obvious fact that, in
addition to (1,2,3) above, the Hom spaces are linear spaces, and contain the units. In
short, this is just a theoretical remark, that will be used only later on. �

As a main consequence of the above result, the spaces End(v) ⊂ Mn(C) are unital
subalgebras stable under the involution ∗, and so are C∗-algebras.

In order to exploit this fact, we will need a basic result, complementing the operator
algebra theory presented in section 1 above, namely:

Theorem 3.8. Let B ⊂Mn(C) be a C∗-algebra.

(1) We can write 1 = p1 + . . .+ pk, with pi ∈ B central minimal projections.
(2) Each of the linear spaces Bi = piBpi is a non-unital ∗-subalgebra of B.
(3) We have a non-unital ∗-algebra sum decomposition B = B1 ⊕ . . .⊕Bk.
(4) We have unital ∗-algebra isomorphisms Bi 'Mri(C), where ri = rank(pi).
(5) Thus, we have a C∗-algebra isomorphism B 'Mr1(C)⊕ . . .⊕Mrk(C).

In addition, the final conclusion holds for any finite dimensional C∗-algebra.

Proof. This is something well-known, with the proof of the various assertions in the
statement being something elementary, and routine:

(1) This is more of a definition.

(2) This is elementary, coming from p2
i = pi = p∗i .

(3) The verification of the direct sum conditions is indeed elementary.

(4) This follows from the fact that each pi was assumed to be central and minimal.

(5) This follows by putting everything together.

As for the last assertion, this follows from (5) by using the GNS representation theo-
rem, which provides us with an embedding B ⊂Mn(C), for some n ∈ N. �

Following Woronowicz’s paper [99], we can now formulate a first Peter-Weyl theorem,
and to be more precise a first such theorem from a 4-series, as follows:

Theorem 3.9 (PW1). Let v ∈Mn(A) be a corepresentation, consider the C∗-algebra
B = End(v), and write its unit as 1 = p1 + . . .+ pk, as above. We have then

v = v1 + . . .+ vk

with each vi being an irreducible corepresentation, obtained by restricting v to Im(pi).

Proof. This can be deduced from Theorem 3.8 above, as follows:

(1) We first associate to our corepresentation v ∈ Mn(A) the corresponding coaction
map Φ : Cn → Cn ⊗ A, given by the following formula:

Φ(ei) =
∑
j

ej ⊗ vji



3B. PETER-WEYL THEORY 63

We say that a linear subspace V ⊂ Cn is invariant under v if:

Φ(V ) ⊂ V ⊗ A
In this case, we can consider the following restriction map:

Φ|V : V → V ⊗ A
This is a coaction map too, which must come from a subcorepresentation w ⊂ v.

(2) Consider now a projection p ∈ End(v). From pv = vp we obtain that the linear
space V = Im(p) is invariant under v, and so this space must come from a subcorepre-
sentation w ⊂ v. It is routine to check that the operation p→ w maps subprojections to
subcorepresentations, and minimal projections to irreducible corepresentations.

(3) With these preliminaries in hand, let us decompose the algebra End(v) as in
Theorem 3.8 above, by using the decomposition of 1 into minimal projections there:

1 = p1 + . . .+ pk

Consider now the following vector spaces:

Vi = Im(pi)

If we denote by vi ⊂ v the subcorepresentations coming from these vector spaces, then
we obtain in this way a decomposition v = v1 + . . .+ vk, as in the statement. �

In order to formulate our second Peter-Weyl type theorem, we will need:

Definition 3.10. We denote by u⊗k, with k = ◦ • • ◦ . . . being a colored integer, the
various tensor products between u, ū, indexed according to the rules

u⊗∅ = 1 , u⊗◦ = u , u⊗• = ū

and multiplicativity, u⊗kl = u⊗k ⊗ u⊗l, and call them Peter-Weyl corepresentations.

Here are a few examples of such corepresentations, namely those coming from the
colored integers of length 2, to be often used in what follows:

u⊗◦◦ = u⊗ u

u⊗◦• = u⊗ ū
u⊗•◦ = ū⊗ u
u⊗•• = ū⊗ ū

There are some particular cases of interest, where simplifications appear:

Proposition 3.11. The Peter-Weyl corepresentations u⊗k are as follows:

(1) In the real case, u = ū, we can assume k ∈ N.
(2) In the classical case, we can assume, up to equivalence, k ∈ N× N.
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Proof. These assertions are both elementary, as follows:

(1) Here we have indeed u⊗k = u⊗|k|, where |k| ∈ N is the length. Thus the Peter-Weyl
corepresentations are indexed by N, as claimed.

(2) In the classical case, our claim is that we have equivalences v ⊗ w ∼ w ⊗ v,
implemented by the flip operator Σ(a⊗ b) = b⊗ a. Indeed, we have:

v ⊗ w = v13w23

= w23v13

= Σw13v23Σ

= Σ(w ⊗ v)Σ

In particular we have an equivalence u⊗ ū ∼ ū⊗u. We conclude that the Peter-Weyl
corepresentations are the corepresentations of type u⊗k ⊗ ū⊗l, with k, l ∈ N. �

Here is the second Peter-Weyl theorem, also from [99], complementing Theorem 3.9:

Theorem 3.12 (PW2). Each irreducible corepresentation of A appears as:

v ⊂ u⊗k

That is, v appears inside a certain Peter-Weyl corepresentation.

Proof. Given an arbitrary corepresentation v ∈ Mn(A), consider its space of co-
efficients, C(v) = span(vij). It is routine to check that the construction v → C(v) is
functorial, in the sense that it maps subcorepresentations into subspaces.

By definition of the Peter-Weyl corepresentations, we have:

A =
∑
k∈N∗N

C(u⊗k)

Now given a corepresentation v ∈ Mn(A), the corresponding coefficient space is a
finite dimensional subspace C(v) ⊂ A, and so we must have, for certain k1, . . . , kp:

C(v) ⊂ C(u⊗k1 ⊕ . . .⊕ u⊗kp)

We deduce from this that we have an inclusion of corepresentations, as follows:

v ⊂ u⊗k1 ⊕ . . .⊕ u⊗kp

Together with Theorem 3.9, this leads to the conclusion in the statement. �

Summarizing, we have seen so far that the corepresentations decompose into sums
of irreducible corepresentations, and that for finding these latter corepresentations, it is
enough to decompose into irreducibles the Peter-Weyl corepresentations.



3C. THE HAAR MEASURE 65

3c. The Haar measure

In order to further advance, with some finer results, we need to integrate over G. In
the classical case the existence of such an integration is well-known, as follows:

Proposition 3.13. Any commutative Woronowicz algebra, A = C(G) with G ⊂ UN ,
has a unique faithful positive unital linear form

∫
G

: A→ C satisfying∫
G

f(xy)dx =

∫
G

f(yx)dx =

∫
G

f(x)dx

called Haar integration. This Haar integration functional can be constructed by starting
with any faithful positive unital form ϕ ∈ A∗, and taking the Cesàro limit∫

G

= lim
n→∞

1

n

n∑
k=1

ϕ∗k

where the convolution operation for linear forms is given by φ ∗ ψ = (φ⊗ ψ)∆.

Proof. This is the existence theorem for the Haar measure ofG, in functional analytic
formulation. Observe first that the invariance conditions in the statement read:

d(xy) = d(yx) = dx , ∀y ∈ G

Thus, we are looking indeed for the integration with respect to the Haar measure on
G. Now recall that this Haar measure exists, is unique, and can be constructed by starting
with any probability measure µ, and performing the following Cesàro limit:

dx = lim
n→∞

1

n

n∑
k=1

dµ∗k(x)

In functional analysis terms, this corresponds precisely to the second assertion. �

The above statement and proof are of course more of a reminder, with all the details
missing. However, we will reprove all this later on, as a particular case of a general Haar
integration existence result, in the general Woronowicz algebra setting.

In general now, let us start with a definition, as follows:

Definition 3.14. Given an arbitrary Woronowicz algebra A = C(G), any positive
unital tracial state

∫
G

: A→ C subject to the invariance conditions(∫
G

⊗id
)

∆ =

(
id⊗

∫
G

)
∆ =

∫
G

(.)1

is called Haar integration over G.
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As a first observation, in the commutative case, this notion agrees with the one in
Proposition 3.13. To be more precise, Proposition 3.13 tells us that any commutative
Woronowicz algebra has a Haar integration in the above sense, which is unique, and
which can be constructed by performing the Cesàro limiting procedure there.

Before getting into the general case, let us discuss the group dual case. Here things
are quite elementary, and we have the following result:

Proposition 3.15. Given a discrete group Γ =< g1, . . . , gN >, the Woronowicz alge-
bra A = C∗(Γ) has a Haar functional, given on the standard generators g ∈ Γ by:∫

Γ̂

g = δg,1

This functional is faithful on the image on C∗(Γ) in the regular representation. Also, in

the abelian case, we obtain in this way the counit of C(Γ̂).

Proof. Consider indeed the left regular representation π : C∗(Γ) → B(l2(Γ)), given
by π(g)(h) = gh, that we already met in chapter 1. By composing it with the functional
T →< T1, 1 >, the functional

∫
Γ̂

that we obtain is given by:∫
Γ̂

g =< g1, 1 >= δg,1

But this gives all the assertions in the statement, namely the existence, traciality, left
and right invariance properties, and faithfulness on the reduced algebra. As for the last
assertion, this is clear from the Pontrjagin duality isomorphism. �

With a bit of functional analysis knowledge, one can improve the above result, with
a proof of the fact that the Haar integration is unique, and appears via a Cesàro limiting
procedure, as in Proposition 3.13. We will do this directly, in the general case.

In order to discuss now the general case, that of the arbitrary Woronowicz algebras,
let us define the convolution operation for linear forms by:

φ ∗ ψ = (φ⊗ ψ)∆

We have then the following result, from Woronowicz’s paper [99]:

Proposition 3.16. Given an arbitrary unital linear form ϕ ∈ A∗, the limit∫
ϕ

a = lim
n→∞

1

n

n∑
k=1

ϕ∗k(a)

exists, and for a coefficient of a corepresentation a = (τ ⊗ id)v, we have∫
ϕ

a = τ(P )

where P is the orthogonal projection onto the 1-eigenspace of (id⊗ ϕ)v.
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Proof. By linearity, it is enough to prove the first assertion for elements of the
following type, where v is one of the Peter-Weyl corepresentations, and τ is a linear form:

a = (τ ⊗ id)v

Thus we are led into the second assertion, and more precisely we can have the whole
result proved if we can establish the following formula, with a = (τ ⊗ id)v:

lim
n→∞

1

n

n∑
k=1

ϕ∗k(a) = τ(P )

In order to prove this latter formula, observe that we have:

ϕ∗k(a) = (τ ⊗ ϕ∗k)v = τ((id⊗ ϕ∗k)v)

Consider now the following scalar matrix:

M = (id⊗ ϕ)v

In terms of this matrix, we have the following formula:

((id⊗ ϕ∗k)v)i0ik+1
=
∑
i1...ik

Mi0i1 . . .Mikik+1
= (Mk)i0ik+1

Thus for any k ∈ N we have the following formula:

(id⊗ ϕ∗k)v = Mk

It follows that our Cesàro limit is given by:

lim
n→∞

1

n

n∑
k=1

ϕ∗k(a) = lim
n→∞

1

n

n∑
k=1

τ(Mk)

= τ

(
lim
n→∞

1

n

n∑
k=1

Mk

)
Now since v is unitary we have ||v|| = 1, and we conclude that we have:

||M || ≤ 1

Thus, by standard calculus, the above Cesàro limit on the right exists, and equals the
orthogonal projection onto the 1-eigenspace of M :

lim
n→∞

1

n

n∑
k=1

Mk = P

Thus our initial Cesàro limit converges as well, to τ(P ), as desired. �

When ϕ is chosen faithful, we have the following finer result, also from [99]:
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Proposition 3.17. Given a faithful unital linear form ϕ ∈ A∗, the limit∫
ϕ

a = lim
n→∞

1

n

n∑
k=1

ϕ∗k(a)

exists, and is independent of ϕ, given on coefficients of corepresentations by(
id⊗

∫
ϕ

)
v = P

where P is the orthogonal projection onto Fix(v) = {ξ ∈ Cn|vξ = ξ}.

Proof. In view of Proposition 3.16, it remains to prove that when ϕ is faithful, the
1-eigenspace of M = (id⊗ ϕ)v equals Fix(v).

“⊃” This is clear, and for any ϕ, because we have:

vξ = ξ =⇒ Mξ = ξ

“⊂” Here we must prove that, when ϕ is faithful, we have:

Mξ = ξ =⇒ vξ = ξ

For this purpose, we use a standard positivity trick. Assume that we have Mξ = ξ,
and consider the following element:

a =
∑
i

(∑
j

vijξj − ξi

)(∑
k

vikξk − ξi

)∗
We want to prove that we have a = 0. Since v is biunitary, we have:

a =
∑
i

(∑
j

(
vijξj −

1

N
ξi

))(∑
k

(
v∗ikξ̄k −

1

N
ξ̄i

))

=
∑
ijk

vijv
∗
ikξj ξ̄k −

1

N
vijξj ξ̄i −

1

N
v∗ikξiξ̄k +

1

N2
ξiξ̄i

=
∑
j

|ξj|2 −
∑
ij

vijξj ξ̄i −
∑
ik

v∗ikξiξ̄k +
∑
i

|ξi|2

= ||ξ||2− < vξ, ξ > −< vξ, ξ >+ ||ξ||2

= 2(||ξ||2 −Re(< vξ, ξ >))

By using now our assumption Mξ = ξ, we obtain from this:

ϕ(a) = 2ϕ(||ξ||2 −Re(< vξ, ξ >))

= 2(||ξ||2 −Re(< Mξ, ξ >))

= 2(||ξ||2 − ||ξ||2)

= 0
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Since the functional ϕ was assumed to be faithful, this gives, as claimed:

a = 0

Now since a was by definition a certain sum of positive elements, each of these positive
elements must vanish, and so we obtain vξ = ξ, as claimed. �

We can now formulate the general Haar measure result, due to Woronowicz [99]:

Theorem 3.18. Any Woronowicz algebra has a unique Haar integration, which can
be constructed by starting with any faithful positive unital state ϕ ∈ A∗, and setting∫

G

= lim
n→∞

1

n

n∑
k=1

ϕ∗k

where φ ∗ ψ = (φ⊗ ψ)∆. Moreover, for any corepresentation v we have(
id⊗

∫
G

)
v = P

where P is the orthogonal projection onto Fix(v) = {ξ ∈ Cn|vξ = ξ}.

Proof. Let us first go back to the general context of Proposition 3.16 above. Since
convolving one more time with ϕ will not change the Cesàro limit appearing there, the
functional

∫
ϕ
∈ A∗ constructed there has the following invariance property:∫

ϕ

∗ϕ = ϕ ∗
∫
ϕ

=

∫
ϕ

In the case where ϕ is assumed to be faithful, as in Proposition 3.17 above, our claim
is that we have the following formula, valid this time for any ψ ∈ A∗:∫

ϕ

∗ψ = ψ ∗
∫
ϕ

= ψ(1)

∫
ϕ

It is enough to prove this formula on a coefficient of a corepresentation, a = (τ ⊗ id)v.
In order to do so, consider the following matrices:

P =

(
id⊗

∫
ϕ

)
v , Q = (id⊗ ψ)v

In terms of these matrices, we have:(∫
ϕ

∗ψ
)
a =

(
τ ⊗

∫
ϕ

⊗ψ
)

(v12v13) = τ(PQ)

Similarly, we have the following computation:(
ψ ∗

∫
ϕ

)
a =

(
τ ⊗ ψ ⊗

∫
ϕ

)
(v12v13) = τ(QP )
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Finally, regarding the term on the right, this is given by:

ψ(1)

∫
ϕ

a = ψ(1)τ(P )

Thus, our claim is equivalent to the following equality:

PQ = QP = ψ(1)P

But this latter equality follows from the fact, coming from Proposition 3.17 above,
that P = (id⊗

∫
ϕ
)v equals the orthogonal projection onto Fix(v). Thus, we have proved

our claim. Now observe that our formula can be written as:

ψ

(∫
ϕ

⊗id
)

∆ = ψ

(
id⊗

∫
ϕ

)
∆ = ψ

∫
ϕ

(.)1

This formula being true for any ψ ∈ A∗, we can simply delete ψ, and we conclude that
the invariance formula in Definition 3.14 holds indeed, with

∫
G

=
∫
ϕ
.

Finally, assuming that we have two invariant integrals
∫
G
,
∫ ′
G

, we have:(∫
G

⊗
∫ ′
G

)
∆ =

(∫ ′
G

⊗
∫
G

)
∆

=

∫
G

(.)1

=

∫ ′
G

(.)1

Thus we have
∫
G

=
∫ ′
G

, and this finishes the proof. See [99]. �

As a first observation, in the case of the classical groups, and of the group duals, we
recover in this way the various Haar measure results mentioned before.

As another illustration, for the basic product operations, we have:

Proposition 3.19. We have the following results:

(1) For a product G×H, we have
∫
G×H =

∫
G
⊗
∫
H

.

(2) For a dual free product G ∗̂H, we have
∫
G ∗̂H =

∫
G
∗
∫
H

.

(3) For a quotient G→ H, we have
∫
H

=
(∫

G

)
|C(H)

.

(4) For a projective version G→ PG, we have
∫
PG

=
(∫

G

)
|C(PG)

.

Proof. These formulae all follow from the invariance property, as follows:

(1) Here the tensor product form
∫
G
⊗
∫
H

satisfies the left and right invariance prop-
erties of the Haar functional

∫
G×H , and so by uniqueness, it is equal to it.

(2) Here the situation is similar, with the free product of linear forms being defined
with some inspiration from the discrete group case, where

∫
Γ̂
g = δg,1.
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(3) Here the restriction
(∫

G

)
|C(H)

satisfies by definition the required left and right

invariance properties, so once again we can conclude by uniqueness.

(4) Here we simply have a particular case of (3) above. �

In practice, the last assertion in Theorem 3.18 is the most useful one. By applying it
to the Peter-Weyl corepresentations, we obtain the following alternative statement:

Theorem 3.20. The Haar integration of a Woronowicz algebra is given, on the coef-
ficients of the Peter-Weyl corepresentations, by the Weingarten formula∫

G

ue1i1j1 . . . u
ek
ikjk

=
∑

π,σ∈Dk

δπ(i)δσ(j)Wk(π, σ)

valid for any colored integer k = e1 . . . ek and any multi-indices i, j, where:

(1) Dk is a linear basis of Fix(u⊗k).
(2) δπ(i) =< π, ei1 ⊗ . . .⊗ eik >.
(3) Wk = G−1

k , with Gk(π, σ) =< π, σ >.

Proof. As a first observation, the above formula computes indeed the Haar integral,
because the coefficients of the Peter-Weyl corepresentations span a dense subalgebra:

A = span
(
ue1i1j1 . . . u

ek
ikjk

∣∣∣e, i, j, k)
Regarding now the proof, we know from Theorem 3.18 that the integrals in the state-

ment form altogether the orthogonal projection P onto the following space:

Fix(u⊗k) = span(Dk)

Consider now the following linear map:

E(x) =
∑
π∈Dk

< x, π > π

By a standard linear algebra computation, it follows that we have P = WE, where W
is the inverse on span(Dk) of the restriction of E. But this restriction is the linear map
given by Gk, and so W is the linear map given by Wk, and this gives the result. �

We will be back to the above two Haar measure theorems, which are both fundamental,
with versions, illustrations and applications, on several occasions, later on.

3d. More Peter-Weyl

Let us go back now to algebra, and establish two more Peter-Weyl theorems. We will
need the following result, which is very useful, and is of independent interest:
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Theorem 3.21. We have a Frobenius type isomorphism

Hom(v, w) ' Fix(v̄ ⊗ w)

valid for any two corepresentations v, w.

Proof. According to the definitions, we have the following equivalence:

T ∈ Hom(v, w) ⇐⇒ Tv = wT

⇐⇒
∑
j

Tajvji =
∑
b

wabTbi

On the other hand, we have as well the following equivalence:

T ∈ Fix(v̄ ⊗ w) ⇐⇒ (v̄ ⊗ w)T = T

⇐⇒
∑
kb

v∗ikwabTbk = Tai

With these formulae in hand, we must prove that we have:∑
j

Tajvji =
∑
b

wabTbi ⇐⇒
∑
kb

v∗ikwabTbk = Tai

(1) In one sense, the computation is as follows, using the unitarity of vt:∑
kb

v∗ikwabTbk =
∑
k

v∗ik
∑
b

wabTbk

=
∑
k

v∗ik
∑
j

Tajvjk

=
∑
j

(v̄vt)ijTaj

= Tai

(2) In the other sense we have, once again by using the unitarity of vt:∑
j

Tajvji =
∑
j

vji
∑
kb

v∗jkwabTbk

=
∑
kb

(vtv̄)ikwabTbk

=
∑
b

wabTbi

Thus, we are led to the conclusion in the statement. �

With these ingredients, namely first two Peter-Weyl theorems, Haar measure and
Frobenius duality, we can establish a third Peter-Weyl theorem, from [99], as follows:
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Theorem 3.22 (PW3). The dense subalgebra A ⊂ A decomposes as a direct sum

A =
⊕

v∈Irr(A)

Mdim(v)(C)

with this being an isomorphism of ∗-coalgebras, and with the summands being pairwise
orthogonal with respect to the scalar product given by

< a, b >=

∫
G

ab∗

where
∫
G

is the Haar integration over G.

Proof. By combining the previous Peter-Weyl results, from Theorem 3.9 and Theo-
rem 3.12 above, we deduce that we have a linear space decomposition as follows:

A =
∑

v∈Irr(A)

C(v) =
∑

v∈Irr(A)

Mdim(v)(C)

Thus, in order to conclude, it is enough to prove that for any two irreducible corepre-
sentations v, w ∈ Irr(A), the corresponding spaces of coefficients are orthogonal:

v 6∼ w =⇒ C(v) ⊥ C(w)

But this follows from Theorem 3.18, via Theorem 3.21. Let us set indeed:

Pia,jb =

∫
G

vijw
∗
ab

Then P is the orthogonal projection onto the following vector space:

Fix(v ⊗ w̄) ' Hom(v̄, w̄) = {0}

Thus we have P = 0, and this gives the result. �

We can obtain further results by using characters, which are defined as follows:

Proposition 3.23. The characters of the corepresentations, given by

χv =
∑
i

vii

behave as follows, in respect to the various operations:

χv+w = χv + χw

χv⊗w = χvχw

χv̄ = χ∗v

In addition, given two equivalent corepresentations, v ∼ w, we have χv = χw.
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Proof. The three formulae in the statement are all clear from definitions. Regarding
now the last assertion, assuming that we have v = T−1wT , we obtain:

χv = Tr(v)

= Tr(T−1wT )

= Tr(w)

= χw

We conclude that v ∼ w implies χv = χw, as claimed. �

We have the following result, also from [99], completing the Peter-Weyl theory:

Theorem 3.24 (PW4). The characters of the irreducible corepresentations belong to
the ∗-algebra

Acentral =
{
a ∈ A

∣∣∣Σ∆(a) = ∆(a)
}

of “smooth central functions” on G, and form an orthonormal basis of it.

Proof. As a first remark, the linear space Acentral defined above is indeed an algebra.
In the classical case, we obtain the usual algebra of smooth central functions. Also, in
the group dual case, where we have Σ∆ = ∆, we obtain the whole convolution algebra.
Regarding now the proof, in general, this goes as follows:

(1) The algebra Acentral contains indeed all the characters, because we have:

Σ∆(χv) = Σ

(∑
ij

vij ⊗ vji

)
=

∑
ij

vji ⊗ vij

= ∆(χv)

(2) Conversely, consider an element a ∈ A, written as follows:

a =
∑

v∈Irr(A)

av

The condition a ∈ Acentral is then equivalent to the following conditions:

av ∈ Acentral ,∀v ∈ Irr(A)

But each condition av ∈ Acentral means that av must be a scalar multiple of the
corresponding character χv, and so the characters form a basis of Acentral, as stated.

(3) The fact that we have an orthogonal basis follows from Theorem 3.22.
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(4) Finally, regarding the norm 1 assertion, consider the following integrals:

Pik,jl =

∫
G

vijv
∗
kl

We know from Theorem 3.18 that these integrals form the orthogonal projection onto
the following vector space, computed via Theorem 3.21:

Fix(v ⊗ v̄) ' End(v̄) = C1

By using this fact, we obtain the following formula:∫
G

χvχ
∗
v =

∑
ij

∫
G

viiv
∗
jj

=
∑
i

1

N

= 1

Thus the characters have indeed norm 1, and we are done. �

As a first application of the Peter-Weyl theory, and more specifically of the last result
from the series, Theorem 3.24, we can now clarify a question that we left open in chapter
2 above, regarding the cocommutative case.

To be more precise, once again following [99], we have:

Theorem 3.25. For a Woronowicz algebra A, the following are equivalent:

(1) A is cocommutative, Σ∆ = ∆.
(2) The irreducible corepresentations of A are all 1-dimensional.
(3) A = C∗(Γ), for some group Γ =< g1, . . . , gN >, up to equivalence.

Proof. This follows from the Peter-Weyl theory, as follows:

(1) =⇒ (2) The assumption Σ∆ = ∆ tells us that the inclusion Acentral ⊂ A is an iso-
morphism, and by using Theorem 3.24 we conclude that any irreducible corepresentation
of A must be equal to its character, and so must be 1-dimensional.

(2) =⇒ (3) This follows once again from Peter-Weyl, because if we denote by Γ the
group formed by the 1-dimensional corepresentations, then we have A = C[Γ], and so
A = C∗(Γ) up to the standard equivalence relation for Woronowicz algebras.

(3) =⇒ (1) This is something trivial, that we already know from chapter 2. �

The above result is not the end of the story, because one can still ask what happens,
without reference to the equivalence relation. We will be back to this later on, after
developing some suitable analytic tools, in order to deal with this question.

At the level of the examples coming from operations, we have, following [93]:
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Proposition 3.26. We have the following results:

(1) The irreducible corepresentations of C(G×H) are the tensor products of the form
v ⊗ w, with v, w being irreducible corepresentations of C(G), C(H).

(2) The irreducible corepresentations of C(G ∗̂H) appear as alternating tensor prod-
ucts of irreducible corepresentations of C(G) and of C(H).

(3) The irreducible corepresentations of C(H) ⊂ C(G) are the irreducible corepre-
sentations of C(G) whose coefficients belong to C(H).

(4) The irreducible corepresentations of C(PG) ⊂ C(G) are the irreducible corepre-
sentations of C(G) which appear by decomposing the tensor powers of u⊗ ū.

Proof. This is routine, the idea being as follows:

(1) Here we can integrate characters, by using Proposition 3.19 (1), and we conclude
that if v, w are irreducible corepresentations of C(G), C(H), then v ⊗ w is an irreducible
corepresentation of C(G×H). Now since the coefficients of these latter corepresentations
span C(G×H), by Peter-Weyl these are all the irreducible corepresentations.

(2) Here we can use a similar method. By using Proposition 3.19 (2) we conclude
that if v1, v2, . . . are irreducible corepresentations of C(G) and w1, w2, . . . are irreducible
corepresentations of C(H), then v1⊗w1⊗ v2⊗w2⊗ . . . is an irreducible corepresentation
of C(G ∗̂H), and then we can conclude by using the Peter-Weyl theory.

(3) This is clear from definitions, and from the Peter-Weyl theory.

(4) This is a particular case of the result (3) above. �

Let us go back now to Theorem 3.25, and try to understand what happens in general,
without reference to the equivalence relation. We know from chapter 1 that associated to
any discrete group Γ are at least two group algebras, which are as follows:

C∗(Γ)→ C∗red(Γ) ⊂ B(l2(Γ))

For the finite, or abelian, or more generally amenable groups Γ, these two algebras
are known to coincide, but in the non-amenable case, the opposite happens. Thus, we
are led into the question on whether C∗red(Γ), and other possible group algebras of Γ, are
Woronowicz algebras in our sense, having morphisms as follows:

∆ : A→ A⊗ A

ε : A→ C

S : A→ Aopp

Generally speaking, the answer here is “no”, and the subject is quite technical, requir-
ing a good knowledge of advanced functional analysis. In order to have C∗red(Γ) among
our examples, if we really want to, we must change a bit our axioms, as follows:
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Proposition 3.27. Given a discrete group Γ =< g1, . . . , gN >, its reduced algebra
A = C∗red(Γ) has morphisms as follows, given on generators by the usual formulae,

∆ : A→ A⊗min A

ε : A → C

S : A→ Aopp

where ⊗min is the spatial tensor product of C∗-algebras, and where A = C[Γ].

Proof. In what regards the comultiplication, the diagonal embedding Γ ⊂ Γ × Γ
given by g → (g, g) induces a ∗-algebra representation, as follows:

C[Γ]→ B(l2(Γ))⊗min B(l2(Γ))

g → g ⊗ g
We can extend then this representation into a morphism ∆, as in the statement. As

for the existence of morphisms ε, S as in the statement, this is clear. �

Summarizing, all this is quite technical, and after all not really related to what we
want to do here. We we are interested here in quantum spaces and quantum groups,
which are well-defined up to equivalence, and so Theorem 3.25 above is all we need.

Let us discuss now, however, the notion of amenability, which is important and useful,
and provides some partial answers to the questions which are left. The basic result here,
once again requiring a good knowledge of functional analysis, is as follows:

Theorem 3.28. Let Afull be the enveloping C∗-algebra of A, and let Ared be the
quotient of A by the null ideal of the Haar integration. The following are then equivalent:

(1) The Haar functional of Afull is faithful.
(2) The projection map Afull → Ared is an isomorphism.
(3) The counit map ε : A→ C factorizes through Ared.
(4) We have N ∈ σ(Re(χu)), the spectrum being taken inside Ared.

If this is the case, we say that the underlying discrete quantum group Γ is amenable.

Proof. This is well-known in the group dual case, A = C∗(Γ), with Γ being a usual
discrete group. In general, the result follows by adapting the group dual case proof:

(1) =⇒ (2) This follows from the fact that the GNS construction for the algebra
Afull with respect to the Haar functional produces the algebra Ared.

(2) =⇒ (3) This is trivial, because we have quotient maps Afull → A → Ared, and
so our assumption Afull = Ared implies that we have A = Ared.



78 3. REPRESENTATION THEORY

(3) =⇒ (4) This implication is clear too, because we have:

ε(Re(χu)) =
1

2

(
N∑
i=1

ε(uii) +
N∑
i=1

ε(u∗ii)

)
=

1

2
(N +N)

= N

Thus the element N −Re(χu) is not invertible in Ared, as claimed.

(4) =⇒ (1) In terms of the corepresentation v = u + ū, whose dimension is 2N and
whose character is 2Re(χu), our assumption N ∈ σ(Re(χu)) reads:

dim v ∈ σ(χv)

By functional calculus the same must hold for w = v + 1, and then once again by
functional calculus, the same must hold for any tensor power of w:

wk = w⊗k

Now choose for each k ∈ N a state εk ∈ A∗red having the following property:

εk(wk) = dimwk

By Peter-Weyl we must have εk(r) = dim r for any r ≤ wk, and since any irreducible
corepresentation appears in this way, the sequence εk converges to a counit map:

ε : Ared → C

In order to finish, we can use the right regular corepresentation. Indeed, as explained
in [79], we can define such a corepresentation by the following formula:

W (a⊗ x) = ∆(a)(1⊗ x)

This corepresentation is unitary, so we can define a morphism as follows:

∆′ : Ared → Ared ⊗ Afull

a→ W (a⊗ 1)W ∗

Now by composing with ε⊗ id, we obtain a morphism as follows:

(ε⊗ id)∆′ : Ared → Afull

uij → uij

Thus, we have our inverse map for the projection Afull → Ared, as desired. �



3E. EXERCISES 79

All the above was of course quite short, but we will be back to this, with full details, and
with a systematic study of the notion of amenability, in chapter 14 below. In particular,
we will discuss in detail the case of the usual discrete group algebras A = C∗(Γ), by
further building on the findings in Theorem 3.25 and Proposition 3.27.

Here are now some basic applications of the above amenability result:

Proposition 3.29. We have the following results:

(1) The compact Lie groups G ⊂ UN are all coamenable.

(2) A group dual G = Γ̂ is coamenable precisely when Γ is amenable.
(3) A product G×H of coamenable compact quantum groups is coamenable.

Proof. This follows indeed from the results that we have:

(1) This is clear by using any of the criteria in Theorem 3.28 above, because for an
algebra of type A = C(G), we have Afull = Ared.

(2) Here the various criteria in Theorem 3.28 above correspond to the various equiv-
alent definitions of the amenability of a discrete group.

(3) This follows from the description of the Haar functional of C(G×H), from Propo-
sition 3.19 (1) above. Indeed, if

∫
G
,
∫
H

are both faithful, then so is
∫
G
⊗
∫
H

. �

As already mentioned, we will be back to this, in chapter 14 below.

3e. Exercises

Generally speaking, the best complement to the material presented in this chapter is
some further reading, either in the classical case, for the finite groups, or for the compact
Lie groups, or in the quantum group case, say for the finite quantum groups. Indeed, in
all these situations some interesting simplifications, worth knowing, might appear.

In relation with what has been said above, here is a first exercise:

Exercise 3.30. Prove that the finite dimensional C∗-algebras are exactly the direct
sums of matrix algebras

A = MN1(C)⊕ . . .⊕MNk(C)

by decomposing first the unit into a sum of central minimal projections.

This is self-explanatory, and we have talked about this in the above, the problem now
being that of clarifying all this, by doing all the needed computations.

Here is now a second exercise, in relation with the Haar measure:
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Exercise 3.31. Given a matrix M ∈ MN(C) having norm ||M || ≤ 1, prove that the
Cesàro limit

P = lim
n→∞

n∑
k=1

Mk

exists, and equals the projection onto the 1-eigenspace of M .

This is something which was at the core of the proof of the existence of the Haar
measure. Normally the proof is not very complicated, based on linear algebra.

As another exercise about the Haar measure, we have:

Exercise 3.32. Work out the details of the abstract Weingarten integration formula
in the group dual case, where A = C∗(Γ) with Γ =< g1, . . . , gN >.

The first problem here is that of reviewing what the Peter-Weyl theory exactly says in
the group dual case, then choosing a suitable basis for Fix(u⊗k), which normally should
not cause any problems, and then writing down the explicit integration formula.

Finally, as an exercise regarding the whole Peter-Weyl theory, we have:

Exercise 3.33. Work out in detail the representation theory for the basic operations,
namely products, dual free products, quotients, projective versions.

As before, this is something that we already discussed, but a bit in a hurry, just as an
illustration, and the problem is now that of working out all the details.



CHAPTER 4

Tannakian duality

4a. Tensor categories

In order to have more insight into the structure of the compact quantum groups, in
general and for the concrete examples too, and to effectively compute their representa-
tions, we can use algebraic geometry methods, and more precisely Tannakian duality.

Tannakian duality rests on the basic principle in any kind of mathematics, algebra,
geometry or analysis, “linearize”. In the present setting, where we do not have a Lie
algebra, this will be in fact our only possible linearization method.

In practice, this duality is something quite broad, and there are many formulations
of it, sometimes not obviously equivalent. In what follows we will present Woronowicz’s
original Tannakian duality result from [100], in its “soft” form, worked out by Malacarne
in [73]. This is something which is very efficient, in what regards the applications.

Let us start with the following result, that we already know:

Theorem 4.1. Given a Woronowicz algebra (A, u), the Hom spaces for its corepre-
sentations form a tensor ∗-category, in the sense that:

(1) T ∈ Hom(u, v), S ∈ Hom(v, w) =⇒ ST ∈ Hom(u,w).
(2) S ∈ Hom(p, q), T ∈ Hom(v, w) =⇒ S ⊗ T ∈ Hom(p⊗ v, q ⊗ w).
(3) T ∈ Hom(v, w) =⇒ T ∗ ∈ Hom(w, v).

Proof. This is something that we already know, from chapter 3 above, the proofs
being all elementary, as follows:

(1) By using our assumptions Tu = vT and Sv = Ws we obtain, as desired:

STu = SvT = wST

(2) Assume indeed that we have Sp = qS and Tv = wT . With standard tensor
product notations, we have the following computation:

(S ⊗ T )(p⊗ v) = S1T2p13v23 = (Sp)13(Tv)23

We have as well the following computation, which gives the result:

(q ⊗ w)(S ⊗ T ) = q13w23S1T2 = (qS)13(wT )23

81



82 4. TANNAKIAN DUALITY

(3) By conjugating, and then using the unitarity of v, w, we obtain, as desired:

Tv = wT =⇒ v∗T ∗ = T ∗w∗

=⇒ vv∗T ∗w = vT ∗w∗w

=⇒ T ∗w = vT ∗

Thus, we are led to the conclusion in the statement. �

Generally speaking, Tannakian duality amounts in recovering (A, u) from the tensor
category constructed in Theorem 4.1. In what follows we will present a “soft form” of
this duality, coming from [73], [100], which uses the following smaller category:

Definition 4.2. The Tannakian category associated to a Woronowicz algebra (A, u)
is the collection C = (C(k, l)) of vector spaces

C(k, l) = Hom(u⊗k, u⊗l)

where the corepresentations u⊗k with k = ◦ • • ◦ . . . colored integer, defined by

u⊗∅ = 1

u⊗◦ = u

u⊗• = ū

and multiplicativity, u⊗kl = u⊗k ⊗ u⊗l, are the Peter-Weyl corepresentations.

We know from Theorem 4.1 above that C is a tensor ∗-category. To be more precise,
if we denote by H = CN the Hilbert space where u ∈ MN(A) coacts, then C is a tensor
∗-subcategory of the tensor ∗-category formed by the following linear spaces:

E(k, l) = L(H⊗k, H⊗l)

Here the tensor powers H⊗k with k = ◦ • • ◦ . . . colored integer are those where the
corepresentations u⊗k act, defined by the following formulae, and multiplicativity:

H⊗∅ = C

H⊗◦ = H

H⊗• = H̄ ' H

Our purpose in what follows will be that of reconstructing (A, u) in terms of the
category C = (C(k, l)). We will see afterwards that this method has many applications.

As a first, elementary result on the subject, we have:

Proposition 4.3. Given a morphism π : (A, u)→ (B, v) we have inclusions

Hom(u⊗k, u⊗l) ⊂ Hom(v⊗k, v⊗l)

for any k, l, and if these inclusions are all equalities, π is an isomorphism.



4A. TENSOR CATEGORIES 83

Proof. The fact that we have indeed inclusions as in the statement is clear from
definitions. As for the last assertion, this follows from the Peter-Weyl theory.

Indeed, if we assume that π is not an isomorphism, then one of the irreducible corep-
resentations of A must become reducible as a corepresentation of B.

But the irreducible corepresentations being subcorepresentations of the Peter-Weyl
corepresentations u⊗k, one of the spaces End(u⊗k) must therefore increase strictly, and
this gives the desired contradiction. �

The Tannakian duality result that we want to prove states, in a simplified form, that
in what concerns the last conclusion in the above statement, the assumption that we
have a morphism π : (A, u) → (B, v) is not needed. In other words, if we know that the
Tannakian categories of A,B are different, then A,B themselves must be different.

In order to get started now, our first goal will be that of gaining some familiarity with
the notion of Tannakian category. And, as a starting point here, we have to use the only
general fact that we know about u, namely that this matrix is biunitary.

The biunitarity condition translates as follows:

Proposition 4.4. An abstract matrix u ∈MN(A) is biunitary if and only if

R ∈ Hom(1, u⊗ ū)

R ∈ Hom(1, ū⊗ u)

R∗ ∈ Hom(u⊗ ū, 1)

R∗ ∈ Hom(ū⊗ u, 1)

where R : C→ CN ⊗ CN is the linear operator given by:

R(1) =
∑
i

ei ⊗ ei

Proof. With R being as in the statement, we have the following computation:

(u⊗ ū)(R(1)⊗ 1) =
∑
ijk

ei ⊗ ek ⊗ uiju∗kj

=
∑
ik

ei ⊗ ek ⊗ (uu∗)ik

We conclude from this that we have the following equivalence:

R ∈ Hom(1, u⊗ ū) ⇐⇒ uu∗ = 1

Consider now the adjoint operator R∗ : CN ⊗ CN → C, which is given by:

R∗(ei ⊗ ej) = δij
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We have then the following computation:

(R∗ ⊗ id)(u⊗ ū)(ej ⊗ el ⊗ 1) =
∑
i

uiju
∗
il

= (utū)jl

We conclude from this that we have the following equivalence:

R∗ ∈ Hom(u⊗ ū, 1) ⇐⇒ utū = 1

Similarly, or simply by replacing u in the above two conclusions with its conjugate ū,
which is a corepresentation too, we have as well the following two equivalences:

R ∈ Hom(1, ū⊗ u) ⇐⇒ ūut = 1

R∗ ∈ Hom(ū⊗ u, 1) ⇐⇒ u∗u = 1

Thus, we are led to the biunitarity conditions, and we are done. �

As a consequence of this computation, we have the following result:

Proposition 4.5. The Tannakian category C = (C(k, l)) associated to a Woronowicz
algebra (A, u) must contain the operators

R : 1→
∑
i

ei ⊗ ei

R∗(ei ⊗ ej) = δij
in the sense that we must have:

R ∈ C(∅, ◦•) , R ∈ C(∅, •◦)
R∗ ∈ C(◦•, ∅) , R∗ ∈ C(•◦, ∅)

In fact, C must contain the whole tensor category < R,R∗ > generated by R,R∗.

Proof. The first assertion is clear from the above result. As for the second assertion,
this is clear from definitions, because C = (C(k, l)) is indeed a tensor category. �

Let us formulate now the following key definition:

Definition 4.6. Let H be a finite dimensional Hilbert space. A tensor category over
H is a collection C = (C(k, l)) of subspaces

C(k, l) ⊂ L(H⊗k, H⊗l)

satisfying the following conditions:

(1) S, T ∈ C implies S ⊗ T ∈ C.
(2) If S, T ∈ C are composable, then ST ∈ C.
(3) T ∈ C implies T ∗ ∈ C.
(4) Each C(k, k) contains the identity operator.
(5) C(∅, ◦•) and C(∅, •◦) contain the operator R : 1→

∑
i ei ⊗ ei.
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As a basic example here, the collection of the vector spaces L(H⊗k, H⊗l) is of course
a tensor category over H. There are many other concrete examples, which can be con-
structed by using various combinatorial methods, and we will discuss this later on.

In relation with the quantum groups, this formalism generalizes the Tannakian cate-
gory formalism from Definition 4.2 above, because we have the following result:

Proposition 4.7. Let (A, u) be a Woronowicz algebra, with fundamental corepresen-
tation u ∈MN(A). The associated Tannakian category C = (C(k, l)), given by

C(k, l) = Hom(u⊗k, u⊗l)

is then a tensor category over the Hilbert space H = CN .

Proof. The fact that the above axioms (1-5) are indeed satisfied is clear, as follows:

(1) This follows from Theorem 4.1.

(2) Once again, this follows from Theorem 4.1.

(3) This once again follows from Theorem 4.1.

(4) This is clear from definitions.

(5) This follows from Proposition 4.5 above. �

Our main purpose in what follows will be that of proving that the converse of the
above statement holds. In other words, we would like to prove that any tensor category
in the sense of Definition 4.6 must appear as a Tannakian category.

As a first result on this subject, we have:

Proposition 4.8. Given a tensor category C = (C(k, l)), the following algebra, with
u being the fundamental corepresentation of C(U+

N ), is a Woronowicz algebra:

AC = C(U+
N )
/〈

T ∈ Hom(u⊗k, u⊗l)
∣∣∣∀k, l, ∀T ∈ C(k, l)

〉
In the case where C comes from a Woronowicz algebra (A, v), we have a quotient map:

AC → A

Moreover, this map is an isomorphism in the discrete group algebra case.

Proof. Given colored integers k, l and an arbitrary linear operator T ∈ L(H⊗k, H⊗l),
consider the following ∗-ideal of the algebra C(U+

N ):

I =
〈
T ∈ Hom(u⊗k, u⊗l)

〉
Our claim is that I is a Hopf ideal. Indeed, let us set:

U =
∑
k

uik ⊗ ukj



86 4. TANNAKIAN DUALITY

It is elementary to check that we have the following implication, which proves our
claim:

T ∈ Hom(u⊗k, u⊗l) =⇒ T ∈ Hom(U⊗k, U⊗l)

With this claim in hand, AC appears from C(U+
N ) by dividing by a collection of Hopf

ideals, and is therefore a Woronowicz algebra. Since the relations defining AC are satisfied
in A, we have a quotient map as in the statement:

AC → A

Regarding now the last assertion, assume that we are in the case A = C∗(Γ), with
Γ =< g1, . . . , gN > being a finitely generated discrete group. If we denote by R the
complete collection of relations between the generators, then we have:

Γ = FN/R
By using now the basic functoriality properties of the group algebra construction, we

deduce from this that we have:

AC = C∗
(
FN

/〈
R
〉)

Thus the quotient map AC → A is indeed an isomorphism, as claimed. �

With the above construction in hand, the theorem that we want to prove states that
the operations A→ AC and C → CA are inverse to each other.

We have the following result, which simplifies our work:

Proposition 4.9. Consider the following conditions:

(1) C = CAC , for any Tannakian category C.
(2) A = ACA, for any Woronowicz algebra (A, u).

We have then (1) =⇒ (2). Also, C ⊂ CAC is automatic.

Proof. Given a Woronowicz algebra (A, u), let us set:

C = CA

By using (1) we have then:
CA = CACA

On the other hand, by Proposition 4.8 above we have an arrow:

ACA → A

Thus, we are in the general situation from Proposition 4.3 above, with a surjective
arrow of Woronowicz algebras, which becomes an isomorphism at the level of the asso-
ciated Tannakian categories. We conclude that Proposition 4.3 can be applied, and this
gives the isomorphism of the associated Woronowicz algebras, ACA = A, as desired.

Finally, the fact that we have an inclusion C ⊂ CAC is clear from definitions. �
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Summarizing, in order to establish the Tannakian duality correspondence, it is enough
to prove that we have CAC ⊂ C, for any Tannakian category C.

4b. Abstract algebra

In order to prove that we have CAC ⊂ C, for any Tannakian category C, let us begin
with some abstract constructions. Following [73], we have:

Proposition 4.10. Given a tensor category C = C((k, l)) over a Hilbert space H,

E
(s)
C =

⊕
|k|,|l|≤s

C(k, l) ⊂
⊕
|k|,|l|≤s

B(H⊗k, H⊗l) = B

⊕
|k|≤s

H⊗k


is a finite dimensional C∗-subalgebra. Also,

EC =
⊕
k,l

C(k, l) ⊂
⊕
k,l

B(H⊗k, H⊗l) ⊂ B

(⊕
k

H⊗k

)
is a closed ∗-subalgebra.

Proof. This is clear indeed from the categorical axioms from Definition 4.6, via the
standard embeddings and isomorphisms in the statement. �

Now back to our reconstruction question, given a tensor category C = (C(k, l)), we
want to prove that we have C = CAC , which is the same as proving that we have:

EC = ECAC

Equivalently, we want to prove that we have isomorphisms as follows, for any s ∈ N:

E
(s)
C = E

(s)
CAC

The problem, however, is that these isomorphims are not easy to establish directly.
In order to solve this question, we will use a standard commutant trick, as follows:

Theorem 4.11. For any C∗-algebra B ⊂Mn(C) we have the formula

B = B′′

where prime denotes the commutant, given by:

A′ =
{
T ∈Mn(C)

∣∣∣Tx = xT,∀x ∈ A
}

Proof. This is a particular case of von Neumann’s bicommutant theorem [92], which
follows as well from the explicit description of B given in chapter 3 above. To be more
precise, let us decompose B as there, as a direct sum of matrix algebras:

B = Mr1(C)⊕ . . .⊕Mrk(C)
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The center of each matrix algebra being reduced to the scalars, the commutant of this
algebra is then as follows, with each copy of C corresponding to a matrix block:

B′ = C⊕ . . .⊕ C

By taking once again the commutant, and computing over the matrix blocks, we obtain
the algebra B itself, and this gives the formula in the statement. �

Now back to our questions, we recall that we want to prove that we have C = CAC ,
for any Tannakian category C. By using the bicommutant theorem, we have:

Proposition 4.12. Given a Tannakian category C, the following are equivalent:

(1) C = CAC .
(2) EC = ECAC .

(3) E
(s)
C = E

(s)
CAC

, for any s ∈ N.

(4) E
(s)′

C = E
(s)′

CAC
, for any s ∈ N.

In addition, the inclusions ⊂, ⊂, ⊂, ⊃ are automatically satisfied.

Proof. This follows from the above results, as follows:

(1) ⇐⇒ (2) This is clear from definitions.

(2) ⇐⇒ (3) This is clear from definitions as well.

(3) ⇐⇒ (4) This comes from the bicommutant theorem. As for the last assertion,
we have indeed C ⊂ CAC from Proposition 4.9, and this shows that we have as well:

EC ⊂ ECAC

We therefore obtain the following inclusion:

E
(s)
C ⊂ E

(s)
CAC

By taking now the commutants, this gives:

E
(s)
C ⊃ E

(s)
CAC

Thus, we are led to the conclusion in the statement. �

Summarizing, in order to finish, given a tensor category C = (C(k, l)), we would like
to prove that we have inclusions as follows, for any s ∈ N:

E
(s)′

C ⊂ E
(s)′

CAC

Let us first study the commutant on the right. As a first observation, we have:
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Proposition 4.13. Given a Woronowicz algebra (A, u), we have

E
(s)
CA

= End

⊕
|k|≤s

u⊗k


as subalgebras of the following algebra:

B

⊕
|k|≤s

H⊗k


Proof. The category CA is by definition given by:

CA(k, l) = Hom(u⊗k, u⊗l)

Thus, according to the various identifications in Proposition 4.10 above, the corre-

sponding algebra E
(s)
CA

appears as follows:

E
(s)
CA

=
⊕
|k|,|l|≤s

Hom(u⊗k, u⊗l)

⊂
⊕
|k|,|l|≤s

B(H⊗k, H⊗l)

= B

⊕
|k|≤s

H⊗k


On the other hand, the algebra of intertwiners of

⊕
|k|≤s u

⊗k is given by:

End

⊕
|k|≤s

u⊗k

 =
⊕
|k|,|l|≤s

Hom(u⊗k, u⊗l)

⊂
⊕
|k|,|l|≤s

B(H⊗k, H⊗l)

= B

⊕
|k|≤s

H⊗k


Thus we have indeed the same algebra, and we are done. �

In practice now, we have to compute the commutant of the above algebra.

For this purpose, we can use the following general result:
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Proposition 4.14. Given a corepresentation v ∈Mn(A), we have a representation

πv : A∗ →Mn(C)

ϕ→ (ϕ(vij))ij

whose image is given by the following formula:

Im(πv) = End(v)′

Proof. The first assertion is clear, with the multiplicativity claim coming from:

(πv(ϕ ∗ ψ))ij = (ϕ⊗ ψ)∆(vij)

=
∑
k

ϕ(vik)ψ(vkj)

=
∑
k

(πv(ϕ))ik(πv(ψ))kj

= (πv(ϕ)πv(ψ))ij

Let us first prove the inclusion ⊂. Given ϕ ∈ A∗ and T ∈ End(v), we have:

[πv(ϕ), T ] = 0 ⇐⇒
∑
k

ϕ(vik)Tkj =
∑
k

Tikϕ(vkj),∀i, j

⇐⇒ ϕ

(∑
k

vikTkj

)
= ϕ

(∑
k

Tikvkj

)
,∀i, j

⇐⇒ ϕ((vT )ij) = ϕ((Tv)ij),∀i, j

But this latter formula is true, because T ∈ End(v) means that we have:

vT = Tv

As for the converse inclusion ⊃, the proof is quite similar. Indeed, by using the
bicommutant theorem, this is the same as proving that we have:

Im(πv)
′ ⊂ End(v)

But, by using the above equivalences, we have the following computation:

T ∈ Im(πv)
′ ⇐⇒ [πv(ϕ), T ] = 0,∀ϕ
⇐⇒ ϕ((vT )ij) = ϕ((Tv)ij),∀ϕ, i, j
⇐⇒ vT = Tv

Thus, we have obtained the desired inclusion, and we are done. �

By combining now the above results, we obtain:
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Theorem 4.15. Given a Woronowicz algebra (A, u), we have

E
(s)′

CA
= Im(πv)

as subalgebras of the following algebra,

B

⊕
|k|≤s

H⊗k


where the corepresentation v is the sum

v =
⊕
|k|≤s

u⊗k

and where πv : A∗ →Mn(C) is given by ϕ→ (ϕ(vij))ij.

Proof. This follows indeed from Proposition 4.13 and Proposition 4.14. �

Summarizing, we have some advances on the duality question, with the whole problem
tending to become something quite concrete, which can be effectively solved.

4c. The correspondence

We recall that we want to prove that we have E
(s)′

C ⊂ E
(s)′

CAC
, for any s ∈ N. For this

purpose, we must first refine Theorem 4.15, in the case A = AC . In order to do so, we
will use an explicit model for AC . In order to construct such a model, let < uij > be the
free ∗-algebra over dim(H)2 variables, with comultiplication and counit as follows:

∆(uij) =
∑
k

uik ⊗ ukj

ε(uij) = δij

Following [73], we can model this ∗-bialgebra, in the following way:

Proposition 4.16. Consider the following pair of dual vector spaces,

F =
⊕
k

B
(
H⊗k

)
F ∗ =

⊕
k

B
(
H⊗k

)∗
and let fij, f

∗
ij ∈ F ∗ be the standard generators of B(H)∗, B(H̄)∗.

(1) F ∗ is a ∗-algebra, with multiplication ⊗ and involution fij ↔ f ∗ij.
(2) F ∗ is a ∗-bialgebra, with ∆(fij) =

∑
k fik ⊗ fkj and ε(fij) = δij.

(3) We have a ∗-bialgebra isomorphism < uij >' F ∗, given by uij → fij.
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Proof. Since F ∗ is spanned by the various tensor products between the variables
fij, f

∗
ij, we have a vector space isomorphism as follows, given by uij → fij, u

∗
ij → f ∗ij:

< uij >' F ∗

The corresponding ∗-bialgebra structure induced on F ∗ is the one in the statement. �

Now back to our algebra AC , we have the following modelling result for it:

Proposition 4.17. The smooth part of the algebra AC is given by

AC ' F ∗/J

where J ⊂ F ∗ is the ideal coming from the following relations,∑
p1,...,pk

Ti1...il,p1...pkfp1j1 ⊗ . . .⊗ fpkjk

=
∑
q1,...,ql

Tq1...ql,j1...jkfi1q1 ⊗ . . .⊗ filql , ∀i, j

one for each pair of colored integers k, l, and each T ∈ C(k, l).

Proof. Our first claim is that AC appears as enveloping C∗-algebra of the following
universal ∗-algebra, where u = (uij) is regarded as a formal corepresentation:

AC =
〈

(uij)i,j=1,...,N

∣∣∣T ∈ Hom(u⊗k, u⊗l),∀k, l, ∀T ∈ C(k, l)
〉

Indeed, this follows from Proposition 4.4 above, because according to the result there,
the relations defining C(U+

N ) are included into those that we impose.
With this claim in hand, the conclusion is that we have a formula as follows, where I

is the ideal coming from the relations T ∈ Hom(u⊗k, u⊗l), with T ∈ C(k, l):

AC =< uij > /I

Now if we denote by J ⊂ F ∗ the image of the ideal I via the ∗-algebra isomorphism
< uij >' F ∗ from Proposition 4.16, we obtain an identification as follows:

AC ' F ∗/J

In order to compute J , let us go back to I. With standard multi-index notations,
and by assuming that k, l ∈ N are usual integers, for simplifying, a relation of type
T ∈ Hom(u⊗k, u⊗l) inside < uij > is equivalent to the following conditions:∑

p1,...,pk

Ti1...il,p1...pkup1j1 . . . upkjk

=
∑
q1,...,ql

Tq1...ql,j1...jkui1q1 . . . uilql , ∀i, j



4C. THE CORRESPONDENCE 93

Now by recalling that the isomorphism of ∗-algebras < uij >→ F ∗ is given by
uij → fij, and that the multiplication operation of F ∗ corresponds to the tensor product
operation ⊗, we conclude that J ⊂ F ∗ is the ideal from the statement. �

With the above result in hand, let us go back to Theorem 4.15. We have:

Proposition 4.18. The linear space A∗C is given by the formula

A∗C =
{
a ∈ F

∣∣∣Tak = alT,∀T ∈ C(k, l)
}

and the representation

πv : A∗C → B

⊕
|k|≤s

H⊗k


appears diagonally, by truncating:

πv : a→ (ak)kk

Proof. We know from Proposition 4.17 that we have:

AC ' F ∗/J

But this gives a quotient map F ∗ → AC , and so an inclusion as follows:

A∗C ⊂ F

To be more precise, we have the following formula:

A∗C =
{
a ∈ F

∣∣∣f(a) = 0, ∀f ∈ J
}

Now since J =< fT >, where fT are the relations in Proposition 4.17, we obtain:

A∗C =
{
a ∈ F

∣∣∣fT (a) = 0,∀T ∈ C
}

Given T ∈ C(k, l), for an arbitrary element a = (ak), we have:

fT (a) = 0

⇐⇒
∑

p1,...,pk

Ti1...il,p1...pk(ak)p1...pk,j1...jk =
∑
q1,...,ql

Tq1...ql,j1...jk(al)i1...il,q1...ql ,∀i, j

⇐⇒ (Tak)i1...il,j1...jk = (alT )i1...il,j1...jk ,∀i, j
⇐⇒ Tak = alT

Thus, the dual space A∗C is given by the formula in the statement.

It remains to compute the representation πv, which appears as follows:

πv : A∗C → B

⊕
|k|≤s

H⊗k
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With a = (ak), we have the following computation:

πv(a)i1...ik,j1...jk = a(vi1...ik,j1...jk)

= (fi1j1 ⊗ . . .⊗ fikjk)(a)

= (ak)i1...ik,j1...jk

Thus, our representation πv appears diagonally, by truncating, as claimed. �

In order to further advance, consider the following vector spaces:

Fs =
⊕
|k|≤s

B
(
H⊗k

)
F ∗s =

⊕
|k|≤s

B
(
H⊗k

)∗
We denote by a→ as the truncation operation F → Fs. We have:

Proposition 4.19. The following hold:

(1) E
(s)′

C ⊂ Fs.
(2) E ′C ⊂ F .
(3) A∗C = E ′C.
(4) Im(πv) = (E ′C)s.

Proof. These results basically follow from what we have, as follows:

(1) We have an inclusion as follows, as a diagonal subalgebra:

Fs ⊂ B

⊕
|k|≤s

H⊗k


The commutant of this algebra is given by:

F ′s =
{
b ∈ Fs

∣∣∣b = (bk), bk ∈ C,∀k
}

On the other hand, we know from the identity axiom for C that this algebra is con-

tained inside E
(s)
C :

F ′s ⊂ E
(s)
C

Thus, our result follows from the bicommutant theorem, as follows:

F ′s ⊂ E
(s)
C =⇒ Fs ⊃ E

(s)′

C

(2) This follows from (1), by taking inductive limits.

(3) With the present notations, the formula of A∗C from Proposition 4.18 reads:

A∗C = F ∩ E ′C
Now since by (2) we have E ′C ⊂ F , we obtain from this A∗C = E ′C .
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(4) This follows from (3), and from the formula of πv in Proposition 4.18. �

Following [73], we can now state and prove our main result, as follows:

Theorem 4.20. The Tannakian duality constructions

C → AC

A→ CA

are inverse to each other, modulo identifying full and reduced versions.

Proof. According to Proposition 4.9, Proposition 4.12, Theorem 5.15 and Proposi-
tion 4.19, we have to prove that, for any Tannakian category C, and any s ∈ N:

E
(s)′

C ⊂ (E ′C)s

By taking duals, this is the same as proving that we have:{
f ∈ F ∗s

∣∣∣f|(E′C)s = 0
}
⊂
{
f ∈ F ∗s

∣∣∣f|E(s)′
C

= 0
}

For this purpose, we use the following formula, coming from Proposition 4.19:

A∗C = E ′C

We know that we have:

AC = F ∗/J

We conclude that the ideal J is given by:

J =
{
f ∈ F ∗

∣∣∣f|E′C = 0
}

Our claim is that we have the following formula, for any s ∈ N:

J ∩ F ∗s =
{
f ∈ F ∗s

∣∣∣f|E(s)′
C

= 0
}

Indeed, let us denote by Xs the spaces on the right. The categorical axioms for C
show that these spaces are increasing, that their union X = ∪sXs is an ideal, and that:

Xs = X ∩ F ∗s
We must prove that we have J = X, and this can be done as follows:

“⊂” This follows from the following fact, for any T ∈ C(k, l) with |k|, |l| ≤ s:

(fT )|{T}′ = 0 =⇒ (fT )|E(s)′
C

= 0

=⇒ fT ∈ Xs

“⊃” This follows from our description of J , because from E
(s)
C ⊂ EC we obtain:

f|E(s)′
C

= 0 =⇒ f|E′C = 0
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Summarizing, we have proved our claim. On the other hand, we have:

J ∩ F ∗s =
{
f ∈ F ∗

∣∣∣f|E′C = 0
}
∩ F ∗s

=
{
f ∈ F ∗s

∣∣∣f|E′C = 0
}

=
{
f ∈ F ∗s

∣∣∣f|(E′C)s = 0
}

Thus, our claim is exactly the inclusion that we wanted to prove, and we are done. �

Summarizing, we have proved Tannakian duality. As already mentioned in the begin-
ning of this chapter, there are many other forms of Tannakian duality for the compact
quantum groups, and we refer here to Woronowicz’s original paper [100], which contains
a full discussion of the subject, and to the subsequent literature.

As we will see in a moment, Tannakian duality in the above form is something quite
powerful, enabling us to recover the Brauer theorem for ON , UN , and for their free versions
O+
N , U

+
N as well. Later on, in chapter 7 below and afterwards, we will further build

on Tannakian duality, with a subsequent notion of “easiness” coming from it. Let us
also mention, for the concerned reader, that all this escalation of algebraic methods will
eventually lead into very concrete applications, of analytic and probabilistic nature.

As a first application now, let us record the following theoretical fact, from [15]:

Theorem 4.21. Each closed subgroup G ⊂ U+
N appears as an algebraic manifold of

the free complex sphere,

G ⊂ SN
2−1

C,+

the embedding being given by:

xij =
uij√
N

Proof. This follows from Theorem 4.20, by using the following inclusions:

G ⊂ U+
N ⊂ SN

2−1
C,+

Indeed, both these inclusions are algebraic, and this gives the result. �

4d. Brauer theorems

As a second application of the above Tannakian duality results, let us study now in
detail the representation theory of the free quantum groups O+

N , U
+
N .

In order to get started, let us get back to the operators R,R∗, discussed in the begin-
ning of this chapter. We know that these two operators must be present in any Tannakian
category, and in what concerns U+

N , which is the biggest N ×N compact quantum group,
a converse of this fact holds, by contravariant functoriality, as follows:
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Proposition 4.22. The tensor category < R,R∗ > generated by the operators

R : 1→
∑
i

ei ⊗ ei

R∗(ei ⊗ ej) = δij

produces via Tannakian duality the algebra C(U+
N ).

Proof. By using Proposition 4.5 above we see that the intertwining relations coming
from the operators R,R∗, and so from any element of the tensor category < R,R∗ >,
hold automatically. Thus the quotient operation in Proposition 4.8 above is trivial, and
we obtain the algebra C(U+

N ) itself, as stated. �

As a conclusion, in order to compute the Tannakian category of U+
N , we must simply

solve a linear algebra question, namely computing the category < R,R∗ >.

Regarding now O+
N , the result here is similar, as follows:

Proposition 4.23. The tensor category < R,R∗ > generated by the operators

R : 1→
∑
i

ei ⊗ ei

R∗(ei ⊗ ej) = δij

with identifying the colors, ◦ = •, produces via Tannakian duality the algebra C(O+
N).

Proof. By Proposition 4.5 the intertwining relations coming from R,R∗, and so
from any element of the tensor category < R,R∗ >, hold automatically, so the quotient
operation in Proposition 4.8 is trivial, and we obtain C(O+

N) itself, as stated. �

Our goal now will be that of reaching to a better understanding of R,R∗. In order to
do so, we use a diagrammatic formalism, as follows:

Definition 4.24. Let k, l be two colored integers, having lengths |k|, |l| ∈ N.

(1) P2(k, l) is the set of pairings between an upper row of |k| points, and a lower row
of |l| points, with these two rows of points colored by k, l.

(2) P2(k, l) ⊂ P2(k, l) is the set of matching pairings, whose horizontal strings con-
nect ◦ − ◦ or • − •, and whose vertical strings connect ◦ − •.

(3) NC2(k, l) ⊂ P2(k, l) is the set of pairings which are noncrossing, in the sense
that we can draw the pairing as for the strings to be noncrossing.

(4) NC2(k, l) ⊂ P2(k, l) is the subset of noncrossing matching pairings, obtained as
an intersection, NC2(k, l) = NC2(k, l) ∩ P2(k, l).

The relation with the Tannakian categories of linear maps comes from the fact that
we can associate linear maps to the pairings, as in [35], as follows:
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Definition 4.25. Associated to any pairing π ∈ P2(k, l) and any integer N ∈ N is
the linear map

Tπ : (CN)⊗k → (CN)⊗l

given by the following formula, with {e1, . . . , eN} being the standard basis of CN ,

Tπ(ei1 ⊗ . . .⊗ eik) =
∑
j1...jl

δπ

(
i1 . . . ik
j1 . . . jl

)
ej1 ⊗ . . .⊗ ejl

and with the Kronecker symbols δπ ∈ {0, 1} depending on whether the indices fit or not.

To be more precise here, in the definition of the Kronecker symbols, we agree to put
the two multi-indices on the two rows of points of the pairing, in the obvious way. The
Kronecker symbols are then defined by δπ = 1 when all the strings of π join equal indices,
and by δπ = 0 otherwise. Observe that all this is independent of the coloring.

Here are a few basic examples of such linear maps:

Proposition 4.26. The correspondence π → Tπ has the following properties:

(1) T∩ = R.
(2) T∪ = R∗.
(3) T||...|| = id.
(4) T/\ = Σ.

Proof. We can assume if we want that all the upper and lower legs of π are colored
◦. With this assumption made, the proof goes as follows:

(1) We have ∩ ∈ P2(∅, ◦◦), and so the corresponding operator is a certain linear map
T∩ : C→ CN ⊗ CN . The formula of this map is as follows:

T∩(1) =
∑
ij

δ∩(i j)ei ⊗ ej

=
∑
ij

δijei ⊗ ej

=
∑
i

ei ⊗ ei

We recognize here the formula of R(1), and so we have T∩ = R, as claimed.

(2) Here we have ∪ ∈ P2(◦◦, ∅), and so the corresponding operator is a certain linear
form T∩ : CN ⊗ CN → C. The formula of this linear form is as follows:

T∩(ei ⊗ ej) = δ∩(i j)

= δij

Since this is the same as R∗(ei ⊗ ej), we have T∪ = R∗, as claimed.
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(3) Consider indeed the “identity” pairing || . . . || ∈ P2(k, k), with k = ◦ ◦ . . . ◦ ◦. The
corresponding linear map is then the identity, because we have:

T||...||(ei1 ⊗ . . .⊗ eik) =
∑
j1...jk

δ||...||

(
i1 . . . ik
j1 . . . jk

)
ej1 ⊗ . . .⊗ ejk

=
∑
j1...jk

δi1j1 . . . δikjkej1 ⊗ . . .⊗ ejk

= ei1 ⊗ . . .⊗ eik

(4) In the case of the basic crossing /\ ∈ P2(◦◦, ◦◦), the corresponding linear map
T/\ : CN ⊗ CN → CN ⊗ CN can be computed as follows:

T/\(ei ⊗ ej) =
∑
kl

δ/\

(
i j
k l

)
ek ⊗ el

=
∑
kl

δilδjkek ⊗ el

= ej ⊗ ei

Thus we obtain the flip operator Σ(a⊗ b) = b⊗ a, as claimed. �

Summarizing, the correspondence π → Tπ provides us with some simple formulae for
the operators R,R∗ that we are interested in, and for other important operators, such as
the flip Σ(a⊗ b) = b⊗ a, and has as well some interesting categorical properties.

Let us further explore these properties, and make the link with the Tannakian cate-
gories. We have the following result, from [35]:

Proposition 4.27. The assignement π → Tπ is categorical, in the sense that we have

Tπ ⊗ Tσ = T[πσ]

TπTσ = N c(π,σ)T[σπ ]

T ∗π = Tπ∗

where c(π, σ) are certain integers, coming from the erased components in the middle.

Proof. The formulae in the statement are all elementary, as follows:
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(1) The concatenation axiom follows from the following computation:

(Tπ ⊗ Tσ)(ei1 ⊗ . . .⊗ eip ⊗ ek1 ⊗ . . .⊗ ekr)

=
∑
j1...jq

∑
l1...ls

δπ

(
i1 . . . ip
j1 . . . jq

)
δσ

(
k1 . . . kr
l1 . . . ls

)
ej1 ⊗ . . .⊗ ejq ⊗ el1 ⊗ . . .⊗ els

=
∑
j1...jq

∑
l1...ls

δ[πσ]

(
i1 . . . ip k1 . . . kr
j1 . . . jq l1 . . . ls

)
ej1 ⊗ . . .⊗ ejq ⊗ el1 ⊗ . . .⊗ els

= T[πσ](ei1 ⊗ . . .⊗ eip ⊗ ek1 ⊗ . . .⊗ ekr)

(2) The composition axiom follows from the following computation:

TπTσ(ei1 ⊗ . . .⊗ eip)

=
∑
j1...jq

δσ

(
i1 . . . ip
j1 . . . jq

) ∑
k1...kr

δπ

(
j1 . . . jq
k1 . . . kr

)
ek1 ⊗ . . .⊗ ekr

=
∑
k1...kr

N c(π,σ)δ[σπ ]

(
i1 . . . ip
k1 . . . kr

)
ek1 ⊗ . . .⊗ ekr

= N c(π,σ)T[σπ ](ei1 ⊗ . . .⊗ eip)

(3) Finally, the involution axiom follows from the following computation:

T ∗π (ej1 ⊗ . . .⊗ ejq)

=
∑
i1...ip

< T ∗π (ej1 ⊗ . . .⊗ ejq), ei1 ⊗ . . .⊗ eip > ei1 ⊗ . . .⊗ eip

=
∑
i1...ip

δπ

(
i1 . . . ip
j1 . . . jq

)
ei1 ⊗ . . .⊗ eip

= Tπ∗(ej1 ⊗ . . .⊗ ejq)

Summarizing, our correspondence is indeed categorical. �

We can now formulate a first non-trivial result regarding O+
N , U

+
N , which is a Brauer

type theorem for these quantum groups, as follows:

Theorem 4.28. For the quantum groups O+
N , U

+
N we have

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

with the sets on the right being respectively as follows,

D = NC2,NC2

and with the correspondence π → Tπ being constructed as above.
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Proof. We know from Proposition 4.22 above that the quantum group U+
N corre-

sponds via Tannakian duality to the following category:

C =< R,R∗ >

On the other hand, it follows from the above categorical considerations that this latter
category is given by the following formula:

C = span
(
Tπ

∣∣∣π ∈ NC2

)
To be more precise, consider the following collection of vector spaces:

C ′ = span
(
Tπ

∣∣∣π ∈ NC2

)
According to the various formulae in Proposition 4.27, these vector spaces form a

tensor category. But since the two matching semicircles generate the whole collection of
matching pairings, via the operations in Proposition 4.27, we obtain from this C = C ′.

As for the result from O+
N , this follows by adding to the picture the self-adjointness

condition u = ū, which corresponds, at the level of pairings, to removing the colors. �

The above result is very useful, and virtually solves any question about O+
N , U

+
N . We

will be back to it in the next chapter, and afterwards, with applications, both of algebraic
and analytic nature. As an example here, just by counting the dimensions of the spaces
in Theorem 4.28, we will be able to compute the laws of the main characters.

By using the same methods, namely the general Tannakian duality result established
above, we can recover as well the classical Brauer theorem [48], as follows:

Theorem 4.29. For the groups ON , UN we have

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

with D = P2,P2 respectively, and with π → Tπ being constructed as above.

Proof. As already mentioned, this result is due to Brauer [48], and is closely related
to the Schur-Weyl duality [97]. There are several proofs of this result, one classical proof
being via classical Tannakian duality, for the usual closed subgroups G ⊂ UN .

In the present context, we can deduce this result from the one that we already have,
for O+

N , U
+
N . The idea is very simple, namely that of “adding crossings”, as follows:

(1) The group UN ⊂ U+
N is defined via the following relations:

[uij, ukl] = 0

[uij, ūkl] = 0
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But these relations which tell us that the following operators must be in the associated
Tannakian category C:

Tπ , π = /\◦◦◦◦
Tπ , π = /\◦••◦

Thus the associated Tannakian category is C = span(Tπ|π ∈ D), with:

D =< NC2, /\◦◦◦◦, /\
◦•
•◦ >= P2

Thus, we are led to the conclusion in the statement.

(2) In order to deal now with ON , we can simply use the following formula:

ON = O+
N ∩ UN

At the categorical level, this tells us that the associated Tannakian category is given
by C = span(Tπ|π ∈ D), with:

D =< NC2,P2 >= P2

Thus, we are led to the conclusion in the statement. �

Summarizing, the orthogonal and unitary groups ON , UN and their free analogues
O+
N , U

+
N appear to be “easy”, in the sense that their associated Tannakian categories

appear in the simplest possible way, namely from certain categories of pairings.

We will be exploit this phenomenon in chapters 5-6 below, with a detailed algebraic
and analytic study of these quantum groups, based on their “easiness” property. Then, we
will be back to this in chapter 7 below, with an axiomatization of the notion of category
of pairings, or more generally of a category of partitions, a definition for easiness, some
theory, and an exploration of the main examples of easy quantum groups.

4e. Exercises

Generally speaking, the best complement to the material presented in this chapter is
more reading on Tannakian duality, in its various versions, which are all useful.

With the technology presented above, however, we can work out a few interesting
particular cases of the Tannakian duality, and this will be the purpose of the first few
exercises that we have here. Let us start with something quite elementary:

Exercise 4.30. Work out the Tannakian duality for the closed subgroups

G ⊂ O+
N

first as a consequence of the general results that we have, regarding the closed subgroups

G ⊂ U+
N

and then independently, by pointing out the simplifications that appear in the real case.
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Regarding the first question, this is normally something quite quick, obtained by
adding the assumption u = ū to the Tannakian statement that we have, and then working
out the details. Regarding the second question, the idea here is basically that the colored
exponents k, l = ◦ • • ◦ . . . will become in this way usual exponents, k, l ∈ N, and this
brings a number of simplifications in the proof, which are to be found.

Here is a related question, which is a bit more complicated:

Exercise 4.31. Work out the Tannakian duality for the closed subgroups

G ⊂ U+
N

whose fundamental corepresentation is self-adjoint, up to equivalence,

u ∼ ū

first as a consequence of the results that we have, and then independently.

Here are there are several possible paths, either by proceeding a bit as for the previous
exercise, but with the condition u = ū there replaced by the more general condition u ∼ ū,
or by using what was done in the previous exercise, and generalizing, from u = ū to u ∼ ū.
In any case, regardless of the method which is chosen, the problem is that understanding
what the condition u ∼ ū really means, categorially speaking.

Another related question, this time regarding the classical case, is as follows:

Exercise 4.32. Work out the Tannakian duality for the closed subgroups

G ⊂ UN

first as a consequence of the results that we have, and then independently.

The same comments as before apply. Some supplementary questions appear along
these lines, regarding the closed subgroups G ⊂ ON , or more generally the closed sub-
groups G ⊂ UN satisfying u ∼ ū. Thus, there are in fact many questions here. In addition
to this, looking a bit at the Tannakian duality literature for the compact Lie groups is
definitely a very good idea, and the best possible exercise on the subject.

On the same topic, we have the following question:

Exercise 4.33. Work out the Tannakian duality for the group duals

Γ̂ ⊂ UN

first as a consequence of the results that we have, and then independently.

This is actually the simplest exercise in the whole series, and the problem here is that
of writing down a clear statement, along with a full, independent proof.

Finally, we have the following exercise, on the same topic:
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Exercise 4.34. Work out the Tannakian duality for the arbitrary group duals

Γ̂ ⊂ UN

first as a consequence of the results that we have, and then independently.

The key word here, which distinguishes this exercise from the previous one, is the word
“arbitrary”. Thus, in practice, we must go back here to the Peter-Weyl theory developed
in chapter 3 above, see what happens exactly for the arbitrary group duals, and then go
ahead and solve the above Tannakian question, a bit as before.

Moving ahead now, in relation with diagrams and Brauer theorems, we have:

Exercise 4.35. Check the Brauer theorems for ON , UN , which are both of type

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

for small values of the global length parameter, k + l ∈ {1, 2, 3}.

The idea here is to prove these results that we already know directly, by double
inclusion, with the inclusion in one sense being normally something quite elementary, and
with the inclusion in the other sense being probably somehing quite tricky.

Finally, as a second question regarding the Brauer theorems, we have:

Exercise 4.36. Write down Brauer theorems for the quantum groups O∗N , U
∗
N , by

identifying first the pairing which produces them, as subgroups of O+
N , U

+
N .

This is actually something that will be discussed later on in this book, but without
too much details, so the answer “done in the book” will not do.
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Quantum rotations



And there’s nothing short of dying
Half as lonesome as the sound
On the sleeping city sidewalks
Sunday morning coming down



CHAPTER 5

Free rotations

5a. Gram determinants

We have seen that Tannakian duality allows us to get some substantial insight into
the representation theory of O+

N , U
+
N , with a free analogue of the classical Brauer theorem

for ON , UN . In what follows we discuss some concrete applications of this result.

Let us begin with a summary of the Brauer type results established in the previous
chapter. The statement here, collecting what we have so far, is as follows:

Theorem 5.1. For the basic unitary quantum groups, namely

UN // U+
N

ON
//

OO

O+
N

OO

the intertwiners between the Peter-Weyl representations are given by

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

with the linear maps Tπ associated to the pairings π being given by

Tπ(ei1 ⊗ . . .⊗ eik) =
∑
j1...jl

δπ

(
i1 . . . ik
j1 . . . jl

)
ej1 ⊗ . . .⊗ ejl

and with the corresponding sets of pairings D being as follows,

P2

��

NC2
oo

��
P2 NC2
oo

with calligraphic standing for matching, and with NC standing for noncrossing.

107
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Proof. This is indeed a summary of the results that we have, established in the
previous chapter, and coming from Tannakian duality, via some combinatorics. �

In order to work out now some concrete applications, such as the classification of
the irreducible representations of O+

N , U
+
N , we must do some combinatorics. The problem

indeed is that we do not know whether the linear maps Tπ in Theorem 5.1 are linearly
independent or not, so we must solve this problem first. Things are quite tricky here,
technically speaking, and we will solve this question as follows:

(1) By Frobenius duality, it is enough to examine the vectors ξπ = Tπ associated to
the pairings π ∈ P2(0, l), having no upper points.

(2) In order to decide whether these vectors ξπ are linearly independent or not, we
will compute the determinant of their Gram matrix.

(3) We will actually compute the determinant of a bigger Gram matrix, that of the
vectors ξπ = Tπ coming from arbitrary partitions π ∈ P (0, l), which is simpler.

In short, we have an accumulation of tricks here, and some changes of notations too,
and by replacing l→ k as well, as to reach to the standard representation theory notations
from chapter 3, prior to Tannakian duality, we are led to the following statement:

Proposition 5.2. To any partition π ∈ P (k) we associate the vector

ξπ =
∑
i1...ik

δπ(i1, . . . , ik) ei1 ⊗ . . .⊗ eik

with the Kronecker symbols being defined as usual, according to whether the indices fit or
not. The Gram matrix of these vectors is then given by

Gk(π, σ) = N |π∨σ|

where π ∨ σ ∈ P (k) is obtained by superposing π, σ, and |.| is the number of blocks.

Proof. According to the formula of the vectors ξπ, we have:

< ξπ, ξσ > =
∑
i1...ik

δπ(i1, . . . , ik)δσ(i1, . . . , ik)

=
∑
i1...ik

δπ∨σ(i1, . . . , ik)

= N |π∨σ|

Thus, we have obtained the formula in the statement. �

As an illustration, at k = 2 we have P (2) = {||,u}, and the Gram matrix is:

G2 =

(
N2 N
N N

)
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At k = 3 now, we have P (3) = {|||,u|,u| , |u,uu}, and the Gram matrix is:

G3 =


N3 N2 N2 N2 N
N2 N2 N N N
N2 N N2 N N
N2 N N N2 N
N N N N N


These matrices might not look that bad, to the untrained eye, but in practice, their

combinatorics can be fairly complicated. As an example here, the submatrix of Gk coming
from the usual pairings, that we are really interested in, according to Theorem 5.1, has
as determinant a product of terms indexed by Young tableaux. This is actually why we
use Gk, because, as we will soon discover, this matrix is something quite simple.

In order to compute the determinant of Gk, we will use a standard combinatorial trick,
related to the Möbius inversion formula. Let us start with:

Definition 5.3. Given two partitions π, σ ∈ P (k), we write

π ≤ σ

if each block of π is contained in a block of σ.

Observe that this order is compatible with the previous convention for π ∨ σ, in the
sense that the ∨ operation is the supremum operation with respect to ≤. At the level of
examples, at k = 2 we have P (2) = {||,u}, and the order relation is as follows:

|| ≤ u
At k = 3 now, we have P (3) = {|||,u|,u| , |u,uu}, and the order relation is:

||| ≤ u|,u| , |u ≤ uu
Summarizing, this order is very intuitive, and simple to compute. By using now this

order, we can talk about the Möbius function of P (k), as follows:

Definition 5.4. The Möbius function of any lattice, and so of P (k), is given by

µ(π, σ) =


1 if π = σ

−
∑

π≤τ<σ µ(π, τ) if π < σ

0 if π 6≤ σ

with this construction being performed by recurrence.

This is something standard in combinatorics. As an illustration here, let us go back
to the set of 2-point partitions, P (2) = {||,u}. We have by definition:

µ(||, ||) = µ(u,u) = 1
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Next in line, we know that we have || < u, with no intermediate partition in between,
and so the above recurrence procedure gives:

µ(||,u) = −µ(||, ||) = −1

Finally, we have u 6≤ ||, and so the last value of the Möbius function is:

µ(u, ||) = 0

Thus, as a conclusion, we have computed the Möbius matrix M2(π, σ) = µ(π, σ) of
the lattice P (2) = {||,u}, the formula of this matrix being as follows:

M2 =

(
1 −1
0 1

)
The computation for P (3) = {|||,u|,u| , |u,uu} is similar, and leads to the following

formula for the associated Möbius matrix:

M3 =


1 −1 −1 −1 2
0 1 0 0 −1
0 0 1 0 −1
0 0 0 1 −1
0 0 0 0 1


In general, the Möbius matrix of P (k) looks a bit like the above matrices at k = 2, 3,

being upper triangular, with 1 on the diagonal, and so on. We will be back to this.

Back to the general case now, the main interest in the Möbius function comes from
the Möbius inversion formula, which states that the following happens:

f(σ) =
∑
π≤σ

g(π) =⇒ g(σ) =
∑
π≤σ

µ(π, σ)f(π)

In linear algebra terms, the statement and proof of this formula are as follows:

Theorem 5.5. The inverse of the adjacency matrix of P (k), given by

Ak(π, σ) =

{
1 if π ≤ σ

0 if π 6≤ σ

is the Möbius matrix of P , given by Mk(π, σ) = µ(π, σ).

Proof. This is well-known, coming for instance from the fact that Ak is upper trian-
gular. Indeed, when inverting, we are led into the recurrence from Definition 5.4. �

As an illustration, for P (2) = {||,u} the formula M2 = A−1
2 appears as follows:(

1 −1
0 1

)
=

(
1 1
0 1

)−1
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Also, for P (3) = {|||,u|,u| , |u,uu} the formula M3 = A−1
3 reads:

1 −1 −1 −1 2
0 1 0 0 −1
0 0 1 0 −1
0 0 0 1 −1
0 0 0 0 1

 =


1 1 1 1 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
0 0 0 0 1


−1

Now back to our Gram matrix considerations, we have the following key result, based
on this technology, which basically solves our determinant question:

Proposition 5.6. The Gram matrix is given by Gk = AkLk, where

Lk(π, σ) =

{
N(N − 1) . . . (N − |π|+ 1) if σ ≤ π

0 otherwise

and where Ak = M−1
k is the adjacency matrix of P (k).

Proof. We have the following computation, using Proposition 5.2:

Gk(π, σ) = N |π∨σ|

= #
{
i1, . . . , ik ∈ {1, . . . , N}

∣∣∣ ker i ≥ π ∨ σ
}

=
∑
τ≥π∨σ

#
{
i1, . . . , ik ∈ {1, . . . , N}

∣∣∣ ker i = τ
}

=
∑
τ≥π∨σ

N(N − 1) . . . (N − |τ |+ 1)

According now to the definition of Ak, Lk, this formula reads:

Gk(π, σ) =
∑
τ≥π

Lk(τ, σ)

=
∑
τ

Ak(π, τ)Lk(τ, σ)

= (AkLk)(π, σ)

Thus, we are led to the formula in the statement. �

As an illustration for the above result, at k = 2 we have P (2) = {||,u}, and the above
decomposition G2 = A2L2 appears as follows:(

N2 N
N N

)
=

(
1 1
0 1

)(
N2 −N 0
N N

)
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At k = 3 now, we have P (3) = {|||,u|,u| , |u,uu}, and the Gram matrix is:

G3 =


N3 N2 N2 N2 N
N2 N2 N N N
N2 N N2 N N
N2 N N N2 N
N N N N N


Regarding L3, this can be computed by writing down the matrix E3(π, σ) = δσ≤π|π|,

and then replacing each entry by the corresponding polynomial in N . We reach to the
conclusion that the product A3L3 is as follows, producing the above matrix G3:

A3L3 =


1 1 1 1 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
0 0 0 0 1



N3 − 3N2 + 2N 0 0 0 0

N2 −N N2 −N 0 0 0
N2 −N 0 N2 −N 0 0
N2 −N 0 0 N2 −N 0
N N N N N


In general, the formula Gk = AkLk appears a bit in the same way, with Ak being

binary and upper triangular, and with Lk depending on N , and being lower triangular.

We are led in this way to the following formula, due to Lindstöm [71]:

Theorem 5.7. The determinant of the Gram matrix Gk is given by

det(Gk) =
∏

π∈P (k)

N !

(N − |π|)!

with the convention that in the case N < k we obtain 0.

Proof. If we order P (k) as usual, with respect to the number of blocks, and then
lexicographically, then Ak is upper triangular, and Lk is lower triangular. Thus, we have:

det(Gk) = det(Ak) det(Lk)

= det(Lk)

=
∏
π

Lk(π, π)

=
∏
π

N(N − 1) . . . (N − |π|+ 1)

Thus, we are led to the formula in the statement. �

Getting back now to quantum groups, or rather to the corresponding Tannakian cat-
egories, written as spans of diagrams, we have the following result:
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Theorem 5.8. The vectors associated to the partitions, namely{
ξπ ∈ (CN)⊗k

∣∣∣π ∈ P (k)
}

and in particular the vectors associated to the pairings, namely{
ξπ ∈ (CN)⊗k

∣∣∣π ∈ P2(k)
}

are linearly independent for N ≥ k.

Proof. Here the first assertion follows from Theorem 5.7, the Gram determinant
computed there being nonzero for N ≥ k, and the second assertion follows from it. �

In what follows, the above result will be all that we need, for deducing a number of
interesting consequences regarding ON , UN , O

+
N , U

+
N . Once these corollaries exhausted, we

will have to go back to this, and work out some finer linear independence results.

5b. The Wigner law

We discuss here some applications of the above linear independence results. As a first
application, we can study the laws of characters. First, we have:

Proposition 5.9. For the basic unitary quantum groups, namely

UN // U+
N

ON
//

OO

O+
N

OO

the moments of the main character, which are the numbers Mk =
∫
G
χk, depending on a

colored integer k, are smaller than the following numbers,

|P2(k)| |NC2(k)|

|P2(k)| |NC2(k)|

and with equality happening in each case at N ≥ k.
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Proof. We have the following computation, based on Theorem 5.1, and on the char-
acter formulae from Peter-Weyl theory, for each of our quantum groups:∫

G

χk = dim(Fix(u⊗k))

= dim
(
span

(
ξπ

∣∣∣π ∈ D(k)
))

≤ |D(k)|
Thus, we have the inequalities in the statement, coming from easiness and Peter-Weyl.

As for the last assertion, this follows from Theorem 5.8. �

In order to advance now, we must do some combinatorics and probability, first by
counting the numbers in Proposition 5.9, and then by recovering the measures having
these numbers as moments. We will restrict the attention to the orthogonal case, which
is simpler, and leave the unitary case, which is more complicated, for later.

Since there are no pairings when k is odd, we can assume that k is even, and with the
change k → 2k, the partition count in the orthogonal case is as follows:

Proposition 5.10. We have the following formulae for pairings,

|P2(2k)| = (2k)!!

|NC2(2k)| = Ck

with the numbers involved, double factorials and Catalan numbers, being as follows:

(2k)!! = (2k − 1)(2k − 3)(2k − 5) . . .

Ck =
1

k + 1

(
2k

k

)
Proof. We have two assertions here, the idea being as follows:

(1) We must count the pairings of {1, . . . , 2k}. Now observe that such a pairing
appears by pairing 1 to a certain number, and there are 2k− 1 choices here, then pairing
the next number, 2 if free or 3 if 2 was taken, to another number, and there are 2k − 3
choices here, and so on. Thus, we are led to the formula in the statement, namely:

|P2(2k)| = (2k − 1)(2k − 3)(2k − 5) . . .

(2) We must count the noncrossing pairings of {1, . . . , 2k}. Now observe that such a
pairing appears by pairing 1 to an odd number, 2a+ 1, and then inserting a noncrossing
pairing of {2, . . . , 2a}, and a noncrossing pairing of {2a + 2, . . . , 2k}. We conclude from
this that we have the following recurrence for the numbers Ck = |NC2(2k)|:

Ck =
∑

a+b=k−1

CaCb
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Consider now the generating series of these numbers:

f(z) =
∑
k≥0

Ckz
k

In terms of this generating series, the recurrence that we found gives:

zf 2 =
∑
a,b≥0

CaCbz
a+b+1

=
∑
k≥1

∑
a+b=k−1

CaCbz
k

=
∑
k≥1

Ckz
k

= f − 1

Thus the generating series satisfies the following degree 2 equation:

zf 2 − f + 1 = 0

Now by solving this equation, using the usual degree 2 formula, and choosing the
solution which is bounded at z = 0, we obtain:

f(z) =
1−
√

1− 4z

2z

By using now the Taylor formula for
√
x, we obtain the following formula:

f(z) =
∑
k≥0

1

k + 1

(
2k

k

)
zk

Thus, we are led to the conclusion in the statement. �

Let us do now the second computation, which is probabilistic. We must find the real
probability measures having the above numbers as moments, and we have here:

Theorem 5.11. The standard Gaussian law, and standard Wigner semicircle law

g1 =
1√
2π
e−x

2/2dx

γ1 =
1

2π

√
4− x2dx

have as 2k-th moments the numbers (2k)!! and Ck, and their odd moments vanish.

Proof. There are several proofs here, depending on your calculus and probability
knowledge. Normally the “honest”, white belt proof would be by trying to find centered
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measures g1, γ1 having as even moments the numbers (2k)!! and Ck. But this is something
quite complicated, requiring the usage of the Stieltjes inversion formula, namely:

dµ(x) = lim
t↘0
− 1

π
Im (G(x+ it)) · dx

Now the problem is that, assuming that you master this formula, you have certainly
learned enough probability as to know about the solutions g1, γ1 to our problem. In short,
we will just cheat, assume that the problem is solved, and proceed as follows:

(1) The moments of the normal law g1 in the statement are given by:

Mk =
1√
2π

∫
R
xke−x

2/2dx

=
1√
2π

∫
R
(xk−1)

(
−e−x2/2

)′
dx

=
1√
2π

∫
R
(k − 1)xk−2e−x

2/2dx

= (k − 1)× 1√
2π

∫
R
xk−2e−x

2/2dx

= (k − 1)Mk−2

Thus by recurrence we have M2k = (2k)!!, and we are done.

(2) The moments of the Wigner law γ1 in the statement are given by:

Nk =
1

2π

∫ 2

−2

√
4− x2 x2kdx

=
1

2π

∫ π

0

√
4− 4 cos2 t (2 cos t)2k(2 sin t)dt

=
22k+1

π

∫ π

0

cos2k t sin2 tdt

=
22k+1

π
· (2k)!!2!!

(2k + 3)!!
· π

= 22k+1 · 3 · 5 · 7 . . . (2k − 1)

2 · 4 · 6 . . . (2k + 2)

= 22k+1 · (2k)!

2kk!2k+1(k + 1)!

=
(2k)!

k!(k + 1)!

Here we have used an advanced calculus formula, but a routine computation based on
partial integration works as well. Thus we have Nk = Ck, and we are done. �
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As a comment here, the advanced calculus formula used in (2) above is as follows, with
ε(p) = 1 if p is even and ε(p) = 0 if p is odd, and with m!! = (m− 1)(m− 3)(m− 5) . . .,
with the product ending at 2 if m is odd, and ending at 1 if m is even:∫ π/2

0

cosp t sinq t dt =
(π

2

)ε(p)ε(q) p!!q!!

(p+ q + 1)!!

This formula is something extremely useful, in everyday life, with the proof being by
partial integration, and then a double recurrence on p, q. With spherical coordinates and
Fubini it is possible to generalize this into an integration formula over the arbitrary real
spheres SN−1

R , in arbitrary dimension N ∈ N, but more on this later.

Now back to our orthogonal quantum groups, by using the above we can formulate a
clear and concrete result regarding them, as follows:

Theorem 5.12. For the quantum groups ON , O
+
N , the main character

χ =
∑
i

uii

follows respectively the standard Gaussian, and the Wigner semicircle law

g1 =
1√
2π
e−x

2/2dx , γ1 =
1

2π

√
4− x2dx

in the N →∞ limit.

Proof. This follows by putting together the results that we have, namely Proposition
5.9 applied with N > k, and then Proposition 5.10 and Theorem 5.11. �

The above result is quite interesting, and as a somewhat bizarre reminder, this is the
first application of our Tannakian duality methods, developed in chapter 4. We will see
in what follows countless versions and generalizations of it, basically obtained by using
the same method, Tannakian duality and easiness first, then combinatorics for linear
independence, and then more combinatorics and probability.

5c. Clebsch-Gordan rules

Let us try now to work out some finer results, at fixed values of N ∈ N. In the case
of ON the above result cannot really be improved, the fixed N ∈ N laws being fairly
complicated objects, related to Young tableaux and their combinatorics.

In the case of O+
N , however, we will see that some miracles happen, and the convergence

in the above result is in fact stationary, starting from N = 2. Following [1], we have:
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Theorem 5.13. For the quantum group O+
N , the main character follows the standard

Wigner semicircle law, and this regardless of the value of N ≥ 2:

χ ∼ 1

2π

√
4− x2dx

The irreducible representations of O+
N are all self-adjoint, and can be labelled by positive

integers, with their fusion rules being the Clebsch-Gordan ones,

rk ⊗ rl = r|k−l| + r|k−l|+2 + . . .+ rk+l

as for the group SU2. The dimensions of these representations are given by

dim rk =
qk+1 − q−k−1

q − q−1

where q, q−1 are the solutions of X2 −NX + 1 = 0.

Proof. There are several proofs for this fact, the simplest one being via purely alge-
braic methods, based on the easiness property of O+

N from Theorem 5.1 alone:

(1) In order to get started, let us first work out the first few values of the representations
rk that we want to construct, computed by recurrence, according to the Clebsch-Gordan
rules in the statement, which will be useful for various illustrations:

r0 = 1

r1 = u

r2 = u⊗2 − 1

r3 = u⊗3 − 2u

r4 = u⊗4 − 3u⊗2 + 1

r5 = u⊗5 − 4u⊗3 + 3u
...

(2) We can see that what we want to do is to split the Peter-Weyl representations u⊗k

into irreducibles, because the above formulae can be written as well as follows:

u⊗0 = r0

u⊗1 = r1

u⊗2 = r2 + r0

u⊗3 = r3 + 2r1

u⊗4 = r4 + 3r2 + 2r0

u⊗5 = r5 + 4r3 + 5r1

...
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(3) In order to get fully started now, our claim, which will basically prove the theorem,
is that we can define, by recurrence on k ∈ N, a sequence r0, r1, r2, . . . of irreducible, self-
adjoint and distinct representations of O+

N , satisfying:

r0 = 1

r1 = u

rk + rk−2 = rk−1 ⊗ r1

(4) Indeed, at k = 0 this is clear, and at k = 1 this is clear as well, with the irreducibil-
ity of r1 = u coming from the embedding ON ⊂ O+

N . So assume now that r0, . . . , rk−1 as
above are constructed, and let us construct rk. We have, by recurrence:

rk−1 + rk−3 = rk−2 ⊗ r1

In particular we have an inclusion of representations, as follows:

rk−1 ⊂ rk−2 ⊗ r1

Now since rk−2 is irreducible, by Frobenius reciprocity we have:

rk−2 ⊂ rk−1 ⊗ r1

Thus, there exists a certain representation rk such that:

rk + rk−2 = rk−1 ⊗ r1

(5) As a first observation, this representation rk is self-adjoint. Indeed, our recurrence
formula rk + rk−2 = rk−1 ⊗ r1 for the representations r0, r1, r2, . . . shows that the charac-
ters of these representations are polynomials in χu. Now since χu is self-adjoint, all the
characters that we can obtain via our recurrence are self-adjoint as well.

(6) It remains to prove that rk is irreducible, and non-equivalent to r0, . . . , rk−1. For
this purpose, observe that according to our recurrence formula, rk + rk−2 = rk−1 ⊗ r1, we
can now split u⊗k, as a sum of the following type, with positive coefficients:

u⊗k = ckrk + ck−2rk−2 + . . .

We conclude by Peter-Weyl that we have an inequality as follows, with equality pre-
cisely when rk is irreducible, and non-equivalent to the other summands ri:∑

i

c2
i ≤ dim(End(u⊗k))

(7) Now let us use the easiness property of O+
N . This gives us an upper bound for the

number on the right, that we can add to our inequality, as follows:∑
i

c2
i ≤ dim(End(u⊗k)) ≤ Ck

The point now is that the coefficients ci come straight from the Clebsch-Gordan rules,
and their combinatorics shows that

∑
i c

2
i equals the Catalan number Ck, with the remark
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that this follows as well from the known theory of SU2. Thus, we have global equality in
the above estimate, and in particular we have equality at left, as desired.

(8) In order to finish the proof of our claim, it still remains to prove that rk is non-
equivalent to rk−1, rk−3, . . . But these latter representations appear inside u⊗k−1, and the
result follows by using the embedding ON ⊂ O+

N , which shows that the even and odd
tensor powers of u cannot have common irreducible components.

(9) Summarizing, we have proved our claim, made in step (3) above.

(10) In order now to finish, since by the Peter-Weyl theory any irreducible repre-
sentation of O+

N must appear in some tensor power of u, and we have a formula for
decomposing each u⊗k into sums of representations rk, as explained above, we conclude
that these representations rk are all the irreducible representations of O+

N .

(11) In what regards now the law of the main character, we obtain here the Wigner
law γ1, as stated, due to the fact that the equality in (7) gives us the even moments of
this law, and that the observation in (8) tells us that the odd moments vanish.

(12) Finally, from the Clebsch-Gordan rules we have in particular:

rkr1 = rk−1 + rk+1

We obtain from this, by recurrence, with q2 −Nq + 1 = 0:

dim rk = qk + qk−2 + . . .+ q−k+2 + q−k

But this gives the dimension formula in the statement, and we are done. �

Let us discuss now the relation with SU2. This group is the most well-known group
in mathematics, and there is an enormous quantity of things known about it. For our
purposes, we need a functional analytic approach to it. This can be done as follows:

Theorem 5.14. The algebra of continuous functions on SU2 appears as

C(SU2) = C∗
(

(uij)i,j=1,2

∣∣∣u = FūF−1 = unitary
)

where F is the following matrix,

F =

(
0 1
−1 0

)
called super-identity matrix.

Proof. This can be done in several steps, as follows:

(1) Let us first compute SU2. Consider an arbitrary 2× 2 complex matrix:

U =

(
a b
c d

)
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Assuming detU = 1, the unitarity condition U−1 = U∗ reads:(
d −b
−c a

)
=

(
ā c̄
b̄ d̄

)
Thus we must have d = ā, c = −b̄, and we obtain the following formula:

SU2 =

{(
a b
−b̄ ā

) ∣∣∣ |a|2 + |b|2 = 1

}
(2) With the above formula in hand, the fundamental corepresentation of SU2 is:

u =

(
a b
−b̄ ā

)
Now observe that we have the following equality:(

a b
−b̄ ā

)(
0 1
−1 0

)
=

(
−b a
−ā −b̄

)
=

(
0 1
−1 0

)(
ā b̄
−b a

)
Thus, with F being as in the statement, we have uF = Fū, and so:

u = FūF−1

We conclude that, if A is the universal algebra in the statement, we have:

A→ C(SU2)

(3) Conversely now, let us compute the universal algebra A in the statement. For this
purpose, let us write its fundamental corepresentation as follows:

u =

(
a b
c d

)
We have uF = Fū, with these quantities being respectively given by:

uF =

(
a b
c d

)(
0 1
−1 0

)
=

(
−b a
−d c

)
Fū =

(
0 1
−1 0

)(
a∗ b∗

c∗ d∗

)
=

(
c∗ d∗

−a∗ −b∗
)

Thus we must have d = a∗, c = −b∗, and we obtain the following formula:

u =

(
a b
−b∗ a∗

)
We also know that this matrix must be unitary, and we have:

uu∗ =

(
a b
−b∗ a∗

)(
a∗ −b
b∗ a

)
=

(
aa∗ + bb∗ ba− ab
a∗b∗ − b∗a∗ a∗a+ b∗b

)
u∗u =

(
a∗ −b
b∗ a

)(
a b
−b∗ a∗

)
=

(
a∗a+ bb∗ a∗b− ba∗
b∗a− ab∗ aa∗ + b∗b

)
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Thus, the unitarity equations for u are as follows:

aa∗ = a∗a = 1− bb∗ = 1− b∗b
ab = ba, a∗b = ba∗, ab∗ = a∗b, a∗b∗ = b∗a∗

It follows that a, b, a∗, b∗ commute, so our algebra is commutative. Now since this
algebra is commutative, the involution ∗ becomes the usual conjugation −, and so:

u =

(
a b
−b̄ ā

)
But this tells us that we have A = C(X) with X ⊂ SU2, and so we have a quotient

map C(SU2)→ A, which is inverse to the map constructed in (2), as desired. �

Now with the above result in hand, we can see right away the relation with O+
N , and

more specifically with O+
2 . Indeed, this latter quantum group appears as follows:

C(O+
2 ) = C∗

(
(uij)i,j=1,2

∣∣∣u = ū = unitary
)

Thus, SU2 appears from O+
2 by replacing the identity with the super-identity, or

perhaps vice versa, O+
2 appears from SU2 by replacing the super-identity with the identity.

In any case, these two quantum groups are definitely related by some “twisting”
operation, so they should have similar representation theory. This is indeed the case:

Theorem 5.15. For the group SU2, the main character follows the standard Wigner
semicircle law:

χ ∼ 1

2π

√
4− x2dx

The irreducible representations of SU2 are all self-adjoint, and can be labelled by positive
integers, with their fusion rules being the Clebsch-Gordan ones,

rk ⊗ rl = r|k−l| + r|k−l|+2 + . . .+ rk+l

as for the quantum group O+
N . The dimensions of these representations are given by

dim rk = k + 1

exactly as for the quantum group O+
2 .

Proof. This result is as old as modern mathematics, with many proofs available, all
instructive. Here is our take on the subject, in connection with what we do here:

(1) A first proof, which is straightforward but rather long, is by taking everything
that has been said so far about O+

N , starting from the middle of chapter 4 above, setting
N = 2, and then twisting everything with the help of the super-identity matrix:

F =

(
0 1
−1 0

)



5C. CLEBSCH-GORDAN RULES 123

What happens then is that a Brauer theorem for SU2 holds, involving the set D = NC2

as before, but with the implementation of the partitions π → Tπ being twisted by F . In
particular, we obtain in this way, as before, inequalities as follows:

dim(End(u⊗k)) ≤ Ck

But with such inequalities in hand, the proof of Theorem 5.13 applies virtually un-
changed, and gives the result, with of course q = 1 in the dimension formula.

(2) Here is as well a second proof, or rather sketch of proof, which is quite original,
but is related to what we will be doing here, and is quite instructive. With a = x + iy,
b = z + it, the formula for SU2 that we found in the proof of Theorem 5.14 reads:

SU2 =

{(
x+ iy z + it
−z + it x− iy

) ∣∣∣ x2 + y2 + z2 + t2 = 1

}
Thus, SU2 is isomorphic to the real unit sphere S3

R ⊂ R4. The point now is that the
uniform measure on SU2 corresponds in this way to the uniform measure on S3

R, and so
in this picture, the moments of the main character of SU2 are given by:

Mk =

∫
S3
R

(2x)kd(x, y, z, t)

In order to compute now such integrals, we can use the following advanced calculus
formula, valid for any exponents ki ∈ 2N, which at N = 2 corresponds to the advanced
calculus formula mentioned after Theorem 5.11, and at N ≥ 3 comes as well from that
advanced calculus formula, via spherical coordinates and Fubini:∫

SN−1
R

xk11 . . . xkNN dx =
(N − 1)!!k1!! . . . kN !!

(N + Σki − 1)!!

Indeed, by using this formula at N = 4, we obtain:∫
S3
R

x2k
1 dx =

3!!(2k)!!

(2k + 3)!!

= 2 · 3 · 5 · 7 . . . (2k − 1)

2 · 4 · 6 . . . (2k + 2)

= 2 · (2k)!

2kk!2k+1(k + 1)!

=
Ck
4k

Thus the even moments of our character χ = 2x1 are the Catalan numbers, M2k = Ck,
and since the odd moments vanish via x → −x, we conclude that we have χ ∼ γ1. But
this formula, or rather the moment formula M2k = Ck it comes from, gives:

dim(End(u⊗k)) = Ck
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Thus we can conclude as in the above first proof (1), by arguing that the recurrence
construction of rk from the proof of Theorem 5.13 applies virtually unchanged, and gives
the result, with of course q = 1 in the dimension formula. �

As a conclusion, we have two fringe proofs for the SU2 result, one by crazy algebraists,
and one by crazy probabilists. We recommend, as a complement, any of the proofs by
geometers or physicists, which can be found in any good mathematical book.

5d. Symplectic groups

Let us discuss now the unification of the O+
N and SU2 results. In view of Theorem

5.14, and of the comments made afterwards, the idea is clear, namely that of looking at
compact quantum groups appearing via relations of the following type:

u = FūF−1 = unitary

In order to clarify what exact matrices F ∈ GLN(C) we can use, we must do some
computations. Following [1], [33], [43], we first have the following result:

Proposition 5.16. Given a closed subgroup G ⊂ U+
N , with irreducible fundamental

corepresentation u = (uij), this corepresentation is self-adjoint, u ∼ ū, precisely when

u = FūF−1

for some unitary matrix F ∈ UN , satisfying the following condition:

FF̄ = ±1

Moreover, when N is odd we must have FF̄ = 1.

Proof. Since u is self-adjoint, u ∼ ū, we must have u = FūF−1, for a certain matrix
F ∈ GLN(C). We obtain from this, by using our assumption that u is irreducible:

u = FūF−1 =⇒ ū = F̄ uF̄−1

=⇒ u = (FF̄ )u(FF̄ )−1

=⇒ FF̄ = c1

=⇒ F̄F = c̄1

=⇒ c ∈ R

Now by rescaling we can assume c = ±1, so we have proved so far that:

FF̄ = ±1
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In order to establish now the formula FF ∗ = 1, we can proceed as follows:

(id⊗ S)u = u∗ =⇒ (id⊗ S)ū = ut

=⇒ (id⊗ S)(FūF−1) = FutF−1

=⇒ u∗ = FutF−1

=⇒ u = (F ∗)−1ūF ∗

=⇒ ū = F ∗u(F ∗)−1

=⇒ ū = F ∗FūF−1(F ∗)−1

=⇒ FF ∗ = d1

We have FF ∗ > 0, so d > 0. On the other hand, from FF̄ = ±1, FF ∗ = d1 we get:

| detF |2 = det(FF̄ ) = (±1)N

| detF |2 = det(FF ∗) = dN

Since d > 0 we obtain from this d = 1, and so FF ∗ = 1 as claimed. We obtain as well
that when N is odd the sign must be 1, and so FF̄ = 1, as claimed. �

It is convenient to diagonalize the matrices F that we found. Once again following
[43], up to an orthogonal base change, we can assume that our matrix is as follows, where
N = 2p+ q and ε = ±1, with the 1q block at right disappearing if ε = −1:

F =



0 1
ε1 0(0)

. . .
0 1
ε1 0(p)

1(1)

. . .
1(q)


We are therefore led into the following definition, from [33]:

Definition 5.17. The “super-space” CN
F is the usual space CN , with its standard basis

{e1, . . . , eN}, with a chosen sign ε = ±1, and a chosen involution on the set of indices,

i→ ī

with F being the “super-identity” matrix, Fij = δij̄ for i ≤ j and Fij = εδij̄ for i ≥ j.

In what follows we will usually assume that F is the explicit matrix appearing above.
Indeed, up to a permutation of the indices, we have a decomposition n = 2p+ q such that
the involution is, in standard permutation notation:

(12) . . . (2p− 1, 2p)(2p+ 1) . . . (q)
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Let us construct now some basic compact quantum groups, in our “super” setting.
Once again following [33], let us formulate:

Definition 5.18. Associated to the super-space CN
F are the following objects:

(1) The super-orthogonal group, given by:

OF =
{
U ∈ UN

∣∣∣U = FŪF−1
}

(2) The super-orthogonal quantum group, given by:

C(O+
F ) = C∗

(
(uij)i,j=1,...,n

∣∣∣u = FūF−1 = unitary
)

As explained in [33], it it possible to considerably extend this list, but for our purposes
here, this is what we need for the moment. We have indeed the following result, from
[33], making the connection with our unification problem for O+

N and SU2:

Theorem 5.19. The basic orthogonal groups and quantum groups are as follows:

(1) At ε = −1 we have OF = SpN and O+
F = Sp+

N .
(2) At ε = −1 and N = 2 we have OF = O+

F = SU2.
(3) At ε = 1 we have OF = ON and O+

F = O+
N .

Proof. These results are all elementary, as follows:

(1) At ε = −1 this follows from definitions, because the symplectic group SpN ⊂ UN
is by definition the following group:

SpN =
{
U ∈ UN

∣∣∣U = FŪF−1
}

(2) Still at ε = −1, the equation U = FŪF−1 tells us that the symplectic matrices
U ∈ SpN are exactly the unitaries U ∈ UN which are patterned as follows:

U =

 a b . . .
−b̄ ā
...

. . .


In particular, the symplectic matrices at N = 2 are as follows:

U =

(
a b
−b̄ ā

)
Thus we have Sp2 = U2, and the formula Sp+

2 = Sp2 is elementary as well, via an
analysis similar to the one in the proof of Theorem 5.14 above.

(3) At ε = 1 now, consider the root of unity ρ = eπi/4, and set:

J =
1√
2

(
ρ ρ7

ρ3 ρ5

)
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This matrix J is then unitary, and we have:

J

(
0 1
1 0

)
J t = 1

Thus the following matrix is unitary as well, and satisfies KFKt = 1:

K =


J (1)

. . .

J (p)

1q


Thus in terms of the matrix V = KUK∗ we have:

U = FŪF−1 = unitary ⇐⇒ V = V̄ = unitary

We obtain in this way an isomorphism O+
F = O+

N as in the statement, and by passing
to classical versions, we obtain as well OF = ON , as desired. �

With the above formalism and results in hand, we can now formulate the unification
result for O+

N and SU2, which in complete form is as follows:

Theorem 5.20. For the quantum group O+
F ∈ {O

+
N , Sp

+
N} with N ≥ 2, the main

character follows the standard Wigner semicircle law,

χ ∼ 1

2π

√
4− x2dx

the irreducible representations are all self-adjoint, and can be labelled by positive integers,
with their fusion rules being the Clebsch-Gordan ones,

rk ⊗ rl = r|k−l| + r|k−l|+2 + . . .+ rk+l

and the dimensions of these representations are given by

dim rk =
qk+1 − q−k−1

q − q−1

where q, q−1 are the solutions of X2 −NX + 1 = 0. Also, we have Sp+
2 = SU2.

Proof. This is a straightforward unification of the results that we already have for
O+
N and SU2, the technical details being all standard. See [1]. �

We will be back to O+
N and O+

F later on, first in chapter 7 below, with a number of
more advanced algebraic considerations, in relation with super-structures and twists, and
then in chapter 8 below, with a number of advanced probabilistic computations.

Finally, as the saying in geometry and physics goes, there is no SU2 without SO3. We
will construct in chapter 9 below a kind of “SO3 companion” for O+

N . This companion
will be something quite unexpected, namely the quantum permutation group S+

N .
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5e. Exercises

There has been a lot of combinatorics and calculus in this above, and doing some more
combinatorics and calculus will be the goal of the exercises here. First, we have:

Exercise 5.21. Verify the Gram determinant formula for P (3) explicitly, without any
trick, just by computing the 5× 5 determinant.

This might sound not very serious, because we have explained in the above a trick
for dealing with such things. But finding such tricks always requires a lot of efforts and
sweat, with computing 5× 5 determinants being a daily occupation.

Here is another exercise, which will vastly improve your calculus knowledge:

Exercise 5.22. Establish the following integration formula over the sphere∫
SN−1
R

xk11 . . . xkNN dx =
(N − 1)!!k1!! . . . kN !!

(N + Σki − 1)!!

that we used in the above, by using spherical coordinates and Fubini.

No special comments here, just enjoy. This is first-class mathematics.

Here is now a more advanced exercise, in relation with probability:

Exercise 5.23. Learn and use the Stieltjes inversion formula, namely

dµ(x) = lim
t↘0
− 1

π
Im (G(x+ it)) · dx

in order to find the centered laws having as 2k-th moments the numbers (2k)!! and Ck.

No comments here either. As before, this is first-class mathematics.

Finally, a quantum group exercise, which is actually a classical group one:

Exercise 5.24. Write down a complete proof, using a method of your choice, found
here or somewhere else, for the classification of the irreducible representations of SU2.

This is the most important exercise of them all, because the relation between SU2 and
O+
N will be something that will reappear regularly, in what follows.



CHAPTER 6

Unitary groups

6a. Gaussian laws

We have seen in the previous chapter that the Brauer type results for ON , O
+
N , UN , U

+
N

lead to concrete and interesting consequences regardingON , O
+
N . In this chapter we discuss

similar results for UN , U
+
N . The situation here is a bit more complicated than for ON , O

+
N ,

and we will only do a part of the work here, namely algebra and basic probability, with
the other part, advanced probability, being left for later, in chapter 8 below.

Let us start with a summary of what we know so far about UN , U
+
N :

Theorem 6.1. For the basic unitary quantum groups, namely

UN ⊂ U+
N

the intertwiners between the Peter-Weyl representations are given by

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

with the linear maps Tπ associated to the pairings π being given by

Tπ(ei1 ⊗ . . .⊗ eik) =
∑
j1...jl

δπ

(
i1 . . . ik
j1 . . . jl

)
ej1 ⊗ . . .⊗ ejl

and with the pairings D being as follows, with calligraphic standing for matching:

P2 ⊃ NC2

At the level of the moments of the main character, we have in both cases∫
χk ≤ |D(k)|

with D being the above sets of pairings, with equality happening at N ≥ k.

Proof. This is a summary of the results that we have, established in the previous
chapters, and coming from Tannakian duality, via some combinatorics. To be more pre-
cise, the Brauer type results are from chapter 4, the estimates for the moments follows
from this and from Peter-Weyl, as explained in chapter 5, and finally the last assertion,
regarding the equality at N ≥ k, is something more subtle, explained in chapter 5. �

129



130 6. UNITARY GROUPS

Let us first investigate the unitary group UN . As it was the case for the orthogonal
group ON , in chapter 5 above, the representation theory here is something quite compli-
cated, related to Young tableaux, and we will not get into this subject. However, once
again in analogy with ON , there is one straightforward thing to be done, namely the
computation of the law of the main character, in the N →∞ limit.

In order to do this, we will need a basic probability result, as follows:

Theorem 6.2. The moments of the complex Gaussian law, given by

G1 ∼
1√
2

(a+ ib)

with a, b being independent, each following the real Gaussian law g1, are given by

Mk = |P2(k)|
for any colored integer k = ◦ • • ◦ . . .

Proof. This is something well-known, which can be done in several steps, as follows:

(1) We recall from chapter 5 above that the moments of the real Gaussian law g1, with
respect to integer exponents k ∈ N, are the following numbers:

mk = |P2(k)|
Numerically, we have the following formula, explained as well in section 5:

mk =

{
k!! (k even)

0 (k odd)

(2) We will show here that in what concerns the complex Gaussian law G1, similar
results hold. Numerically, we will prove that we have the following formula, where a
colored integer k = ◦ • • ◦ . . . is called uniform when it contains the same number of ◦
and • , and where |k| ∈ N is the length of such a colored integer:

Mk =

{
(|k|/2)! (k uniform)

0 (k not uniform)

Now since the matching partitions π ∈ P2(k) are counted by exactly the same numbers,
and this for trivial reasons, we will obtain the formula in the statement, namely:

Mk = |P2(k)|
(3) This was for the plan. In practice now, we must compute the moments, with

respect to colored integer exponents k = ◦ • • ◦ . . . , of the variable in the statement:

c =
1√
2

(a+ ib)
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As a first observation, in the case where such an exponent k = ◦••◦ . . . is not uniform
in ◦, • , a rotation argument shows that the corresponding moment of c vanishes. To be
more precise, the variable c′ = wc can be shown to be complex Gaussian too, for any
w ∈ C, and from Mk(c) = Mk(c

′) we obtain Mk(c) = 0, in this case.

(4) In the uniform case now, where k = ◦ • • ◦ . . . consists of p copies of ◦ and p copies
of • , the corresponding moment can be computed as follows:

Mk =

∫
(cc̄)p

=
1

2p

∫
(a2 + b2)p

=
1

2p

∑
s

(
p

s

)∫
a2s

∫
b2p−2s

=
1

2p

∑
s

(
p

s

)
(2s)!!(2p− 2s)!!

=
1

2p

∑
s

p!

s!(p− s)!
· (2s)!

2ss!
· (2p− 2s)!

2p−s(p− s)!

=
p!

4p

∑
s

(
2s

s

)(
2p− 2s

p− s

)
(5) In order to finish now the computation, let us recall that we have the following

formula, coming from the generalized binomial formula, or from the Taylor formula:

1√
1 + t

=
∞∑
k=0

(
2k

k

)(
−t
4

)k
By taking the square of this series, we obtain the following formula:

1

1 + t
=

∑
ks

(
2k

k

)(
2s

s

)(
−t
4

)k+s

=
∑
p

(
−t
4

)p∑
s

(
2s

s

)(
2p− 2s

p− s

)
Now by looking at the coefficient of tp on both sides, we conclude that the sum on the

right equals 4p. Thus, we can finish the moment computation in (4), as follows:

Mp =
p!

4p
× 4p = p!
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(6) As a conclusion, if we denote by |k| the length of a colored integer k = ◦ • • ◦ . . . ,
the moments of the variable c in the statement are given by:

Mk =

{
(|k|/2)! (k uniform)

0 (k not uniform)

On the other hand, the numbers |P2(k)| are given by exactly the same formula. Indeed,
in order to have matching pairings of k, our exponent k = ◦ • • ◦ . . . must be uniform,
consisting of p copies of ◦ and p copies of •, with p = |k|/2. But then the matching
pairings of k correspond to the permutations of the • symbols, as to be matched with ◦
symbols, and so we have p! such matching pairings. Thus, we have the same formula as
for the moments of c, and we are led to the conclusion in the statement. �

We should mention that the above proof is just one proof among others, designed
for a reader having rather low background in probability. There is a lot of interesting
mathematics behind the complex Gaussian variables, whose knowledge can avoid some of
the above computations, and we recommend here any good probability book.

By getting back now to the unitary group UN , with the above results in hand we can
formulate our first concrete result about it, as follows:

Theorem 6.3. For the unitary group UN , the main character

χ =
∑
i

uii

follows the standard complex Gaussian law

χ ∼ G1

in the N →∞ limit.

Proof. This follows by putting together the results that we have, namely Theorem
6.1 applied with N > k, and then Theorem 6.2. �

As already mentioned above, as it was the case for the orthogonal group ON , in chapter
5, the representation theory for UN at fixed N ∈ N is something quite complicated, related
to the combinatorics of Young tableaux, and we will not get into this subject here.

There is, however, one more interesting topic regarding UN to be discussed, namely
its precise relation with ON , and more specifically the passage ON → UN .

Contrary to the passage RN → CN , or to the passage SN−1
R → SN−1

C , which are both
elementary, the passage ON → UN cannot be understood directly. In order to understand
this passage we must pass through the corresponding Lie algebras, a follows:



6A. GAUSSIAN LAWS 133

Theorem 6.4. The passage ON → UN appears via Lie algebra complexification,

ON → oN → un → UN

with the Lie algebra uN being a complexification of the Lie algebra oN .

Proof. This is something rather philosophical, and advanced as well, that we will
not really need here, the idea being as follows:

(1) The unitary and orthogonal groups UN , ON are both Lie groups, in the sense
that they are smooth manifolds, and the corresponding Lie algebras uN , oN , which are
by definition the respective tangent spaces at 1, can be computed by differentiating the
equations defining UN , ON , with the conclusion being as follows:

uN =
{
A ∈MN(C)

∣∣∣A∗ = −A
}

oN =
{
B ∈MN(R)

∣∣∣Bt = −B
}

(2) This was for the correspondences UN → uN and ON → oN . In the other sense,
the correspondences uN → UN and oN → ON appear by exponentiation, the result here
stating that, around 1, the unitary matrices can be written as U = eA, with A ∈ uN , and
the orthogonal matrices can be written as U = eB, with B ∈ oN .

(3) In view of all this, in order to understand the passage ON → UN it is enough to
understand the passage oN → uN . But, in view of the above explicit formulae for oN , uN ,
this is basically an elementary linear algebra problem. Indeed, let us pick an arbitrary
matrix A ∈MN(C), and write it as follows, with B,C ∈MN(R):

A = B + iC

In terms of B,C, the equation A∗ = −A defining the Lie algebra uN reads:

Bt = −B
Ct = C

(4) As a first observation, we must have B ∈ oN . Regarding now C, let us decompose
it as follows, with D being its diagonal, and C ′ being the reminder:

C = D + C ′

The reminder C ′ being symmetric with 0 on the diagonal, by swithcing all the signs
below the main diagonal we obtain a certain matrix C ′− ∈ oN . Thus, we have decomposed
A ∈ uN as follows, with B,C ′ ∈ oN , and with D ∈MN(R) being diagonal:

A = B + iD + iC ′−

(5) As a conclusion now, we have shown that we have a direct sum decomposition of
real linear spaces as follows, with ∆ ⊂MN(R) being the diagonal matrices:

uN ' oN ⊕∆⊕ oN
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Thus, we can stop our study here, and say that we have reached the conclusion in the
statement, namely that uN appears as a “complexification” of oN . �

As before with many other things, that we will not really need in what follows, this
was just an introduction to the subject. More can be found in any Lie group book.

6b. Circular variables

Let us discuss now the unitary quantum group U+
N . We have 3 main topics to be

discussed, namely the character law with N → ∞, the representation theory at fixed
N ∈ N, and complexification, and the situation with respect to UN is as follows:

(1) The asymptotic character law appears as a “free complexification” of the Wigner
law, with the combinatorics being similar to the classical case one.

(2) The representation theory is definitely simpler, with the fusion rules being given
by a “free complexification” of the Clebsch-Gordan rules, at any N ≥ 2.

(3) As for the complexification aspects, here the situation is extremely simple, with
the passage O+

N → U+
N being a usual free complexification.

More in detail now, let us first discuss the character problematics for U+
N , or rather

the difficulties that appear here. We have the following theoretical result, to start with,
coming from the general C∗-algebra theory developed in chapter 1 above:

Theorem 6.5. Given a C∗-algebra with a faithful trace (A, tr), any normal variable,

aa∗ = a∗a

has a “law”, which is by definition a complex probability measure µ ∈ P(C) satisfying:

tr(ak) =

∫
C
zkdµ(z)

This law is unique, and is supported by the spectrum σ(a) ⊂ C. In the non-normal case,
aa∗ 6= a∗a, such a law does not exist.

Proof. We have two assertions here, the idea being as follows:

(1) In the normal case, aa∗ = a∗a, the Gelfand theorem, or rather the subsequent
continuous functional calculus theorem, tells us that we have:

< a >= C(σ(a))

Thus the functional f(a)→ tr(f(a)) can be regarded as an integration functional on
the algebra C(σ(a)), and by the Riesz theorem, this latter functional must come from a
probability measure µ on the spectrum σ(a), in the sense that we must have:

tr(f(a)) =

∫
σ(a)

f(z)dµ(z)
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We are therefore led to the conclusions in the statement, with the uniqueness assertion
coming from the fact that the elements ak, taken as usual with respect to colored integer
exponents, k = ◦ • • ◦ . . . , generate the whole C∗-algebra C(σ(a)).

(2) In the non-normal case now, aa∗ 6= a∗a, we must show that such a law does not
exist. For this purpose, we can use a positivity trick, as follows:

aa∗ − a∗a 6= 0

=⇒ (aa∗ − a∗a)2 > 0

=⇒ aa∗aa∗ − aa∗a∗a− a∗aaa∗ + a∗aa∗a > 0

=⇒ tr(aa∗aa∗ − aa∗a∗a− a∗aaa∗ + a∗aa∗a) > 0

=⇒ tr(aa∗aa∗ + a∗aa∗a) > tr(aa∗a∗a+ a∗aaa∗)

=⇒ tr(aa∗aa∗) > tr(aaa∗a∗)

Now assuming that a has a law µ ∈ P(C), in the sense that the moment formula
in the statement holds, the above two different numbers would have to both appear by
integrating |z|2 with respect to this law µ, which is contradictory, as desired. �

All the above might look a bit abstract, so as an illustration here, consider the following
matrix, which is the simplest example of a non-normal matrix:

Z =

(
0 1
0 0

)
We have then the following formulae, which show that Z has no law, indeed:

tr(ZZZ∗Z∗) = tr

(
0 0
0 0

)
= 0

tr(ZZ∗ZZ∗) = tr

(
1 0
0 0

)
=

1

2

Getting back now to U+
N , its main character is not normal, so it does not have a law

µ ∈ P(C). Here is a concrete illustration for this phenomenon:

Proposition 6.6. The main character of U+
N satisfies, at N ≥ 4,∫

U+
N

χχχ∗χ∗ = 1

∫
U+
N

χχ∗χχ∗ = 2

and so this main character χ does not have a law µ ∈ P(C).
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Proof. This follows from the last assertion in Theorem 6.1, which tells us that the
moments of χ are given by the following formula, valid at any N ≥ k:∫

U+
N

χk = |NC2(k)|

Indeed, we obtain from this the following formula, valid at any N ≥ 4:∫
U+
N

χχχ∗χ∗ = |NC2(◦ ◦ • •)|

= | e |
= 1

On the other hand, we obtain as well the following formula, once again at N ≥ 4:∫
U+
N

χχ∗χχ∗ = |NC2(◦ • ◦ •)|

= | ∩ ∩ ,e |
= 2

Thus, we have the formulae in the statement. Now since we cannot obtain both 1 and
2 by integrating |z|2 with respect to a measure, our variable has no law µ ∈ P(C). �

Summarizing, we are a bit in trouble here, and we must proceed as follows:

Definition 6.7. Given a C∗-algebra with a faithful trace (A, tr), the law of a variable
a ∈ A is the following abstract functional:

µ : C < X,X∗ >→ C

P → tr(P (a))

In particular two variables a, b ∈ A have the same law, and we write in this case a ∼ b,
when all their moments coincide,

tr(ak) = tr(bk)

with these moments being taken with respect to colored integers, k = ◦ • • ◦ . . .

Here the compatibility between the first and the second above conventions comes from
the fact that, by linearity, the functional µ is uniquely determined by its values on the
monomials P (z) = zk, with k = ◦ • • ◦ . . . being a colored integer.

In the normal case, aa∗ = a∗a, it follows from Theorem 6.5 that the law, as defined
above, comes from a probability measure µ ∈ P(C), via the following formula:

tr(P (a)) =

∫
C
P (z)dµ(z)
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In particular, in the case where we have two normal variables a, b, the equality a ∼ b
tells us that the laws of a, b, taken in the complex measure sense, must coincide.

In the general case, aa∗ 6= a∗a, there is no such simple interpretation of the law, with
this coming from the last assertion in Theorem 6.5, and also from the concrete example
worked out in Proposition 6.6, and we must use Definition 6.4 as it is.

Next in line, we must talk about freeness. For this purpose, let us recall that the
independence of two subalgebras B,C ⊂ A can be defined in the following way:

tr(b) = tr(c) = 0 =⇒ tr(bc) = 0

In analogy with this, we have the following definition of Voiculescu [90]:

Definition 6.8. Two subalgebras B,C ⊂ A are called free when the following condi-
tion is satisfied, for any bi ∈ B and ci ∈ C:

tr(bi) = tr(ci) = 0 =⇒ tr(b1c1b2c2 . . .) = 0

Also, two variables b, c ∈ A are called free when the algebras that they generate,

B =< b > , C =< c >

are free inside A, in the above sense.

In short, freeness appears as a kind of “free analogue” of independence, taking into
account the fact that the variables do not necessarily commute. As a first result regarding
this notion, in analogy with the basic theory of the independence, we have:

Proposition 6.9. Assuming that B,C ⊂ A are free, the restriction of tr to < B,C >
can be computed in terms of the restrictions of tr to B,C. To be more precise,

tr(b1c1b2c2 . . .) = P
(
{tr(bi1bi2 . . .)}i, {tr(cj1cj2 . . .)}j

)
where P is certain polynomial in several variables, depending on the length of the word
b1c1b2c2 . . ., and having as variables the traces of products of type bi1bi2 . . . and cj1cj2 . . . ,
with the indices being chosen increasing, i1 < i2 < . . . and j1 < j2 < . . .

Proof. This is something quite theoretical, so let us begin with an example. Our
claim is that if b, c are free then, exactly as in the case where we have independence:

tr(bc) = tr(b)tr(c)

Indeed, we have the following computation, with the convention a′ = a− tr(a):

tr(bc) = tr[(b′ + tr(b))(c′ + tr(c))]

= tr(b′c′) + t(b′)tr(c) + tr(b)tr(c′) + tr(b)tr(c)

= tr(b′c′) + tr(b)tr(c)

= tr(b)tr(c)
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In general now, the situation is a bit more complicated, but the same trick applies.
To be more precise, we can start our computation as follows:

tr(b1c1b2c2 . . .)

= tr
[
(b′1 + tr(b1))(c′1 + tr(c1))(b′2 + tr(b2))(c′2 + tr(c2)) . . . . . .

]
= tr(b′1c

′
1b
′
2c
′
2 . . .) + other terms

= other terms

Observe that we have used here the freeness condition, in the following form:

tr(b′i) = tr(c′i) = 0 =⇒ tr(b′1c
′
1b
′
2c
′
2 . . .) = 0

Now regarding the “other terms”, those which are left, each of them will consist of a
product of traces of type tr(bi) and tr(ci), and then a trace of a product still remaining
to be computed, which is of the following form, with βi ∈ B and γi ∈ C:

tr(β1γ1β2γ2 . . .)

To be more precise, the variables βi ∈ B appear as ordered products of those bi ∈ B
not getting into individual traces tr(bi), and the variables γi ∈ C appear as ordered
products of those ci ∈ C not getting into individual traces tr(ci). Now since the length
of each such alternating product β1γ1β2γ2 . . . is smaller than the length of the original
alternating product b1c1b2c2 . . ., we are led into of recurrence, and this gives the result. �

As an illustration, given two discrete groups Γ,Λ, the algebras C∗(Γ), C∗(Λ) are in-
dependent inside C∗(Γ × Λ), are free inside C∗(Γ ∗ Λ). As before with the laws, there is
some theory that can be developed here, and we will do this later, in chapter 8 below.

The point now is that with the above definitions in hand, we can advance, in connection
with our questions, in the following rather formal way:

Definition 6.10. The Voiculescu circular law Γ1 is defined by

Γ1 ∼
1√
2

(α + iβ)

with α, β being self-adjoint and free, each following the Wigner semicircle law γ1.

Our goal in what follows will be that of proving that the main character law of U+
N

becomes circular with N →∞, and in fact, more generally, with N ≥ 2.

In order to prove these results, we need first to study the Voiculescu circular law, a
bit in the same way as we did with the Wigner semicircle law, in chapter 5 above. Let us
start with a useful modelling result for the Wigner law, as follows:
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Proposition 6.11. Consider the shift operator S ∈ B(l2(N)). We have then

S + S∗ ∼ γ1

with respect to the state ϕ(T ) =< Tδ0, δ0 >.

Proof. We must compute the moments of the variable S + S∗ with respect to the
state ϕ(T ) =< Tδ0, δ0 >. Our claim is that these moments are given by:

< (S + S∗)kδ0, δ0 >= |NC2(k)|

Indeed, when expanding (S+S∗)k and computing the value of ϕ : T →< Tδ0, δ0 >, the
only contributions will come via the formula S∗S = 1, which must succesively apply, as
to collapse the whole product of S, S∗ variables into a 1 quantity. But these applications
of S∗S = 1 must appear in a non-crossing manner, and so the contributions, which are
each worth 1, are parametrized by the partitions π ∈ NC2(k). Thus, we obtain the above
moment formula, which shows that we have S + S∗ ∼ γ1, as claimed. �

The next step is that of taking a free product of the model found in Proposition 6.11
with itself. For this purpose, we can use the following construction:

Definition 6.12. Given a real Hilbert space H, we define the associated free Fock
space as being the infinite Hilbert space sum

F (H) = CΩ⊕H ⊕H⊗2 ⊕ . . .

and then we define the algebra A(H) generated by the creation operators

Sx : v → x⊗ v

on this free Fock space.

At the level of examples, with H = R we recover the shift algebra A =< S > on
the Hilbert space H = l2(N). Also, with H = R2, we obtain the algebra A =< S1, S2 >
generated by the two shifts on the Hilbert space H = l2(N ∗ N).

With the above notions in hand, we have the following key freeness result:

Proposition 6.13. Given a real Hilbert space H, and two orthogonal vectors x, y ∈ H,

x ⊥ y

the corresponding creation operators Sx and Sy are free with respect to

tr(T ) =< TΩ,Ω >

called trace associated to the vacuum vector.
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Proof. In standard tensor notation for the elements of the free Fock space F (H),
the formula of a creation operator associated to a vector x ∈ H is as follows:

Sx(y1 ⊗ . . .⊗ yn) = x⊗ y1 ⊗ . . .⊗ yn
As for the formula of the adjoint of this creation operator, this is as follows:

S∗x(y1 ⊗ . . .⊗ yn) =< x, y1 > ⊗y2 ⊗ . . .⊗ yn
We obtain from this the following formula, valid for any two vectors x, y ∈ H:

S∗xSy =< x, y > id

With these formulae in hand, the result follows by doing some elementary computa-
tions, a bit similar to those in the proof of Proposition 6.11. �

In order now to explicitely model the circular variables, we can use:

Proposition 6.14. Given two polynomials f, g ∈ C[X], consider the variables

R∗ + f(R) , S∗ + g(S)

where R, S are two creation operators, or shifts, associated to a pair of orthogonal norm
1 vectors. These variables are then free, and their sum has the same law as

T ∗ + (f + g)(T )

with T being the usual shift on l2(N).

Proof. We have two assertions here, the idea being as follows:

(1) The freeness assertion comes from the general freeness result from Proposition
6.13, via the various identifications coming from the previous results.

(2) Regarding now the second assertion, the idea is that this comes from a 45◦ rotation
trick. Let us write indeed the two variables in the statement as follows:

X = R∗ + a0 + a1R + a2R
2 + . . .

Y = S∗ + b0 + b1S + a2S
2 + . . .

Now let us perform the following 45◦ base change, on the real span of the vectors
r, s ∈ H producing our two shifts R, S:

t =
r + s√

2
, u =

r − s√
2

The new shifts, associated to these vectors t, u ∈ H, are then given by:

T =
R + S√

2
, U =

R− S√
2
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By using now these new shifts, which are free as well according to Proposition 6.13,
we obtain the following equality of distributions:

X + Y = R∗ + S∗ +
∑
k

akR
k + bkS

k

=
√

2T ∗ +
∑
k

ak

(
T + U√

2

)k
+ bk

(
T − U√

2

)k
∼
√

2T ∗ +
∑
k

ak

(
T√
2

)k
+ bk

(
T√
2

)k
∼ T ∗ +

∑
k

akT
k + bkT

k

To be more precise, here in the last two lines we have used the freeness property of
T, U in order to cut U from the computation, as it cannot bring anything, and then we
did a basic rescaling at the end. Thus, we are led to the conclusion in the statement. �

Still following [90], we can now formulate an explicit and very useful modelling result
for the semicircular and circular variables, as follows:

Theorem 6.15. Let H be the Hilbert space having as basis the colored integers k =
◦ • • ◦ . . . , and consider the shift operators S : k → ◦k and T : k → •k. We have then

S + S∗ ∼ γ1

S + T ∗ ∼ Γ1

with respect to the state ϕ(T ) =< Te, e >, where e is the empty word.

Proof. This is standard free probability, the idea being as follows:

(1) The formula S+S∗ ∼ γ1 is something that we already know, in a slightly different
formulation, from Proposition 6.11 above.

(2) The formula S + T ∗ ∼ Γ1 follows from this, by using the freeness result in Propo-
sition 6.13, and the rotation trick in Proposition 6.14. �

At the combinatorial level now, we have the following result, which is in analogy with
the moment theory of the Wigner semicircle law, developed above:

Theorem 6.16. A variable a ∈ A is circular when its moments are given by

tr(ak) = |NC2(k)|

for any colored integer k = ◦ • • ◦ . . .
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Proof. By using Theorem 6.15, it is enough to do the computation in the model
there. With S : k → ◦k and T : k → •k, our claim is that we have:

< (S + T ∗)ke, e >= |NC2(k)|

In order to prove this formula, we can proceed as in the proof of Proposition 6.11.
Indeed, let us expand the quantity (S+T ∗)k, and then apply the state ϕ. With respect to
the previous computation, from Proposition 6.11, what happens is that the contributions
will come this time via the formulae S∗S = 1, T ∗T = 1, which must succesively apply, as
to collapse the whole product of S, S∗, T, T ∗ variables into a 1 quantity.

As before, in the proof of Proposition 6.11, these applications of the rules S∗S = 1,
T ∗T = 1 must appear in a non-crossing manner, but what happens now, in contrast with
the computation from the proof of Proposition 6.11, where S+S∗ was self-adjoint, is that
at each point where the exponent k has a ◦ entry we must use T ∗T = 1, and at each point
where the exponent k has a • entry we must use S∗S = 1.

Thus the contributions, which are each worth 1, are parametrized by the partitions
π ∈ NC2(k). Thus, we obtain the above moment formula, as desired. �

We will be back with more explanations on all this in chapter 8 below. For our
purposes now, the above definitions and results are all we need.

Getting back now to the quantum group U+
N , we can reformulate the main result that

we have so far about it, by using the above notions, as follows:

Theorem 6.17. For the quantum group U+
N with N ≥ 2 we have

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

and at the level of the moments of the main character we have∫
U+
N

χk ≤ |NC2(k)|

with equality at N ≥ k, the numbers on the right being the moments of Γ1.

Proof. This is something that we already know. To be more precise, the Brauer
type result is from chapter 4, the estimate for the moments follows from this and from
Peter-Weyl, as explained in chapter 5, the equality at N ≥ k is something more subtle,
explained in chapter 5, and the last statement comes from the above discussion. �

Summarizing, with a bit of abstract probability theory, of free type, we are now on
our way into the study of U+

N , paralleling the previous study of O+
N .
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6c. Fusion rules

With the above result in hand, we can now go ahead and do with U+
N exactly what

we did with O+
N in chapter 5, with modifications where needed, namely constructing the

irreducible representations by recurrence, using a Frobenius duality trick, computing the
fusion rules, and concluding as well that we have χ ∼ Γ1, at any N ≥ 2.

In practice, all this will be more complicated than for O+
N , mainly because the fusion

rules will be something new, in need of some preliminary combinatorial study. These
fusion rules will be a kind of “free Clebsch-Gordan rules”, as follows:

rk ⊗ rl =
∑

k=xy,l=ȳz

rxz

Let W be the set of colored integers k = ◦ • • ◦ . . . , and consider the complex algebra
E spanned by W . We have then an isomorphism, as follows:

(C < X,X∗ >,+, ·) ' (E,+, ·)

X → ◦ , X∗ → •

We define an involution on our algebra E, by antilinearity and antimultiplicativity,
according to the following formulae, with e being as usual the empty word:

ē = e , ◦̄ = • , •̄ = ◦

With these conventions, we have the following result:

Proposition 6.18. The map × : W ×W → E given by

x× y =
∑

x=ag,y=ḡb

ab

extends by linearity into an associative multiplication of E.

Proof. Observe first that × is well-defined, the sum being finite. Let us prove now
that × is associative. Let x, y, z ∈ W . Then:

(x× y)× z =
∑

x=aḡ,y=gb

ab× z

=
∑

x=aḡ,y=gb,ab=ch,z=h̄d

cd
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Now observe that for a, b, c, h ∈ W the equality ab = ch is equivalent to b = uh, c = au
with u ∈ W , or to a = cv, h = vb with v ∈ W . Thus, we have:

(x× y)× z =
∑

x=aḡ,y=guh,z=h̄d

aud

+
∑

x=cvḡ,y=gb,z=bv̄d

cd

A similar computation shows that x× (y × z) is given by the same formula. �

Next, we have the following result:

Proposition 6.19. Consider the following morphism, with S, T being the shifts,

P : (E,+, ·)→ (B(l2(W )),+, ◦)
α→ S + T ∗

and let En ⊂ E be the linear space generated by the words of W having length ≤ n.

(1) If J : E → E is the map f → P (f)e, then (J − Id)En ⊂ En−1 for any n.
(2) J is an isomorphism of ∗-algebras (E,+, ·) ' (E,+,×).

Proof. We have several assertions here, the idea being as follows:

(1) Let f ∈ E. We have then the following formula:

P (α)f = (S + T ∗)f = ◦ × f
Thus, for any g ∈ E, we have the following formula:

J(◦g) = P (◦)J(g)

= ◦ × J(g)

= J(◦)× J(g)

The same argument shows that we have, for any g ∈ E:

J(•g) = J(•)× J(g)

Now the algebra (E,+, ·) being generated by ◦ and •, we conclude that J is a morphism
of algebras, as follows:

J : (E,+, ·)→ (E,+,×)

We prove now by recurrence on n ≥ 1 that we have:

(J − Id)En ⊂ En−1

At n = 1 we have J(◦) = ◦, J(•) = • and J(e) = e, and since E1 is generated by
e, ◦, •, we have J = Id on E1, as desired. Now assume that the above formula is true for
n, and let k ∈ En+1. We write, with f, g, h ∈ En:

k = ◦f + •g + h
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We have then the following computation:

(J − Id)k

= J(◦f + •g + h)− (◦f + •g + h)

= [(S + T ∗)J(f) + (S∗ + T )J(g) + J(h)]− [Sf + Tg + h]

= S(J(f)− f) + T (J(g)− g) + T ∗J(f) + S∗J(g) + (J(h)− h)

By using the recurrence assumption, applied to f, g, h we find that En contains all the
terms of the above sum, and so contains (J − Id)k, and we are done.

(2) Here we have to prove that J preserves the involution ∗, and that it is bijective.
We have J∗ = ∗J on the generators {e, ◦, •} of E, so J preserves the involution. Also, by
(1), the restriction of J − Id to En is nilpotent, so J is bijective. �

Following [1], we can now formulate a result about U+
N , which is quite similar to the

result for O+
N from chapter 5 above, as follows:

Theorem 6.20. For the quantum group U+
N , with N ≥ 2, the main character follows

the Voiculescu circular law,

χ ∼ Γ1

and the irreducible representations can be labelled by the colored integers, k = ◦ • • ◦ . . . ,
with re = 1, r◦ = u, r• = ū, and with the involution and the fusion rules being

r̄k = rk̄

rk ⊗ rl =
∑

k=xy,l=ȳz

rxz

where k → k̄ is obtained by reversing the word, and switching the colors.

Proof. This is similar to the proof for O+
N , as follows:

(1) In order to get familiar with the fusion rules, let us first work out a few values of
the representations rk, computed according to the formula in the statement:

re = 1

r◦ = u

r• = ū

r◦◦ = u⊗ u
r◦• = u⊗ ū− 1

r•◦ = ū⊗ u− 1

r•• = ū⊗ ū
...
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(2) Equivalently, we want to decompose into irreducibles the Peter-Weyl representa-
tions, because the above formulae can be written as follows:

u⊗e = re

u⊗◦ = r◦

u⊗• = r•

u⊗◦◦ = r◦◦

u⊗◦• = r◦• + re

u•◦ = r•◦ + re

u•• = r••
...

(3) In order to prove the fusion rule assertion, let us construct a morphism as follows,
by using the polynomiality of the algebra on the left:

Ψ : (E,+,×)→ C(U+
N )

◦ → χ(u)

• → χ(ū)

Our claim is that, given an integer n ≥ 1, assuming that Ψ(x) is the character of an
irreducible representation rx of U+

N , for any x ∈ W having length ≤ n, then Ψ(x) is the
character of a non-null representation of U+

N , for any x ∈ W of length n+ 1.

(4) At n = 1 this is clear. Assume n ≥ 2, and let x ∈ W of length n+ 1. If x contains
a ≥ 2 power of ◦ or of •, for instance if x = z ◦ ◦ y, then we can set:

rx = rz◦ ⊗ r◦y
Assume now that x is an alternating product of ◦ and •. We can assume that x begins

with ◦. Then x = ◦ • ◦ y, with y ∈ W being of length n− 2. Observe that Ψ(z̄) = Ψ(z)∗

holds on the generators {e, ◦, •} of W , so it holds for any z ∈ W . Thus, we have:

< χ(r◦ ⊗ r•◦y), χ(r◦y) > = < χ(r•◦y), χ(r• ⊗ r◦y) >
= < χ(r•◦y),Ψ(• × ◦y) >

= < χ(r•◦y),Ψ(• ◦ y) + Ψ(y) >

= < χ(r•◦y), χ(r•◦y) + χ(ry) >

≥ 1

Now since r◦y is by assumption irreducible, we have r◦y ⊂ r◦⊗ r•◦y. Consider now the
following quantity:

χ(r◦ ⊗ r•◦y)− χ(r◦y) = Ψ(◦ × • ◦ y − ◦y)

= Ψ(x)
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This is then the character of a representation, as desired.

(5) We know from easiness that we have the following estimate:

dim(Fix(u⊗k)) ≤ |NC2(k)|
By identifying as usual (C < X,X∗ >,+, ·) = (E,+, ·), the noncommutative mono-

mials in X,X∗ correspond to the elements of W ⊂ E. Thus, we have, on W :

hΨJ ≤ τJ

(6) We prove now by recurrence on n ≥ 0 that for any z ∈ W having length n, Ψ(z)
is the character of an irreducible representation rz.

(7) At n = 0 we have ΨG(e) = 1. So, assume that our claim holds at n ≥ 0, and let
x ∈ W having length n+ 1. By Proposition 6.19 (1) we have, with z ∈ En:

J(x) = x+ z

Let EN ⊂ E be the set of functions f such that f(x) ∈ N for any x ∈ W . Then
J(α), J(β) ∈ EN , so by multiplicativity J(W ) ⊂ EN . In particular, J(x) ∈ EN . Thus
there exist numbers m(z) ∈ N such that:

J(x) = x+
∑
l(z)≤n

m(z)z

(8) It is clear that for a, b ∈ W we have τ(a× b̄) = δa,b. Thus:

τJ(xx̄) = τ
((
x+

∑
m(z)z

)
×
(
x̄+

∑
m(z)z̄

))
= 1 +

∑
m(z)2

(9) By recurrence and by (3), Ψ(x) is the character of a representation rx. Thus ΨJ(x)
is the character of rx +

∑
l(z)≤nm(z)rz, and we obtain from this:

hΨJ(xx̄) ≥ h(χ(rx)χ(rx)
∗) +

∑
m(z)2

(10) By using (5), (8), (9) we conclude that rx is irreducible, which proves (6).

(11) The fact that the rx are distinct comes from (5). Indeed, W being an orthonormal
basis of ((E,+,×), τ), for any x, y ∈ W , x 6= y we have τ(x× ȳ) = 0, and so:

h(χ(rx ⊗ r̄y)) = hΨJ(xȳ)

≤ τJ(xȳ)

= τ(x× ȳ)

= 0

(12) The fact that we obtain all the irreducible representations is clear too, because
we can now decompose all the tensor powers u⊗k into irreducibles.



148 6. UNITARY GROUPS

(13) Finally, since W is an orthonormal system in ((E,+,×), τ), the set Ψ(W ) =
{χ(rx)|x ∈ W} is an orthonormal system in C(U+

N ), and so we have:

hΨJ = τ0P

Now since the distribution of χ(u) ∈ (C(G), h) is the functional hΨGJ , and the distri-
bution of S+T ∗ ∈ (B(l2(N∗N)), τ0) is the functional τ0P , we have χ ∼ Γ1, as claimed. �

The above proof, from [1], is the original proof, but there are some alternatives as
well, to be discussed in the next section.

6d. Further results

Let us discuss now the relation with O+
N . As mentioned earlier in this chapter, in the

classical case the passage ON → UN is something not trivial, requiring a passage via the
associated Lie algebras. In the free case the situation is very simple, as follows:

Theorem 6.21. We have an identification as follows,

U+
N = Õ+

N

modulo the usual equivalence relation for compact quantum groups.

Proof. We recall from chapter 2 that the free complexification operation G → G̃ is
obtained by multiplying the coefficients of the fundamental representation by a unitary
free from them. We have embeddings as follows, with the first one coming by using the
counit, and with the second one coming from the universality property of U+

N :

O+
N ⊂ Õ+

N ⊂ U+
N

We must prove that the embedding on the right is an isomorphism, and there are
several ways of doing this, all instructive, as follows:

(1) The original argument, from [1], is something quick and advanced, based on the
standard free probability fact that when freely multiplying a semicircular variable by a

Haar unitary we obtain a circular variable. Thus, the main character of Õ+
N is circular,

exactly as for U+
N , and by Peter-Weyl we obtain that the inclusion Õ+

N ⊂ U+
N must be an

isomorphism, modulo the usual equivalence relation for quantum groups.

(2) A version of this proof, not using any prior free probability knowledge, is by using
fusion rules. Indeed, as explained in chapter 2 above, the representations of the dual free
products, and in particular of the free complexifications, can be explicitely computed.

Thus the fusion rules for Õ+
N appear as a “free complexification” of the Clebsch-Gordan

rules for O+
N , and in practice this leads to the same fusion rules as for U+

N . As before, by

Peter-Weyl we obtain from this that the inclusion Õ+
N ⊂ U+

N must be an isomorphism,
modulo the usual equivalence relation for the compact quantum groups.
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(3) A third proof, based on the same idea, and which is perhaps the simplest, makes use
of the easiness property of O+

N , U
+
N only. Indeed, if we denote by v, zv, u the fundamental

representations of the quantum groups O+
N ⊂ Õ+

N ⊂ U+
N , at the level of the associated

Hom spaces we obtain reverse inclusions, as follows:

Hom(v⊗k, v⊗l) ⊃ Hom((zv)⊗k, (zv)⊗l) ⊃ Hom(u⊗k, u⊗l)

The spaces on the left and on the right are known from chapter 4 above, the result
there stating that these spaces are as follows:

span
(
Tπ

∣∣∣π ∈ NC2(k, l)
)
⊃ span

(
Tπ

∣∣∣π ∈ NC2(k, l)
)

Regarding the spaces in the middle, these are obtained from those on the left by “col-
oring”, so we obtain the same spaces as those on the right. Thus, by Tannakian duality,

our embedding Õ+
N ⊂ U+

N is an isomorphism, modulo the usual equivalence relation. �

As a comment here, the proof (3) above, when properly worked out, provides as well

an alternative proof for Theorem 6.20. Indeed, once we know that we have U+
N = Õ+

N , it
follows that the fusion rules for U+

N appear as a “free complexification” of the Clebsch-
Gordan rules for O+

N , and in practice this leads to the formulae in Theorem 6.20.

As an interesting consequence of the above result, we have:

Theorem 6.22. We have an identification as follows,

PO+
N = PU+

N

modulo the usual equivalence relation for compact quantum groups.

Proof. As before, we have several proofs for this result, as follows:

(1) This follows from Theorem 6.21, because we have:

PU+
N = PÕ+

N = PO+
N

(2) We can deduce this as well directly. With notations as before, we have:

Hom
(
(v ⊗ v)k, (v ⊗ v)l

)
= span

(
Tπ

∣∣∣π ∈ NC2((◦•)k, (◦•)l)
)

Hom
(
(u⊗ ū)k, (u⊗ ū)l

)
= span

(
Tπ

∣∣∣π ∈ NC2((◦•)k, (◦•)l)
)

The sets on the right being equal, we conclude that the inclusion PO+
N ⊂ PU+

N pre-
serves the corresponding Tannakian categories, and so must be an isomorphism. �

As a conclusion, the passage O+
N → U+

N is something much simpler than the passage
ON → UN , with this ultimately coming from the fact that the combinatorics of O+

N , U
+
N

is something much simpler than the combinatorics of ON , UN . In addition, all this leads
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as well to the interesting conclusion that the free projective geometry does not fall into
real and complex, but is rather unique and “scalarless”. We will be back to this.

More generally, once again by following [1], we have similar results obtained by replac-
ing O+

N with the more general super-orthogonal quantum groups O+
F from the previous

chapter, which include as well the free symplectic groups Sp+
N . Let us start with:

Theorem 6.23. We have an identification as follows,

U+
N = Õ+

F

valid for any super-orthogonal quantum group O+
F .

Proof. This is a straightforward extension of Theorem 6.21 above, with any of the
proofs there extending to the case of the quantum groups O+

F . See [1]. �

We have as well a projective version of the above result, as follows:

Theorem 6.24. We have an identification as follows,

PU+
N = PO+

F

valid for any super-orthogonal quantum group O+
F .

Proof. This is a straightforward extension of Theorem 6.22, with any of the proofs
there extending to the case of the quantum groups O+

F . Alternatively, the result follows
from Theorem 6.23, by taking the projective versions of the quantum groups there. �

The free symplectic result at N = 2 is particularly interesting, because here we have
Sp+

2 = SU2, and so we obtain that U+
2 is the free complexification of SU2:

Theorem 6.25. We have an identification as follows,

U+
2 = S̃U2

modulo the usual equivalence relation for compact quantum groups.

Proof. As explained above, this follows from Theorem 6.23, and from Sp+
2 = SU2,

via the material explained in chapter 5 above. See [1]. �

Finally, we have a projective version of the above result, as follows:

Theorem 6.26. We have an identification as follows, and this even without using the
standard equivalence relation for the compact quantum groups:

PU+
2 = SO3

A similar result holds for the “left” projective version of U+
2 , constructed by using the

corepresentation ū⊗ u instead of u⊗ ū.
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Proof. We have several assertions here, the idea being as follows:

(1) By using Theorem 6.25 we obtain, modulo the equivalence relation:

PU+
2 = PS̃U2 = PSU2 = SO3

(2) Now since SO3 is coamenable, the above formula must hold in fact in a plain way,
meaning without using the equivalence relation. This can be checked as well directly, by
verifying that the coefficients of u⊗ ū commute indeed.

(3) Finally, the last assertion can be either deduced from the first one, or proved
directly, by using “left” free complexification operations, in all the above. �

We refer to [1] for some further applications of the above N = 2 results, for instance
with structure results regarding the von Neumann algebra L∞(U+

2 ).

We will be back to the quantum groups U+
N in chapter 8 below, with a number of more

advanced probabilistic results about them.

6e. Exercises

As with the exercices from the previous chapter, regarding the quantum group O+
N ,

we will mainly focus here on combinatorics and probability. Let us start with:

Exercise 6.27. Given two C∗-algebras with traces A,B, prove that these algebras are
independent inside A⊗B, and free inside A ∗B.

Here the independence assertion is quite straightforward, and the freeness assertion
requires some preliminary work, in order to construct a trace on A ∗ B. For this latter
construction, the general formulae for freeness discussed in this chapter can be used.

Along the same lines, but at a more concrete level, we have:

Exercise 6.28. Given two discrete groups Γ,Λ, prove that the algebras C∗(Γ), C∗(Λ)
are independent inside C∗(Γ× Λ), and free inside C∗(Γ ∗ Λ).

The results here can be deduced either directly, by verifying the defining formulae for
independence and freeness, or via the result from the previous exercise.

In relation now with the unitary quantum groups, we first have:

Exercise 6.29. Prove that the quantum group inclusion

PO+
N ⊂ PU+

N

is an isomorphism, by showing that the corresponding tensor categories coincide.
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This is something that we already discussed in the above, the problem now being that
of finding an explicit, complete proof for this, by using the above method.

As a second quantum group exercise now, we have:

Exercise 6.30. Work out the details of the identification

U+
2 = S̃U2

and of the corresponding isomorphism at the level of diagonal tori.

To be more precise, the above identification is something that we already know, coming
from abstract results, and the problem now is that of understanding all this explicitly.

Finally, as a third quantum group question, more theoretical, we have:

Exercise 6.31. Work out a theory of left and right projective versions for the compact
quantum groups, and prove that

PU+
2 = SO3

happens, independently of the projective version theory which is used.

Aa before with some other exercises, this is something that we already discussed in
the above, but just briefly, and the problem now is that of clarifying all this, with full
theory and details, examples and counterexamples, and so on.



CHAPTER 7

Easiness, twisting

7a. Partitions, easiness

Our purpose here will be that of extending the main findings about O+
N , U

+
N from the

previous sections to ON , UN too, and to other compact quantum groups as well.

Let us begin with a general definition, from [35], [87], as follows:

Definition 7.1. Let P (k, l) be the set of partitions between an upper colored integer
k, and a lower colored integer l. A collection of subsets

D =
⊔
k,l

D(k, l)

with D(k, l) ⊂ P (k, l) is called a category of partitions when it has the following properties:

(1) Stability under the horizontal concatenation, (π, σ)→ [πσ].
(2) Stability under vertical concatenation (π, σ)→ [σπ], with matching middle symbols.
(3) Stability under the upside-down turning ∗, with switching of colors, ◦ ↔ •.
(4) Each set P (k, k) contains the identity partition || . . . ||.
(5) The sets P (∅, ◦•) and P (∅, •◦) both contain the semicircle ∩.

We have already met a number of such categories, in chapter 4 above. Indeed, the
sets there are categories of pairings, with inclusions between them as follows:

P2

��

NC2
oo

��
P2 NC2
oo

There are many other examples, as for instance P itself, or the category NC ⊂ P of
all noncrossing partitions. We have as well various categories of partitions formed by the

153
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partitions having even blocks. These form a diagram as follows:

Peven

��

NCevenoo

��
Peven NCevenoo

We will gradually explore these examples, in what follows.

The relation with the Tannakian categories comes from:

Proposition 7.2. Each partition π ∈ P (k, l) produces a linear map

Tπ : (CN)⊗k → (CN)⊗l

given by the following formula, where e1, . . . , eN is the standard basis of CN ,

Tπ(ei1 ⊗ . . .⊗ eik) =
∑
j1...jl

δπ

(
i1 . . . ik
j1 . . . jl

)
ej1 ⊗ . . .⊗ ejl

and with the Kronecker type symbols δπ ∈ {0, 1} depending on whether the indices fit or
not. The assignement π → Tπ is categorical, in the sense that we have

Tπ ⊗ Tσ = T[πσ]

TπTσ = N c(π,σ)T[σπ ]

T ∗π = Tπ∗

where c(π, σ) are certain integers, coming from the erased components in the middle.

Proof. This is something that we already know for the pairings, from chapter 4
above. In general, the proof is identical. �

In relation with the quantum groups, we have the following result, from [35]:

Theorem 7.3. Each category of partitions D = (D(k, l)) produces a family of compact
quantum groups G = (GN), one for each N ∈ N, via the formula

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

which produces a Tannakian category, and the Tannakian duality correspondence.

Proof. This follows indeed from Woronowicz’s Tannakian duality, in its “soft” form
from [73], as explained in chapter 4 above. Indeed, let us set:

C(k, l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)
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By using the axioms in Definition 7.1, and the categorical properties of the operation
π → Tπ, from Proposition 7.2 above, we deduce that C = (C(k, l)) is a Tannakian
category. Thus the Tannakian duality applies, and gives the result. �

We already know, from chapter 4 above, that the quantum groups O+
N , U

+
N appear in

this way, with D being respectively NC2,NC2. In general now, let us formulate:

Definition 7.4. A closed subgroup G ⊂ U+
N is called easy when we have

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

for any colored integers k, l, for a certain category of partitions D ⊂ P .

In other words, a compact quantum group is called easy when its Tannakian category
appears in the simplest possible way: from a category of partitions. The terminology is
quite natural, because Tannakian duality is basically our only serious tool.

Observe that the category D is not unique, for instance because at N = 1 all the
categories of partitions produce the same easy quantum group, namely G = {1}. We will
be back to this issue on several occasions, with various results about it.

We will see in what follows that many interesting examples of compact quantum
groups are easy. Moreover, most of the known series of “basic” compact quantum groups,
G = (GN) with N ∈ N, can be in principle made fit into some suitable extensions of the
easy quantum group formalism. We will discuss this too, in what follows.

In practice now, what we know so far, from chapter 4 above, is that UN , U
+
N , ON , O

+
N

are easy. Regarding now the half-liberations, we have here:

Theorem 7.5. We have the following results:

(1) U∗N is easy, coming from the category P∗2 ⊂ P2 of pairings having the property
that, when the legs are relabelled clockwise ◦ • ◦ • . . ., each string connects ◦ − •.

(2) O∗N is easy too, coming from the category P ∗2 ⊂ P2 of pairings having the same
property: when legs are labelled clockwise ◦ • ◦ • . . ., each string connects ◦ − •.

Proof. We can proceed here as in the proof for UN , ON , from chapter 4 above, by
replacing the basic crossing by the half-commutation crossing, as follows:

(1) Regarding U∗N ⊂ U+
N , the corresponding Tannakian category is generated by the

operators Tπ, with π = /\| , taken with all the possible 23 = 8 matching colorings. Since
these latter 8 partitions generate the category P∗2 , we obtain the result.

(2) For O∗N we can proceed similarly, by using the following formula:

O∗N = O+
N ∩ U

∗
N
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At the categorical level, this tells us that the associated Tannakian category is given
by C = span(Tπ|π ∈ D), with:

D =< NC2,P∗2 >= P ∗2

Thus, we are led to the conclusion in the statement. �

Let us collect now the results that we have so far in a single theorem, as follows:

Theorem 7.6. The basic unitary quantum groups, namely

UN // U∗N
// U+

N

ON
//

OO

O∗N
//

OO

O+
N

OO

are all easy, the corresponding categories of partitions being:

P2

��

P∗2oo

��

NC2
oo

��
P2 P ∗2oo NC2

oo

Proof. This follows indeed from the various Brauer type results that we established
so far, in chapter 4 and here. �

We have seen in chapters 5-6 that the easiness property of O+
N , U

+
N leads to some

interesting consequences, at the level of representations, and of the general structure.

Regarding O∗N , U
∗
N , as a main consequence, we can now compute their projective

versions, as part of the following general result:

Theorem 7.7. The projective versions of the basic quantum groups are as follows,

PUN // PUN // PU+
N

PON
//

OO

PUN //

OO

PU+
N

OO

when identifying, in the free case, full and reduced version algebras.
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Proof. In the classical case, there is nothing to prove. Regarding the half-classical
versions, consider the inclusions O∗N , UN ⊂ U∗N . These induce inclusions as follows:

PO∗N , PUN ⊂ PU∗N

Our claim is that these inclusions are isomorphisms. Let indeed u, v, w be the funda-
mental corepresentations of O∗N , UN , U

∗
N . According to Theorem 7.5, we have:

Hom
(
(u⊗ ū)k, (u⊗ ū)l

)
= span

(
Tπ

∣∣∣π ∈ P ∗2 ((◦•)k, (◦•)l)
)

Hom
(
(u⊗ ū)k, (u⊗ ū)l

)
= span

(
Tπ

∣∣∣π ∈ P2((◦•)k, (◦•)l)
)

Hom
(
(u⊗ ū)k, (u⊗ ū)l

)
= span

(
Tπ

∣∣∣π ∈ P∗2 ((◦•)k, (◦•)l)
)

The sets on the right being equal, we conclude that the inclusions O∗N , UN ⊂ U∗N
preserve the corresponding Tannakian categories, and so must be isomorphisms.

Finally, in the free case the result follows either from the free complexification result
from chapter 5, or from Theorem 7.6, by using the same method. �

The above result is quite interesting, philosophically, because it shows that, in the
nocommutative setting, the distinction between R and C becomes “blurred”. We will be
back to this later, with some related noncommutative geometry considerations.

7b. Basic operations

Let us discuss now composition operations. We will be interested in:

Proposition 7.8. The closed subgroups of U+
N are subject to operations as follows:

(1) Intersection: H ∩K is the biggest quantum subgroup of H,K.
(2) Generation: < H,K > is the smallest quantum group containing H,K.

Proof. We must prove that the universal quantum groups in the statement exist
indeed. For this purpose, let us pick writings as follows, with I, J being Hopf ideals:

C(H) = C(U+
N )/I

C(K) = C(U+
N )/J

We can then construct our two universal quantum groups, as follows:

C(H ∩K) = C(U+
N )/ < I, J >

C(< H,K >) = C(U+
N )/(I ∩ J)

Thus, we obtain the result. �

In practice, the operation ∩ can be usually computed by using:
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Proposition 7.9. Assuming H,K ⊂ G, the intersection H ∩K is given by

C(H ∩K) = C(G)/{R,P}

whenever

C(H) = C(G)/R , C(K) = C(G)/P
with R,P being certain sets of polynomial ∗-relations between the coordinates uij.

Proof. This follows from Proposition 7.8 above, or rather from its proof, and from
the following trivial fact, regarding relations and ideals:

I =< R >, J =< P > =⇒ < I, J >=< R,P >

Thus, we obtain the result. �

In order to discuss the generation operation, let us call Hopf image of a representation
C(G)→ A the smallest Hopf algebra quotient C(L) producing a factorization:

C(G)→ C(L)→ A

The fact that this quotient exists indeed is routine, by dividing by a suitable ideal,
and we will be back to this in section 16 below. This notion can be generalized as follows:

Proposition 7.10. Assuming H,K ⊂ G, the quantum group < H,K > is such that

C(G)→ C(H ∩K)→ C(H), C(K)

is the joint Hopf image of the following quotient maps:

C(G)→ C(H), C(K)

Proof. In the particular case from the statement, the joint Hopf image appears as
the smallest Hopf algebra quotient C(L) producing factorizations as follows:

C(G)→ C(L)→ C(H), C(K)

We conclude from this that we have L =< H,K >, as desired. See [50]. �

In the Tannakian setting now, we have the following result:

Theorem 7.11. The intersection and generation operations ∩ and < ,> can be con-
structed via the Tannakian correspondence G→ CG, as follows:

(1) Intersection: defined via CG∩H =< CG, CH >.
(2) Generation: defined via C<G,H> = CG ∩ CH .

Proof. This follows from Proposition 7.8, or rather from its proof, by taking I, J to
be the ideals coming from Tannakian duality, in its soft form, from section 4 above. �

In relation now with our easiness questions, we first have the following result:
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Proposition 7.12. Assuming that H,K are easy, then so is H ∩K, and we have

DH∩K =< DH , DK >

at the level of the corresponding categories of partitions.

Proof. We have indeed the following computation:

CH∩K = < CH , CK >

= < span(DH), span(DK) >

= span(< DH , DK >)

Thus, by Tannakian duality we obtain the result. �

Regarding the generation operation, the situation is more complicated, as follows:

Proposition 7.13. Assuming that H,K are easy, we have an inclusion

< H,K >⊂ {H,K}
coming from an inclusion of Tannakian categories as follows,

CH ∩ CK ⊃ span(DH ∩DK)

where {H,K} is the easy quantum group having as category of partitions DH ∩DK.

Proof. This follows from the definition and properties of the generation operation,
and from the following computation:

C<H,K> = CH ∩ CK
= span(DH) ∩ span(DK)

⊃ span(DH ∩DK)

Indeed, by Tannakian duality we obtain from this all the assertions. �

It is not clear if the inclusions in Proposition 7.13 are isomorphisms or not, and this
not even under a supplementary N >> 0 assumption. Technically speaking, the problem
comes from the fact that the operation π → Tπ does not produce linearly independent
maps. Summarizing, we have some problems here, and we must proceed as follows:

Theorem 7.14. The intersection and easy generation operations ∩ and { , } can be
constructed via the Tannakian correspondence G→ DG, as follows:

(1) Intersection: defined via DG∩H =< DG, DH >.
(2) Easy generation: defined via D{G,H} = DG ∩DH .

Proof. Here the situation is as follows:

(1) This is a true result, coming from Proposition 7.12.

(2) This is more of an empty statement, coming from Proposition 7.13. �
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As already mentioned, there is some interesting mathematics still to be worked out,
in relation with all this. We will be back to this later.

With the above notions in hand, we can formulate a nice result, which improves our
main result so far, namely Theorem 7.6 above, as follows:

Theorem 7.15. The basic unitary quantum groups, namely

UN // U∗N
// U+

N

ON
//

OO

O∗N
//

OO

O+
N

OO

are all easy, and they form an intersection and easy generation diagram, in the sense that
any rectangular subdiagram

P ⊂ Q,R ⊂ S

of the above diagram satisfies the condition P = Q ∩R, {Q,R} = S.

Proof. We know from Theorem 7.6 that the quantum groups in the statement are
easy, the corresponding categories of partitions being as follows:

P2

��

P∗2oo

��

NC2
oo

��
P2 P ∗2oo NC2

oo

Now observe that this latter diagram is an intersection and generation diagram, in the
sense that any rectangular subdiagram P ⊂ Q,R ⊂ S satisfies the following condition:

P = Q ∩R

{Q,R} = S

By using Theorem 7.14, this reformulates into the fact that the diagram of quantum
groups is an intersection and easy generation diagram, as claimed. �

It is possible to further improve the above result, by proving that the diagram there is
actually a plain generation diagram. However, this is something quite technical, requiring
advanced quantum group techniques, and we will comment on this later.

Let us explore now a number of further examples of easy quantum groups, which
appear as “versions” of the basic unitary groups.
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With the convention that a matrix is called bistochastic when its entries sum up to 1,
on each row and each column, we have the following result:

Proposition 7.16. We have the following groups and quantum groups:

(1) BN ⊂ ON , consisting of the orthogonal matrices which are bistochastic.
(2) CN ⊂ UN , consisting of the unitary matrices which are bistochastic.
(3) B+

N ⊂ O+
N , coming via uξ = ξ, where ξ is the all-one vector.

(4) C+
N ⊂ U+

N , coming via uξ = ξ, where ξ is the all-one vector.

Also, we have inclusions BN ⊂ B+
N and CN ⊂ C+

N , which are both liberations.

Proof. Here the fact that BN , CN are indeed groups is clear. As for B+
N , C

+
N , these

are quantum groups as well, because the relation ξ ∈ Fix(u) is categorical.
Finally, observe that for U ∈ UN we have:

Uξ = ξ ⇐⇒ U∗ξ = ξ

By conjugating, these conditions are equivalent as well to:

Ūξ = ξ , U tξ = ξ

Thus U ∈ UN is bistochastic precisely when the following happens:

Uξ = ξ

But this gives the last assertion, and finishes the proof. �

The above quantum groups are all easy, and following [35], [87], we have:

Theorem 7.17. The basic orthogonal and unitary quantum groups and their bistochas-
tic versions are all easy, and they form a diagram as follows,

C+
N

// U+
N

B+
N

//

>>

O+
N

>>

CN //

OO

UN

OO

BN

OO

==

// ON

OO

==

which is an intersection and easy generation diagram, in the sense of Theorem 7.15.

Proof. The first assertion comes from the fact that the all-one vector ξ used in
Proposition 7.16 above is the vector associated to the singleton partition:

ξ = T|
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Indeed, we obtain from this that the quantum groups BN , CN , B
+
N , C

+
N are indeed easy,

appearing from the categories of partitions for ON , UN , O
+
N , U

+
N , by adding singletons.

In practice now, according to this observation, and to Theorem 7.15 above, the corre-
sponding categories of partitions are as follows, where the symbol 12 stands for “singletons
and pairings”, in the same way as the symbol 2 stands for “pairings”:

NC12

}}

��

NC2

~~

oo

��

NC12

��

NC2

��

oo

P12

}}

P2

~~

oo

P12 P2
oo

Now since both this diagram and the one the statement are intersection diagrams, the
quantum groups form an intersection and easy generation diagram, as stated. �

Generally speaking, the above result is quite nice, among others because we are now
exiting the world of pairings. However, there are a few problems with it.

First, we cannot really merge it with Theorem 7.15, as to obtain as a final result a
nice cubic diagram, containing all the quantum groups considered so far. Indeed, the half-
classical versions of the bistochastic quantum groups collapse, and so cannot be inserted
into the cube, as shown by the following result:

Proposition 7.18. The half-classical versions of B+
N , C

+
N are given by:

B+
N ∩O

∗
N = BN , C+

N ∩ U
∗
N = CN

In other words, the half-classical versions collapse to the classical versions.

Proof. This follows from Tannakian duality, by using the fact that when capping the
half-classical crossing with 2 singletons, we obtain the classical crossing. Alternatively,
this follows from a direct computation. �

Yet another problem with the bistochastic groups and quantum groups comes from
the fact that these objects are not really “new”, because, following [81], we have:

Proposition 7.19. We have isomorphisms as follows:

(1) BN ' ON−1.
(2) B+

N ' O+
N−1.

(3) CN ' UN−1.
(4) C+

N ' U+
N−1.
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Proof. Let us pick a matrix F ∈ UN satisfying the following condition, where ξ is
the all-one vector:

Fe0 =
1√
N
ξ

Such matrices exist of course, the basic example being the Fourier matrix:

FN =
1√
N

(wij)ij , w = e2πi/N

We have then the following computation:

uξ = ξ ⇐⇒ uFe0 = Fe0

⇐⇒ F ∗uFe0 = e0

⇐⇒ F ∗uF = diag(1, w)

Thus we have an isomorphism given by wij → (F ∗uF )ij, as desired. �

7c. Ad-hoc twisting

Back to generalities now, let us point out the fact that the easy quantum groups are
not the only ones “coming from partitions”, but are rather the simplest ones having this
property. An interesting and important class of compact quantum groups, which appear
in relation with many questions, are the q = −1 twists of the compact Lie groups. Given
a compact Lie group G ⊂ UN , there are several methods for twisting it, as follows:

(1) Ad-hoc twisting. This basically amounts in replacing the commutation relations
between the coordinates uij ∈ C(G) by anticommutation. In practice, this is
quite tricky, because some of these commutation relations must be kept as such.

(2) Cocycle twisting. This is something more conceptual, and more far-reaching,
both at the level of the general theory and of the examples which can be obtained,
the idea being that of twisting the multiplication of C(G) by a cocycle.

(3) Schur-Weyl twisting. This is a method which works only in the easy case, and
is the most powerful in this case, the idea here being that of using Tannakian
duality, and twisting the construction π → Tπ, by using a signature map.

We will discuss here this material, first by working out the main examples, by using
the ad-hoc strategy explained in (1), and then by getting into more advanced aspects, of
algebraic and representation theory flavor, following the ideas in (2) and (3).

In order to get started now, the best is to deform first the simplest objects that we
have, namely the noncommutative spheres. This can be done as follows:
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Theorem 7.20. We have noncommutative spheres as follows, obtained via the twisted
commutation relations ab = ±ba, and twisted half-commutation relations abc = ±cba,

S̄N−1
C

// S̄N−1
C,∗

// SN−1
C,+

S̄N−1
R

//

OO

S̄N−1
R,∗

//

OO

SN−1
R,+

OO

where the signs at left correspond to the anticommutation of distinct coordinates, and their
adjoints, and the other signs come from functoriality.

Proof. For the spheres on the left, if we want to replace some of the commutation
relations zizj = zjzi by anticommutation relations zizj = −zjzi, a bit of thinking tells us
that the one and only natural choice is:

zizj = −zjzi , ∀i 6= j

In other words, with the notation εij = 1− δij, we must have:

zizj = (−1)εijzjzi

Regarding now the spheres in the middle, the situation is a priori a bit more tricky,
because we have to take into account the various possible collapsings of {i, j, k}. However,
if we want to have embeddings as above, there is only one choice, namely:

zizjzk = (−1)εij+εjk+εikzkzjzi

Thus, we have constructed our spheres, and embeddings, as needed. �

As already mentioned, the above is something quite ad-hoc, but we will be back later
to this, with some more conceptual twisting methods as well. To be more precise, the
alternative idea will be that of twisting the quantum groups first, by using advanced
easiness theory, and then deducing from this the twisting formulae for the spheres.

Let us discuss now the quantum group case. The situation here is considerably more
complicated, because the coordinates uij depend on double indices, and finding for in-
stance the correct signs for uijuklumn = ±umnukluij looks nearly impossible.

However, we can solve this problem by taking some inspiration from the sphere case,
which was already solved. We first have the following result:
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Proposition 7.21. We have quantum groups as follows,

ŪN // U+
N

ŌN
//

OO

O+
N

OO

defined via the following relations,

αβ =

{
−βα for a, b ∈ {uij} distinct, on the same row or column

βα otherwise

with the convention α = a, a∗ and β = b, b∗.

Proof. These quantum groups are well-known, see [16]. The idea indeed is that the
existence of ε, S is clear. Regarding now ∆, set Uij =

∑
k uik ⊗ ukj. For j 6= k we have:

UijUik =
∑
s 6=t

uisuit ⊗ usjutk +
∑
s

uisuis ⊗ usjusk

=
∑
s 6=t

−uituis ⊗ utkusj +
∑
s

uisuis ⊗ (−uskusj)

= −UikUij

Also, for i 6= k, j 6= l we have:

UijUkl =
∑
s 6=t

uisukt ⊗ usjutl +
∑
s

uisuks ⊗ usjusl

=
∑
s 6=t

uktuis ⊗ utlusj +
∑
s

(−uksuis)⊗ (−uslusj)

= UklUij

This finishes the proof in the real case. In the complex case the remaining relations
can be checked in a similar way, by putting ∗ exponents in the middle. �

It remains now to twist O∗N , U
∗
N . In order to do so, given three coordinates a, b, c ∈

{uij}, let us set span(a, b, c) = (r, c), where r, c ∈ {1, 2, 3} are the number of rows and
columns spanned by a, b, c. In other words, if we write a = uij, b = ukl, c = upq then
r = #{i, k, p} and l = #{j, l, q}. With these conventions, we have the following result:



166 7. EASINESS, TWISTING

Proposition 7.22. We have intermediate quantum groups as follows,

ŪN // Ū∗N
// U+

N

ŌN
//

OO

Ō∗N
//

OO

O+
N

OO

defined via the following relations,

αβγ =

{
−γβα for a, b, c ∈ {uij} with span(a, b, c) = (≤ 2, 3) or (3,≤ 2)

γβα otherwise

with the conventions α = a, a∗, β = b, b∗ and γ = c, c∗.

Proof. The rules for the various commutation/anticommutation signs are:

r\c 1 2 3
1 + + −
2 + + −
3 − − +

We first prove the result for Ō∗N . The construction of the counit, ε(uij) = δij, requires
the Kronecker symbols δij to commute/anticommute according to the above table. Equiv-
alently, we must prove that the situation δijδklδpq = 1 can appear only in a case where
the above table indicates “+”. But this is clear, because δijδklδpq = 1 implies r = c.

The construction of the antipode S is clear too, because this requires the choice of our
± signs to be invariant under transposition, and this is true, the table being symmetric.

With Uij =
∑

k uik ⊗ ukj, we have the following computation:

UiaUjbUkc =
∑
xyz

uixujyukz ⊗ uxauybuzc

=
∑
xyz

±ukzujyuix ⊗±uzcuybuxa

= ±UkcUjbUia
We must prove that, when examining the precise two ± signs in the middle formula,

their product produces the correct ± sign at the end. The point now is that both these
signs depend only on s = span(x, y, z), and for s = 1, 2, 3 respectively:

– For a (3, 1) span we obtain +−, +−, −+, so a product − as needed.
– For a (2, 1) span we obtain ++, ++, −−, so a product + as needed.
– For a (3, 3) span we obtain −−, −−, ++, so a product + as needed.
– For a (3, 2) span we obtain +−, +−, −+, so a product − as needed.
– For a (2, 2) span we obtain ++, ++, −−, so a product + as needed.
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Together with the fact that our problem is invariant under (r, c) → (c, r), and with
the fact that for a (1, 1) span there is nothing to prove, this finishes the proof. For Ū∗N
the proof is similar, by putting ∗ exponents in the middle. �

The above results can be summarized as follows:

Theorem 7.23. We have quantum groups as follows, obtained via the twisted com-
mutation relations ab = ±ba, and twisted half-commutation relations abc = ±cba,

ŪN // Ū∗N
// U+

N

ŌN
//

OO

Ō∗N
//

OO

O+
N

OO

where the signs at left correspond to anticommutation for distinct entries on rows and
columns, and commutation otherwise, and the other signs come from functoriality.

Proof. As explained above, there is only one reasonable way of arranging the signs,
as for everything to work fine. So let us go ahead now, and present the solution.

Given abstract coordinates a, b, c, . . . ∈ {uij}, let us set span(a, b, c, . . .) = (r, c), where
r, c ∈ {1, 2, 3, . . .} are the numbers of rows and columns spanned by a, b, c, . . ., inside the
matrix u = (uij). Also, we make the conventions α = a, a∗, β = b, b∗, and so on.

With these conventions, the relations for the quantum groups on the left, which are
the only possible ones, as for having a good compatibility with the spheres, are:

αβ =

{
−βα for a, b ∈ {uij} with span(a, b) = (1, 2) or (2, 1)

βα otherwise

As for the relations for the quantum groups in the middle, once again these are uniquely
determined by various functoriality considerations, and must be as follows:

αβγ =

{
−γβα for a, b, c ∈ {uij} with span(a, b, c) = (≤ 2, 3) or (3,≤ 2)

γβα otherwise

Summarizing, we are done with the difficult part, namely guessing the signs. What is
left is to prove that the above relations produce indeed quantum groups, with inclusions
between them, as in the statement. But this follows from the computations from the
proof of Proposition 7.21 and Proposition 7.22 above. �

7d. Schur-Weyl twisting

Our purpose now will be that of showing that the quantum groups constructed above
can be in fact defined in a more conceptual way, as “Schur-Weyl twists”. Let Peven(k, l) ⊂
P (k, l) be the set of partitions with blocks having even size, and NCeven(k, l) ⊂ Peven(k, l)
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be the subset of noncrossing partitions. Also, we use the standard embedding Sk ⊂
P2(k, k), via the pairings having only up-to-down strings. Given a partition τ ∈ P (k, l),
we call “switch” the operation which consists in switching two neighbors, belonging to
different blocks, in the upper row, or in the lower row. With these conventions, we have:

Proposition 7.24. There is a signature map ε : Peven → {−1, 1}, given by

ε(τ) = (−1)c

where c is the number of switches needed to make τ noncrossing. In addition:

(1) For τ ∈ Sk, this is the usual signature.
(2) For τ ∈ P2 we have (−1)c, where c is the number of crossings.
(3) For τ ≤ π ∈ NCeven, the signature is 1.

Proof. In order to show that the signature map ε is well-defined, we must prove
that the number c in the statement is well-defined modulo 2. It is enough to perform the
verification for the noncrossing partitions. More precisely, given τ, τ ′ ∈ NCeven having
the same block structure, we must prove that the number of switches c required for the
passage τ → τ ′ is even.

In order to do so, observe that any partition τ ∈ P (k, l) can be put in “standard
form”, by ordering its blocks according to the appearence of the first leg in each block,
counting clockwise from top left, and then by performing the switches as for block 1 to
be at left, then for block 2 to be at left, and so on. Here the required switches are also
uniquely determined, by the order coming from counting clockwise from top left.

Here is an example of such an algorithmic switching operation:

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

→

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

→

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

→

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

The point now is that, under the assumption τ ∈ NCeven(k, l), each of the moves
required for putting a leg at left, and hence for putting a whole block at left, requires an
even number of switches. Thus, putting τ is standard form requires an even number of
switches. Now given τ, τ ′ ∈ NCeven having the same block structure, the standard form
coincides, so the number of switches c required for the passage τ → τ ′ is indeed even.

Regarding now the remaining assertions, these are all elementary:

(1) For τ ∈ Sk the standard form is τ ′ = id, and the passage τ → id comes by
composing with a number of transpositions, which gives the signature.

(2) For a general τ ∈ P2, the standard form is of type τ ′ = | . . . |∪...∪∩...∩, and the passage
τ → τ ′ requires c mod 2 switches, where c is the number of crossings.
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(3) Assuming that τ ∈ Peven comes from π ∈ NCeven by merging a certain number of
blocks, we can prove that the signature is 1 by proceeding by recurrence. �

We can use the above signature map, as follows:

Definition 7.25. Associated to a partition π ∈ Peven(k, l) is the linear map

T̄π : (CN)⊗k → (CN)⊗l

given by the following formula, with e1, . . . , eN being the standard basis of CN ,

T̄π(ei1 ⊗ . . .⊗ eik) =
∑
j1...jl

δ̄π

(
i1 . . . ik
j1 . . . jl

)
ej1 ⊗ . . .⊗ ejl

and where δ̄π ∈ {−1, 0, 1} is δ̄π = ε(τ) if τ ≥ π, and δ̄π = 0 otherwise, with τ = ker
(
i
j

)
.

In other words, what we are doing here is to add signatures to the usual formula of
Tπ. Indeed, observe that the usual formula for Tπ can be written as folllows:

Tπ(ei1 ⊗ . . .⊗ eik) =
∑

j:ker(ij)≥π

ej1 ⊗ . . .⊗ ejl

Now by inserting signs, coming from the signature map ε : Peven → {±1}, we are led
to the following formula, which coincides with the one given above:

T̄π(ei1 ⊗ . . .⊗ eik) =
∑
τ≥π

ε(τ)
∑

j:ker(ij)=τ

ej1 ⊗ . . .⊗ ejl

We will be back later to this analogy, with more details on what can be done with it.

For the moment, we must first prove a key categorical result, as follows:

Proposition 7.26. The assignement π → T̄π is categorical, in the sense that

T̄π ⊗ T̄σ = T̄[πσ] , T̄πT̄σ = N c(π,σ)T̄[σπ ] , T̄ ∗π = T̄π∗

where c(π, σ) are certain positive integers.

Proof. We have to go back to the proof from the untwisted case, from section 4
above, and insert signs. We have to check three conditions, as follows:

1. Concatenation. In the untwisted case, this was based on the following formula:

δπ

(
i1 . . . ip
j1 . . . jq

)
δσ

(
k1 . . . kr
l1 . . . ls

)
= δ[πσ]

(
i1 . . . ip k1 . . . kr
j1 . . . jq l1 . . . ls

)
In the twisted case, it is enough to check the following formula:

ε

(
ker

(
i1 . . . ip
j1 . . . jq

))
ε

(
ker

(
k1 . . . kr
l1 . . . ls

))
= ε

(
ker

(
i1 . . . ip k1 . . . kr
j1 . . . jq l1 . . . ls

))
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Let us denote by τ, ν the partitions on the left, so that the partition on the right is
of the form ρ ≤ [τν]. Now by switching to the noncrossing form, τ → τ ′ and ν → ν ′, the
partition on the right transforms into:

ρ→ ρ′ ≤ [τ ′ν ′]

Now since the partition [τ ′ν ′] is noncrossing, we can use Proposition 7.24 (3), and we
obtain the result.

2. Composition. In the untwisted case, this was based on the following formula:∑
j1...jq

δπ

(
i1 . . . ip
j1 . . . jq

)
δσ

(
j1 . . . jq
k1 . . . kr

)
= N c(π,σ)δ[πσ ]

(
i1 . . . ip
k1 . . . kr

)
In order to prove now the result in the twisted case, it is enough to check that the

signs match. More precisely, we must establish the following formula:

ε

(
ker

(
i1 . . . ip
j1 . . . jq

))
ε

(
ker

(
j1 . . . jq
k1 . . . kr

))
= ε

(
ker

(
i1 . . . ip
k1 . . . kr

))
Let τ, ν be the partitions on the left, so that the partition on the right is of the form

ρ ≤ [τν ]. Our claim is that we can jointly switch τ, ν to the noncrossing form. Indeed, we
can first switch as for ker(j1 . . . jq) to become noncrossing, and then switch the upper legs
of τ , and the lower legs of ν, as for both these partitions to become noncrossing. Now
observe that when switching in this way to the noncrossing form, τ → τ ′ and ν → ν ′, the
partition on the right transforms into:

ρ→ ρ′ ≤ [τ
′

ν′ ]

Since the partition [τ
′

ν′ ] is noncrossing, we can apply Proposition 7.24 (3), and we obtain
the result.

3. Involution. Here we must prove the following formula:

δ̄π

(
i1 . . . ip
j1 . . . jq

)
= δ̄π∗

(
j1 . . . jq
i1 . . . ip

)
But this is clear from the definition of δ̄π, and we are done. �

As a conclusion, our twisted construction π → T̄π has all the needed properties for
producing quantum groups, via Tannakian duality. Thus, we can formulate:

Theorem 7.27. Given a category of partitions D ⊂ Peven, the construction

Hom(u⊗k, u⊗l) = span
(
T̄π

∣∣∣π ∈ D(k, l)
)

produces via Tannakian duality a quantum group ḠN ⊂ U+
N , for any N ∈ N.
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Proof. This follows indeed from the Tannakian results from section 4 above, exactly
as in the easy case, by using this time Proposition 7.26 as technical ingredient.

To be more precise, Proposition 7.26 shows that the linear spaces on the right form a
Tannakian category, and so the results in chapter 4 apply, and give the result. �

We can unify the easy quantum groups, or at least the examples coming from categories
D ⊂ Peven, with the quantum groups constructed above, as follows:

Definition 7.28. A closed subgroup G ⊂ U+
N is called q-easy, or quizzy, with defor-

mation parameter q = ±1, when its tensor category appears as follows,

Hom(u⊗k, u⊗l) = span
(
Ṫπ

∣∣∣π ∈ D(k, l)
)

for a certain category of partitions D ⊂ Peven, where, for q = −1, 1:

Ṫ = T̄ , T

The Schur-Weyl twist of G is the quizzy quantum group Ḡ ⊂ U+
N obtained via q → −q.

We will see later on that the easy quantum group associated to Peven itself is the
hyperochahedral group HN , and so that our assumption D ⊂ Peven, replacing D ⊂ P ,
simply corresponds to HN ⊂ G, replacing the usual condition SN ⊂ G.

In relation now with the basic quantum groups, we first have the following result:

Proposition 7.29. The linear map associated to the basic crossing is:

T̄/\(ei ⊗ ej) =

{
−ej ⊗ ei for i 6= j

ej ⊗ ei otherwise

The linear map associated to the half-liberating permutation is:

T̄/\| (ei ⊗ ej ⊗ ek) =

{
−ek ⊗ ej ⊗ ei for i, j, k distinct

ek ⊗ ej ⊗ ei otherwise

Also, for any noncrossing pairing π ∈ NC2, we have T̄π = Tπ.

Proof. We have to compute the signature of the various partitions involved, and we
can use here (1,2,3) in Proposition 7.24. We make the convention that the strings which
cross and which are of the same type, e.g. dotted, correspond to the same block.

Regarding the basic crossing and its collapsed version, the signatures are:

◦ ◦

◦ ◦
→ −1

◦ ◦

◦ ◦
→ 1
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But this gives the first formula in the statement. Regarding now the second formula,
this follows from the following signature computations, obtained by counting the crossings,
in the first case, by switching twice as to put the partition in noncrossing form, in the
next 3 cases, and by observing that the partition is noncrossing, in the last case:

◦ ◦ ◦

◦ ◦ ◦
→ −1

◦ ◦ ◦

◦ ◦ ◦
→ 1

◦ ◦ ◦

◦ ◦ ◦
→ 1

◦ ◦ ◦

◦ ◦ ◦
→ 1

◦ ◦ ◦

◦ ◦ ◦
→ 1

Finally, the last assertion follows from Proposition 7.24 (3). �

The relation with the basic quantum groups comes from:

Proposition 7.30. For an orthogonal quantum group G, the following hold:

(1) Ṫ/\ ∈ End(u⊗2) precisely when G ⊂ ȮN .

(2) Ṫ/\| ∈ End(u⊗3) precisely when G ⊂ Ȯ∗N .

Proof. We know this in the untwisted case. In the twisted case, the proof is as
follows:

(1) By using the formula of T̄/\ in Proposition 7.29, we obtain:

(T̄/\ ⊗ 1)u⊗2(ei ⊗ ej ⊗ 1) =
∑
k

ek ⊗ ek ⊗ ukiukj

−
∑
k 6=l

el ⊗ ek ⊗ ukiulj

We have as well the following formula:

u⊗2(T̄/\ ⊗ 1)(ei ⊗ ej ⊗ 1) =

{∑
kl el ⊗ ek ⊗ uliuki if i = j

−
∑

kl el ⊗ ek ⊗ uljuki if i 6= j
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For i = j the conditions are u2
ki = u2

ki for any k, and ukiuli = −uliuki for any k 6= l.
For i 6= j the conditions are ukiukj = −ukjuki for any k, and ukiulj = uljuki for any k 6= l.
Thus we have exactly the relations between the coordinates of ŌN , and we are done.

(2) By using the formula of T̄/\| in Proposition 7.29, we obtain:

(T̄/\| ⊗ 1)u⊗2(ei ⊗ ej ⊗ ek ⊗ 1)

=
∑

abc not distinct

ec ⊗ eb ⊗ ea ⊗ uaiubjuck

−
∑

a,b,c distinct

ec ⊗ eb ⊗ ea ⊗ uaiubjuck

On the other hand, we have as well the following formula:

u⊗2(T̄/\| ⊗ 1)(ei ⊗ ej ⊗ ek ⊗ 1)

=

{∑
abc ec ⊗ eb ⊗ ea ⊗ uckubjuai for i, j, k not distinct

−
∑

abc ec ⊗ eb ⊗ ea ⊗ uckubjuai for i, j, k distinct

For i, j, k not distinct the conditions are uaiubjuck = uckubjuai for a, b, c not dis-
tinct, and uaiubjuck = −uckubjuai for a, b, c distinct. For i, j, k distinct the conditions
are uaiubjuck = −uckubjuai for a, b, c not distinct, and uaiubjuck = uckubjuai for a, b, c
distinct. Thus we have the relations between the coordinates of Ō∗N , and we are done. �

We can now formulate our first Schur-Weyl twisting result, as follows:

Theorem 7.31. The twisted quantum groups introduced before,

ŪN // Ū∗N
// U+

N

ŌN
//

OO

Ō∗N
//

OO

O+
N

OO

appear as twists of the basic quantum groups, namely

UN // U∗N
// U+

N

ŌN
//

OO

Ō∗N
//

OO

O+
N

OO

via the Schur-Weyl twisting procedure described above.

Proof. This follows indeed from Proposition 7.30 above. �
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Summarizing, we have now a conceptual approach to the twisting of the basic unitary
quantum groups.

In order for our twisting theory to be complete, let us discuss as well the computation
of the quantum isometry groups of the twisted spheres. We have here:

Theorem 7.32. The quantum isometry groups of the twisted spheres,

S̄N−1
C

// S̄N−1
C,∗

// SN−1
C,+

S̄N−1
R

//

OO

S̄N−1
R,∗

//

OO

SN−1
R,+

OO

are the above twisted orthogonal and unitary groups.

Proof. The proof in the classical twisted cases is similar to the proof in the classical
untwisted cases, by adding signs. Indeed, for the twisted real sphere S̄N−1

R we have:

Φ(zizj) =
∑
k

z2
k ⊗ ukiukj

+
∑
k<l

zkzl ⊗ (ukiulj − uliukj)

We deduce that with [[a, b]] = ab+ ba we have the following formula:

Φ([[zi, zj]]) =
∑
k

z2
k ⊗ [[uki, ukj]]

+
∑
k<l

zkzl ⊗ ([uki, ulj]− [uli, ukj])

Now assuming i 6= j, we have [[zi, zj]] = 0, and we therefore obtain:

[[uki, ukj]] = 0 , ∀k

[uki, ulj] = [uli, ukj] , ∀k < l

By using now the standard trick, namely applying the antipode and then relabelling,
the latter relation gives:

[uki, ulj] = 0

Thus, we obtain the result. The proof for S̄N−1
C is similar, by using the above-

mentioned categorical trick, in order to deduce from the relations ab = ±ba the remaining
relations ab∗ = ±b∗a. Finally, the proof in the half-classical twisted cases is similar to the
proof in the half-classical untwisted cases, by adding signs where needed. �
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As a conclusion, we have a quite interesting notion of easy quantum group, basically
coming from the Brauer philosophy for ON , UN , and notably covering O+

N , U
+
N , along with

some theory and examples, and with a twisting extension as well.

We will be back to this later on, in chapters 11-12 below, with a negative result this
time, stating that the easy quantum reflection groups are invariant under twisting.

7e. Exercises

Here is a first instructive exercise, of rather algebraic and abstract nature, in relation
with the notion of easiness that we developed in the above:

Exercise 7.33. Prove that any closed subgroup G ⊂ U+
N has an “easy envelope”

G ⊂ G̃ ⊂ U+
N

which is the smallest easy quantum group containing G.

Obviously, this is somehing of Tannakian nature. The problem is that of finding the
precise Tannakian formulation of the exercise, and then solving it.

In relation with the product operations, we have:

Exercise 7.34. Prove that if H,K are easy then we have inclusions as follows,

< H,K >⊂ ˜< H,K > ⊂ {H,K}

where the middle object is an easy envelope, as constructed above.

As before, this is something of Tannakian nature. As a comment here, this improves
the results that we have so far, and refines the questions which remain to be solved.
Indeed, it is not clear that either of the above inclusions must be an isomorphism.

Here is a third exercise regarding easiness, which is a key one:

Exercise 7.35. Prove that the usual symmetric group, regarded as group of permuta-
tion matrices,

SN ⊂ ON

is easy, with the corresponding category of partitions being P itself.

This is something quite fundamental, that we will discuss in detail later on. However,
the proof is not that difficult, and can be certainly be worked out.

Along the same lines, and making now the link with the twisting, we have:
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Exercise 7.36. Prove that the hyperoctahedral group, which is by definition the sym-
metry group of the N-hypercube, when regarded as group of orthogonal matrices,

HN ⊂ ON

is easy, with the corresponding category of partitions being Peven.

As before with SN , this is something that we will discuss in detail later on. We will
discuss as well later free analogues of these results, involving NC,NCeven.

Here is now a combinatorial exercise regarding signatures and twisting:

Exercise 7.37. Find a general formula connecting the linear maps

Tπ , T̄π

involving the Möbius function of the partitions.

To be more precise, we have already seen in the above a number of formulae for
the maps T̄π, expressed as linear combinations of maps Tπ. The problem is that of
understanding how the correspondence between the maps T̄π and the maps Tπ works, and
since all this is about partitions, the answer can only be a Möbius type formula.

Here is now an exercise regarding the quantum isometry groups:

Exercise 7.38. Work out the missing details in the proof of Theorem 7.32, by taking
the untwisted computations, and adding signs where needed.

Obviously, this is something self-explanatory, which can only work, with a bit of
patience, and care for the details.

Finally, here is an instructive exercise, whose complete solution might take however
some time, regarding all the quantum groups that we constructed so far:

Exercise 7.39. Work out what happens at N = 2, in connection with all the easy
quantum groups introduced so far, and with their twists as well.

To be more precise, we have met many examples of easy quantum groups GN , and the
problem is that of understanding, for each of these quantum groups, if G2 is something
well-known. Generally speaking, the answer here is yes, but all this is worth to be worked
out in detail. After this, the question regarding the twists makes sense as well.



CHAPTER 8

Probabilistic aspects

8a. Free probability

We discuss here the computation of the various integrals over the compact quantum
groups, with respect to the Haar measure. In order to formulate our results in a conceptual
form, we use the modern measure theory language, namely probability theory:

Definition 8.1. Let X be a probability space.

(1) The real functions f ∈ L∞(X) are called random variables.
(2) The moments of such a variable are the numbers Mk(f) = E(fk).
(3) The law of such a variable is the measure given by Mk(f) =

∫
R x

kdµf (x).

Here the fact that µf exists indeed is not trivial. By linearity, we would like to have
a real probability measure making hold the following formula, for any P ∈ R[X]:

E(P (f)) =

∫
R
P (x)dµf (x)

By using a continuity argument, it is enough to have this for the characteristic func-
tions χI of the measurable sets I ⊂ R. Thus, we would like to have µf such that:

P(f ∈ I) = µf (I)

But this latter formula can serve as a definition for µf , and so we are done.

Next in line, we need to talk about independence. Once again with the idea of doing
things a bit abstractly, the definition here is as follows:

Definition 8.2. Two variables f, g ∈ L∞(X) are called independent when

E(fkgl) = E(fk) · E(gl)

happens, for any k, l ∈ N.

Once again, this definition hides some non-trivial things. Indeed, by linearity, we
would like to have a formula as follows, valid for any polynomials P,Q ∈ R[X]:

E(P (f)Q(g)) = E(P (f)) · E(Q(g))

177
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By continuity, it is enough to have this for characteristic functions of type χI , χJ , with
I, J ⊂ R. Thus, we are led to the usual definition of independence, namely:

P(f ∈ I, g ∈ J) = P(f ∈ I) · P(g ∈ J)

Thus, our definition makes sense.

Here is now our first result, providing tools for the study of the independence:

Theorem 8.3. Assume that f, g ∈ L∞(X) are independent.

(1) We have µf+g = µf ∗ µg, where ∗ is the convolution of measures.
(2) We have Ff+g = FfFg, where Ff (x) = E(eixf ) is the Fourier transform.

Proof. This is something very standard, the idea being as follows:

(1) We have the following computation, using the independence of f, g:

Mk(f + g) = E((f + g)k)

=
∑
l

(
k

l

)
E(f lgk−l)

=
∑
l

(
k

l

)
Ml(f)Mk−l(g)

On the other hand, by using the Fubini theorem, we have as well:∫
R
xkd(µf ∗ µg)(x) =

∫
R×R

(x+ y)kdµf (x)dµg(y)

=
∑
l

(
k

l

)∫
R
xkdµf (x)

∫
R
yldµg(y)

=
∑
l

(
k

l

)
Ml(f)Mk−l(g)

Thus the measures µf+g and µf ∗ µg have the same moments, and so coincide.

(2) We have indeed the following computation, using (1) and Fubini:

Ff+g(x) =

∫
R
eixydµf+g(y)

=

∫
R×R

eix(y+z)dµf (y)dµg(z)

=

∫
R
eixydµf (y)

∫
R
eixzdµg(z)

= Ff (x)Fg(x)

Thus, we are led to the conclusion in the statement. �
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Let us discuss now the normal distributions. We have here:

Definition 8.4. The normal law of parameter 1 is the following measure:

g1 =
1√
2π
e−x

2/2dx

More generally, the normal law of parameter t > 0 is the following measure:

gt =
1√
2πt

e−x
2/2tdx

These are also called Gaussian distributions, with “g” standing for Gauss.

As a first remark, the above laws have indeed mass 1, as they should. This follows
indeed from the Gauss formula, which gives, with x = y/

√
2t:∫

R
e−y

2/2tdy =
√

2πt

Generally speaking, the normal laws appear as bit everywhere, in real life. The reasons
behind this phenomenon come from the Central Limit Theorem (CLT), that we will
explain in a moment, after developing the needed general theory. We first have:

Proposition 8.5. We have the following formula, for any t > 0:

Fgt(x) = e−tx
2/2

In particular, the normal laws satisfy gs ∗ gt = gs+t, for any s, t > 0.

Proof. The Fourier transform formula can be established as follows:

Fgt(x) =
1√
2πt

∫
R
e−y

2/2t+ixydy

=
1√
2πt

∫
R
e−(y/

√
2t−
√
t/2ix)2−tx2/2dy

=
1√
π

∫
R
e−z

2−tx2/2dz

As for the last assertion, this follows from the linearization result from Theorem 8.3
(2) above, because logFgt is linear in t. �

We are now ready to state and prove the CLT, as follows:

Theorem 8.6 (CLT). Given random variables f1, f2, f3, . . . ∈ L∞(X) which are i.i.d.,
centered, and with variance t > 0, we have, with n→∞, in moments,

1√
n

n∑
i=1

fi ∼ gt

where gt is the Gaussian law of parameter t, having as density 1√
2πt
e−y

2/2tdy.
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Proof. We have the following formula for Ff (x) = E(eixf ), in terms of moments:

Ff (x) =
∞∑
k=0

ikMk(f)

k!
xk

Thus, the Fourier transform of the variable in the statement is:

F (x) =

[
Ff

(
x√
n

)]n
=

[
1− tx2

2n
+O(n−2)

]n
' e−tx

2/2

But this latter function being the Fourier transform of gt, we obtain the result. �

Let us record as well the complex CLT. This is as follows:

Theorem 8.7 (Complex CLT). Given variables f1, f2, f3, . . . ∈ L∞(X) whose real and
imaginary parts are i.i.d., centered, and with variance t > 0, we have, with n→∞,

1√
n

n∑
i=1

fi ∼ Gt

where Gt is the complex Gaussian law of parameter t, appearing as the law of 1√
2
(a+ ib),

where a, b are real and independent, each following the law gt.

Proof. This is clear from Theorem 8.6 above, by taking real and imaginary parts of
all the variables involved. �

We will be back to more classical probability results later on. In the noncommutative
setting now, the starting definition is as follows:

Definition 8.8. Let A be a C∗-algebra, given with a trace tr.

(1) The elements a ∈ A are called random variables.
(2) The moments of such a variable are the numbers Mk(a) = tr(ak).
(3) The law of such a variable is the functional µ : P → tr(P (a)).

Here k = ◦ • • ◦ . . . is as usual a colored integer, and the powers ak are defined by
multiplicativity and the usual formulae, namely:

a∅ = 1 , a◦ = a , a• = a∗

As for the polynomial P , this is a noncommuting ∗-polynomial in one variable:

P ∈ C < X,X∗ >



8A. FREE PROBABILITY 181

Observe that the law is uniquely determined by the moments, because:

P (X) =
∑
k

λkX
k =⇒ µ(P ) =

∑
k

λkMk(a)

Generally speaking, the above definition is something quite abstract, but there is no
other way of doing things, at least at this level of generality. We have indeed:

Theorem 8.9. Given a C∗-algebra with a faithful trace (A, tr), any normal variable,

aa∗ = a∗a

has a usual law, namely a complex probability measure µ ∈ P(C) satisfying:

tr(ak) =

∫
C
zkdµ(z)

This law is unique, and is supported by the spectrum σ(a) ⊂ C. In the non-normal case,
aa∗ 6= a∗a, such a usual law does not exist.

Proof. This is something that we already know from chapter 6 above:

(1) This comes from the Gelfand theorem, which gives < a >= C(σ(a)), and then
the Riesz theorem, which shows that the functional f(a) → tr(f(a)) must come from a
probability measure µ on the spectrum σ(a), as follows:

tr(f(a)) =

∫
σ(a)

f(z)dµ(z)

(2) This comes from a direct computation, once again explained in detail in chapter 6
above, which shows that we have tr(aa∗aa∗) > tr(aaa∗a∗) for aa∗ 6= a∗a. �

Summarizing, we have a beginning of a theory, generalizing that of the compact prob-
ability spaces (X,µ). Let us discuss now the independence, and its noncommutative
versions. As a starting point here, we have the following notion:

Definition 8.10. Two subalgebras B,C ⊂ A are called independent when the follow-
ing condition is satisfied, for any b ∈ B and c ∈ C:

tr(bc) = tr(b)tr(c)

Equivalently, the following condition must be satisfied, for any b ∈ B and c ∈ C:

tr(b) = tr(c) = 0 =⇒ tr(bc) = 0

Also, two variables b, c ∈ A are called independent when the algebras that they generate,

B =< b > , C =< c >

are independent inside A, in the above sense.
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Observe that the above two conditions are indeed equivalent. In one sense this is clear,
and in the other sense, with a′ = a− tr(a), this follows from:

tr(bc) = tr[(b′ + tr(b))(c′ + tr(c))]

= tr(b′c′) + t(b′)tr(c) + tr(b)tr(c′) + tr(b)tr(c)

= tr(b′c′) + tr(b)tr(c)

= tr(b)tr(c)

The other remark is that the above notion generalizes indeed the usual notion of
independence, from the classical case, the result here being as follows:

Theorem 8.11. Given two compact measured spaces Y, Z, the algebras

C(Y ) ⊂ C(Y × Z) , C(Z) ⊂ C(Y × Z)

are independent in the above sense, and a converse of this fact holds too.

Proof. We have two assertions here, the idea being as follows:

(1) First of all, given two arbitrary compact spaces Y, Z, we have embeddings of
algebras as in the statement, defined by the following formulae:

f → [(y, z)→ f(y)] , g → [(y, z)→ g(z)]

In the measured space case now, the Fubini theorems tells us that:∫
Y×Z

f(y)g(z) =

∫
Y

f(y)

∫
Z

g(z)

Thus, the algebras C(Y ), C(Z) are independent in the sense of Definition 8.3.

(2) Conversely now, assume that B,C ⊂ A are independent, with A being commuta-
tive. Let us write our algebras as follows, with X, Y, Z being certain compact spaces:

A = C(X) , B = C(Y ) , C = C(Z)

In this picture, the inclusions B,C ⊂ A must come from quotient maps, as follows:

p : Z → X , q : Z → Y

Regarding now the independence condition from Definition 8.3, in the above picture,
this tells us that the folowing equality must happen:∫

X

f(p(x))g(q(x)) =

∫
X

f(p(x))

∫
X

g(q(x))

Thus we are in a Fubini type situation, and we obtain from this Y × Z ⊂ X. Thus,
the independence of B,C ⊂ A appears as in (1) above. �

It is possible to develop some theory here, but this is ultimately not very interesting.
As a much more interesting notion now, we have the freeness:
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Definition 8.12. Two subalgebras B,C ⊂ A are called free when the following con-
dition is satisfied, for any bi ∈ B and ci ∈ C:

tr(bi) = tr(ci) = 0 =⇒ tr(b1c1b2c2 . . .) = 0

Also, two variables b, c ∈ A are called free when the algebras that they generate,

B =< b > , C =< c >

are free inside A, in the above sense.

In short, freeness appears by definition as a kind of “free analogue” of independence,
taking into account the fact that the variables do not necessarily commute. We will see
in a moment examples, theory, applications, and other reasons for studying freeness.

As a first observation, of theoretical nature, there is actually a certain lack of symmetry
between Definition 8.10 and Definition 8.12, because in contrast to the former, the latter
does not include an explicit formula for the quantities of the following type:

tr(b1c1b2c2 . . .)

However, this is not an issue, and is simply due to the fact that the formula in the
free case is something more complicated, the result being as follows:

Proposition 8.13. Assuming that B,C ⊂ A are free, the restriction of tr to < B,C >
can be computed in terms of the restrictions of tr to B,C. To be more precise,

tr(b1c1b2c2 . . .) = P
(
{tr(bi1bi2 . . .)}i, {tr(cj1cj2 . . .)}j

)
where P is certain polynomial in several variables, depending on the length of the word
b1c1b2c2 . . ., and having as variables the traces of products of type

bi1bi2 . . . , cj1cj2 . . .

with the indices being chosen increasing, i1 < i2 < . . . and j1 < j2 < . . .

Proof. This is something quite theoretical, so let us begin with an example. Our
claim is that if b, c are free then, exactly as in the case where we have independence:

tr(bc) = tr(b)tr(c)

Indeed, let us go back to the computation performed after Definition 8.10, which was
as follows, with the convention a′ = a− tr(a):

tr(bc) = tr[(b′ + tr(b))(c′ + tr(c))]

= tr(b′c′) + t(b′)tr(c) + tr(b)tr(c′) + tr(b)tr(c)

= tr(b′c′) + tr(b)tr(c)

= tr(b)tr(c)
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Our claim is that this computation perfectly works under the sole freeness assumption.
Indeed, the only non-trivial equality is the last one, which follows from:

tr(b′) = tr(c′) = 0 =⇒ tr(b′c′) = 0

In general now, the situation is of course more complicated, but the same trick applies.
To be more precise, we can start our computation as follows:

tr(b1c1b2c2 . . .) = tr
[
(b′1 + tr(b1))(c′1 + tr(c1))(b′2 + tr(b2))(c′2 + tr(c2)) . . . . . .

]
= tr(b′1c

′
1b
′
2c
′
2 . . .) + other terms

= other terms

Observe that we have used here the freeness condition, in the following form:

tr(b′i) = tr(c′i) = 0 =⇒ tr(b′1c
′
1b
′
2c
′
2 . . .) = 0

Now regarding the “other terms”, those which are left, each of them will consist of a
product of traces of type tr(bi) and tr(ci), and then a trace of a product still remaining
to be computed, which is of the following form, with βi ∈ B and γi ∈ C:

tr(β1γ1β2γ2 . . .)

To be more precise, the variables βi ∈ B appear as ordered products of those bi ∈ B
not getting into individual traces tr(bi), and the variables γi ∈ C appear as ordered
products of those ci ∈ C not getting into individual traces tr(ci). Now since the length
of each such alternating product β1γ1β2γ2 . . . is smaller than the length of the original
alternating product b1c1b2c2 . . ., we are led into of recurrence, and this gives the result. �

Let us discuss now some models for independence and freeness. We first have the
following result, which clarifies the analogy between independence and freeness:

Theorem 8.14. Given two algebras (B, tr) and (C, tr), the following hold:

(1) B,C are independent inside their tensor product B⊗C, endowed with its canon-
ical tensor product trace, given on basic tensors by tr(b⊗ c) = tr(b)tr(c).

(2) B,C are free inside their free product B ∗ C, endowed with its canonical free
product trace, given by the formulae in Proposition 8.13.

Proof. Both the assertions are clear from definitions, as follows:

(1) This is clear with either of the definitions of the independence, from Definition
8.10 above, because we have by construction of the trace:

tr(bc) = tr[(b⊗ 1)(1⊗ c)] = tr(b⊗ c) = tr(b)tr(c)

Observe that there is a relation here with Theorem 8.11 as well, due to the following
formula for compact spaces, with ⊗ being a topological tensor product:

C(Y × Z) = C(Y )⊗ C(Z)
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To be more precise, the present statement generalizes the first assertion in Theorem
8.11, and the second assertion tells us that this generalization is more or less the same
thing as the original statement. All this comes of course from basic measure theory.

(2) This is clear from definitions, the only point being that of showing that the notion of
freeness, or the recurrence formulae in Proposition 8.13, can be used in order to construct
a canonical free product trace, on the free product of the two algebras involved:

tr : B ∗ C → C

But this can be checked for instance by using a GNS construction. Indeed, consider
the GNS constructions for the algebras (B, tr) and (C, tr):

B → B(l2(B)) , C → B(l2(C))

By taking the free product of these representations, we obtain a representation as
follows, with the ∗ symbol on the right being a free product of pointed Hilbert spaces:

B ∗ C → B(l2(B) ∗ l2(C))

Now by composing with the linear form T →< Tξ, ξ >, where ξ = 1B = 1C is the
common distinguished vector of l2(B) and l2(C), we obtain a linear form, as follows:

tr : B ∗ C → C

It is routine then to check that tr is indeed a trace, and this is the “canonical free
product trace” from the statement. Then, an elementary computation shows that B,C
are indeed free inside B ∗ C, with respect to this trace, and this finishes the proof. �

As an concrete application of the above results, we have:

Theorem 8.15. We have a free convolution operation � for the distributions

µ : C < X,X∗ >→ C

which is well-defined by the following formula, with b, c taken to be free:

µb � µc = µb+c

This restricts to an operation, still denoted �, on the real probability measures.

Proof. We have several verifications to be performed here, as follows:

(1) We first have to check that given two variables b, c which live respectively in
certain C∗-algebras B,C, we can recover inside some C∗-algebra A, with exactly the
same distributions µb, µc, as to be able to sum them and then talk about µb+c. But this
comes from Theorem 8.14, because we can set A = B ∗ C, as explained there.
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(2) The other verification which is needed is that of the fact that if b, c are free, then
the distribution µb+c depends only on the distributions µb, µc. But for this purpose, we
can use the general formula from Proposition 8.13, namely:

tr(b1c1b2c2 . . .) = P
(
{tr(bi1bi2 . . .)}i, {tr(cj1cj2 . . .)}j

)
Here P is certain polynomial, depending on the length of b1c1b2c2 . . ., having as vari-

ables the traces of products bi1bi2 . . . and cj1cj2 . . ., with i1 < i2 < . . . and j1 < j2 < . . .
Now by plugging in arbitrary powers of b, c as variables bi, cj, we obtain a family of

formulae of the following type, with Q being certain polyomials:

tr(bk1cl1bk2cl2 . . .) = P
(
{tr(bk)}k, {tr(cl)}l

)
Thus the moments of b+ c depend only on the moments of b, c, with of course colored

exponents in all this, according to our moment conventions, and this gives the result.

(3) Finally, in what regards the last assertion, regarding the real measures, this is clear
from the fact that if b, c are self-adjoint, then so is their sum b+ c. �

8b. Limiting theorems

We would like to have a linearization result for �, in the spirit of the known result for
∗. We will do this slowly, in several steps. As a first observation, both the independence
and the freeness are nicely modelled inside group algebras, as follows:

Theorem 8.16. We have the following results, valid for group algebras:

(1) C∗(Γ), C∗(Λ) are independent inside C∗(Γ× Λ).
(2) C∗(Γ), C∗(Λ) are free inside C∗(Γ ∗ Λ).

Proof. In order to prove these results, we have two possible methods:

(1) We can use here the general results in Theorem 8.14 above, along with the following
two isomorphisms, which are both standard:

C∗(Γ× Λ) = C∗(Λ)⊗ C∗(Γ)

C∗(Γ ∗ Λ) = C∗(Λ) ∗ C∗(Γ)

(2) We can prove this directly as well, by using the fact that each group algebra is
spanned by the corresponding group elements. Indeed, it is enough to check the indepen-
dence and freeness formulae on group elements, which is in turn trivial. �

Regarding now the linearization problem for �, the situation here is quite tricky. We
need good models for the pairs of free random variables (b, c), and the problem is that the
models that we have, with free products of groups, or with more general free products,
will basically lead us into the combinatorics from Proposition 8.13 and its proof, that
cannot be solved with bare hands, and that we want to avoid.
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In short, we must be tricky, at least in what concerns the beginning of our computation.
The idea will be that of temporarily lifting the self-adjointness assumption on our variables
b, c, and looking instead for arbitrary random variables β, γ, not necessarily self-adjoint,
modelling in integer moments our given laws µ, ν ∈ P(R), as follows:

tr(βk) = Mk(µ), ∀k ∈ N

tr(γk) = Mk(ν), ∀k ∈ N
To be more precise here, assuming that β, γ are indeed not self-adjoint, the above

formulae are not the general formulae for β, γ, simply because these latter formulae involve
colored integers k = ◦ • • ◦ . . . as exponents. Thus, in the context of the above formulae,
µ, ν are not the distributions of β, γ, but just some “pieces” of these distributions.

Now with this idea in mind, due to Voiculescu and quite tricky, the solution to the law
modelling problem comes in a quite straightforward way, involving the good old Hilbert
space H = l2(N) and the good old shift operator S ∈ B(H), as follows:

Theorem 8.17. Consider the shift operator on the space H = l2(N), given by:

S(ei) = ei+1

The variables of the following type, with f ∈ C[X] being a polynomial,

S∗ + f(S)

model then in moments, up to finite order, all the distributions µ : C[X]→ C.

Proof. We have already met the shift S in chapter 1 above, as the simplest example
of an isometry which is not a unitary, S∗S = 1, SS∗ = 1, with this coming from:

S∗(ei) =

{
ei−1 (i > 0)

0 (i = 0)

Consider now a variable as in the statement, namely:

T = S∗ + a0 + a1S + a2S
2 + . . .+ anS

n

We have then tr(T ) = a0, then tr(T 2) will involve a1, then tr(T 3) will involve a2, and
so on. Thus, we are led to a certain recurrence, that we will not attempt to solve now,
with bare hands, but which definitely gives the conclusion in the statement. �

Before getting further, with taking free products of such models, let us work out a
very basic example, which is something fundamental, that we will need in what follows:

Proposition 8.18. In the context of the above correspondence, the variable

T = S + S∗

follows the Wigner semicircle law on [−2, 2].
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Proof. This is something that we already know from chapter 6, the idea being that
the combinatorics of (S+S∗)k leads us into paths on N, and to the Catalan numbers. �

Getting back now to our linearization program for �, the next step is that of taking
a free product of the model found in Theorem 8.17 with itself. We have here:

Proposition 8.19. We can define the algebra of creation operators

Sx : v → x⊗ v
on the free Fock space associated to a real Hilbert space H, given by

F (H) = CΩ⊕H ⊕H⊗2 ⊕ . . .
and at the level of examples, we have:

(1) With H = C we recover the shift algebra A =< S > on H = l2(N).
(2) With H = C2, we obtain the algebra A =< S1, S2 > on H = l2(N ∗ N).

Proof. We can talk indeed about the algebra A(H) of creation operators on the free
Fock space F (H) associated to a real Hilbert space H, with the remark that, in terms of
the abstract semigroup notions from chapter 6 above, we have:

A(Ck) = C∗(N∗k)
F (Ck) = l2(N∗k)

As for the assertions (1,2) in the statement, these are both clear. �

With the above notions in hand, we have the following key freeness result:

Proposition 8.20. Given a real Hilbert space H, and two orthogonal vectors x, y ∈ H,

x ⊥ y

the corresponding creation operators Sx and Sy are free with respect to

tr(T ) =< TΩ,Ω >

called trace associated to the vacuum vector.

Proof. In standard tensor notation for the elements of the free Fock space F (H),
the formula of a creation operator associated to a vector x ∈ H is as follows:

Sx(y1 ⊗ . . .⊗ yn) = x⊗ y1 ⊗ . . .⊗ yn
As for the formula of the adjoint of this creation operator, this is as follows:

S∗x(y1 ⊗ . . .⊗ yn) =< x, y1 > ⊗y2 ⊗ . . .⊗ yn
We obtain from this the following formula, valid for any two vectors x, y ∈ H:

S∗xSy =< x, y > id

With these formulae in hand, the result follows by doing some elementary computa-
tions, in the spirit of those done before for the group algebras. �
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With this technology in hand, let us go back to our linearization program for �. We
have the following key result, further building on Proposition 8.20:

Theorem 8.21. Given two polynomials f, g ∈ C[X], consider the variables

R∗ + f(R) , S∗ + g(S)

where R, S are two creation operators, or shifts, associated to a pair of orthogonal norm
1 vectors. These variables are then free, and their sum has the same law as

T ∗ + (f + g)(T )

with T being the usual shift on l2(N).

Proof. We have two assertions here, the idea being as follows:

(1) The freeness assertion comes from the general freeness result from Proposition
8.20, via the various identifications coming from the previous results.

(2) Regarding now the second assertion, the idea is that this comes from a 45◦ rotation
trick. Let us write indeed the two variables in the statement as follows:

X = R∗ + a0 + a1R + a2R
2 + . . .

Y = S∗ + b0 + b1S + a2S
2 + . . .

Now let us perform the following 45◦ base change, on the real span of the vectors
r, s ∈ H producing our two shifts R, S:

t =
r + s√

2
, u =

r − s√
2

The new shifts, associated to these vectors t, u ∈ H, are then given by:

T =
R + S√

2
, U =

R− S√
2

By using now these new shifts, which are free as well according to Proposition 8.20,
we obtain the following equality of distributions:

X + Y = R∗ + S∗ +
∑
k

akR
k + bkS

k

=
√

2T ∗ +
∑
k

ak

(
T + U√

2

)k
+ bk

(
T − U√

2

)k
∼
√

2T ∗ +
∑
k

ak

(
T√
2

)k
+ bk

(
T√
2

)k
∼ T ∗ +

∑
k

akT
k + bkT

k
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To be more precise, here in the last two lines we have used the freeness property of
T, U in order to cut U from the computation, as it cannot bring anything, and then we
did a basic rescaling at the end. Thus, we are led to the conclusion in the statement. �

We can now solve the linearization problem. Following [90], we have:

Theorem 8.22. Given a real probability measure µ, define its R-transform as follows:

Gµ(ξ) =

∫
R

dµ(t)

ξ − t
=⇒ Gµ

(
Rµ(ξ) +

1

ξ

)
= ξ

The free convolution operation is then linearized by this R-transform.

Proof. This can be done by using the above results, in several steps, as follows:

(1) According to Theorem 8.21, the operation µ → f from Theorem 8.10 above lin-
earizes the free convolution operation �. We are therefore left with a computation inside
C∗(N). To be more precise, consider a variable as in Theorem 8.21 above:

X = S∗ + f(X)

In order to establish the result, we must prove that the R-transform of X, constructed
according to the procedure in the statement, is the function f itself.

(2) In order to do so, fix |z| < 1 in the complex plane, and let us set:

wz = δ0 +
∞∑
k=1

zkδk

The shift and its adjoint act then as follows, on this vector:

Swz = z−1(wz − δ0) , S∗wz = zwz

It follows that the adjoint of our operator X acts as follows on this vector:

X∗wz = (S + f(S∗))wz

= z−1(wz − δ0) + f(z)wz

= (z−1 + f(z))wz − z−1δ0

Now observe that this formula can be written as follows:

z−1δ0 = (z−1 + f(z)−X∗)wz
The point now is that when |z| is small, the operator appearing on the right is invert-

ible. Thus, we can rewrite this formula as follows:

(z−1 + f(z)−X∗)−1δ0 = zwz
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Now by applying the trace, we are led to the following formula:

tr
[
(z−1 + f(z)−X∗)−1

]
=

〈
(z−1 + f(z)−X∗)−1δ0, δ0

〉
= < zwz, δ0 >

= z

(3) Let us apply now the complex function procedure in the statement to the real
probability measure µ modelled by X. The Cauchy transform Gµ is given by:

Gµ(ξ) = tr((ξ −X)−1)

= tr
(
(ξ̄ −X∗)−1

)
= tr((ξ −X∗)−1)

Now observe that, with the choice ξ = z−1 + f(z) for our complex variable, the trace
formula found in (2) above tells us precisely that we have:

Gµ

(
z−1 + f(z)

)
= z

Thus, we have Rµ(z) = f(z), which finishes the proof, as explained in step (1). �

With the above linearization technology in hand, we can now establish the following
free analogue of the CLT, also due to Voiculescu [90]:

Theorem 8.23 (Free CLT). Given self-adjoint variables x1, x2, x3, . . . which are f.i.d.,
centered, with variance t > 0, we have, with n→∞, in moments,

1√
n

n∑
i=1

xi ∼ γt

where γt is the Wigner semicircle law of parameter t, having density:

γt =
1

2πt

√
4t2 − x2dx

Proof. We follow the same idea as in the proof of the CLT:

(1) At t = 1, the R-transform of the variable in the statement on the left can be
computed by using the linearization property from Theorem 8.22, and is given by:

R(ξ) = nRx

(
ξ√
n

)
' ξ

(2) Regarding now the right term, also at t = 1, our claim is that the R-transform of
the Wigner semicircle law γ1 is given by the following formula:

Rγ1(ξ) = ξ

But this follows via some calculus, or directly from the following formula, coming from
Proposition 8.18, and from the technical details of the R-transform:

S + S∗ ∼ γ1
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Thus, the laws in the statement have the same R-transforms, and so they are equal.

(4) Summarizing, we have proved the free CLT at t = 1. The passage to the general
case, t > 0, is routine, by some standard dilation computations. �

Similarly, in the complex case, we have the following result:

Theorem 8.24 (Free complex CLT). Given variables x1, x2, x3, . . . , whose real and
imaginary parts are f.i.d., centered, and with variance t > 0, we have, with n→∞,

1√
n

n∑
i=1

xi ∼ Γt

where Γt is the Voiculescu circular law of parameter t, appearing as the law of 1√
2
(a+ ib),

where a, b are self-adjoint and free, each following the law γt.

Proof. This is clear from Theorem 8.23, by taking real and imaginary parts. �

There are of course many other things that can be said about gt, γt, Gt,Γt, but for the
moment, this is all we need. We will be back later to these laws, with more details.

8c. Laws of characters

Now back to our quantum group questions, let us start with the following result, which
provides us with motivations for the study of the main character:

Theorem 8.25. Given a Woronowicz algebra (A, u), the law of the main character

χ =
N∑
i=1

uii

with respect to the Haar integration has the following properties:

(1) The moments of χ are the numbers Mk = dim(Fix(u⊗k)).
(2) Mk counts as well the lenght p loops at 1, on the Cayley graph of A.
(3) law(χ) is the Kesten measure of the associated discrete quantum group.
(4) When u ∼ ū the law of χ is a usual measure, supported on [−N,N ].
(5) The algebra A is amenable precisely when N ∈ supp(law(Re(χ))).
(6) Any morphism f : (A, u)→ (B, v) must increase the numbers Mk.
(7) Such a morphism f is an isomorphism when law(χu) = law(χv).

Proof. These are things that we already know, the idea being as follows:

(1) This comes from the Peter-Weyl theory, which tells us the number of fixed points
of v = u⊗k can be recovered by integrating the character χv = χku.

(2) This is something true, and well-known, for A = C∗(Γ), with Γ =< g1, . . . , gN >
being a discrete group. In general, the proof is quite similar.
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(3) This is actually the definition of the Kesten measure, in the case A = C∗(Γ), with
Γ =< g1, . . . , gN > being a discrete group. In general, this follows from (2).

(4) The equivalence u ∼ ū translates into χu = χ∗u, and this gives the first assertion.
As for the support claim, this follows from uu∗ = 1 =⇒ ||uii|| ≤ 1, for any i.

(5) This is the Kesten amenability criterion, which can be established as in the classical
case, A = C∗(Γ), with Γ =< g1, . . . , gN > being a discrete group.

(6) This is something elementary, which follows from (1) above, and from the fact that
the morphisms of Woronowicz algebras increase the spaces of fixed points.

(7) This follows by using (6), and the Peter-Weyl theory, the idea being that if f is
not injective, then it must strictly increase one of the spaces Fix(u⊗k). �

As a conclusion, computing µ = law(χ) is the main question to be solved, from a
massive number of mathematical viewpoints. In addition to all this, in view of the above,
the measure µ = law(χ) is expected to have an interesting physical meaning, in the
context of the statistical mechanical models whose symmetries are encoded by G.

In what follows we will be interested in computing such laws, for the main examples
of quantum groups that we have. In the easy quantum group case, we have:

Theorem 8.26. For an easy quantum group G = (GN), coming from a category of
partitions D = (D(k, l)), the asymptotic moments of the main character are given by

lim
N→∞

∫
GN

χk = |D(k)|

where D(k) = D(∅, k), with the limiting sequence on the left consisting of certain integers,
and being stationary at least starting from the k-th term.

Proof. This follows indeed from the general formula from Theorem 8.25 (1), by using
the linear independence result from chapter 5 above. �

Our next purpose will be that of understanding what happens for the basic classes of
easy quantum groups. In the orthogonal case, we have:

Theorem 8.27. In the N →∞ limit, the law of the main character χu is as follows:

(1) For ON we obtain a Gaussian law, namely:

g1 =
1√
2π
e−x

2/2dx

(2) For O+
N we obtain a Wigner semicircle law, namely:

γ1 =
1

2π

√
4− x2dx

Proof. These are results that we both know, from chapter 5 above. �
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In the unitary case now, we have:

Theorem 8.28. In the N →∞ limit, the law of the main character χu is as follows:

(1) For UN we obtain the complex Gaussian law G1.
(2) For U+

N we obtain the Voiculescu circular law Γ1.

Proof. These are once again results that we know, from chapter 6 above. �

Summarizing, we have seen so far that for ON , O
+
N , UN , U

+
N , the asymptotic laws of

the main characters are the laws g1, γ1, G1,Γ1 coming from the various CLT.

This is certainly nice, but there is still one conceptual problem, coming from:

Proposition 8.29. The above convergences law(χu)→ g1, γ1, G1,Γ1 are as follows:

(1) They are non-stationary in the classical case.
(2) They are stationary in the free case, starting from N = 2.

Proof. This is something quite subtle, which can be proved as follows:

(1) Here we can use an amenability argument, based on the Kesten criterion. Indeed,
ON , UN being coamenable, the upper bound of the support of the law of Re(χu) is precisely
N , and we obtain from this that the law of χu itself depends on N ∈ N.

(2) Here the result follows from the computations in section 4 above, performed when
working out the representation theory of O+

N , U
+
N , which show that the linear maps Tπ

associated to the noncrossing pairings are linearly independent, at any N ≥ 2. �

In short, we are not over with our study, which seems to open more questions than it
solves. Fortunately, the solution to this latest question is quite simple. The idea indeed
will be that of improving our g1, γ1, G1,Γ1 results above with gt, γt, Gt,Γt results, which
will require N →∞ in both the classical and free cases, in order to hold at any t.

8d. Truncated characters

In practice, the definition that we will need is as follows:

Definition 8.30. Given a Woronowicz algebra (A, u), the variable

χt =

[tN ]∑
i=1

uii

is called truncation of the main character, with parameter t ∈ (0, 1].

Our purpose in what follows will be that of proving that for ON , O
+
N , UN , U

+
N , the

asymptotic laws of the truncated characters χt with t ∈ (0, 1] are the laws gt, γt, Gt,Γt.
This is something quite technical, motivated by the findings in Proposition 8.29 above,
and also by a number of more advanced considerations, to become clear later on.
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In order to start now, the basic result from Theorem 8.25 is not useful in the general
t ∈ (0, 1] setting, and we must use instead general integration methods [52], [96]:

Theorem 8.31. For an easy quantum group G ⊂ U+
N , coming from a category of

partitions D = (D(k, l)), we have the Weingarten integration formula∫
G

ue1i1j1 . . . u
ek
ikjk

=
∑

π,σ∈D(k)

δπ(i)δσ(j)WkN(π, σ)

for any colored integer k = e1 . . . ek and any multi-indices i, j, where D(k) = D(∅, k), δ
are usual Kronecker symbols, and

WkN = G−1
kN

with GkN(π, σ) = N |π∨σ|, where |.| is the number of blocks.

Proof. We already know from chapter 3 above that any closed subgroup G ⊂ U+
N is

subject to an abstract Weingarten formula, coming from Peter-Weyl theory, via elemen-
tary linear algebra. With the notations there, the Kronecker symbols are given by:

δξπ(i) = < ξπ, ei1 ⊗ . . .⊗ eik >
= δπ(i1, . . . , ik)

The Gram matrix being as well the correct one, we obtain the result. See [20]. �

We can apply the above formula to truncated characters, and we obtain:

Proposition 8.32. The moments of truncated characters are given by the formula∫
G

(u11 + . . .+ uss)
k = Tr(WkNGks)

and with N →∞ this quantity equals (s/N)k|D(k)|.
Proof. The first assertion follows from the following computation:∫

G

(u11 + . . .+ uss)
k =

s∑
i1=1

. . .

s∑
ik=1

∫
ui1i1 . . . uikik

=
∑

π,σ∈D(k)

WkN(π, σ)
s∑

i1=1

. . .
s∑

ik=1

δπ(i)δσ(i)

=
∑

π,σ∈D(k)

WkN(π, σ)Gks(σ, π)

= Tr(WkNGks)

The point now is that we have the following trivial estimates:

GkN(π, σ)

{
= Nk (π = σ)

≤ Nk−1 (π 6= σ)
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Thus with N →∞ we have the following estimate:

GkN ∼ Nk1

But this gives the folowing estimate, for our moment:∫
G

(u11 + . . .+ uss)
k = Tr(G−1

kNGks)

∼ Tr((Nk1)−1Gks)

= N−kTr(Gks)

= N−ksk|D(k)|

Thus, we have obtained the formula in the statement. See [20]. �

In order to process the above formula, we will need some more free probability theory.
Following [80], given a random variable a, we write:

logFa(ξ) =
∑
n

kn(a)ξn

Ra(ξ) =
∑
n

κn(a)ξn

We call the coefficients kn(a), κn(a) cumulants, respectively free cumulants of a. With
this notion in hand, we can define then more general quantities kπ(a), κπ(a), depending
on partitions π ∈ P (k), by multiplicativity over the blocks. We have then:

Theorem 8.33. We have the classical and free moment-cumulant formulae

Mk(a) =
∑

π∈P (k)

kπ(a)

Mk(a) =
∑

π∈NC(k)

κπ(a)

where kπ(a), κπ(a) are the generalized cumulants and free cumulants of a.

Proof. This is standard, by using the formulae of Fa, Ra, or by doing some direct
combinatorics, based on the Möbius inversion formula. See [80]. �

We can now improve our results about characters, as follows:

Theorem 8.34. With N →∞, the laws of truncated characters are as follows:

(1) For ON we obtain the Gaussian law gt.
(2) For O+

N we obtain the Wigner semicircle law γt.
(3) For UN we obtain the complex Gaussian law Gt.
(4) For U+

N we obtain the Voiculescu circular law Γt.
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Proof. With s = [tN ] and N →∞, the formula in Proposition 8.32 above gives:

lim
N→∞

∫
GN

χkt =
∑

π∈D(k)

t|π|

By using now the formulae in Theorem 8.33, this gives the results. Indeed:

(1) This is clear.

(2) This is clear as well.

(3) This follows by complexification.

(4) This follows by free complexification.

For details on all this, we refer to [20]. �

As an interesting consequence, related to [38], let us formulate as well:

Theorem 8.35. The asymptotic laws of truncated characters for the liberation oper-
ations

ON → O+
N

UN → U+
N

are in Bercovici-Pata bijection, in the sense that the classical cumulants in the classical
case equal the free cumulants in the free case.

Proof. This follows indeed from the computations in the proof of Theorem 8.34. �

This result will be of great use for the liberation of more complicated compact Lie
groups, because it provides us with a criterion for checking if our guesses are right.

Let us discuss now the other easy quantum groups that we have. Regarding the half-
liberations O∗N , U

∗
N the situation is a bit complicated, and will be discussed more in detail

later on, but we have the following result that we can formulate here, at t = 1:

Proposition 8.36. The asymptotic laws of the main characters are as follows:

(1) For O∗N we obtain a symmetrized Rayleigh variable.
(2) For U∗N we obtain a complexification of this variable.

Proof. The idea is to use a projective version trick. Indeed, assuming that G = (GN)
is easy, coming from a category of pairings D, we have:

lim
N→∞

∫
PGN

(χχ∗)k = #D((◦•)k)

In our case, where GN = O∗N , U
∗
N , we can therefore use Theorem 8.34 above at t = 1,

and we are led to the conclusions in the statement. See [25], [26], [87]. �
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The above result is of course something quite modest. We will be back to the quantum
groups O∗N , U

∗
N in chapter 16 below, with some better techniques for dealing with them,

and more specifically with explicit modelling results using 2× 2 matrices.

Next in our lineup, we have the bistochastic quantum groups. We have here:

Proposition 8.37. For the bistochastic quantum groups

BN , B
+
N , CN , C

+
N

the asymptotic laws of truncated characters appear as modified versions of

gt, γt, Gt,Γt

and the operations ON → O+
N and UN → U+

N are compatible with the Bercovici-Pata
bijection.

Proof. This follows indeed by using the same methods as for ON , O
+
N , UN , U

+
N , with

the verification of the Bercovici-Pata bijection being elementary, and with the computa-
tion of the corresponding laws being routine as well. See [35], [26], [87]. �

Regarding now the twists, we have here the following general result:

Proposition 8.38. The integration over ḠN is given by the Weingarten type formula∫
ḠN

ui1j1 . . . uikjk =
∑

π,σ∈D(k)

δ̄π(i)δ̄σ(j)WkN(π, σ)

where WkN is the Weingarten matrix of GN .

Proof. This follows exactly as in the untwisted case, the idea being that the signs
will cancel. Let us recall indeed from the general twisting theory from chapter 7 that the
twisted vectors ξ̄π associated to the partitions π ∈ Peven(k) are as follows:

ξ̄π =
∑
τ≥π

ε(τ)
∑

i:ker(i)=τ

ei1 ⊗ . . .⊗ eik

Thus, the Gram matrix of these vectors is given by:

< ξπ, ξσ > =
∑
τ≥π∨σ

ε(τ)2
∣∣∣{(i1, . . . , ik)

∣∣∣ ker i = τ
}∣∣∣

=
∑
τ≥π∨σ

∣∣∣{(i1, . . . , ik)
∣∣∣ ker i = τ

}∣∣∣
= N |π∨σ|

Thus the Gram matrix is the same as in the untwisted case, and so the Weingarten
matrix is the same as well as in the untwisted case, and this gives the result. �

As a consequence of the above result, we have another general result, as follows:
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Theorem 8.39. The Schur-Weyl twisting operation GN ↔ ḠN leaves invariant:

(1) The law of the main character.
(2) The coamenability property.
(3) The asymptotic laws of truncated characters.

Proof. This basically follows from Proposition 8.38, as follows:

(1) This is clear from the integration formula.

(2) This follows from (1), and from the Kesten criterion.

(3) This follows once again from the integration formula. �

To summarize, we have results for all the easy quantum groups introduced so far, and
in each case we obtain Gaussian laws, and their versions.

8e. Exercises

There are many interesting theoretical questions regarding the laws of the main char-
acter, and as a first exercise here, we have:

Exercise 8.40. Prove that any morphism of Woronowicz algebras

f : (A, u)→ (B, v)

increases the moments of the main character, and that such a morphism is an isomorphism
precisely when all these moments, and so the character laws, are the same.

This is something that we already discussed in the above, when introducing the main
characters, but very briefly, with the comment that all this basically comes from Peter-
Weyl. The problem is that of working out carefully all the details.

As a second exercise, which is a must-do, we have:

Exercise 8.41. Consider the symmetric group SN , regarded as symmetry group of the
N coordinate axes of RN , and so as group of orthogonal matrices:

SN ⊂ ON

Compute the main character for this group, then the law of this main character, and work
out the N →∞ asymptotics.

As a comment here, since the permutation matrices have 0 − 1 entries, the law of
the main character is supported by N. Thus, with a bit of luck, the asymptotic spectral
measure can only be the most basic measure in discrete probability.

In relation now with the Weingarten formula, we have:

Exercise 8.42. Work out the formulae of the Gram and Weingarten matrices for all
the easy quantum groups introduced so far, up to the size 5× 5.
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There are many computations here, and all of them are very instructive.

In connection now with the half-liberations, we have:

Exercise 8.43. Work out explicitely the asymptotic laws of the main characters for
the half-classical quantum groups O∗N , U

∗
N .

This is something that we briefly discussed in the above, by indicating what the final
result should be like, involving Rayleigh variables, along with a strategy for the proof.
The problem is that of working out all this, with full details.

Along the same lines, in connection with the bistochastic groups, we have:

Exercise 8.44. Work out explicitely the asymptotic laws of the main characters for
the bistochastic quantum groups BN , B

+
N , CN , C

+
N .

As with the previous exercise, this is something that we briefly discussed in the above,
and the problem now is that of working out all the details.
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CHAPTER 9

Quantum permutations

9a. Magic matrices

The quantum groups that we considered so far, namely ON , UN and their liberations
and twists, are of “continuous” nature. In order to have as well “discrete” examples, the
idea will be that of looking at the corresponding quantum reflection groups. Let us start
with a functional analytic description of the usual symmetric group:

Proposition 9.1. Consider the symmetric group SN .

(1) The standard coordinates vij ∈ C(SN), coming from the embedding SN ⊂ ON

given by the permutation matrices, are given by:

vij = χ
(
σ
∣∣∣σ(j) = i

)
(2) The matrix v = (vij) is magic, in the sense that its entries are orthogonal pro-

jections, summing up to 1 on each row and each column.
(3) The algebra C(SN) is isomorphic to the universal commutative C∗-algebra gen-

erated by the entries of a N ×N magic matrix.

Proof. These results are all elementary, as follows:

(1) We recall that the canonical embedding SN ⊂ ON , coming from the standard
permutation matrices, is given by σ(ej) = eσ(j). Thus, we have σ =

∑
j eσ(j)j, and it

follows that the standard coordinates on SN ⊂ ON are given by:

vij(σ) = δi,σ(j)

(2) Any characteristic function χ ∈ {0, 1} being a projection in the operator algebra
sense (χ2 = χ∗ = χ), we have indeed a matrix of projections. As for the sum 1 condition
on rows and columns, this is clear from the formula of the elements vij.

(3) Consider the universal algebra in the statement, namely:

A = C∗comm

(
(wij)i,j=1,...,N

∣∣∣w = magic
)

We have a quotient map A → C(SN), given by wij → vij. On the other hand, by
using the Gelfand theorem we can write A = C(X), with X being a compact space, and
by using the coordinates wij we have X ⊂ ON , and then X ⊂ SN . Thus we have as well
a quotient map C(SN)→ A given by vij → wij, and this gives (3). See Wang [94]. �

203
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With the above result in hand, we can now formulate, following [94]:

Theorem 9.2. The following is a Woronowicz algebra, with magic meaning formed
of projections, which sum up to 1 on each row and each column,

C(S+
N) = C∗

(
(uij)i,j=1,...,N

∣∣∣u = magic
)

and the underlying compact quantum group S+
N is called quantum permutation group.

Proof. The algebra C(S+
N) is indeed well-defined, because the magic condition forces

||uij|| ≤ 1, for any C∗-norm. Our claim now is that, by using the universal property of
this algebra, we can define maps ∆, ε, S. Consider indeed the following matrix:

Uij =
∑
k

uik ⊗ ukj

As a first observation, we have Uij = U∗ij. In fact the entries Uij are orthogonal
projections, because we have as well:

U2
ij =

∑
kl

uikuil ⊗ ukjulj

=
∑
k

uik ⊗ ukj

= Uij

In order to prove now that the matrix U = (Uij) is magic, it remains to verify that
the sums on the rows and columns are 1. For the rows, this can be checked as follows:∑

j

Uij =
∑
jk

uik ⊗ ukj

=
∑
k

uik ⊗ 1

= 1⊗ 1

For the columns the computation is similar, as follows:∑
i

Uij =
∑
ik

uik ⊗ ukj

=
∑
k

1⊗ ukj

= 1⊗ 1

Thus the matrix U = (Uij) is magic indeed, and so we can define a comultiplication
map by setting ∆(uij) = Uij. By using a similar reasoning, we can define as well a counit
map by ε(uij) = δij, and an antipode map by S(uij) = uji. Thus the Woronowicz algebra
axioms from chapter 2 are satisfied, and this finishes the proof. �
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The terminology in the above result comes from the comparison with Proposition
9.1 (3), which tells us that we have an inclusion SN ⊂ S+

N , and that this inclusion is a
liberation, in the sense that the classical version of S+

N , obtained at the algebra level by
dividing by the commutator ideal, is the usual symmetric group SN .

The terminology is further motivated by the following result, also from [94]:

Proposition 9.3. The quantum permutation group S+
N acts on X = {1, . . . , N}, the

corresponding coaction map Φ : C(X)→ C(X)⊗ C(S+
N) being given by:

Φ(δi) =
∑
j

δj ⊗ uji

In fact, S+
N is the biggest compact quantum group acting on X, by leaving the counting

measure invariant, in the sense that

(tr ⊗ id)Φ = tr(.)1

where tr is the standard trace, given by tr(δi) = 1
N
,∀i.

Proof. Our claim is that given a compact matrix quantum group G, the formula
Φ(δi) =

∑
j δj ⊗ uji defines a morphism of algebras, which is a coaction map, leaving the

trace invariant, precisely when the matrix u = (uij) is a magic corepresentation of C(G).
Indeed, let us first determine when Φ is multiplicative. We have:

Φ(δi)Φ(δk) =
∑
jl

δjδl ⊗ ujiulk =
∑
j

δj ⊗ ujiujk

On the other hand, we have as well the following formula:

Φ(δiδk) = δikΦ(δi) = δik
∑
j

δj ⊗ uji

Thus, the multiplicativity of Φ is equivalent to the following conditions:

ujiujk = δikuji , ∀i, j, k

Regarding now the unitality of Φ, we have the following formula:

Φ(1) =
∑
i

Φ(δi)

=
∑
ij

δj ⊗ uji

=
∑
j

δj ⊗

(∑
i

uji

)
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Thus Φ is unital when the following conditions are satisfied:∑
i

uji = 1 , ∀i

Finally, the fact that Φ is a ∗-morphism translates into:

uij = u∗ij , ∀i, j

Summing up, in order for Φ(δi) =
∑

j δj ⊗ uji to be a morphism of C∗-algebras, the
elements uij must be projections, summing up to 1 on each row of u. Regarding now the
preservation of the trace condition, observe that we have:

(tr ⊗ id)Φ(δi) =
1

N

∑
j

uji

Thus the trace is preserved precisely when the elements uij sum up to 1 on each of
the columns of u. We conclude from this that Φ(δi) =

∑
j δj ⊗ uji is a morphism of C∗-

algebras preserving the trace precisely when u is magic, and since the coaction conditions
on Φ are equivalent to the fact that u must be a corepresentation, this finishes the proof
of our claim. But this claim proves all the assertions in the statement. �

As a perhaps quite surprising result now, also from [94], we have:

Theorem 9.4. We have an embedding of compact quantum groups

SN ⊂ S+
N

given at the algebra level, C(S+
N)→ C(SN), by the formula

uij → χ
(
σ
∣∣∣σ(j) = i

)
and this embedding is an isomorphism at N ≤ 3, but not at N ≥ 4, where S+

N is non-
classical, infinite compact quantum group.

Proof. The fact that we have indeed an embedding as above is clear from Proposition
9.1 and Theorem 9.2. Note that this follows as well from Proposition 9.3. Regarding now
the second assertion, we can prove this in four steps, as follows:

Case N = 2. The result here is trivial, the 2 × 2 magic matrices being by definition
as follows, with p being a projection:

U =

(
p 1− p

1− p p

)
Indeed, this shows that the entries of a 2 × 2 magic matrix must pairwise commute,

and so the algebra C(S+
2 ) follows to be commutative, which gives the result.
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Case N = 3. This is more tricky, and we present here a simple, recent proof, from
[72]. By using the same abstract argument as in the N = 2 case, and by permuting rows
and columns, it is enough to check that u11, u22 commute. But this follows from:

u11u22 = u11u22(u11 + u12 + u13)

= u11u22u11 + u11u22u13

= u11u22u11 + u11(1− u21 − u23)u13

= u11u22u11

Indeed, by applying the involution to this formula, we obtain from this that we have
as well u22u11 = u11u22u11. Thus we get u11u22 = u22u11, as desired.

Case N = 4. In order to prove our various claims about S+
4 , consider the following

matrix, with p, q being projections, on some infinite dimensional Hilbert space:

U =


p 1− p 0 0

1− p p 0 0
0 0 q 1− q
0 0 1− q q


This matrix is magic, and if we choose p, q as for the algebra < p, q > to be not

commutative, and infinite dimensional, we conclude that C(S+
4 ) is not commutative and

infinite dimensional as well, and in particular is not isomorphic to C(S4).

Case N ≥ 5. Here we can use the standard embedding S+
4 ⊂ S+

N , obtained at the level
of the corresponding magic matrices in the following way:

u→
(
u 0
0 1N−4

)
Indeed, with this embedding in hand, the fact that S+

4 is a non-classical, infinite
compact quantum group implies that S+

N with N ≥ 5 has these two properties as well. �

9b. Representations

In order to study now S+
N , we can use our various methods developed in chapters 2-4

above. Let us begin with some basic algebraic results, as follows:

Proposition 9.5. The quantum groups S+
N have the following properties:

(1) We have S+
N ∗̂S

+
M ⊂ S+

N+M , for any N,M .

(2) In particular, we have an embedding D̂∞ ⊂ S+
4 .

(3) S4 ⊂ S+
4 are distinguished by their spinned diagonal tori.

(4) The half-classical version S∗N = S+
N ∩O∗N collapses to SN .
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Proof. These results are all elementary, the proofs being as follows:

(1) If we denote by u, v the fundamental corepresentations of C(S+
N), C(S+

M), the
fundamental corepresentation of C(S+

N ∗̂S
+
M) is by definition:

w =

(
u 0
0 v

)
But this matrix is magic, because both u, v are magic. Thus by universality of

C(S+
N+M) we obtain a quotient map as follows, as desired:

C(S+
N+M)→ C(S+

N ∗̂S
+
M)

(2) This result, which refines our N = 4 trick from the proof of Theorem 9.4, follows
from (1) with N = M = 2. Indeed, we have the following computation:

S+
2 ∗̂S+

2 = S2 ∗̂S2

= Z2 ∗̂Z2

' Ẑ2 ∗̂ Ẑ2

= Ẑ2 ∗ Z2

= D̂∞

(3) As a first observation here, the quantum groups S4 ⊂ S+
4 are not distinguished by

their diagonal torus, which is {1} for both of them. However, according to the general

results of Woronowicz in [99], the group dual D̂∞ ⊂ S+
4 that we found in (2) must be a

subgroup of the diagonal torus of the following compact quantum group, with the standard
unitary representations being spinned by a certain unitary F ∈ U4:

(S+
4 , FuF

∗)

Now since this group dual D̂∞ is not classical, it cannot be a subgroup of the diagonal
torus of (S4, FuF

∗). Thus, the diagonal torus spinned by F distinguishes S4 ⊂ S+
4 .

(4) Consider the following compact quantum group, with the intersection operation
being taken inside U+

N , whose coordinates satisfy abc = cba:

S∗N = S+
N ∩O

∗
N

In order to prove that we have S∗N = SN , it is enough to prove that S∗N is classical.
And here, we can use the fact that for a magic matrix, the entries in each row sum up to
1. Indeed, by making c vary over a full row of u, we obtain abc = cba =⇒ ab = ba. �

Summarizing, we have some advances on the quantum permutations, including a more
conceptual explanation for our main observation so far, namely S+

4 6= S4.

At the representation theory level now, we have the following result, from [21]:
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Theorem 9.6. For the quantum groups SN , S
+
N , the intertwining spaces for the tensor

powers of the fundamental corepresentation u = (uij) are given by

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

with D = P,NC. In other words, SN , S
+
N are easy, coming from the categories P,NC.

Proof. We use the Tannakian duality results from chapter 4 above:

(1) S+
N . According to Theorem 9.2, the algebra C(S+

N) appears as follows:

C(S+
N) = C(O+

N)
/〈

u = magic
〉

Consider the one-block partition µ ∈ P (2, 1). The linear map associated to it is:

Tµ(ei ⊗ ej) = δijei

We have Tµ = (δijk)i,jk, and we obtain the following formula:

(Tµu
⊗2)i,jk =

∑
lm

(Tµ)i,lm(u⊗2)lm,jk = uijuik

On the hand, we have as well the following formula:

(uTµ)i,jk =
∑
l

uil(Tµ)l,jk = δjkuij

Thus, the relation defining S+
N ⊂ O+

N reformulates as follows:

Tµ ∈ Hom(u⊗2, u) ⇐⇒ uijuik = δjkuij,∀i, j, k
The condition on the right being equivalent to the magic condition, we obtain:

C(S+
N) = C(O+

N)
/〈

Tµ ∈ Hom(u⊗2, u)
〉

By using now the general theory from chapter 7, we conclude that the quantum group
S+
N is indeed easy, with the corresponding category of partitions being:

D =< µ >

But this latter category is NC, as one can see by “chopping” the noncrossing partitions
into µ-shaped components. Thus, we are led to the conclusion in the statement.

(2) SN . Here the first part of the proof is similar, leading to the following formula:

C(SN) = C(ON)
/〈

Tµ ∈ Hom(u⊗2, u)
〉

But this shows that SN is easy, the corresponding category of partitions being:

D = < µ, P2 >

= < NC,P2 >

= P
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Alternatively, this latter formula follows directly for the result for S+
N proved above,

via SN = S+
N ∩ON , and the functoriality results explained in chapter 7. �

As a technical comment, there might seem to be a bit of a clash between the above
results for SN , S

+
N at N = 2, 3, where we have SN = S+

N . However, there is no clash,
because the implementation of the partitions is not faithful.

In order to discuss the representations of S+
N , we will need precisely linear independence

results for the vectors ξπ associated to the partitions π ∈ NC. This is something which
is more technical than the previous results for pairings. Let us start with:

Proposition 9.7. We have a bijection NC(k) ' NC2(2k), constructed as follows:

(1) The application NC(k)→ NC2(2k) is the “fattening” one, obtained by doubling
all the legs, and doubling all the strings as well.

(2) Its inverse NC2(2k) → NC(k) is the “shrinking” application, obtained by col-
lapsing pairs of consecutive neighbors.

Proof. The fact that the two operations in the statement are indeed inverse to each
other is clear, by computing the corresponding two compositions, with the remark that
the construction of the fattening operation requires the partitions to be noncrossing. �

Next in line, we have the following key result:

Theorem 9.8. Consider the Temperley-Lieb algebra of index N ≥ 4, defined as

TLN(k) = span(NC2(k, k))

with product given by the rule © = N , when concatenating.

(1) We have a representation i : TLN(k)→ B((CN)⊗k), given by π → Tπ.
(2) Tr(Tπ) = N loops(<π>), where π →< π > is the closing operation.
(3) The linear form τ = Tr ◦ i : TLN(k)→ C is a faithful positive trace.
(4) The representation i : TLN(k)→ B((CN)⊗k) is faithful.

In particular, the vectors {ξπ|π ∈ NC(k)} ⊂ (CN)⊗k are linearly independent.

Proof. All this is quite standard, but advanced, the idea being as follows:

(1) This is clear from the categorical properties of π → Tπ.

(2) This follows indeed from the following computation:

Tr(Tπ) =
∑
i1...ik

δπ

(
i1 . . . ik
i1 . . . ik

)
= #

{
i1, . . . , ik ∈ {1, . . . , N}

∣∣∣ ker

(
i1 . . . ik
i1 . . . ik

)
≥ π

}
= N loops(<π>)
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(3) The traciality of τ is clear. Regarding now the faithfulness, this is something
well-known, and we refer here to Jones’ paper [67].

(4) This follows from (3) above, via a standard positivity argument. As for the last
assertion, this follows from (4), by fattening the partitions. �

We can now work out the representation theory of S+
N , as follows:

Theorem 9.9. The quantum groups S+
N with N ≥ 4 have the following properties:

(1) The moments of the main character are the Catalan numbers:∫
S+
N

χk = Ck

(2) The fusion rules for representations are as follows, exactly as for SO3:

rk ⊗ rl = r|k−l| + r|k−l|+1 + . . .+ rk+l

(3) The dimensions of the irreducible representations are given by

dim(rk) =
qk+1 − q−k

q − 1

where q, q−1 are the roots of X2 − (N − 2)X + 1 = 0.

Proof. The proof, from [2], based on Theorem 9.8, goes as follows:

(1) We have indeed the following computation, coming from the SU2 computations
from section 5, and from Theorem 9.6, Proposition 9.7 and Theorem 9.8:∫

S+
N

χk = dim(Fix(u⊗k))

= |NC(k)|
= |NC2(2k)|
= Ck

(2) This is standard, by using the formula in (1), and the known theory of SO3. Let
A = span(χk|k ∈ N) be the algebra of characters of SO3. We can define a morphism as
follows, where f is the character of the fundamental representation of S+

N :

Ψ : A→ C(S+
N)

χ1 → f − 1

The elements fk = Ψ(χk) verify then the following formulae:

fkfl = f|k−l| + f|k−l|+1 + . . .+ fk+l
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We prove now by recurrence that each fk is the character of an irreducible corepre-
sentation rk of C(S+

N), non-equivalent to r0, . . . , rk−1. At k = 0, 1 this is clear, so assume
that the result holds at k − 1. By integrating characters we have, exactly as for SO3:

rk−2, rk−1 ⊂ rk−1 ⊗ r1

Thus there exists a certain corepresentation rk such that:

rk−1 ⊗ r1 = rk−2 + rk−1 + rk

Once again by integrating characters, we conclude that rk is irreducible, and non-
equivalent to r1, . . . , rk−1, as for SO3, which proves our claim. Finally, since any irre-
ducible representation of S+

N must appear in some tensor power of u, and we have a
formula for decomposing each u⊗k into sums of representations rl, we conclude that these
representations rl are all the irreducible representations of S+

N .

(3) From the Clebsch-Gordan rules we have, in particular:

rkr1 = rk−1 + rk + rk+1

We are therefore led to a recurrence, and the initial data being dim(r0) = 1 and
dim(r1) = N − 1 = q + 1 + q−1, we are led to the following formula:

dim(rk) = qk + qk−1 + . . .+ q1−k + q−k

In more compact form, this gives the formula in the statement. �

9c. Twisted extension

The above result is quite surprising, and raises a massive number of questions. We
would like to better understand the relation with SO3, and more generally see what
happens at values N = n2 with n ≥ 2, and also compute the law of χ, and so on.

As a first topic to be discussed, one way of understanding the relation with SO3 comes
from noncommutative geometry considerations. We recall that, according to the general
theory from chapter 1, each finite dimensional C∗-algebra A can be written as A = C(F ),
with F being a “finite quantum space”. To be more precise, we have:

Definition 9.10. A finite quantum space F is the abstract dual of a finite dimensional
C∗-algebra A, according to the following formula:

C(F ) = A

The number of elements of such a space is by definition the number |F | = dimA. By
decomposing the algebra A, we have a formula of the following type:

C(F ) = Mn1(C)⊕ . . .⊕Mnk(C)

With n1 = . . . = nk = 1 we obtain in this way the space F = {1, . . . , k}. Also, when k = 1
the equation is C(F ) = Mn(C), and the solution will be denoted F = Mn.
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In order to talk about the quantum symmetry group S+
F , we must use universal coac-

tions. As in Proposition 9.3, we must endow our space F with its counting measure:

Definition 9.11. We endow each finite quantum space F with its counting measure,
corresponding as the algebraic level to the integration functional

tr : C(F )→ B(l2(F ))→ C

obtained by applying the regular representation, and then the normalized matrix trace.

To be more precise, consider the algebra A = C(F ), which is by definition finite
dimensional. We can make act A on itself, by left multiplication:

π : A→ L(A) , a→ (b→ ab)

The target of π being a matrix algebra, L(A) ' MN(C) with N = dimA, we can
further compose with the normalized matrix trace, and we obtain tr:

tr =
1

N
Tr ◦ π

As basic examples, for both F = {1, . . . , N} and F = MN we obtain the usual trace.
In general, with C(F ) = Mn1(C)⊕ . . .⊕Mnk(C), the weights of tr are:

ci =
n2
i∑
i n

2
i

Let us study the quantum group actions Gy F . We denote by µ, η the multiplication
and unit map of the algebra C(F ). Following [2], [94], we first have:

Proposition 9.12. Consider a linear map Φ : C(F )→ C(F )⊗ C(G), written as

Φ(ei) =
∑
j

ej ⊗ uji

with {ei} being a linear space basis of C(F ), orthonormal with respect to tr.

(1) Φ is a linear space coaction ⇐⇒ u is a corepresentation.
(2) Φ is multiplicative ⇐⇒ µ ∈ Hom(u⊗2, u).
(3) Φ is unital ⇐⇒ η ∈ Hom(1, u).
(4) Φ leaves invariant tr ⇐⇒ η ∈ Hom(1, u∗).
(5) If these conditions hold, Φ is involutive ⇐⇒ u is unitary.

Proof. This is a bit similar to the proof of Proposition 9.3 above, as follows:
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(1) There are two axioms to be processed here. First, we have:

(id⊗∆)Φ = (Φ⊗ id)Φ ⇐⇒
∑
j

ej ⊗∆(uji) =
∑
k

Φ(ek)⊗ uki

⇐⇒
∑
j

ej ⊗∆(uji) =
∑
jk

ej ⊗ ujk ⊗ uki

⇐⇒ ∆(uji) =
∑
k

ujk ⊗ uki

As for the axiom involving the counit, here we have as well, as desired:

(id⊗ ε)Φ = id ⇐⇒
∑
j

ε(uji)ej = ei

⇐⇒ ε(uji) = δji

(2) We have the following formula:

Φ(ei) =
∑
j

ej ⊗ uji

=

(∑
ij

eji ⊗ uji

)
(ei ⊗ 1)

= u(ei ⊗ 1)

By using this formula, we obtain the following identity:

Φ(eiek) = u(eiek ⊗ 1)

= u(µ⊗ id)(ei ⊗ ek ⊗ 1)

On the other hand, we have as well the following identity, as desired:

Φ(ei)Φ(ek) =
∑
jl

ejel ⊗ ujiulk

= (µ⊗ id)
∑
jl

ej ⊗ el ⊗ ujiulk

= (µ⊗ id)

(∑
ijkl

eji ⊗ elk ⊗ ujiulk

)
(ei ⊗ ek ⊗ 1)

= (µ⊗ id)u⊗2(ei ⊗ ek ⊗ 1)

(3) The formula Φ(ei) = u(ei ⊗ 1) found above gives by linearity Φ(1) = u(1 ⊗ 1),
which shows that Φ is unital precisely when u(1⊗ 1) = 1⊗ 1, as desired.
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(4) This follows from the following computation, by applying the involution:

(tr ⊗ id)Φ(ei) = tr(ei)1 ⇐⇒
∑
j

tr(ej)uji = tr(ei)1

⇐⇒
∑
j

u∗ji1j = 1i

⇐⇒ (u∗1)i = 1i

⇐⇒ u∗1 = 1

(5) Assuming that (1-4) are satisfied, and that Φ is involutive, we have:

(u∗u)ik =
∑
l

u∗liulk

=
∑
jl

tr(e∗jel)u
∗
jiulk

= (tr ⊗ id)
∑
jl

e∗jel ⊗ u∗jiulk

= (tr ⊗ id)(Φ(ei)
∗Φ(ek))

= (tr ⊗ id)Φ(e∗i ek)

= tr(e∗i ek)1

= δik

Thus u∗u = 1, and since we know from (1) that u is a corepresentation, it follows that
u is unitary. The proof of the converse is standard too, by using similar tricks. �

Following now [2], [94], we have the following result, extending the basic theory of S+
N

to the present finite noncommutative space setting:

Theorem 9.13. Given a finite quantum space F , there is a universal compact quantum
group S+

F acting on F , leaving the counting measure invariant. We have

C(S+
F ) = C(U+

N )
/〈

µ ∈ Hom(u⊗2, u), η ∈ Fix(u)
〉

where N = |F | and where µ, η are the multiplication and unit maps of C(F ). For F =
{1, . . . , N} we have S+

F = S+
N . Also, for the space F = M2 we have S+

F = SO3.

Proof. This result is from [2], the idea being as follows:

(1) This follows from Proposition 9.12 above, by using the standard fact that the
complex conjugate of a corepresentation is a corepresentation too.

(2) Regarding now the main example, for F = {1, . . . , N} we obtain indeed the quan-
tum permutation group S+

N , due to the abstract result in Proposition 9.3 above.
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(3) In order to do now the computation for F = M2, we use some standard facts about
SU2, SO3. We have an action by conjugation SU2 y M2(C), and this action produces,
via the canonical quotient map SU2 → SO3, an action SO3 yM2(C).

On the other hand, it is routine to check, by using arguments like those in the proof of
Theorem 9.4 at N = 2, 3, that any action GyM2(C) must come from a classical group.
We conclude that the action SO3 yM2(C) is universal, as claimed. �

Regarding now the representation theory of these generalized quantum permutation
groups S+

F , the result here, from [2], is very similar to the one for S+
N , as follows:

Theorem 9.14. The quantum groups S+
F have the following properties:

(1) The associated Tannakian categories are TLN , with N = |F |.
(2) The main character follows the Marchenko-Pastur law π1, when N ≥ 4.
(3) The fusion rules for S+

F with |F | ≥ 4 are the same as for SO3.

Proof. Once again this result is from [2], the idea being as follows:

(1) Our first claim is that the fundamental representation is equivalent to its adjoint,
u ∼ ū. Indeed, let us go back to the coaction formula from Proposition 9.12:

Φ(ei) =
∑
j

ej ⊗ uji

We can pick our orthogonal basis {ei} to be the stadard multimatrix basis of C(F ),
so that we have e∗i = ei∗ , for a certain involution i → i∗ on the index set. With this
convention made, by conjugating the above formula of Φ(ei), we obtain:

Φ(ei∗) =
∑
j

ej∗ ⊗ u∗ji

Now by interchanging i↔ i∗ and j ↔ j∗, this latter formula reads:

Φ(ei) =
∑
j

ej ⊗ u∗j∗i∗

We therefore conclude, by comparing with the original formula, that we have:

u∗ji = uj∗i∗

But this shows that we have an equivalence u ∼ ū, as claimed. Now with this result
in hand, the proof goes as for the proof for S+

N . To be more precise, the result follows
from the fact that the multiplication and unit of any complex algebra, and in particular
of C(F ), can be modelled by the following two diagrams:

m = | ∪ | , u = ∩
Indeed, this is certainly true algebrically, and this is something well-known. As in

what regards the ∗-structure, things here are fine too, because our choice for the trace
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leads to the following formula, which must be satisfied as well:

µµ∗ = N · id

But the above diagrams m,u generate the Temperley-Lieb algebra TLN , as stated.

(2) The proof here is exactly as for S+
N , by using moments. To be more precise,

according to (1) these moments are the Catalan numbers, which are the moments of π1.

(3) Once again same proof as for S+
N , by using the fact that the moments of χ are the

Catalan numbers, which naturally leads to the Clebsch-Gordan rules. �

It is quite clear now that our present formalism, and the above results, provide alto-
gether a good and conceptual explanation for our SO3 result regarding S+

N . To be more
precise, we can merge and reformulate the above results in the following way:

Theorem 9.15. The quantun groups S+
F have the following properties:

(1) For F = {1, . . . , N} we have S+
F = S+

N .
(2) For the space F = MN we have S+

F = PO+
N = PU+

N .
(3) In particular, for the space F = M2 we have S+

F = SO3.
(4) The fusion rules for S+

F with |F | ≥ 4 are independent of F .
(5) Thus, the fusion rules for S+

F with |F | ≥ 4 are the same as for SO3.

Proof. This is basically a compact form of what has been said above, with a new
result added, and with some technicalities left aside:

(1) This is something that we know from Theorem 9.13.

(2) This is new, the idea being as follows. First of all, we know from section 4
above that the inclusion PO+

N ⊂ PU+
N is an isomorphism, with this coming from the free

complexification formula Õ+
N = U+

N , but we will actually reprove this result. Consider
indeed the standard vector space action U+

N y CN , and then its adjoint action PU+
N y

MN(C). By universality of S+
MN

, we have inclusions as follows:

PO+
N ⊂ PU+

N ⊂ S+
MN

On the other hand, the main character of O+
N with N ≥ 2 being semicircular, the

main character of PO+
N must be Marchenko-Pastur. Thus the inclusion PO+

N ⊂ S+
MN

has
the property that it keeps fixed the law of main character, and by Peter-Weyl theory we
conclude that this inclusion must be an isomorphism, as desired.

(3) This is something that we know from Theorem 9.13, and that can be deduced as
well from (2), by using the formula PO+

2 = SO3, which is something elementary.

(4) This is something that we know from Theorem 9.14.

(5) This follows from (3,4), as already pointed out in Theorem 9.14. �
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All this is certainly quite conceptual, but perhaps a bit too abstract. At N = 4 we
can formulate a more concrete result on the subject, by using the following construction:

Definition 9.16. C(SO−1
3 ) is the universal C∗-algebra generated by the entries of a

3× 3 orthogonal matrix a = (aij), with the following relations:

(1) Skew-commutation: aijakl = ±aklaij, with sign + if i 6= k, j 6= l, and − otherwise.
(2) Twisted determinant condition: Σσ∈S3a1σ(1)a2σ(2)a3σ(3) = 1.

Observe the similarity with the twisting constructions from chapter 7. However, SO3

being not easy, we are not exactly in the Schur-Weyl twisting framework from there.

Our first task would be to prove that C(SO−1
3 ) is a Woronowicz algebra. This is of

course possible, by doing some computations, but we will not need to do these computa-
tions, because the result follows from the following theorem, from [12]:

Theorem 9.17. We have an isomorphism of compact quantum groups

S+
4 = SO−1

3

given by the Fourier transform over the Klein group K = Z2 × Z2.

Proof. Consider indeed the matrix a+ = diag(1, a), corresponding to the action of
SO−1

3 on C4, and apply to it the Fourier transform over the Klein group K = Z2 × Z2:

u =
1

4


1 1 1 1
1 −1 −1 1
1 −1 1 −1
1 1 −1 −1




1 0 0 0
0 a11 a12 a13

0 a21 a22 a23

0 a31 a32 a33




1 1 1 1
1 −1 −1 1
1 −1 1 −1
1 1 −1 −1


It is routine to check that this matrix is magic, and vice versa, i.e. that the Fourier

transform over K converts the relations in Definition 9.16 into the magic relations in
Definition 9.1. Thus, we obtain the identification from the statement. �

Yet another extension of Theorem 9.9, which is however quite technical, comes by
looking at the general case N = n2, with n ≥ 2. It is possible indeed to complement
Theorem 9.15 above with a general twisting result of the following type:

G+(F̂σ) = G+(F̂ )σ

To be more precise, this formula is valid indeed, for any finite group F and any 2-
cocycle σ on it. In the case F = Z2

n with Fourier cocycle on it, this leads to the conclusion
that PO+

n appears as a cocycle twist of S+
n2 . See [18].

In relation with this, we have:

Proposition 9.18. The Gram matrices of NC2(2k), NC(k) are related by the formula

G2k,n(π, σ) = nk(∆−1
knGk,n2∆−1

kn )(π′, σ′)

where π → π′ is the shrinking operation, and ∆kn is the diagonal of Gkn.
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Proof. In the context of Proposition 9.7, it is elementary to see that we have:

|π ∨ σ| = k + 2|π′ ∨ σ′| − |π′| − |σ′|

We therefore have the following formula, valid for any n ∈ N:

n|π∨σ| = nk+2|π′∨σ′|−|π′|−|σ′|

Thus, we obtain the formula in the statement. �

We have the following interesting probabilistic fact, from [18] as well:

Theorem 9.19. The following families of variables have the same joint law,

(1) {u2
ij} ∈ C(O+

n ),

(2) {Xij = 1
n

∑
ab pia,jb} ∈ C(S+

n2),

where u = (uij) and p = (pia,jb) are the corresponding fundamental corepresentations.

Proof. This result can be obtained via twisting methods. An alternative approach is
by using the Weingarten formula for our two quantum groups, and the shrinking operation
π → π′. Indeed, we obtain the following moment formulae:∫

O+
n

u2k
ij =

∑
π,σ∈NC2(2k)

W2k,n(π, σ)∫
S+

n2

Xk
ij =

∑
π,σ∈NC2(2k)

n|π
′|+|σ′|−kWk,n2(π′, σ′)

According to Proposition 9.18 the summands coincide, and so the moments are equal,
as desired. The proof in general, dealing with joint moments, is similar. �

The above result is quite interesting, because it makes a connection between free
hyperspherical and free hypergeometric laws. We refer here to [18], [23].

9d. Poisson laws

Let us go back now to our main result so far, namely Theorem 9.9, and further build
on that, with probabilistic results. Following [11], we have the following result:

Theorem 9.20. The spectral measure of the main character of S+
N with N ≥ 4 is the

Marchenko-Pastur law of parameter 1, having the following density:

π1 =
1

2π

√
4x−1 − 1dx

Also, S+
4 is coamenable, and S+

N with N ≥ 5 is not coamenable.
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Proof. Here the first assertion follows from the following formula, which can be
established by doing some calculus, and more specifically by setting x = 4 sin2 t:

1

2π

∫ 4

0

√
1− 4x−1xkdx = Ck

As for the second assertion, this follows from this, which shows that the spectrum of
the main character is [0, 4], and from the Kesten criterion. �

Our next purpose will be that of understanding, probabilistically speaking, the liber-
ation operation SN → S+

N . In what regards SN , we have the following basic result:

Theorem 9.21. Consider the symmetric group SN , regarded as a compact group of
matrices, SN ⊂ ON , via the standard permutation matrices.

(1) The main character χ ∈ C(SN), defined as usual as χ =
∑

i uii, counts the
number of fixed points, χ(σ) = #{i|σ(i) = i}.

(2) The probability for a permutation σ ∈ SN to be a derangement, meaning to have
no fixed points at all, becomes, with N →∞, equal to 1/e.

(3) The law of the main character χ ∈ C(SN) becomes, with N →∞, a Poisson law
of parameter 1, with respect to the counting measure.

Proof. This is something very classical, and beautiful, as follows:

(1) We have indeed the following computation:

χ(σ) =
∑
i

uii(σ) =
∑
i

δσ(i)i = #
{
i
∣∣σ(i) = i

}
(2) This is best viewed by using the inclusion-exclusion principle. Let us set:

Si1...ikN =
{
σ ∈ SN

∣∣∣σ(i1) = i1, . . . , σ(ik) = ik

}
By using the inclusion-exclusion principle, we have:

P(χ = 0) =
1

N !
|(S1 ∪ . . . ∪ SN)c|

=
1

N !

(
|SN | −

∑
i

|SiN |+
∑
i<j

|SijN | − . . .+ (−1)N
∑

i1<...<iN

|Si1...iNN |

)
For any i1 < . . . < ik, we have |Si1...ikN | = (N − k)!, and we obtain:

P(χ = 0) =
1

N !

N∑
k=0

(−1)k
(
N

k

)
(N − k)!

= 1− 1

1!
+

1

2!
− . . .+ (−1)N−1 1

(N − 1)!
+ (−1)N

1

N !
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Since on the right we have the expansion of 1
e
, we conclude that we have:

lim
N→∞

P(χ = 0) =
1

e

(3) This follows by generalizing the computation in (2). To be more precise, a similar
application of the inclusion-exclusion principle gives the following formula:

lim
N→∞

P(χ = k) =
1

k!e

Thus, we obtain in the limit a Poisson law, as stated. �

In order to talk about free analogues of this, we will need some theory:

Theorem 9.22. The following Poisson type limits converge, for any t > 0,

pt = lim
n→∞

((
1− t

n

)
δ0 +

t

n
δ1

)∗n
πt = lim

n→∞

((
1− t

n

)
δ0 +

t

n
δ1

)�n
the limiting measures being the Poisson law pt, and the Marchenko-Pastur law πt,

pt =
1

et

∞∑
k=0

tkδk
k!

πt = max(1− t, 0)δ0 +

√
4t− (x− 1− t)2

2πx
dx

whose moments are given by the following formula

Mk(pt) =
∑

π∈D(k)

t|π|

with D = P,NC. The Marchenko-Pastur measure πt is also called free Poisson law.

Proof. This is something standard, which follows by using either logF,R and calcu-
lus, or classical and free cumulants. The point indeed is that the limiting measures must
be those having classical and free cumulants t, t, t, . . . But this gives all the assertions, the
density computations being standard. See [75], [80], [91], [98]. �

We can now formulate a conceptual result about SN → S+
N , as follows:

Theorem 9.23. The law of the main character χu is as follows:

(1) For SN with N →∞ we obtain a Poisson law p1.
(2) For S+

N with N ≥ 4 we obtain a free Poisson law π1.

In addition, these laws are related by the Bercovici-Pata correspondence.



222 9. QUANTUM PERMUTATIONS

Proof. This follows indeed from the computations that we have, from Theorem 9.20
and Theorem 9.21, by using the various theoretical results from Theorem 9.22. �

As in the continuous case, our purpose now will be that of extending this result to the
truncated characters. In order to discuss the classical case, we first have:

Proposition 9.24. Consider the symmetric group SN , together with its standard ma-
trix coordinates uij = χ(σ ∈ SN |σ(j) = i). We have the formula∫

SN

ui1j1 . . . uikjk =

{
(N−| ker i|)!

N !
if ker i = ker j

0 otherwise

where ker i denotes as usual the partition of {1, . . . , k} whose blocks collect the equal indices
of i, and where |.| denotes the number of blocks.

Proof. According to the definition of uij, the integrals in the statement are given by:∫
SN

ui1j1 . . . uikjk =
1

N !
#
{
σ ∈ SN

∣∣∣σ(j1) = i1, . . . , σ(jk) = ik

}
The existence of σ ∈ SN as above requires im = in ⇐⇒ jm = jn. Thus, the integral

vanishes when ker i 6= ker j. As for the case ker i = ker j, if we denote by b ∈ {1, . . . , k}
the number of blocks of this partition, we have N−b points to be sent bijectively to N−b
points, and so (N − b)! solutions, and the integral is (N−b)!

N !
, as claimed. �

We can now compute the laws of truncated characters, and we obtain:

Proposition 9.25. For the symmetric group SN ⊂ ON , regarded as a compact group
of matrices, SN ⊂ ON , via the standard permutation matrices, the truncated character

χt =

[tN ]∑
i=1

uii

counts the number of fixed points among {1, . . . , [tN ]}, and its law with respect to the
counting measure becomes, with N →∞, a Poisson law of parameter t.

Proof. With Sk,b being the Stirling numbers, we have:∫
SN

χkt =

[tN ]∑
i1...ik=1

∫
SN

ui1i1 . . . uikik

=
∑
π∈Pk

[tN ]!

([tN ]− |π|!)
· (N − |π|!)

N !

=

[tN ]∑
b=1

[tN ]!

([tN ]− b)!
· (N − b)!

N !
· Sk,b
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In particular with N →∞ we obtain the following formula:

lim
N→∞

∫
SN

χkt =
k∑
b=1

Sk,bt
b

But this is a Poisson(t) moment, and so we are done. �

We can now finish our computations, and generalize Theorem 9.23, as follows:

Theorem 9.26. The laws of truncated characters χt =
∑[tN ]

i=1 uii are as follows:

(1) For SN with N →∞ we obtain a Poisson law pt.
(2) For S+

N with N →∞ we obtain a free Poisson law πt.

In addition, these laws are related by the Bercovici-Pata correspondence.

Proof. This follows from the above results:

(1) This is something that we already know, from Proposition 9.25.

(2) This is something that we know so far only at t = 1, from Theorem 9.23. In order
to deal with the general t ∈ (0, 1] case, we can use the same method as for the orthogonal
and unitary quantum groups, from chapter 8, and we obtain the following moments:

Mk =
∑

π∈NC(k)

t|π|

But these numbers being the moments of the free Poisson law of parameter t, as
explained in Theorem 9.22 above, we obtain the result. See [21]. �

Summarizing, the liberation operation SN → S+
N has many common features with the

liberation operations ON → O+
N and UN → U+

N , studied in chapter 8 above.

9e. Exercises

There has been a lot of material in this chapter, with this second part of the present
book being at a more advanced level than the first part, and most of our exercises here
will be about better understanding what has been said above. Let us start with:

Exercise 9.27. Prove that we have S3 = S+
3 by looking at the coaction

Φ : C3 → C3 ⊗ C(S+
3 )

written in terms of the Fourier basis of C3.

To be more precise, the question here is that of changing the basis of C3, by using the
Fourier transform over the group Z3, then reformulating the magic condition at N = 3 in
terms of this new basis, and then deducing that the coefficients must commute.

Here is another exercise, which is more advanced:
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Exercise 9.28. Prove that the discrete quantum group

Γ = Ŝ+
5

is not amenable, in the discrete quantum group sense.

This requires of course some good knowledge of the notion of amenability. As a hint
here, try finding a quantum subgroup G ⊂ S+

5 whose dual is not amenable.

Here is now an exercise at N ∈ N arbitrary:

Exercise 9.29. Consider a discrete group generated by elements of finite order, writ-
ten as a quotient group, as follows:

ZN1 ∗ . . . ∗ ZNk → Γ

Prove that we have an embedding Γ̂ ⊂ S+
N , where N = N1 + . . .+Nk.

This should be normally not very difficult. What is difficult, however, is to prove that

any group dual subgroup Γ̂ ⊂ S+
N appears as above. We will be back to this.

In relation with the advanced algebra part, we have:

Exercise 9.30. Prove that we have the following equality:

S+
M2

= SO3

This is something that was already discussed in the above, but quite briefly. The
problem now is that of working out all the details.

Finally, in relation with the probability considerations, we have:

Exercise 9.31. Check out all the details for Theorem 9.22, regarding the Poisson and
free Poisson limiting theorems.

There is quite some work to be done here, but everything is quite routine. As an
alternative approach, we will discuss later in this book a generalization of this, regarding
the compound Poisson and compound free Poisson limits, so the problem is to go there,
and to work out in detail the particular case of the Poisson and free Poisson limits.



CHAPTER 10

Quantum reflections

10a. Finite graphs

Many interesting examples of quantum permutation groups appear as particular cases
of the following general construction from [3], involving finite graphs:

Proposition 10.1. Given a finite graph X, with adjacency matrix d ∈MN(0, 1), the
following construction produces a quantum permutation group,

C(G+(X)) = C(S+
N)
/〈

du = ud
〉

whose classical version G(X) is the usual automorphism group of X.

Proof. The fact that we have a quantum group comes from the fact that du = ud
reformulates as d ∈ End(u), which makes it clear that we are dividing by a Hopf ideal.
Regarding the second assertion, we must establish here the following equality:

C(G(X)) = C(SN)
/〈

du = ud
〉

For this purpose, recall that uij(σ) = δσ(j)i. By using this formula, we have:

(du)ij(σ) =
∑
k

dikukj(σ)

=
∑
k

dikδσ(j)k

= diσ(j)

On the other hand, we have as well the following formula:

(ud)ij(σ) =
∑
k

uik(σ)dkj

=
∑
k

δσ(k)idkj

= dσ−1(i)j

Thus the condition du = ud reformulates as dij = dσ(i)σ(j), and we are led to the usual
notion of an action of a permutation group on X, as claimed. �

Let us work out some basic examples. We have the following result:

225
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Theorem 10.2. The construction X → G+(X) has the following properties:

(1) For the N-point graph, having no edges at all, we obtain S+
N .

(2) For the N-simplex, having edges everywhere, we obtain as well S+
N .

(3) We have G+(X) = G+(Xc), where Xc is the complementary graph.
(4) For a disconnected union, we have G+(X) ∗̂G+(Y ) ⊂ G+(X t Y ).
(5) For the square, we obtain a non-classical, proper subgroup of S+

4 .

Proof. All these results are elementary, the proofs being as follows:

(1) This follows from definitions, because here we have d = 0.

(2) Here d = I is the all-one matrix, and the magic condition gives uI = Iu = NI. We
conclude that du = ud is automatic in this case, and so G+(X) = S+

N .

(3) The adjacency matrices of X,Xc being related by the formula dX + dXc = I. We
can use here the above formula uI = Iu = NI, and we conclude that dXu = udX is
equivalent to dXcu = udXc . Thus, we obtain, as claimed, G+(X) = G+(Xc).

(4) The adjacency matrix of a disconnected union is given by dXtY = diag(dX , dY ).
Now let w = diag(u, v) be the fundamental corepresentation of G+(X) ∗̂G+(Y ). Then
dXu = udX and dY v = vdY imply, as desired, dXtYw = wdXtY .

(5) We know from (3) that we have G+(�) = G+(| |). We know as well from (4) that
we have Z2 ∗̂Z2 ⊂ G+(| |). It follows that G+(�) is non-classical. Finally, the inclusion
G+(�) ⊂ S+

4 is indeed proper, because S4 ⊂ S+
4 does not act on the square. �

In order to further advance, and to explicitely compute various quantum automor-
phism groups, we can use the spectral decomposition of d, as follows:

Proposition 10.3. A closed subgroup G ⊂ S+
N acts on a graph X precisely when

Pλu = uPλ , ∀λ ∈ R

where d =
∑

λ λ · Pλ is the spectral decomposition of the adjacency matrix of X.

Proof. Since d ∈MN(0, 1) is a symmetric matrix, we can consider indeed its spectral
decomposition, d =

∑
λ λ · Pλ. We have then the following formula:

< d >= span
{
Pλ

∣∣∣λ ∈ R
}

But this shows that we have the following equivalence:

d ∈ End(u) ⇐⇒ Pλ ∈ End(u),∀λ ∈ R

Thus, we are led to the conclusion in the statement. �

In order to exploit this, we will often combine it with the following standard fact:
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Proposition 10.4. Consider a closed subgroup G ⊂ S+
N , with associated coaction map

Φ : CN → CN ⊗ C(G)

For a linear subspace V ⊂ CN , the following are equivalent:

(1) The magic matrix u = (uij) commutes with PV .
(2) V is invariant, in the sense that Φ(V ) ⊂ V ⊗ C(G).

Proof. Let P = PV . For any i ∈ {1, . . . , N} we have the following formula:

Φ(P (ei)) = Φ

(∑
k

Pkiek

)
=

∑
jk

Pkiej ⊗ ujk

=
∑
j

ej ⊗ (uP )ji

On the other hand the linear map (P ⊗ id)Φ is given by a similar formula:

(P ⊗ id)(Φ(ei)) =
∑
k

P (ek)⊗ uki

=
∑
jk

Pjkej ⊗ uki

=
∑
j

ej ⊗ (Pu)ji

Thus uP = Pu is equivalent to ΦP = (P ⊗ id)Φ, and the conclusion follows. �

We have as well the following useful complementary result, from [3]:

Proposition 10.5. Let p ∈MN(C) be a matrix, and consider its “color” decomposi-
tion, obtained by setting (pc)ij = 1 if pij = c and (pc)ij = 0 otherwise:

p =
∑
c∈C

c · pc

Then u = (uij) commutes with p if and only if it commutes with all matrices pc.

Proof. Consider the multiplication and counit maps of the algebra CN :

M : ei ⊗ ej → eiej

C : ei → ei ⊗ ei
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Since M,C intertwine u, u⊗2, their iterations M (k), C(k) intertwine u, u⊗k, and so:

p(k) = M (k)p⊗kC(k)

=
∑
c∈C

ckpc

∈ End(u)

Let S = {c ∈ C|pc 6= 0}, and f(c) = c. By Stone-Weierstrass we have S =< f >, and
so for any e ∈ S the Dirac mass at e is a linear combination of powers of f :

δe =
∑
k

λkf
k

=
∑
k

λk

(∑
c∈S

ckδc

)

=
∑
c∈S

(∑
k

λkc
k

)
δc

The corresponding linear combination of matrices p(k) is given by:∑
k

λkp
(k) =

∑
k

λk

(∑
c∈S

ckpc

)

=
∑
c∈S

(∑
k

λkc
k

)
pc

The Dirac masses being linearly independent, in the first formula all coefficients in the
right term are 0, except for the coefficient of δe, which is 1. Thus the right term in the
second formula is pe, and it follows that we have pe ∈ End(u), as claimed. �

The above results can be combined, and we are led into a “color-spectral” decompo-
sition method for d, which can lead to a number of nontrivial results. See [3].

As a basic application of this, we can further study G+(�), as follows:

Proposition 10.6. The quantum automorphism group of the N-cycle is as follows:

(1) At N 6= 4 we have G+(X) = DN .
(2) At N = 4 we have D4 ⊂ G+(X) ⊂ S+

4 , with proper inclusions.

Proof. We already know that the results hold at N ≤ 4, so let us assume N ≥ 5.
Given a N -th root of unity, wN = 1, consider the following vector:

ξ = (wi)
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This is an eigenvector of d, with eigenvalue w + wN−1. With w = e2πi/N , it follows
that 1, f, f 2, . . . , fN−1 are eigenvectors of d. More precisely, the invariant subspaces of d
are as follows, with the last subspace having dimension 1 or 2, depending on N :

C1, Cf ⊕ CfN−1, Cf 2 ⊕ CfN−2, . . .

Consider now the associated coaction Φ : CN → CN ⊗ C(G), and write:

Φ(f) = f ⊗ a+ fN−1 ⊗ b

By taking the square of this equality we obtain:

Φ(f 2) = f 2 ⊗ a2 + fN−2 ⊗ b2 + 1⊗ (ab+ ba)

It follows that ab = −ba, and that Φ(f 2) is given by the following formula:

Φ(f 2) = f 2 ⊗ a2 + fN−2 ⊗ b2

By multiplying this with Φ(f) we obtain:

Φ(f 3) = f 3 ⊗ a3 + fN−3 ⊗ b3 + fN−1 ⊗ ab2 + f ⊗ ba2

Now since N ≥ 5 implies that 1, N − 1 are different from 3, N − 3, we must have
ab2 = ba2 = 0. By using this and ab = −ba, we obtain by recurrence on k that:

Φ(fk) = fk ⊗ ak + fN−k ⊗ bk

In particular at k = N − 1 we obtain:

Φ(fN−1) = fN−1 ⊗ aN−1 + f ⊗ bN−1

On the other hand we have f ∗ = fN−1, so by applying ∗ to Φ(f) we get:

Φ(fN−1) = fN−1 ⊗ a∗ + f ⊗ b∗

Thus a∗ = aN−1 and b∗ = bN−1. Together with ab2 = 0 this gives:

(ab)(ab)∗ = abb∗a∗

= abNaN−1

= (ab2)bN−2aN−1

= 0

From positivity we get from this ab = 0, and together with ab = −ba, this shows that
a, b commute. On the other hand C(G) is generated by the coefficients of Φ, which are
powers of a, b, and so C(G) must be commutative, and we obtain the result. �

Summarizing, this was a bad attempt in understanding G+(�), which appears to be
“exceptional” among the quantum symmetry groups of the N -cycles.
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An alternative approach to G+(�) comes by regarding the square as the N = 2
particular case of the N -hypercube �N . Indeed, the usual symmetry group of �N is the
hyperoctahedral group HN , so we should have a formula of the following type:

G(�) = H+
2

In order to clarify this, let us start with the following simple fact:

Proposition 10.7. We have an embedding as follows, gi being the generators of ZN2 ,

ẐN2 ⊂ SN−1
R,+ , xi =

gi√
N

whose image is the geometric hypercube:

�N =

{
x ∈ RN

∣∣∣xi = ± 1√
N
,∀i
}

Proof. This is something that we already know, from section 1 above. Consider
indeed the following standard group algebra generators:

gi ∈ C∗(ZN2 ) = C(ẐN2 )

These generators satisfy satisfy then gi = g∗i , g
2
i = 1, and when rescaling by 1/

√
N ,

we obtain the relations defining �N . �

We can now study the quantum symmetry groups G+(�N), and we are led to the
quite surprising conclusion, from [16], that these are the twisted orthogonal groups ŌN :

Theorem 10.8. With ZN2 =< g1, . . . , gN > we have a coaction map

Φ : C∗(ZN2 )→ C∗(ZN2 )⊗ C(ŌN) , gi →
∑
j

gj ⊗ uji

which makes ŌN the quantum isometry group of the hypercube �N = ẐN2 , as follows:

(1) With �N viewed as an algebraic manifold, �N ⊂ SN−1
R ⊂ SN−1

R,+ .

(2) With �N viewed as a graph, with 2N vertices and 2N−1N edges.
(3) With �N viewed as a metric space, with metric coming from RN .

Proof. Observe first that �N is indeed an algebraic manifold, so (1) as formulated
above makes sense, in the general framework of section 2. The cube �N is also a graph, as
indicated, and so (2) makes sense as well, in the framework of Proposition 10.1. Finally,
(3) makes sense as well, because we can define the quantum isometry group of a finite
metric space exactly as for graphs, but with d being this time the distance matrix.

(1) In order for G ⊂ O+
N to act affinely on �N , the variables Gi =

∑
j gj ⊗ uji must

satisfy the same relations as the generators gi ∈ ZN2 . The self-adjointness being automatic,
the relations to be checked are therefore:

G2
i = 1 , GiGj = GjGi
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We have the following computation:

G2
i =

∑
kl

gkgl ⊗ uikuil

= 1 +
∑
k<l

gkgl ⊗ (uikuil + uiluik)

As for the commutators, these are given by:

[Gi, Gj] =
∑
k<l

gkgl ⊗ (uikujl − ujkuil + uilujk − ujluik)

From the first relation we obtain ab = 0 for a 6= b on the same row of u, and by using
the antipode, the same happens for the columns. From the second relation we obtain:

[uik, ujl] = [ujk, uil] , ∀k 6= l

Now by applying the antipode we obtain:

[ulj, uki] = [uli, ukj]

By relabelling, this gives the following formula:

[uik, ujl] = [uil, ujk] , j 6= i

Thus for i 6= j, k 6= l we must have:

[uik, ujl] = [ujk, uil] = 0

We are therefore led to G ⊂ ŌN , as claimed.

(2) We can use here the fact that the cube �N , when regarded as a graph, is the
Cayley graph of the group ZN2 . The eigenvectors and eigenvalues of �N are as follows:

vi1...iN =
∑
j1...jN

(−1)i1j1+...+iN jNgj11 . . . gjNN

λi1...iN = (−1)i1 + . . .+ (−1)iN

With this picture in hand, and by using Proposition 10.3 and Proposition 10.4 above,
the result follows from the same computations as in the proof of (1). See [16].

(3) Our claim here is that we obtain the same symmetry group as in (2). Indeed,
observe that distance matrix of the cube has a color decomposition as follows:

d = d1 +
√

2d2 +
√

3d3 + . . .+
√
NdN
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Since the powers of d1 can be computed by counting loops on the cube, we have
formulae as follows, with xij ∈ N being certain positive integers:

d2
1 = x211N + x22d2

d3
1 = x311N + x32d2 + x33d3

. . .

dN1 = xN11N + xN2d2 + xN3d3 + . . .+ xNNdN

But this shows that we have < d >=< d1 >. Now since d1 is the adjacency matrix of
�N , viewed as graph, this proves our claim, and we obtain the result via (2). �

Now back to our questions regarding the square, we have G+(�) = Ō2, and this
formula appears as the N = 2 particular case of a general formula, namely G+(�N) = ŌN .
This is quite conceptual, but still not ok. The problem is that we have G(�N) = HN ,
and so for our theory to be complete, we would need a formula of type H+

N = ŌN . And
this latter formula is obviously wrong, because for ŌN the character computations lead
to Gaussian laws, who cannot appear as liberations of the character laws for HN , that we
have not computed yet, but which can only be something Poisson-related.

10b. Reflection groups

Summarizing, the problem of conceptually understandingG(�) remains open. In order
to present now the correct, final solution, the idea will be that to look at the quantum
group G+(| |) instead, which is equal to it, according to Proposition 10.2 (3). We first
have the following result, extending Proposition 10.2 (4) above:

Proposition 10.9. For a disconnected union of graphs we have

G+(X1) ∗̂ . . . ∗̂ G+(Xk) ⊂ G+(X1 t . . . tXk)

and this inclusion is in general not an isomorphism.

Proof. The proof of the first assertion is nearly identical to the proof of Proposition
10.2 (4) above. Indeed, the adjacency matrix of the disconnected union is given by:

dX1t...tXk = diag(dX1 , . . . , dXk)

w = diag(u1, . . . , uk)

We have then dXiui = uidXi , and this implies dw = wd, which gives the result. As for
the last assertion, this is something that we already know, from Proposition 10.6 (2). �

In the case where the graphs X1, . . . , Xk are identical, which is the one that we are
truly interested in, we can further build on this. We recall from [40] that we have:
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Proposition 10.10. Given closed subgroups G ⊂ U+
N , H ⊂ S+

k , with fundamental
corepresentations u, v, the following construction produces a closed subgroup of U+

Nk:

C(G o∗ H) = (C(G)∗k ∗ C(H))/ < [u
(a)
ij , vab] = 0 >

In the case where G,H are classical, the classical version of G o∗ H is the usual wreath
product G oH. Also, when G is a quantum permutation group, so is G o∗ H.

Proof. Consider indeed the matrix wia,jb = u
(a)
ij vab, over the quotient algebra in the

statement. It is routine to check that w is unitary, and in the case G ⊂ S+
N , our claim

is that this matrix is magic. Indeed, the entries are projections, because they appear as
products of commuting projections, and the row sums are as follows:∑

jb

wia,jb =
∑
jb

u
(a)
ij vab

=
∑
b

vab
∑
j

u
(a)
ij

= 1

As for the column sums, these are as follows:∑
ia

wia,jb =
∑
ia

u
(a)
ij vab

=
∑
a

vab
∑
i

u
(a)
ij

= 1

With these observations in hand, it is routine to check that G o∗H is indeed a quantum
group, with fundamental corepresentation w, by constructing maps ∆, ε, S as in section
1, and in the case G ⊂ S+

N , we obtain in this way a closed subgroup of S+
Nk. Finally, the

assertion regarding the classical version is standard as well. See [40]. �

We refer to [11], [40], [86] for more details regarding the above construction. Now
with this notion in hand, following [11], we have the following result:

Theorem 10.11. Given a connected graph X, and k ∈ N, we have the formulae

G(kX) = G(X) o Sk
G+(kX) = G+(X) o∗ S+

k

where kX = X t . . . tX is the k-fold disjoint union of X with itself.

Proof. The first formula is something well-known, which follows as well from the
second formula, by taking the classical version. Regarding now the second formula, it is
elementary to check that we have an inclusion as follows, for any finite graph X:

G+(X) o∗ S+
k ⊂ G+(kX)
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Indeed, we want to construct an action G+(X) o∗ S+
k y kX, and this amounts in

proving that we have [w, d] = 0. But, the matrices w, d are given by:

wia,jb = u
(a)
ij vab , dia,jb = δijdab

With these formulae in hand, we have the following computation:

(dw)ia,jb =
∑
k

dikwka,jb

=
∑
k

diku
(a)
kj vab

= (du(a))ijvab

On the other hand, we have as well the following computation:

(wd)ia,jb =
∑
k

wia,kbdkj

=
∑
k

u
(a)
ik vabdkj

= (u(a)d)ijvab

Thus we have [w, d] = 0, and from this we obtain:

G+(X) o∗ S+
k ⊂ G+(kX)

Regarding now the reverse inclusion, which requires X to be connected, this follows
by doing some matrix analysis, by using the commutation with u. To be more precise, let
us denote by w the fundamental corepresentation of G+(kX), and set:

u
(a)
ij =

∑
b

wia,jb , vab =
∑
i

vab

It is then routine to check, by using the fact that X is indeed connected, that we have
here magic unitaries, as in the definition of the free wreath products. Thus we obtain the
reverse inclusion, that we were looking for, namely:

G+(kX) ⊂ G+(X) o∗ S+
k

To be more precise, the key ingredient is the fact that when X is connected, the
∗-algebra generated by dX contains a matrix having nonzero entries. See [11]. �

We are led in this way to the following result, from [16]:

Theorem 10.12. Consider the graph consisting of N segments.

(1) Its symmetry group is the hyperoctahedral group HN = Z2 o SN .
(2) Its quantum symmetry group is the quantum group H+

N = Z2 o∗ S+
N .
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Proof. This comes from the above results, as follows:

(1) This is clear from definitions, with the remark that the relation with the formula
HN = G(�N) comes by viewing the N segments as being the [−1, 1] segments on each
of the N coordinate axes of RN . Indeed, a symmetry of the N -cube is the same as a
symmetry of the N segments, and so, as desired:

G(�N) = Z2 o SN
(2) This follows from Theorem 10.11 above, applied to the segment graph. Observe

also that (2) implies (1), by taking the classical version. �

Now back to the square, we have G+(�) = H+
2 , and our claim is that this is the

“good” and final formula. In order to prove this, we must work out the easiness theory
for HN , H

+
N , and prove that HN → H+

N is an easy quantum group liberation.

We first have the following result:

Proposition 10.13. The algebra C(H+
N) can be presented in two ways, as follows:

(1) As the universal algebra generated by the entries of a 2N × 2N magic unitary
having the following “sudoku” pattern, with a, b being square matrices:

w =

(
a b
b a

)
(2) As the universal algebra generated by the entries of a N × N orthogonal matrix

which is “cubic”, in the sense that, for any j 6= k:

uijuik = ujiuki = 0

As for C(HN), this has similar presentations, among the commutative algebras.

Proof. Here the first assertion follows from Theorem 10.12, via Proposition 10.10,
and the last assertion is clear as well, because C(HN) is the abelianization of C(H+

N).
Thus, we are left with proving that the algebras As, Ac coming from (1,2) coincide.

We construct first the arrow Ac → As. The elements aij, bij being self-adjoint, their
differences are self-adjoint as well. Thus a − b is a matrix of self-adjoint elements. We
have the following formula for the products on the columns of a− b:

(a− b)ik(a− b)jk = aikajk − aikbjk − bikajk + bikbjk

=

{
0 for i 6= j

aik + bik for i = j

In the i = j case the elements aik + bik sum up to 1, so the columns of a − b are
orthogonal. A similar computation works for rows, so a− b is orthogonal.
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Now by using the i 6= j computation, along with its row analogue, we conclude that
a− b is cubic. Thus we can define a morphism Ac → As by the following formula:

ϕ(uij) = aij − bij
We construct now the inverse morphism. Consider the following elements:

αij =
u2
ij + uij

2

βij =
u2
ij − uij

2
These are projections, and the following matrix is a sudoku unitary:

M =

(
(αij) (βij)
(βij) (αij)

)
Thus we can define a morphism As → Ac by the following formulae:

ψ(aij) =
u2
ij + uij

2

ψ(bij) =
u2
ij − uij

2
We check now the fact that ψ, ϕ are indeed inverse morphisms:

ψϕ(uij) = ψ(aij − bij)

=
u2
ij + uij

2
−
u2
ij − uij

2
= uij

As for the other composition, we have the following computation:

ϕψ(aij) = ϕ

(
u2
ij + uij

2

)
=

(aij − bij)2 + (aij − bij)
2

= aij

A similar computation gives ϕψ(bij) = bij, which completes the proof. �

We can now work out the easiness property of HN , H
+
N , with respect to the cubic

representations, and we are led to the following result, which is fully satisfactory:

Theorem 10.14. The quantum groups HN , H
+
N are both easy, as follows:

(1) HN corresponds to the category Peven.
(2) H+

N corresponds to the category NCeven.

Proof. These assertions follow indeed from the fact that the cubic relations are
implemented by the one-block partition in P (2, 2), which generates NCeven. See [16]. �
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10c. Complex reflections

There is a similarity here with the easiness results for permutations and quantum
permutations, obtained in chapter 9. In fact, the basic algebraic results regarding SN , S

+
N

and HN , H
+
N appear as the s = 1, 2 particular cases of the following result:

Theorem 10.15. The complex reflection groups Hs
N = Zs oSN and their free analogues

Hs+
N = Zs o∗ S+

N , defined for any s ∈ N, have the following properties:

(1) They have N-dimensional coordinates u = (uij), which are subject to the relations
uiju

∗
ij = u∗ijuij, pij = uiju

∗
ij = magic, and usij = pij.

(2) They are easy, the corresponding categories P s ⊂ P,NCs ⊂ NC being given by
the fact that we have # ◦ −#• = 0(s), as a weighted sum, in each block.

Proof. We already know that the results hold at s = 1, 2, and the proof in general
is similar. With respect to the above proof at s = 2, the situation is as follows:

(1) Observe first that the result holds at s = 1, where we obtain the magic condition,
and at s = 2 as well, where we obtain something equivalent to the cubic condition. In
general, this follows from a Zs-analogue of Proposition 10.13. See [37].

(2) Once again, the result holds at s = 1, trivially, and at s = 2 as well, where our
condition is equivalent to # ◦ +#• = 0(2), in each block. In general, this follows as in
the proof of Theorem 10.14, by using the one-block partition in P (s, s). See [9]. �

The above proof is of course quite brief, but we will not be really interested here in
the case s ≥ 3, which is quite technical.

In fact, the above result, dealing with the general case s ∈ N, is here for providing an
introduction to the case s =∞, where we have:

Theorem 10.16. The pure complex reflection groups KN = T o SN and their free
analogues K+

N = T o∗ S+
N have the following properties:

(1) They have N-dimensional coordinates u = (uij), which are subject to the relations
uiju

∗
ij = u∗ijuij and pij = uiju

∗
ij = magic.

(2) They are easy, the corresponding categories Peven ⊂ P,NCeven ⊂ NC being given
by the fact that we have #◦ = #•, as a weighted equality, in each block.

Proof. The assertions here appear as an s =∞ extension of (1,2) in Theorem 10.15
above, and their proof can be obtained along the same lines, as follows:

(1) This follows indeed by working out a T-analogue of the computations in the proof
of Proposition 10.13 above. We refer here to [37].

(2) Once again, this appears as a s =∞ extension of the results that we already have,
and for details here, we refer once again to [9]. �
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The above results at s = 2,∞ are quite interesting for us, because we can now focus
on the quantum reflection groups HN , H

+
N , KN , K

+
N , with the idea in mind of completing

the orthogonal and unitary quantum group picture from chapter 7 above.

Before doing this, we have two more quantum groups to be introduced and studied,
namely the half-liberations H∗N , K

∗
N . We have here the following result:

Theorem 10.17. We have quantum groups H∗N , K
∗
N , which are both easy, as follows,

(1) H∗N = H+
N ∩O∗N , corresponding to the category P ∗even,

(2) K∗N = K+
N ∩ U∗N , corresponding to the category P∗even,

with the symbol ∗ standing for the fact that the corresponding partitions, when relabelled
clockwise ◦ • ◦ • . . ., must contain the same number of ◦, •, in each block.

Proof. This is standard, from the results that we already have, regarding the various
quantum groups involved, because the interesection operations at the quantum group level
correspond to generation operations, at the category of partitions level. �

We can now complete the “continuous” picture from chapter 7 above, as follows:

Theorem 10.18. The basic orthogonal and unitary quantum groups are related to the
basic real and complex quantum reflection groups as follows,

UN // U∗N
// U+

N

ON
//

OO

O∗N
//

OO

O+
N

OO

↔

KN
// K∗N

// K+
N

HN
//

OO

H∗N
//

OO

H+
N

OO

the connecting operations U ↔ K being given by K = U ∩K+
N and U = {K,ON}.

Proof. According to the general results in section 7 above, in terms of categories of
partitions, the operations introduced in the statement reformulate as follows:

DK =< DU ,NCeven > , DU = DK ∩ P2

On the other hand, by putting together the various easiness results that we have, the
categories of partitions for the quantum groups in the statement are as follows:

P2

��

P∗2oo

��

NC2
oo

��
P2 P ∗2oo NC2

oo

:

Peven

��

P∗evenoo

��

NCevenoo

��
Peven P ∗evenoo NCevenoo

It is elementary to check that these categories are related by the above intersection
and generation operations, and we conclude that the correspondence holds indeed. �
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Our purpose now will be that of showing that a twisted analogue of the above result
holds. It is convenient to include in our discussion two more quantum groups, coming

from [25], [82] and denoted H
[∞]
N , K

[∞]
N , which are constructed as follows:

Theorem 10.19. We have intermediate liberations H
[∞]
N , K

[∞]
N as follows, constructed

by using the relations αβγ = 0, for any a 6= c on the same row or column of u,

KN
// K∗N

// K
[∞]
N

// K+
N

HN
//

OO

H∗N
//

OO

H
[∞]
N

//

OO

H+
N

OO

with the convention α = a, a∗, and so on. These quantum groups are easy, the correspond-

ing categories P
[∞]
even ⊂ Peven and P [∞]

even ⊂ Peven being generated by η = ker(iijjii).

Proof. This is routine, by using the fact that the relations αβγ = 0 in the statement
are equivalent to the following condition, with |k| = 3:

η ∈ End(u⊗k)

For further details on these quantum groups, we refer to [25], [82]. �

In order to discuss the twisting, we will need the following technical result:

Proposition 10.20. We have the following equalities,

P ∗even =
{
π ∈ Peven

∣∣∣ε(τ) = 1,∀τ ≤ π, |τ | = 2
}

P [∞]
even =

{
π ∈ Peven

∣∣∣σ ∈ P ∗even,∀σ ⊂ π
}

P [∞]
even =

{
π ∈ Peven

∣∣∣ε(τ) = 1,∀τ ≤ π
}

where ε : Peven → {±1} is the signature of even permutations.

Proof. This is routine combinatorics, from [5], [82], the idea being as follows:

(1) Given π ∈ Peven, we have τ ≤ π, |τ | = 2 precisely when τ = πβ is the partition
obtained from π by merging all the legs of a certain subpartition β ⊂ π, and by merging
as well all the other blocks. Now observe that πβ does not depend on π, but only on
β, and that the number of switches required for making πβ noncrossing is c = N• − N◦
modulo 2, where N•/N◦ is the number of black/white legs of β, when labelling the legs
of π counterclockwise ◦ • ◦ • . . . Thus ε(πβ) = 1 holds precisely when β ∈ π has the same
number of black and white legs, and this gives the result.

(2) This simply follows from the equality P
[∞]
even =< η > coming from Theorem 10.19,

by computing < η >, and for the complete proof here we refer to [82].
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(3) We use here the fact, also from [82], that the relations gigigj = gjgigi are trivially
satisfied for real reflections. This leads to the following conclusion:

P [∞]
even(k, l) =

{
ker

(
i1 . . . ik
j1 . . . jl

) ∣∣∣gi1 . . . gik = gj1 . . . gjl inside Z∗N2
}

In other words, the partitions in P
[∞]
even are those describing the relations between free

variables, subject to the conditions g2
i = 1. We conclude that P

[∞]
even appears from NCeven

by “inflating blocks”, in the sense that each π ∈ P [∞]
even can be transformed into a partition

π′ ∈ NCeven by deleting pairs of consecutive legs, belonging to the same block.
Now since this inflation operation leaves invariant modulo 2 the number c ∈ N of

switches in the definition of the signature, it leaves invariant the signature ε = (−1)c

itself, and we obtain in this way the inclusion “⊂” in the statement.
Conversely, given π ∈ Peven satisfying ε(τ) = 1, ∀τ ≤ π, our claim is that:

ρ ≤ σ ⊂ π, |ρ| = 2 =⇒ ε(ρ) = 1

Indeed, let us denote by α, β the two blocks of ρ, and by γ the remaining blocks of
π, merged altogether. We know that the partitions τ1 = (α ∧ γ, β), τ2 = (β ∧ γ, α),
τ3 = (α, β, γ) are all even. On the other hand, putting these partitions in noncrossing
form requires respectively s+ t, s′+ t, s+s′+ t switches, where t is the number of switches
needed for putting ρ = (α, β) in noncrossing form. Thus t is even, and we are done.

With the above claim in hand, we conclude, by using the second equality in the

statement, that we have σ ∈ P ∗even. Thus π ∈ P [∞]
even, which ends the proof of “⊃”. �

With the above result in hand, we can now prove:

Theorem 10.21. We have the following results:

(1) The quantum groups from Theorem 10.19 are equal to their own twists.
(2) With input coming from this, a twisted version of Theorem 10.18 holds.

Proof. This result, established in [5], basically comes from the results that we have.

(1) In the real case, the verifications are as follows:

– H+
N . We know from section 7 above that for π ∈ NCeven we have T̄π = Tπ, and since

we are in the situation D ⊂ NCeven, the definitions of G, Ḡ coincide.

–H
[∞]
N . Here we can use the same argument as in (1), based this time on the description

of P
[∞]
even involving the signature found in Proposition 10.20.

– H∗N . We have H∗N = H
[∞]
N ∩ O∗N , so H̄∗N ⊂ H

[∞]
N is the subgroup obtained via the

defining relations for Ō∗N . But all the abc = −cba relations defining H̄∗N are automatic,

of type 0 = 0, and it follows that H̄∗N ⊂ H
[∞]
N is the subgroup obtained via the relations

abc = cba, for any a, b, c ∈ {uij}. Thus we have H̄∗N = H
[∞]
N ∩O∗N = H∗N , as claimed.
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– HN . We have HN = H∗N ∩ ON , and by functoriality, H̄N = H̄∗N ∩ ŌN = H∗N ∩ ŌN .
But this latter intersection is easily seen to be equal to HN , as claimed.

In the complex case the proof is similar, and we refer here to [5].

(2) This can be proved by proceeding as in the proof of Theorem 10.18 above, with of
course some care when formulating the result. Once again, we refer here to [5]. �

10d. Bessel laws

Let us go back to H+
N , K

+
N , or rather to the whole series Hs+

N , with s ∈ {1, 2, . . . ,∞}
and work out the fusion rules, and probabilistic aspects. We first have:

Proposition 10.22. The algebra C(Hs+
N ) has a family of N-dimensional corepresen-

tations {uk|k ∈ Z}, satisfying the following conditions:

(1) uk = (ukij) for any k ≥ 0.
(2) uk = uk+s for any k ∈ Z.
(3) ūk = u−k for any k ∈ Z.

Proof. Our claim is that all the above holds, with uk = (ukij). Indeed, all these

results follow from the definition of Hs+
N . See [37]. �

Next, we have the following result, also from [37]:

Theorem 10.23. With the convention ui1...ik = ui1 ⊗ . . .⊗ uik , for any i1, . . . , ik ∈ Z,
we have the following equality of linear spaces,

Hom(ui1...ik , uj1...jl) = span
{
Tp

∣∣∣p ∈ NCs(i1 . . . ik, j1 . . . jl)}
where the set on the right consists of elements of NC(k, l) having the property that in
each block, the sum of i indices equals the sum of j indices, modulo s.

Proof. This result is from [37], the idea of the proof being as follows:

(1) Our first claim is that, in order to prove ⊃, we may restrict attention to the case
k = 0. This follows indeed from the Frobenius duality isomorphism.

(2) Our second claim is that, in order to prove ⊃ in the case k = 0, we may restrict
attention to the one-block partitions. Indeed, this follows once again from a standard
trick. Consider the following disjoint union:

NCs =
∞⋃
k=0

⋃
i1...ik

NCs(0, i1 . . . ik)

This is a set of labeled partitions, having property that each p ∈ NCs is noncrossing,
and that for p ∈ NCs, any block of p is in NCs. But it is well-known that under these
assumptions, the global algebraic properties of NCs can be checked on blocks.
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(3) Proof of ⊃. According to the above considerations, we just have to prove that the
vector associated to the one-block partition in NC(l) is fixed by uj1...jl , when:

s|j1 + . . .+ jl

Consider the standard generators eab ∈MN(C), acting on the basis vectors by eab(ec) =
δbcea. The corepresentation uj1...jl is given by the following formula:

uj1...jl =
∑
a1...al

∑
b1...bl

uj1a1b1 . . . u
jl
albl
⊗ ea1b1 ⊗ . . .⊗ ealbl

As for the vector associated to the one-block partition, this is ξl =
∑

b e
⊗l
b . By using

now several times the relations in Proposition 10.22, we obtain, as claimed:

uj1...jl(1⊗ ξl) =
∑
a1...al

∑
b

uj1a1b . . . u
jl
alb
⊗ ea1 ⊗ . . .⊗ eal

=
∑
ab

uj1+...+jl
ab ⊗ e⊗la

= 1⊗ ξl

(4) Proof of ⊂. The spaces on the right in the statement form a Tannakian category
in the sense of [100], so they correspond to a certain Woronowicz algebra A.

This algebra is by definition the maximal model for the Tannakian category. In other
words, it comes with a family of corepresentations {vi}, such that:

Hom(vi1...ik , vj1...jl) = span
{
Tp

∣∣∣p ∈ NCs(i1 . . . ik, j1 . . . jl)}
On the other hand, the inclusion ⊃ that we just proved shows that C(Hs+

N ) is a model
for the category. Thus we have a quotient map A→ C(Hs+

N ), mapping vi → ui.
But this latter map can be shown to be an isomorphism, by suitably adapting the

proof from the s = 1 case, for the quantum permutation group S+
N . See [9], [37]. �

Following [37], we have the following result:

Theorem 10.24. Let F =< Zs > be the monoid formed by the words over Zs, with
involution (i1 . . . ik)

− = (−ik) . . . (−i1), and with fusion product given by:

(i1 . . . ik) · (j1 . . . jl) = i1 . . . ik−1(ik + j1)j2 . . . jl

The irreducible representations of Hs+
N can then be labeled rx with x ∈ F , such that

rx ⊗ ry =
∑

x=vz,y=z̄w

rvw + rv·w

and r̄x = rx̄, and such that ri = ui − δi01 for any i ∈ Zs.
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Proof. This basically follows from Theorem 10.23, the idea being as follows:

(1) Consider the monoid A = {ax|x ∈ F}, with multiplication axay = axy. We endow
NA with fusion rules as in the statement, namely:

ax ⊗ ay =
∑

x=vz,y=z̄w

avw + av·w

(2) The fusion rules on ZA can be then uniquely described by conversion formulae as
follows, with C being positive integers, and D being integers:

ai1 ⊗ . . .⊗ aik =
∑
l

∑
j1...jl

Cj1...jl
i1...ik

aj1...jl

ai1...ik =
∑
l

∑
j1...jl

Dj1...jl
i1...ik

aj1 ⊗ . . .⊗ ajl

(3) Now observe that there is a unique morphism of rings Φ : ZA → R, such that
Φ(ai) = ri for any i. Indeed, consider the following elements of R:

ri1...ik =
∑
l

∑
j1...jl

Dj1...jl
i1...ik

rj1 ⊗ . . .⊗ rjl

In case we have a morphism as claimed, we must have Φ(ax) = rx for any x ∈ F .
Thus our morphism is uniquely determined on A, so it is uniquely determined on ZA.

(4) Our claim is that Φ commutes with the linear forms x → #(1 ∈ x). Indeed, by
linearity we just have to check the following equality:

#(1 ∈ ai1 ⊗ . . .⊗ aik) = #(1 ∈ ri1 ⊗ . . .⊗ rik)

Now remember that the elements ri are defined as ri = ui − δi01. So, consider the
elements ci = ai + δi01. Since the operations ri → ui and ai → ci are of the same nature,
by linearity the above formula is equivalent to:

#(1 ∈ ci1 ⊗ . . .⊗ cik) = #(1 ∈ ui1 ⊗ . . .⊗ uik)

Now by using Theorem 10.23, what we have to prove is:

#(1 ∈ ci1 ⊗ . . .⊗ cik) = #NCs(i1 . . . ik)

In order to prove this formula, consider the product on the left:

P = (ai1 + δi101)⊗ (ai2 + δi201)⊗ . . .⊗ (aik + δik01)

But this quantity can be computed by using the fusion rules on A, and the combina-
torics leads to the conclusion that we have #(1 ∈ P ) = #NCs(i1 . . . ik), as claimed.

(5) Our claim now is that Φ is injective. Indeed, this follows from the result in the
previous step, by using a standard positivity argument.
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(6) Our claim is that we have Φ(A) ⊂ Rirr. This is the same as saying that rx ∈ Rirr

for any x ∈ F , and we will prove it by recurrence. Assume that the assertion is true for
all the words of length < k, and consider a length k word, x = i1 . . . ik. We have:

ai1 ⊗ ai2...ik = ax + ai1+i2,i3...ik + δi1+i2,0ai3...ik

By applying Φ to this decomposition, we obtain:

ri1 ⊗ ri2...ik = rx + ri1+i2,i3...ik + δi1+i2,0ri3...ik

We have the following computation, which is valid for y = i1 + i2, i3 . . . ik, as well as
for y = i3 . . . ik in the case i1 + i2 = 0:

#(ry ∈ ri1 ⊗ ri2...ik) = #(1, rȳ ⊗ ri1 ⊗ ri2...ik)
= #(1, aȳ ⊗ ai1 ⊗ ai2...ik)
= #(ay ∈ ai1 ⊗ ai2...ik)
= 1

Moreover, we know from the previous step that we have ri1+i2,i3...ik 6= ri3...ik , so we
conclude that the following formula defines an element of R+:

α = ri1 ⊗ ri2...ik − ri1+i2,i3...ik − δi1+i2,0ri3...ik

On the other hand, we have α = rx, so we conclude that we have rx ∈ R+. Finally,
the irreducibility of rx follows from #(1 ∈ rx ⊗ r̄x) = 1.

(7) Summarizing, we have constructed an injective ring morphism Φ : ZA → R,
having the property Φ(A) ⊂ Rirr. The remaining fact to be proved, namely that we have
Φ(A) = Rirr, is something of abstract nature, which is clear. Thus, we are done. �

Regarding the probabilistic aspects, we will need some general theory. We have the
following definition, extending the Poisson limit theory from chapter 9 above:

Definition 10.25. Associated to any compactly supported positive measure ρ on R
are the probability measures

pρ = lim
n→∞

((
1− c

n

)
δ0 +

1

n
ρ

)∗n

πρ = lim
n→∞

((
1− c

n

)
δ0 +

1

n
ρ

)�n
where c = mass(ρ), called compound Poisson and compound free Poisson laws.

In what follows we will be interested in the case where ρ is discrete, as is for instance
the case for ρ = δt with t > 0, which produces the Poisson and free Poisson laws. The
following result allows one to detect compound Poisson/free Poisson laws:
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Proposition 10.26. For ρ =
∑s

i=1 ciδzi with ci > 0 and zi ∈ R, we have

Fpρ(y) = exp

(
s∑
i=1

ci(e
iyzi − 1)

)

Rπρ(y) =
s∑
i=1

cizi
1− yzi

where F,R denote respectively the Fourier transform, and Voiculescu’s R-transform.

Proof. Let µn be the measure appearing in Definition 10.25, under the convolution
signs. In the classical case, we have the following computation:

Fµn(y) =
(

1− c

n

)
+

1

n

s∑
i=1

cie
iyzi

=⇒ Fµ∗nn (y) =

((
1− c

n

)
+

1

n

s∑
i=1

cie
iyzi

)n

=⇒ Fpρ(y) = exp

(
s∑
i=1

ci(e
iyzi − 1)

)

In the free case now, we use a similar method. The Cauchy transform of µn is:

Gµn(ξ) =
(

1− c

n

) 1

ξ
+

1

n

s∑
i=1

ci
ξ − zi

Consider now the R-transform of the measure µ�nn , which is given by:

Rµ�nn
(y) = nRµn(y)

The above formula of Gµn shows that the equation for R = Rµ�nn
is as follows:

(
1− c

n

) 1

y−1 +R/n
+

1

n

s∑
i=1

ci
y−1 +R/n− zi

= y

=⇒
(

1− c

n

) 1

1 + yR/n
+

1

n

s∑
i=1

ci
1 + yR/n− yzi

= 1
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Now multiplying by n, rearranging the terms, and letting n→∞, we get:

c+ yR

1 + yR/n
=

s∑
i=1

ci
1 + yR/n− yzi

=⇒ c+ yRπρ(y) =
s∑
i=1

ci
1− yzi

=⇒ Rπρ(y) =
s∑
i=1

cizi
1− yzi

This finishes the proof in the free case, and we are done. �

We also have the following result, providing an alternative to Definition 10.25:

Theorem 10.27. For ρ =
∑s

i=1 ciδzi with ci > 0 and zi ∈ R, we have

pρ/πρ = law

(
s∑
i=1

ziαi

)
where the variables αi are Poisson/free Poisson(ci), independent/free.

Proof. Let α be the sum of Poisson/free Poisson variables in the statement. We will
show that the Fourier/R-transform of α is given by the formulae in Proposition 10.26.

Indeed, by using some well-known Fourier transform formulae, we have:

Fαi(y) = exp(ci(e
iy − 1)) =⇒ Fziαi(y) = exp(ci(e

iyzi − 1))

=⇒ Fα(y) = exp

(
s∑
i=1

ci(e
iyzi − 1)

)
Also, by using some well-known R-transform formulae, we have:

Rαi(y) =
ci

1− y
=⇒ Rziαi(y) =

cizi
1− yzi

=⇒ Rα(y) =
s∑
i=1

cizi
1− yzi

Thus we have indeed the same formulae as those in Proposition 10.26. �

We can go back now to quantum reflection groups, and we have:

Theorem 10.28. The asymptotic laws of truncated characters are as follows, where
εs with s ∈ {1, 2, . . . ,∞} is the uniform measure on the s-th roots of unity:

(1) For Hs
N we obtain the compound Poisson law bst = ptεs.

(2) For Hs+
N we obtain the compound free Poisson law βst = πtεs.

These measures are in Bercovici-Pata bijection.
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Proof. This follows from easiness, and from the Weingarten formula. To be more
precise, at t = 1 this follows by counting the partitions, and at t ∈ (0, 1] general, this
follows in the usual way, for instance by using cumulants. See [9]. �

The above measures are called Bessel and free Bessel laws. This is because at s = 2
we have b2

t = e−t
∑∞

k=−∞ fk(t/2)δk, with fk being the Bessel function of the first kind:

fk(t) =
∞∑
p=0

t|k|+2p

(|k|+ p)!p!

The Bessel and free Bessel laws have particularly interesting properties at the param-
eter values s = 2,∞. So, let us record the precise statement here:

Theorem 10.29. The asymptotic laws of truncated characters are as follows:

(1) For HN we obtain the real Bessel law bt = ptε2.
(2) For KN we obtain the complex Bessel law Bt = ptε∞.
(3) For H+

N we obtain the free real Bessel law βt = πtε2.
(4) For K+

N we obtain the free complex Bessel law Bt = πtε∞.

Proof. This follows indeed from Theorem 10.28 above, at s = 2,∞. �

In addition to what has been said above, there are as well some interesting results
about the Bessel and free Bessel laws involving the multiplicative convolution ×, and the
multiplicative free convolution �. For details, we refer here to [9].

10e. Exercises

As before with the quantum permutations, there has been a lot of material in this
section, and most of our exercises will be about what has been said above. To start with,
in relation with the quantum automorphisms of the finite graphs, we have:

Exercise 10.30. Extract, from the computation of the quantum symmetry group of
the N-cycle with N ≥ 4, a simple proof for the equality S+

3 = S3.

To be more precise, that computation shows at N = 3 that we have S+
3 = S3, and the

problem is that of writing down a short proof for this latter equality.

In relation now with the quantum reflection groups, we first have:

Exercise 10.31. Work out all the details regarding the easiness property of HN , H
+
N ,

involving the categories Peven, NCeven.

This is something that was already discussed in the above, but just briefly. The idea
is to proceed a bit in the same way as we did for SN , S

+
N , in chapter 9.

Along the same lines, we have the following exercise:
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Exercise 10.32. Work out all the details regarding the easiness property of Hs
N , H

s+
N ,

involving the categories P s, NCs.

As before with HN , H
+
N , the idea here is that of proceeding a bit in the same way as

we did for SN , S
+
N , in chapter 9.

Here is another instructive exercise regarding the quantum reflection groups:

Exercise 10.33. Work out the structure of the complex reflection groups Hs
N , H

s+
N at

N = 2, and at various values of the parameter s.

To be more precise, the problem here is that of studying the groups and quantum
groups Hs

2 , H
s+
2 at various values of the parameter s, with the various methods developed

so far, and see if we have here previously known groups and quantum groups.

In relation now with the fusion rules, we have:

Exercise 10.34. Deduce the Clebsch-Gordan rules for the irreducible representations
of S+

N , from the general result regarding Hs+
N , taken at s = 1.

This might seem quite trivial, but in practice, there is some work to be done here.

Finally, in relation with probability, we have:

Exercise 10.35. Prove that at s = 2 the Bessel law is given by

b2
t = e−t

∞∑
k=−∞

fk(t/2)δk

with fk being the Bessel function of the first kind, namely:

fk(t) =
∞∑
p=0

t|k|+2p

(|k|+ p)!p!

As mentioned above, there are many other interesting things that can be said about
the Bessel and free Bessel laws, and as a final and supplementary exercise, we recommend
exploring the subject, say by reading the related literature.



CHAPTER 11

Classification results

11a. Uniform groups

We discuss in this chapter and in the next one various classification questions for the
closed subgroups G ⊂ U+

N , in the easy case, and beyond. There has been a lot of work on
the subject, and our objective here will be quite modest, namely presenting a few basic
such classification results, along with some discussion.

We have already met a number of easy quantum groups, as follows:

Theorem 11.1. We have the following examples of easy quantum groups:

(1) Orthogonal quantum groups: ON , O
∗
N , O

+
N .

(2) Unitary quantum groups: UN , U
∗
N , U

+
N .

(3) Bistochastic versions: BN , B
+
N , CN , C

+
N .

(4) Quantum permutation groups: SN , S
+
N .

(5) Hyperoctahedral quantum groups: HN , H
∗
N , H

+
N .

(6) Quantum reflection groups: KN , K
∗
N , K

+
N .

Proof. This is something that we already know, the partitions being as follows:

(1) For ON we obtain the category of pairings P2. For O+
N we obtain the category

of noncrossing pairings NC2. For O∗N we obtain the category P ∗2 of pairings having the
property that when labelling the legs clockwise ◦ • ◦ • . . . , each string connects ◦ − •.

(2) For UN we obtain the category P2 of pairings which are matching, in the sense
that the horizontal strings connect ◦ − ◦ or • − •, and the vertical strings connect ◦ − •.
For U+

N we obtain the category NC2 = NC2 ∩ P2. For U∗N we obtain P∗2 = P ∗2 ∩ P2.

(3) For BN , CN we obtain the categories P12,P12 of singletons and pairings, and match-
ing singletons and pairings. For B+

N , C
+
N we obtain the categories NC12,NC12 of singletons

and noncrossing pairings, and matching singletons and noncrossing pairings.

(4) For SN we obtain the category of all partitions P , and for S+
N we obtain the

category of all noncrossing partitions NC.

(5) For HN we obtain the category Peven or partitions having even blocks. For H+
N we

obtain the category NCeven = NC ∩ Peven of noncrossing partitions having even blocks.

249
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For H∗N we obtain the category P ∗even ⊂ Peven of partitions having the property that when
labelling the legs clockwise ◦ • ◦ • . . . , in each block we have #◦ = #•.

(6) For KN we obtain the category Peven of partitions having the property that we
have #◦ = #•, as a weighted equality, in each block. For K+

N we obtain the category
NCeven = Peven ∩NC. For K∗N we obtain the category P∗even = Peven ∩ P ∗even. �

In the above list the examples (4,5,6) appear as the s = 1, 2,∞ particular cases of
the quantum groups Hs

N , H
s∗
N , H

s+
N , so we have as extra examples these latter quantum

groups at 3 ≤ s <∞. Further examples can be constructed via free complexification, or
via operations of type GN → Zr ×GN , or GN → ZrGN , with r ∈ {2, 3, . . . ,∞}.

There are as well “exotic” intermediate liberation procedures, involving relations which
are more complicated than the half-commutation ones abc = cba, which can produce new
examples, in the unitary and reflection group cases. We will be back to this.

All this makes the classification question particularly difficult. So, our first task in
what follows will be that of cutting a bit from complexity, by adding some extra axioms,
chosen as “natural” as possible. A first such axiom, very natural, is as follows:

Proposition 11.2. For an easy quantum group G = (GN), coming from a category
of partitions D ⊂ P , the following conditions are equivalent:

(1) GN−1 = GN ∩ U+
N−1, via the embedding U+

N−1 ⊂ U+
N given by u→ diag(u, 1).

(2) GN−1 = GN ∩ U+
N−1, via the N possible diagonal embeddings U+

N−1 ⊂ U+
N .

(3) D is stable under the operation which consists in removing blocks.

If these conditions are satisfied, we say that G = (GN) is “uniform”.

Proof. We use here the general easiness theory from chapter 7 above.

(1) ⇐⇒ (2) This is something standard, coming from the inclusion SN ⊂ GN , which
makes everything SN -invariant. The result follows as well from the proof of (1) ⇐⇒ (3)
below, which can be converted into a proof of (2) ⇐⇒ (3), in the obvious way.

(1) ⇐⇒ (3) Given a subgroup K ⊂ U+
N−1, with fundamental corepresentation u,

consider the N ×N matrix v = diag(u, 1). Our claim is that for any π ∈ P (k) we have:

ξπ ∈ Fix(v⊗k) ⇐⇒ ξπ′ ∈ Fix(v⊗k
′
), ∀π′ ∈ P (k′), π′ ⊂ π
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In order to prove this, we must study the condition on the left. We have:

ξπ ∈ Fix(v⊗k)

⇐⇒ (v⊗kξπ)i1...ik = (ξπ)i1...ik , ∀i
⇐⇒

∑
j

(v⊗k)i1...ik,j1...jk(ξπ)j1...jk = (ξπ)i1...ik ,∀i

⇐⇒
∑
j

δπ(j1, . . . , jk)vi1j1 . . . vikjk = δπ(i1, . . . , ik),∀i

Now let us recall that our corepresentation has the special form v = diag(u, 1). We
conclude from this that for any index a ∈ {1, . . . , k}, we must have:

ia = N =⇒ ja = N

With this observation in hand, if we denote by i′, j′ the multi-indices obtained from
i, j obtained by erasing all the above ia = ja = N values, and by k′ ≤ k the common
length of these new multi-indices, our condition becomes:∑

j′

δπ(j1, . . . , jk)(v
⊗k′)i′j′ = δπ(i1, . . . , ik),∀i

Here the index j is by definition obtained from j′ by filling with N values. In order
to finish now, we have two cases, depending on i, as follows:

Case 1. Assume that the index set {a|ia = N} corresponds to a certain subpartition
π′ ⊂ π. In this case, the N values will not matter, and our formula becomes:∑

j′

δπ(j′1, . . . , j
′
k′)(v

⊗k′)i′j′ = δπ(i′1, . . . , i
′
k′)

Case 2. Assume now the opposite, namely that the set {a|ia = N} does not correspond
to a subpartition π′ ⊂ π. In this case the indices mix, and our formula reads:

0 = 0

Thus, we are led to ξπ′ ∈ Fix(v⊗k
′
), for any subpartition π′ ⊂ π, as claimed.

Now with this claim in hand, the result follows from Tannakian duality. �

At the level of the basic examples, from Theorem 11.1 above, the classical and free
quantum groups are uniform, while the half-liberations are not. Indeed, this can be seen
either with categories of partitions, or with intersections, the point in the half-classical
case being that the relations abc = cba, when applied to the coefficients of a matrix of
type v = diag(u, 1), collapse with c = 1 to the usual commutation relations ab = ba.

For classification purposes the uniformity axiom is something very natural and useful,
substantially cutting from complexity, and we have the following result, from [35]:



252 11. CLASSIFICATION RESULTS

Theorem 11.3. The classical and free uniform orthogonal easy quantum groups, with
inclusions between them, are as follows:

H+
N

// O+
N

S+
N

//

>>

B+
N

>>

HN
//

OO

ON

OO

SN

OO

==

// BN

OO

<<

Moreover, this is an intersection/easy generation diagram, in the sense that for any of its
square subdiagrams P ⊂ Q,R ⊂ S we have P = Q ∩R and {Q,R} = S.

Proof. We know that the quantum groups in the statement are indeed easy and
uniform, the corresponding categories of partitions being as follows:

NCeven

}}

��

NC2

~~

oo

��

NC

��

NC12

��

oo

Peven

}}

P2

~~

oo

P P12
oo

Since this latter diagram is an intersection and generation diagram, we conclude that
we have an intersection and easy generation diagram of quantum groups, as stated.

Regarding now the classification, consider an easy quantum group SN ⊂ GN ⊂ ON .
This most come from a category P2 ⊂ D ⊂ P , and if we assume G = (GN) to be uniform,
then D is uniquely determined by the subset L ⊂ N consisting of the sizes of the blocks
of the partitions in D. Our claim is that the admissible sets are as follows:

(1) L = {2}, producing ON .
(2) L = {1, 2}, producing BN .
(3) L = {2, 4, 6, . . .}, producing HN .
(4) L = {1, 2, 3, . . .}, producing SN .

In one sense, this follows from our easiness results for ON , BN , HN , SN . In the other
sense now, assume that L ⊂ N is such that the set PL consisting of partitions whose sizes
of the blocks belong to L is a category of partitions. We know from the axioms of the
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categories of partitions that the semicircle ∩ must be in the category, so we have 2 ∈ L.
We claim that the following conditions must be satisfied as well:

k, l ∈ L, k > l =⇒ k − l ∈ L

k ∈ L, k ≥ 2 =⇒ 2k − 2 ∈ L
Indeed, we will prove that both conditions follow from the axioms of the categories of

partitions. Let us denote by bk ∈ P (0, k) the one-block partition:

bk =

{
uu . . . u
1 2 . . . k

}
For k > l, we can write bk−l in the following way:

bk−l =


uu . . . . . . . . . . . . u
1 2 . . . l l + 1 . . . k
tt . . . t | . . . |

1 . . . k − l


In other words, we have the following formula:

bk−l = (b∗l ⊗ |⊗k−l)bk

Since all the terms of this composition are in PL, we have bk−l ∈ PL, and this proves
our first claim. As for the second claim, this can be proved in a similar way, by capping
two adjacent k-blocks with a 2-block, in the middle.

With these conditions in hand, we can conclude in the following way:

Case 1. Assume 1 ∈ L. By using the first condition with l = 1 we get:

k ∈ L =⇒ k − 1 ∈ L

This condition shows that we must have L = {1, 2, . . . ,m}, for a certain number
m ∈ {1, 2, . . . ,∞}. On the other hand, by using the second condition we get:

m ∈ L =⇒ 2m− 2 ∈ L
=⇒ 2m− 2 ≤ m

=⇒ m ∈ {1, 2,∞}

The case m = 1 being excluded by the condition 2 ∈ L, we reach to one of the two
sets producing the groups SN , BN .

Case 2. Assume 1 /∈ L. By using the first condition with l = 2 we get:

k ∈ L =⇒ k − 2 ∈ L
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This condition shows that we must have L = {2, 4, . . . , 2p}, for a certain number
p ∈ {1, 2, . . . ,∞}. On the other hand, by using the second condition we get:

2p ∈ L =⇒ 4p− 2 ∈ L
=⇒ 4p− 2 ≤ 2p

=⇒ p ∈ {1,∞}

Thus L must be one of the two sets producing ON , HN , and we are done.

In the free case, S+
N ⊂ GN ⊂ O+

N , the situation is quite similar, the admissible sets
being once again the above ones, producing this time O+

N , B
+
N , H

+
N , S

+
N . See [35]. �

As already mentioned, when removing the uniformity axiom things become more com-
plicated, and the classification result here, from [35], [82], is as follows:

Theorem 11.4. The classical and free orthogonal easy quantum groups are

H+
N

// O+
N

S ′+N

==

B′+N

==

S+
N

//

==

B+
N

==

HN
//

OO

ON

OO

S ′N

<<

B′N

<<

SN

OO

<<

// BN

OO

<<

with S ′N = SN × Z2, B′N = BN × Z2, and with S ′+N ,B
′+
N being their liberations, where B′+N

stands for the two possible such liberations, B′+N ⊂ B′′+N .

Proof. The idea here is that of jointly classifying the “classical” categories of par-
titions P2 ⊂ D ⊂ P , and the “free” ones NC2 ⊂ D ⊂ NC. At the classical level this
leads to 2 more groups, namely S ′N , B

′
N . See [35]. At the free level we obtain 3 more

quantum groups, S ′+N , B
′+
N , B

′′+
N , with the inclusion B′+N ⊂ B′′+N being best thought of as

coming from an inclusion B′N ⊂ B′′N , which happens to be an isomorphism. See [35]. �

11b. Twistability

Now back to the easy uniform case, the classification here remains a quite technical
topic. The problem comes from the following negative result:
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Proposition 11.5. The cubic diagram from Theorem 11.3, and its unitary analogue,

K+
N

// U+
N

S+
N

//

>>

C+
N

>>

KN
//

OO

UN

OO

SN

OO

==

// CN

OO

==

cannot be merged, without degeneration, into a 4-dimensional cubic diagram.

Proof. All this is a bit philosophical, with the problem coming from the “taking the
bistochastic version” operation, and more specifically, from the following equalities:

HN ∩ CN = KN ∩ CN = SN

Indeed, these equalities do hold, and so the 3D cube obtained by merging the classical
faces of the orthogonal and unitary cubes is something degenerate, as follows:

KN
// UN

SN //

==

CN

<<

HN
//

OO

ON

OO

SN

OO

==

// BN

OO

<<

Thus, the 4D cube, having this 3D cube as one of its faces, is degenerate too. �

Summarizing, when positioning ourselves at U+
N , we have 4 natural directions to be

followed, namely taking the classical, discrete, real and bistochastic versions. And the
problem is that, while the first three operations are “good”, the fourth one is “bad”.

In order to fix this problem, in a useful and efficient way, the natural choice is that
of slashing the bistochastic quantum groups BN , B

+
N , CN , C

+
N , which are rather secondary

objects anyway, as well the quantum permutation groups SN , S
+
N .

In order to formulate now our second general axiom, doing the job, consider the cube
TN = ZN2 , regarded as diagonal torus of ON . We have then:
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Proposition 11.6. For an easy quantum group G = (GN), coming from a category
of partitions D ⊂ P , the following conditions are equivalent:

(1) TN ⊂ GN .
(2) HN ⊂ GN .
(3) D ⊂ Peven.

If these conditions are satisfied, we say that GN is “twistable”.

Proof. We use the general easiness theory from chapter 7 above.

(1) ⇐⇒ (2) Here it is enough to check that the easy envelope T ′N of the cube equals
the hyperoctahedral group HN . But this follows from:

T ′N =< TN , SN >′= H ′N = HN

(2) ⇐⇒ (3) This follows by functoriality, from the fact that HN comes from the
category of partitions Peven, that we know from chapter 10 above. �

The teminology in the above result comes from the fact that, assuming D ⊂ Peven,
we can indeed twist GN , into a certain quizzy quantum group ḠN . We refer to chapter
7 above to full details regarding the construction GN → ḠN . In what follows we will not
need this twisting procedure, and we will just use Proposition 11.6 as it is, as a statement
providing us with a simple and natural condition to be imposed on GN . In practice now,
imposing this second axiom leads to something nice, namely:

Theorem 11.7. The basic quantum unitary and quantum reflection groups, from
Proposition 11.1 above, which are uniform and twistable, are as follows,

K+
N

// U+
N

H+
N

//

==

O+
N

>>

KN
//

OO

UN

OO

HN

OO

<<

// ON

OO

==

and this is an intersection and easy generation diagram.

Proof. The first assertion comes from discussion after Proposition 11.2, telling us
that the uniformity condition eliminates O∗N , U

∗
N , H

∗
N , K

∗
N . Also, the twistability condition

eliminates BN , B
+
N , CN , C

+
N and SN , S

+
N . Thus, we are left with the 8 quantum groups in
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the statement, which are indeed easy, coming from the following categories:

NCeven

{{

��

NC2

��

oo

��

NCeven

��

NC2

��

oo

Peven

{{

P2

��

oo

Peven P2
oo

Since this latter diagram is an intersection and generation diagram, we conclude that
we have an intersection and easy generation diagram of quantum groups, as stated. �

As explained above, we will not really need in what follows the twists of the twistable
quantum groups that we consider, our plan being that of using the twistability condition
as a natural condition to be imposed on our quantum groups, for classification purposes.
However, let us record as well the following result, in relation with the twists:

Theorem 11.8. The Schur-Weyl twists of the basic twistable quantum groups are

K+
N

// U+
N

H+
N

//

==

O+
N

>>

KN
//

OO

ŪN

OO

HN

OO

==

// ŌN

OO

==

and this is an intersection and quizzy generation diagram.

Proof. Here the formulae of the twists are something that we already know, coming
from the computations in chapter 7 above, and the last assertion is clear as well, coming
from the definition of the various quantum groups involved. �

11c. Orientability

In the general case now, where we have an arbitrary uniform and twistable easy
quantum group, this quantum group appears by definition as follows:

HN ⊂ GN ⊂ U+
N
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Thus, we can imagine our quantum group GN as sitting inside the standard cube,
from Theorem 11.7 above:

K+
N

// U+
N

H+
N

//

==

O+
N

>>

KN
//

OO

UN

OO

HN

OO

<<

// ON

OO

==

The point now is that, by using the operations ∩ and { , }, we can in principle “project”
GN on the faces and edges of the cube, and then use some kind of 3D orientation coming
from this, in order to deduce some structure and classification results.

In order to do this, let us start with the following definition:

Definition 11.9. Associated to any twistable easy quantum group

HN ⊂ GN ⊂ U+
N

are its classical, discrete and real versions, given by the following formulae,

Gc
N = GN ∩ UN

Gd
N = GN ∩K+

N

Gr
N = GN ∩O+

N

as well as its free, smooth and unitary versions, given by the following formulae,

Gf
N = {GN , H

+
N}

Gs
N = {GN , ON}

Gu
N = {GN , KN}

where ∩ and { , } are respectively the intersection and easy generation operations.

In this definition the classical, real and unitary versions are something quite standard.
Regarding the discrete and smooth versions, here we have no abstract justification for our
terminology, due to the fact that easy quantum groups do not have known differential
geometry. However, in the classical case, where GN ⊂ UN , our constructions produce
indeed discrete and smooth versions, and this is where our terminology comes from.
Finally, regarding the free version, this comes once again from the known examples.
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To be more precise, regarding the free version, the various results that we have show
that the liberation operation GN → G+

N usually appears via the formula:

G+
N = {GN , S

+
N}

This formula expresses the fact that the category of partitions of G+
N is obtained from

the one of GN by removing the crossings. But in the twistable setting, where we have by
definition HN ⊂ GN , this is the same as setting:

G+
N = {GN , H

+
N}

All this is of course a bit theoretical, and this is why we use the symbol f for free
versions in the above sense, and keep + for well-known, studied liberations.

In relation now with our questions, and our 3D plan, we can now formulate:

Proposition 11.10. Given an intermediate quantum group HN ⊂ GN ⊂ U+
N , we have

a diagram of closed subgroups of U+
N , obtained by inserting

Gf
N

Gu
N

Gd
N

// GN
//

OO

;;

Gs
N

Gr
N

;;

Gc
N

OO
//

K+
N

// U+
N

H+
N

//

==

O+
N

==

KN
//

OO

UN

OO

HN

OO

<<

// ON

OO

<<

in the obvious way, with each Gx
N belonging to the main diagonal of each face.

Proof. The fact that we have indeed the diagram of inclusions on the left is clear
from the constructions of the quantum groups involved, from Definition 11.9. Regarding
the insertion procedure, consider any of the faces of the cube, denoted as follows:

P ⊂ Q,R ⊂ S

Our claim is that the corresponding quantum group G = Gx
N can be inserted on the

corresponding main diagonal P ⊂ S, as follows:

Q // S

G

??

P //

OO

??

R

OO
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We have to check here a total of 6 × 2 = 12 inclusions. But, according to Definition
11.9, these inclusions that must be checked are as follows:

(1) HN ⊂ Gc
N ⊂ UN , where Gc

N = GN ∩ UN .

(2) HN ⊂ Gd
N ⊂ K+

N , where Gd
N = GN ∩K+

N .

(3) HN ⊂ Gr
N ⊂ O+

N , where Gr
N = GN ∩O+

N .

(4) H+
N ⊂ Gf

N ⊂ U+
N , where Gf

N = {GN , H
+
N}.

(5) ON ⊂ Gs
N ⊂ U+

N , where Gs
N = {GN , ON}.

(6) KN ⊂ Gu
N ⊂ U+

N , where Gu
N = {GN , KN}.

All these statements being trivial from the definition of ∩ and { , }, and from our
assumption HN ⊂ GN ⊂ U+

N , our insertion procedure works indeed, and we are done. �

In order now to complete the diagram, we have to project as well GN on the edges
of the cube. For this purpose we can basically assume, by replacing GN with each of its
6 projections on the faces, that GN actually lies on one of the six faces. The technical
result that we will need here is as follows:

Proposition 11.11. Given an intersection and easy generation diagram P ⊂ Q,R ⊂
S and an intermediate easy quantum group P ⊂ G ⊂ S, as follows,

Q // S

G

??

P //

OO

??

R

OO

we can extend this diagram into a diagram as follows:

Q // {G,Q} // S

G ∩Q

OO

// G //

OO

{G,R}

OO

P //

OO

G ∩R

OO

// R

OO

In addition, G “slices the square”, in the sense that this is an intersection and easy
generation diagram, precisely when G = {G ∩Q,G ∩R} and G = {G,Q} ∩ {G,R}.
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Proof. This is indeed clear from definitions, because the intersection and easy gen-
eration conditions are automatic for the upper left and lower right squares, and so are
half of the intersection and easy generation conditions for the lower left and upper right
squares. Thus, we are left with two conditions only, which are those in the statement. �

Now back to 3 dimensions, and to the cube, we have the following result:

Proposition 11.12. Assuming that HN ⊂ GN ⊂ U+
N satisfies the conditions

Gcs
N = Gsc

N , Gcu
N = Guc

N , Gdf
N = Gfd

N

Gdu
N = Gud

N , Grf
N = Gfr

N , Grs
N = Gsr

N

the diagram in Proposition 11.10 can be completed, via the construction in Proposition
11.11, into a diagram dividing the cube along the 3 coordinates axes, into 8 small cubes.

Proof. We have to prove that the 12 projections on the edges are well-defined, with
the problem coming from the fact that each of these projections can be defined in 2
possible ways, depending on the face that we choose first.

The verification goes as follows:

(1) Regarding the 3 edges emanating from HN , the result here follows from:

Gcd
N = Gdc

N = GN ∩KN

Gcr
N = Grc

N = GN ∩ON

Gdr
N = Grd

N = GN ∩H+
N

These formulae are indeed all trivial, of type:

(G ∩Q) ∩R = (G ∩R) ∩Q = G ∩ P
(2) Regarding the 3 edges landing into U+

N , the result here follows from:

Gfs
N = Gsf

N = {GN , O
+
N}

Gfu
N = Guf

N = {GN , K
+
N}

Gsu
N = Gus

N = {GN , UN}
These formulae are once again trivial, of type:

{{G,Q}, R} = {{G,R}, Q} = {G,S}
(3) Finally, regarding the remaining 6 edges, not emanating from HN or landing into

U+
N , here the result follows from our assumptions in the statement. �

We are not done yet, because nothing guarantees that we obtain in this way an inter-
section and easy generation diagram.

Thus, we must add more axioms, as follows:
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Theorem 11.13. Assume that HN ⊂ GN ⊂ U+
N satisfies the following conditions,

where by “intermediate” we mean in each case “parallel to its neighbors”:

(1) The 6 compatibility conditions in Proposition 11.12 above,

(2) Gc
N , GN , G

f
N slice the classical/intermediate/free faces,

(3) Gd
N , GN , G

s
N slice the discrete/intermediate/smooth faces,

(4) Gr
N , GN , G

u
N slice the real/intermediate/unitary faces,

Then GN “slices the cube”, in the sense that the diagram obtained in Proposition 11.12
above is an intersection and easy generation diagram.

Proof. This follows indeed from Proposition 11.11 and Proposition 11.12 above. �

Summarizing, we are done now with our geometric program, and we have a whole
collection of natural geometric conditions that can be imposed to GN .

11d. Ground zero

It is quite clear that GN can be reconstructed from its edge projections, so in order to
do the classification, we first need a “coordinate system”. Common sense would suggest to
use the one emanating from HN , or perhaps the one landing into U+

N . However, technically
speaking, best is to use the coordinate system based at ON , highlighted below:

K+
N

// U+
N

H+
N

//

==

O+
N

>>

KN
//

OO

UN

OO

HN

OO

<<

+3 ON

KS

8@

This choice comes from the fact that the classification result for ON ⊂ O+
N , explained

below, is something very simple. And this is not the case with the results for HN ⊂ H+
N

and for UN ⊂ U+
N , from [74], [82] which are quite complicated, with uncountably many

solutions, in the general non-uniform case. As for the result for KN ⊂ K+
N , this is not

available yet, but it is known that there are uncountably many solutions here as well.

So, here is now the key result, from [37], dealing with the vertical direction:

Theorem 11.14. There is only one proper intermediate easy quantum group

ON ⊂ GN ⊂ O+
N

namely the quantum group O∗N , which is not uniform.
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Proof. We must compute here the categories of pairings NC2 ⊂ D ⊂ P2, and this
can be done via some standard combinatorics, in three steps, as follows:

(1) Let π ∈ P2 −NC2, having s ≥ 4 strings. Our claim is that:

– If π ∈ P2 − P ∗2 , there exists a semicircle capping π′ ∈ P2 − P ∗2 .
– If π ∈ P ∗2 −NC2, there exists a semicircle capping π′ ∈ P ∗2 −NC2.

Indeed, both these assertions can be easily proved, by drawing pictures.

(2) Consider now a partition π ∈ P2(k, l)−NC2(k, l). Our claim is that:

– If π ∈ P2(k, l)− P ∗2 (k, l) then < π >= P2.
– If π ∈ P ∗2 (k, l)−NC2(k, l) then < π >= P ∗2 .

This can be indeed proved by recurrence on the number of strings, s = (k + l)/2, by
using (1), which provides us with a descent procedure s→ s− 1, at any s ≥ 4.

(3) Finally, assume that we are given an easy quantum group ON ⊂ G ⊂ O+
N , coming

from certain sets of pairings D(k, l) ⊂ P2(k, l). We have three cases:

– If D 6⊂ P ∗2 , we obtain G = ON .
– If D ⊂ P2, D 6⊂ NC2, we obtain G = O∗N .
– If D ⊂ NC2, we obtain G = O+

N .

Thus, we have proved the uniquess result. As for the non-uniformity of the unique
solution, O∗N , this is something that we already know, from Theorem 11.7 above. �

The above result is something quite remarkable, and it is actually believed that the
result could still hold, without the easiness assumption. We refer here to [17].

As already mentioned, the related inclusions HN ⊂ H+
N and UN ⊂ U+

N , studied in [74]
and [82], are far from being maximal, having uncountably many intermediate objects,
and the same is known to hold for KN ⊂ K+

N . There are many interesting open questions
here. It is conjectured for instance that there should be a contravariant duality H×N ↔ U×N ,
mapping the family and series from [82] to the series and family from [87].

Here is now another basic result that we will need, in order to perform our classification
work here, dealing this time with the “discrete vs. continuous” direction:

Theorem 11.15. There are no proper intermediate easy groups

HN ⊂ GN ⊂ ON

except for HN , ON themselves.
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Proof. We must prove that there are no proper intermediate categories as follows:

P2 ⊂ D ⊂ Peven

But this can done via some combinatorics, in the spirit of the proof of Theorem 11.3,
and with the result itself coming from Theorem 11.4. For full details here, see [35]. �

As a comment here, the inclusion H+
N ⊂ O+

N is maximal as well, as explained once again
in [35]. As for the complex versions of these results, regarding the inclusions KN ⊂ UN
and K+

N ⊂ U+
N , here the classification, in the non-uniform case, is available from [87].

Summarizing, we have here once again something very basic and fundamental, providing
some evidence for a kind of general “discrete vs. continuous” dichotomy.

Finally, here is a third and last result that we will need, for our classification work
here, regarding the missing direction, namely the “real vs. complex” one:

Theorem 11.16. The proper intermediate easy groups

ON ⊂ GN ⊂ UN

are the groups ZrON with r ∈ {2, 3, . . . ,∞}, which are not uniform.

Proof. This is standard and well-known, from [87], the proof being as follows:

(1) Our first claim is that the group TON ⊂ UN is easy, the corresponding category of
partitions being the subcategory P̄2 ⊂ P2 consisting of the pairings having the property
that when flatenning, we have the global formula #◦ = #•.

(2) Indeed, if we denote the standard corepresentation by u = zv, with z ∈ T and
with v = v̄, then in order to have Hom(u⊗k, u⊗l) 6= ∅, the z variabes must cancel, and in
the case where they cancel, we obtain the same Hom-space as for ON .

Now since the cancelling property for the z variables corresponds precisely to the
fact that k, l must have the same numbers of ◦ symbols minus • symbols, the associated
Tannakian category must come from the category of pairings P̄2 ⊂ P2, as claimed.

(3) Our second claim is that, more generally, the group ZrON ⊂ UN is easy, with the
corresponding category P r

2 ⊂ P2 consisting of the pairings having the property that when
flatenning, we have the global formula #◦ = # • (r).

(4) Indeed, this is something that we already know at r = 1,∞, where the group in
question is ON ,TON . The proof in general is similar, by writing u = zv as above.

(5) Let us prove now the converse, stating that the above groups ON ⊂ ZrON ⊂ UN
are the only intermediate easy groups ON ⊂ G ⊂ UN . According to our conventions for
the easy quantum groups, which apply of course to the classical case, we must compute
the following intermediate categories of pairings:

P2 ⊂ D ⊂ P2
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(6) So, assume that we have such a category, D 6= P2, and pick an element π ∈ D−P2,
assumed to be flat. We can modify π, by performing the following operations:

– First, we can compose with the basic crossing, in order to assume that π is a partition
of type ∩ . . . . . .∩, consisting of consecutive semicircles. Our assumption π /∈ P2 means
that at least one semicircle is colored black, or white.

– Second, we can use the basic mixed-colored semicircles, and cap with them all the
mixed-colored semicircles. Thus, we can assume that π is a nonzero partition of type
∩ . . . . . .∩, consisting of consecutive black or white semicircles.

– Third, we can rotate, as to assume that π is a partition consisting of an upper row
of white semicircles, ∪ . . . . . .∪, and a lower row of white semicircles, ∩ . . . . . .∩. Our
assumption π /∈ P2 means that this latter partition is nonzero.

(7) For a, b ∈ N consider the partition consisting of an upper row of a white semicircles,
and a lower row of b white semicircles, and set:

C =
{
πab

∣∣∣a, b ∈ N
}
∩D

According to the above we have π ∈< C >. The point now is that we have:

– There exists r ∈ N ∪ {∞} such that C equals the following set:

Cr =
{
πab

∣∣∣a = b(r)
}

This is indeed standard, by using the categorical axioms.

– We have the following formula, with P r
2 being as above:

< Cr >= P r
2

This is standard as well, by doing some diagrammatic work.

(8) With these results in hand, the conclusion now follows. Indeed, with r ∈ N∪{∞}
being as above, we know from the beginning of the proof that any π ∈ D satisfies:

π ∈ < C >
= < Cr >
= P r

2

Thus we have an inclusion D ⊂ P r
2 . Conversely, we have as well:

P r
2 = < Cr >

= < C >
⊂ < D >

= D

Thus we have D = P r
2 , and this finishes the proof. See [87]. �
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Once again, there are many comments that can be made here, with the whole subject
in the easy case being generally covered by the classification results in [87]. As for the
non-easy case, there are many interesting things here as well, as for instance the results
in [17], stating that PON ⊂ PUN , and TON ⊂ UN as well, are maximal.

We can now formulate a classification result, as follows:

Theorem 11.17 (Ground zero). There are exactly eight closed subgroups GN ⊂ U+
N

having the following properties,

(1) Easiness,
(2) Uniformity,
(3) Twistability,
(4) Slicing property,

namely the quantum groups ON , UN , HN , KN and O+
N , U

+
N , H

+
N , K

+
N .

Proof. We already know, from Theorem 11.7 above, that the 8 quantum groups in
the statement have indeed the properties (1-4), and form a cube, as follows:

K+
N

// U+
N

H+
N

//

==

O+
N

>>

KN
//

OO

UN

OO

HN

OO

<<

// ON

OO

==

Conversely now, assuming that an easy quantum group G = (GN) has the above
properties (2-4), the twistability property, (3), tells us that we have:

HN ⊂ GN ⊂ U+
N
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Thus GN sits inside the cube, and the above discussion applies. To be more precise,
let us project G on the faces of the cube, as in Proposition 11.10 above:

Gf
N

Gu
N

Gd
N

// GN
//

OO

;;

Gs
N

Gr
N

;;

Gc
N

OO
//

K+
N

// U+
N

H+
N

//

==

O+
N

==

KN
//

OO

UN

OO

HN

OO

<<

// ON

OO

<<

In order to compute these projections, and eventually prove that GN is one of the
vertices of the cube, we can use use the coordinate system based at ON :

K+
N

// U+
N

H+
N

//

==

O+
N

>>

KN
//

OO

UN

OO

HN

OO

<<

+3 ON

KS

8@

Now by using Theorem 11.14, Theorem 11.15 and Theorem 11.16, along with the
uniformity condition, (2), we conclude that the edge projections of GN must be among
the vertices of the cube. Moreover, by using the slicing axiom, (4), we deduce from this
that GN itself must be a vertex of the cube. Thus, we have exactly 8 solutions to our
problem, namely the vertices of the cube, as claimed. �

All this is quite philosophical. Bluntly put, by piling up a number of very natural
axioms, namely those of Woronowicz from [99], then our assumption S2 = id, and then
the easiness, uniformity, twistability, and slicing properties, we have managed to destroy
everything, or almost. The casualities include lots of interesting finite and compact Lie
groups, the duals of all finitely generated discrete groups, plus of course lots of interesting
quantum groups, which appear not to be strong enough to survive our axioms.

We should mention that the above result is in tune with free probability, and with
noncommutative geometry, where the most important quantum groups which appear are
precisely the above 8 ones. In what regards free probability, this comes from the various
character computations performed in chapters 8 and 10 above, which give:
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Theorem 11.18. The asymptotic character laws for the 8 main quantum groups are

Bt Γt

βt γt

Bt Gt

bt gt

which are exactly the 8 main limiting laws in classical and free probability,

FCCPLT FCCLT

FRCPLT FCLT

CCPLT CCLT

RCPLT CLT

with R,C standing for real and complex, CP standing for compound Poisson, and F
standing for free.

Proof. This is something that we already know, explained in chapters 8 and 10, and
which comes from easiness. Consider indeed our 8 main quantum groups:

K+
N

// U+
N

H+
N

//

==

O+
N

>>

KN
//

OO

UN

OO

HN

OO

<<

// ON

OO

==
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Accoring to our various Brauer type results, all these quantum groups are easy, the
corresponding categories of partitions being as follows:

NCeven

{{

��

NC2

��

oo

��

NCeven

��

NC2

��

oo

Peven

{{

P2

��

oo

Peven P2
oo

But this shows, via the Weingarten computations from chapters 8 and 10 above, that
the laws of asymptotic characters for our quantum groups are:

Bt Γt

βt γt

Bt Gt

bt gt

Regarding now the last assertion, consider the main central limiting theorems in clas-
sical and free probability, which are as follows, with R,C standing for real and complex,
CP standing for compound Poisson, and F standing for free:

FCCPLT FCCLT

FRCPLT FCLT

CCPLT CCLT

RCPLT CLT

Once again as explained in chapters 8 and 10 above, the limiting characters come from
the categories of partitions given above, and so are the laws given above. �
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The above result is of course something quite formal, only explaining the relation
between quantum groups and probability at the combinatorial level. It is possible to go
beyond this, with more specialized results, and we refer here to the literature.

In what regards now noncommutative geometry, the idea is that our 8 main quan-
tum groups correspond to the 4 possible “abstract noncommutative geometries”, in the
strongest possible sense, which are the real/complex, classical/free ones.

In order to explain this, consider the following diagram, consisting of main quantum
spheres, and of the corresponding tori:

T+
N

// SN−1
C,+

T+
N

//

==

SN−1
R,+

<<

TN //

OO

SN−1
C

OO

TN

OO

<<

// SN−1
R

OO

;;

These 4+4 spheres and tori add to the 4+4 unitary and reflection groups that we have,
which form as well a cubic diagram, as follows:

K+
N

// U+
N

H+
N

//

==

O+
N

>>

KN
//

OO

UN

OO

HN

OO

<<

// ON

OO

==

Thus, we have a total of 16 basic geometric objects. But these objects can be arranged,
in an obvious way, into 4 quadruplets of type (S, T, U,K), consisting a sphere S, a torus
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T , a unitary group U , and a reflection group K, with relations between them, as follows:

S //

�� ��

Too

����
U

OO ??

// Koo

__ OO

To be more precise, we obtain in this way the quadruplets (S, T, U,K) corresponding
to the real/complex, classical/free geometries. As mentioned above, it is possible to do
some axiomatization and classification work here, with the conclusion that, under strong
combinatorial axioms, including easiness, these 4 geometries are the only ones.

Summarizing, our Ground Zero classification theorem for the compact quantum groups
is compatible with both probability theory, and noncommutative geometry.

11e. Exercises

There has been a lot of theory in this chapter, often explained quite briefly, and our
exercises here will be mostly about details on all this. First, we have:

Exercise 11.19. Prove that the orthogonal easy groups are

HN
// ON

S ′N

OO

B′N

OO

SN //

OO

BN

OO

where S ′N = SN × Z2 and B′N = BN × Z2.

In the uniform case the classification was explained in the above, leading to the 4
corners of the square, as the unique solutions. The problem is that of understanding
what happens to this classification when lifting the uniformity assumption.

In relation with the free case now, we have:

Exercise 11.20. Find two distinct easy liberations

B′+N ⊂ B′′+N

of the group B′N = BN × Z2.
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The problem here is that of reformulating the question in terms of categories of par-
titions, and then producing 2 distinct categories of partitions which do the job.

As a continuation of the previous two exercises, we have:

Exercise 11.21. Prove that the orthogonal easy free quantum groups are

H+
N

// O+
N

B′′+N

OO

S ′+N

OO

B′+N

OO

S+
N

//

OO

B+
N

OO

where S ′+N = S+
N × Z2, and where B′+N ⊂ B′′+N are easy liberations of B′N = BN × Z2.

As before, in the uniform case the classification was explained in the above, leading to
the 4 corners of the square, as the unique solutions. The problem is that of understanding
what happens to this classification when lifting the uniformity assumption.



CHAPTER 12

The standard cube

12a. Face results

We discuss here a number of more specialized classification results, for the twistable
easy quantum groups, and for more general intermediate quantum groups as follows:

HN ⊂ G ⊂ U+
N

The general idea will be as before, namely that of viewing our quantum group as
sitting inside the standard cube, discussed in chapter 11:

K+
N

// U+
N

H+
N

//

==

O+
N

>>

KN
//

OO

UN

OO

HN

OO

<<

// ON

OO

==

We will be interested in several questions, as follows:

(1) Face results, in the easy case. The problem here is that of classifying the easy
quantum groups lying on each of the 6 faces of the cube. Thus, we would like to solve the
following intermediate easy quantum group problems:

HN ⊂ G ⊂ UN

HN ⊂ G ⊂ O+
N

HN ⊂ G ⊂ K+
N

H+
N ⊂ G ⊂ U+

N

KN ⊂ G ⊂ U+
N

UN ⊂ G ⊂ U+
N

(2) Edge results, in the easy case. This is a question which is easier, amounting in
solving 12 intermediate easy quantum group problems, one for each edge of the cube.

273
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(3) Face and edge results, in the general non-easy case. Here the problems are quite
difficult, but we will discuss some strategies, in order to deal with them.

Let us first discuss the classification in the easy case, for the lower and upper faces of
the cube. Following [87], in the uniform case, the result here is as follows:

Theorem 12.1. The classical and free uniform twistable easy quantum groups are

K+
N

// K++
N

// U+
N

Hs+
N

<<

H+
N

//

<<

O+
N

??

KN
//

OO

UN

OO

Hs
N

;;

HN

OO

;;

// ON

OO

>>

where Hs = Zs o SN , Hs+
N = Zs o∗ S+

N with s = 4, 6, 8 . . . , and where K+
N = K̃+

N .

Proof. The idea here is that of jointly classifying the “classical” categories of parti-
tions P2 ⊂ D ⊂ Peven, and the “free” ones NC2 ⊂ D ⊂ NCeven, under the assumption
that the category is stable under the operation which consists in removing blocks:

(1) In the classical case, the new solutions appear on the edge HN ⊂ KN , and are
the complex reflection groups Hs = Zs o SN with s = 4, 6, 8 . . . , the cases s = 2,∞
corresponding respectively to HN , KN .

(2) In the free case we obtain as new solutions the standard liberattions of these
groups, namely the quantum groups Hs+

N = Zs o∗ S+
N with s = 4, 6, 8 . . . , and we have as

well an extra solution, appearing on the edge K+
N ⊂ U+

N , which is the free complexification

K̃+
N of the quantum group K+

N , which is easy, and bigger than K+
N .

We refer to [87] for the full proof and discussion of these facts. �

The above result can be generalized, by lifting both the uniformity and twistablility
assumptions, and the result here, which is more technical, is explained in [87].

We will be back to this at the end of the present chapter, with an extension of the
above result, and with some classification results as well for the twists.

Another key result is the one from [82], dealing with the front face of the standard
cube, the orthogonal one. We first have the folowing result:
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Proposition 12.2. The easy quantum groups HN ⊂ G ⊂ O+
N are as follows,

H+
N

// O+
N

H
[∞]
N

OO

O∗N

OO

HN

OO

// ON

OO

with the dotted arrows indicating that we have intermediate quantum groups there.

Proof. This is a key result in the classification of easy quantum groups, whose proof
is quite technical, the idea being as follows:

(1) We have a first dichotomy concerning the quantum groups in the statement, namely
HN ⊂ G ⊂ O+

N , which must fall into one of the following two classes:

ON ⊂ G ⊂ O+
N

HN ⊂ G ⊂ H+
N

This dichotomy comes indeed from the early classification results for the easy quantum
groups, from [20], [35], [36], whose proofs are quite elementary.

(2) In addition to this, these early classification results solve as well the first problem,
namely ON ⊂ G ⊂ O+

N , with G = O∗N being the unique non-trivial solution.

(3) We have then a second dichotomy, concerning the quantum groups which are left,
namely HN ⊂ G ⊂ H+

N , which must fall into one of the following two classes:

HN ⊂ G ⊂ H
[∞]
N

H
[∞]
N ⊂ G ⊂ H+

N

This comes indeed from various papers, and more specifically from the final classifi-
cation paper of Raum and Weber [82], where the quantum groups SN ⊂ G ⊂ H+

N with

G 6⊂ H
[∞]
N were classified, and shown to contain H

[∞]
N . For full details, we refer to [82]. �

Summarizing, in order to deal with the front face of the main cube, we are left with
classifying the following intermediate easy quantum groups:

HN ⊂ G ⊂ H
[∞]
N

H
[∞]
N ⊂ G ⊂ H+

N

Regarding the second case, namely H
[∞]
N ⊂ G ⊂ H+

N , the result here, from [82], which
is quite technical, but has a simple formulation, is as follows:
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Proposition 12.3. Let H
[r]
N ⊂ H+

N be the easy quantum group coming from:

πr = ker

(
1 . . . r r . . . 1
1 . . . r r . . . 1

)
We have then inclusions of quantum groups as follows,

H+
N = H

[1]
N ⊃ H

[2]
N ⊃ H

[3]
N ⊃ . . . . . . ⊃ H

[∞]
N

and we obtain in this way all the intermediate easy quantum groups

H
[∞]
N ⊂ G ⊂ H+

N

satisfying the assumption G 6= H
[∞]
N .

Proof. Once again, this is something technical, and we refer here to [82]. �

It remains to discuss the easy quantum groups HN ⊂ G ⊂ H
[∞]
N , with the endpoints

G = HN , H
[∞]
N included. Once again, we follow here [82]. First, we have:

Definition 12.4. A discrete group generated by real reflections, g2
i = 1,

Γ =< g1, . . . , gN >

is called uniform if each σ ∈ SN produces a group automorphism, gi → gσ(i).

Consider now a uniform reflection group, as follows:

Z∗N2 → Γ→ ZN2
We can associate to it a family of subsets D(k, l) ⊂ P (k, l), which form a category of

partitions, as follows:

D(k, l) =

{
π ∈ P (k, l)

∣∣∣ ker

(
i

j

)
≤ π =⇒ gi1 . . . gik = gj1 . . . gjl

}
Observe that we have inclusions of categories as follows, coming respectively from

η ∈ D, and from the quotient map Γ→ ZN2 :

P [∞]
even ⊂ D ⊂ Peven

Conversely, consider a category of partitions as follows:

P [∞]
even ⊂ D ⊂ Peven

We can associate to it a uniform reflection group Z∗N2 → Γ→ ZN2 , as follows:

Γ =

〈
g1, . . . gN

∣∣∣gi1 . . . gik = gj1 . . . gjl ,∀i, j, k, l, ker

(
i

j

)
∈ D(k, l)

〉
As explained in [82], the correspondences Γ → D and D → Γ constructed above are

bijective, and inverse to each other, at N =∞.

We have in fact the following result, from [82]:
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Proposition 12.5. We have correspondences between:

(1) Uniform reflection groups Z∗∞2 → Γ→ Z∞2 .

(2) Categories of partitions P
[∞]
even ⊂ D ⊂ Peven.

(3) Easy quantum groups G = (GN), with H
[∞]
N ⊃ GN ⊃ HN .

Proof. This is something quite technical, which follows along the lines of the above
discussion. As an illustration, if we denote by Z◦N2 the quotient of Z∗N2 by the relations
of type abc = cba between the generators, we have the following correspondences:

ZN2 Z◦N2oo Z∗N2oo

HN
// H∗N

// H
[∞]
N

More generally, for any s ∈ {2, 4, . . . ,∞}, the quantum groups H
(s)
N ⊂ H

[s]
N constructed

in [20] come from the quotients of Z◦N2 ← Z∗N2 by the relations (ab)s = 1. See [82]. �

We can now formulate a final classification result, as follows:

Theorem 12.6. The easy quantum groups HN ⊂ G ⊂ O+
N are as follows,

H+
N

// O+
N

H
[r]
N

OO

H
[∞]
N

OO

O∗N

OO

HΓ
N

OO

HN

OO

// ON

OO

with the family HΓ
N covering HN , H

[∞]
N , and with the series H

[r]
N covering H+

N .

Proof. This follows indeed from Proposition 12.2, Proposition 12.3 and Proposition
12.5 above. For further details, we refer to the paper of Raum and Weber [82]. �

All the above is quite technical, and can be extended as well, as to cover all the
orthogonal easy quantum groups, SN ⊂ G ⊂ O+

N . For full details here, we refer to [82].
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12b. Edge results

Another interesting result, dealing this time with the unitary edge of the standard
cube, is the one from [74]. To be more precise, the problem here is that of classifying the
intermediate easy quantum groups as follows:

UN ⊂ G ⊂ U+
N

A first construction of such quantum groups is as follows:

Proposition 12.7. Associated to any r ∈ N is the easy quantum group

UN ⊂ U
(r)
N ⊂ U+

N

coming from the category P(r)
2 of matching pairings having the property that

#◦ = # • (r)

holds between the legs of each string. These quantum groups have the following properties:

(1) At r = 1 we obtain the usual unitary group, U
(1)
N = UN .

(2) At r = 2 we obtain the half-classical unitary group, U
(2)
N = U∗N .

(3) For any r|s we have an embedding U
(r)
N ⊂ U

(s)
N .

(4) In general, we have an embedding U
(r)
N ⊂ U r

N o Zr.
(5) We have as well a cyclic matrix model C(U

(r)
N ) ⊂Mr(C(U r

N)).
(6) In this latter model,

∫
U

(r)
N

appears as the restriction of trr ⊗
∫
UrN

.

Proof. This is something quite compact, summarizing various findings from [15],
[74]. Here are a few brief explanations on all this:

(1) This is clear from P(1)
2 = P2, and from a well-known result of Brauer [48].

(2) This is because P(2)
2 is generated by the partitions with implement the relations

abc = cba between the variables {uij, u∗ij}, used in [44] for constructing U∗N .

(3) This simply follows from P(s)
2 ⊂ P

(r)
2 , by functoriality.

(4) This is the original definition of U
(r)
N , from [15]. We refer to [15] for the exact

formula of the embedding, and to [74] for the compatibility with the Tannakian definition.

(5) This is also from [15], more specifically it is an alternative definition for U
(r)
N .

(6) Once again, this is something from [15], and we will be back to it. �

Let us discuss now the second known construction of unitary quantum groups, from
[74]. This construction uses an additive semigroup D ⊂ N, but as pointed out there,
using instead the complementary set C = N−D leads to several simplifications.

So, let us call “cosemigroup” any subset C ⊂ N which is complementary to an additive
semigroup, x, y /∈ C =⇒ x+ y /∈ C. The construction from [74] is then:
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Proposition 12.8. Associated to any cosemigroup C ⊂ N is the easy quantum group

UN ⊂ UC
N ⊂ U+

N

coming from the category PC2 ⊂ P
(∞)
2 of pairings having the property

# ◦ −#• ∈ C

between each two legs colored ◦, • of two strings which cross. We have:

(1) For C = ∅ we obtain the quantum group U+
N .

(2) For C = {0} we obtain the quantum group U×N .
(3) For C = {0, 1} we obtain the quantum group U∗∗N .

(4) For C = N we obtain the quantum group U
(∞)
N .

(5) For C ⊂ C ′ we have an inclusion UC′
N ⊂ UC

N .

(6) Each quantum group UC
N contains each quantum group U

(r)
N .

Proof. Once again this is something very compact, coming from recent work in [74],
with our convention that the semigroup D ⊂ N which is used there is replaced here by
its complement C = N−D. Here are a few explanations on all this:

(1) The assumption C = ∅ means that the condition # ◦ −#• ∈ C can never be
applied. Thus, the strings cannot cross, we have P∅2 = NC2, and so U∅N = U+

N .

(2) As explained in [74], here we obtain indeed the quantum group U×N , constructed
by using the relations ab∗c = cb∗a, with a, b, c ∈ {uij}.

(3) This is also explained in [74], with U∗∗N being the quantum group from [15], which
is the biggest whose full projective version, in the sense there, is classical.

(4) Here the assumption C = N simply tells us that the condition # ◦ −#• ∈ C in

the statement is irrelevant. Thus, we have PN
2 = P(∞)

2 , and so UN
N = U

(∞)
N .

(5) This is clear by functoriality, because C ⊂ C ′ implies PC2 ⊂ PC
′

2 .

(6) This is clear from definitions, and from Proposition 12.7 above. �

We have the following key result, from [74]:

Theorem 12.9. The easy quantum groups UN ⊂ G ⊂ U+
N are as follows,

UN ⊂ {U (r)
N } ⊂ {U

C
N} ⊂ U+

N

with the series covering UN , and the family covering U+
N .

Proof. This is something non-trivial, and we refer here to [74]. The general idea is

that U
(∞)
N produces a dichotomy for the quantum groups in the statement, and this leads,

via combinatorial computations, to the series and the family. See [74]. �
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Observe that there is an obvious similarity here with the dichotomy for the liberations
of HN , coming from [82], and explained in the above.

To be more precise, the above-mentioned classification results for the liberations of HN

and the liberations of UN have some obvious similarity between them. We have indeed a
family followed by a series, and a series followed by a family.

All this suggests the existence of a general “contravariant duality” between these
quantum groups, as follows:

UN // U
(r)
N

// UC
N

// U+
N

H+
N H

[r]
N

oo HΓ
N

oo HN
oo

At the first glance, this might sound a bit strange. Indeed, we have some natural
and well-established correspondences HN ↔ UN and H+

N ↔ U+
N , obtained in one sense

by taking the real reflection subgroup, H = U ∩ H+
N , and in the other sense by setting

U =< H,UN >. Thus, our proposal of duality seems to go the wrong way.

On the other hand, obvious as well is the fact that these correspondences HN ↔ UN
and H+

N ↔ U+
N cannot be extended as to map the series to the series, and the family to

the family, because the series/families would have to be “inverted”, in order to do so.

Thus, we are led to the above contravariant duality conjecture. In practice, the idea
would be that of constructing the duality by a clever use of the interesection and generation
operations ∩ and < ,>, but it is not clear so far on how to do this.

Following [8], let us discuss now what happens inside the standard cube, first in the
easy case, and then in general. The idea here will be that of carefully looking at the
Ground Zero theorem from chapter 11 above, and removing the easiness axiom there.

This is something quite technical, and in order to do so, let us start with a study of
the easy case, with the goal of improving the Ground Zero theorem, by relaxing a bit the
orientability axiom there. Let us start with the following definition:



12B. EDGE RESULTS 281

Definition 12.10. A twistable easy quantum group HN ⊂ GN ⊂ U+
N is called “bi-

oriented” if the diagram

Gd
N

// GN

Gdr
N

//

==

Gr
N

==

Gcd
N

//

OO

Gc
N

OO

HN

OO

==

// Gcr
N

OO

==

as well as the diagram

Gfu
N

// U+
N

Gf
N

//

==

Gsf
N

==

Gu
N

//

OO

Gsu
N

OO

GN

OO

<<

// Gs
N

OO

<<

are intersection and easy generation diagrams.

Observe that the first diagram is automatically an intersection diagram, and that the
second diagram is automatically an easy generation diagram.

The question of replacing the slicing axiom with the bi-orientability condition makes
sense. In fact, we can even talk about weaker axioms, as follows:

Definition 12.11. An easy quantum group HN ⊂ GN ⊂ U+
N is called “oriented” if

GN = {Gcd
N , G

cr
N , G

dr
N }

GN = Gfs
N ∩G

fu
N ∩G

su
N

and “weakly oriented” if the following weaker conditions hold,

GN = {Gc
N , G

d
N , G

r
N}

GN = Gf
N ∩G

s
N ∩Gu

N

where the various versions are those in chapter 11 above.



282 12. THE STANDARD CUBE

In order to prove now the uniqueness of the main 8 easy quantum groups, in the bi-
orientable case, we can still proceed as in the proof of the Ground Zero theorem, but we
are no longer allowed to use the coordinate system there, based at ON .

To be more precise, we must use the 2 coordinate systems highlighted below, both
taken in some weak sense, weaker than the slicing:

K+
N

+3 U+
N

H+
N

//

==

O+
N

:B

KN
//

OO

UN

KS

HN

KS

8@

+3 ON

OO

<<

Skipping some details here, all this is viable, by using the known “edge results” sur-
veyed above, along with the key fact, coming also from the above edge results, that the

quantum group H
[∞]
N from [82] has no orthogonal counterpart.

Thus, we obtain in principle some improvements of the Ground Zero theorem, under
the bi-orientability assumption, and more generally under the orientability assumption.

As for the weak orientability assumption, the situation here is more tricky, because
we would need full “face results”, which are not available yet.

12c. Beyond easiness

Let us discuss now the general, non-easy case. In order to do so, we must find exten-
sions of the notions of uniformity, twistability and orientability.

Regarding the notion of uniformity, the definition here is straightforward, with only
some minor changes with respect to the easy quantum group case, as follows:

Definition 12.12. A series G = (GN) of closed subgroups GN ⊂ U+
N is called:

(1) Weakly uniform, if for any N ∈ N we have GN−1 = GN ∩ U+
N−1, with respect to

the embedding U+
N−1 ⊂ U+

N given by u→ diag(u, 1).
(2) Uniform, if for any N ∈ N we have GN−1 = GN ∩ U+

N−1, with respect to the N
possible embeddings U+

N−1 ⊂ U+
N , of type u→ diag(u, 1).

In the easy quantum group case these two notions coincide, due to the presence of the
symmetric group SN ⊂ GN , which acts on everything, and allows one to pass from one
embedding U+

N−1 ⊂ U+
N to another.
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In general, these two notions do not coincide.

Regarding the examples, in the classical case we have substantially more examples
than in the easy case, obtained by using the determinant, and its powers:

Proposition 12.13. The following compact groups are uniform,

(1) The complex reflection groups

Hs,d
N =

{
g ∈ Zs o SN

∣∣∣(det g)d = 1
}

for any values of the parameters s ∈ {1, 2, . . . ,∞} and d ∈ N, d|s,
(2) The orthogonal group ON , the special orthogonal group SON , and the series

Ud
N =

{
g ∈ UN

∣∣∣(det g)d = 1
}

of modified unitary groups, with s ∈ {1, 2, . . . ,∞},
and so are the bistochastic versions of these groups.

Proof. Both these assertions are clear from definitions, the situation being as follows:

(1) These groups are well-known objects in finite group theory, and more precisely
form the series of complex reflection groups, and generalize the groups Hs

N from chapter
10 above, which appear at d = s. See [84].

(2) These groups are well-known as well, in compact Lie group theory, with U1
N being

equal to SUN , and with U∞N being by definition UN itself. �

In the free case now, corresponding to the condition S+
N ⊂ GN ⊂ U+

N , it is widely
believed that the only examples are the easy ones. A precise conjecture in this sense,
which is a bit more general, valid for any GN ⊂ U+

N , states that we should have:

< GN , S
+
N >= {G′N , S+

N}
Here G′N denotes as usual the easy envelope of GN , and { , } is an easy generation

operation. This conjecture is probably something quite difficult.

Now back to our questions, we have definitely no new examples in the free case. So,
the basic examples will be those that we previously met, namely:

Proposition 12.14. The following free quantum groups are uniform,

(1) Liberations Hs+
N = Zs o∗ S+

N of the complex reflection groups Hs
N = Zs o SN ,

(2) Liberations O+
N , U

+
N of the continuous groups ON , UN ,

and so are the bistochastic versions of these quantum groups.

Proof. This is something that we basically know, with the uniformity check for Hs+
N

being the same as for S+
N , H

+
N , K

+
N , which appear at s = 1, 2,∞. �
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We would need now a second axiom, such as the twistability condition TN ⊂ GN used
in chapter 11 above. However, if we carefully look at Proposition 12.14, a condition of
type AN ⊂ GN would be more appropriate.

In order to comment on this dillema, let us recall from chapter 11 that “taking the
bistochastic version” is a bad direction, geometrically speaking.

But the operations “taking the diagonal torus” and “taking the special version”, that
we are currently discussing, are bad too.

Thus, we have 3 bad directions, and so we end up with a cube formed by these bad 3
directions, as follows:

Proposition 12.15. We have the following diagram of finite groups,

SN // HN

AN //

<<

SHN

;;

{1} //

OO

TN

OO

{1}

OO

==

// STN

OO

<<

obtained from HN by taking bistochastic, special and diagonal versions.

Proof. This is clear from definitions, with the operations of taking bistochastic ver-
sions, special versions and diagonal subgroups corresponding respectively to going left,
backwards, and downwards, with respect to the coordinates in the statement. �

Now back to our classification questions, the vertices of the above cube are all inter-
esting groups, and assuming that the quantum groups GN ⊂ U+

N that we want to classify
contain any of them is something quite natural.

Let us just select here three such conditions, as follows:

Definition 12.16. A closed subgroup GN ⊂ U+
N is called:

(1) Twistable, if TN ⊂ GN .
(2) Homogeneous, if SN ⊂ GN .
(3) Half-homogeneous, if AN ⊂ GN .

As before with the notion of uniformity, things simplify in the easy case. To be more
precise, any easy quantum group is automatically homogeneous, and half-homogeneous
as well. As for the notion of twistability, this coincides with the old one.
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Let us go ahead now, and formulate our third and last definition, regarding the ori-
entability axiom. Things are quite tricky here, and we must start as follows:

Definition 12.17. Associated to any closed subgroup GN ⊂ U+
N are its classical,

discrete and real versions, given by

Gc
N = GN ∩ UN

Gd
N = GN ∩K+

N

Gr
N = GN ∩O+

N

as well as its free, smooth and unitary versions, given by

Gf
N =< GN , H

+
N >

Gs
N =< GN , ON >

Gu
N =< GN , KN >

where < ,> is the usual, non-easy topological generation operation.

Observe the difference, and notational clash, with some of the notions used in chapter
11 above. To be more precise, as explained in chapter 7 above, it is believed that we
should have { , } =< ,>, but this is not clear at all, and the problem comes from this.

A second issue comes when composing the above operations, and more specifically
those involving the generation operation, once again due to the conjectural status of the
formula { , } =< ,>. Due to this fact, instead of formulating a result here, we have to
formulate a second definition, complementary to Definition 12.7, as follows:

Definition 12.18. Associated to any closed subgroup GN ⊂ U+
N are the mixes of its

classical, discrete and real versions, given by

Gcd
N = GN ∩KN

Gcr
N = GN ∩O+

N

Gdr
N = GN ∩H+

N

as well as the mixes of its free, smooth and unitary versions, given by

Gfs
N =< GN , O

+
N >

Gfu
N =< GN , K

+
N >

Gus
N =< GN , UN >

where < ,> is the usual, non-easy topological generation operation.

Now back to our orientation questions, the slicing and bi-orientability conditions lead
us again into { , } vs. < ,> troubles, and are therefore rather to be ignored. The ori-
entability conditions from Definition 12.11, however, have the following analogue:
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Definition 12.19. A closed subgroup GN ⊂ U+
N is called “oriented” if

GN =< Gcd
N , G

cr
N , G

dr
N >

GN = Gfs
N ∩G

fu
N ∩G

su
N

and “weakly oriented” if the following conditions hold,

GN =< Gc
N , G

d
N , G

r
N >

GN = Gf
N ∩G

s
N ∩Gu

N

where the various versions are those in Definition 12.17 and Definition 12.18.

With these notions, our claim is that some classification results are possible:

(1) In the classical case, we believe that the uniform, half-homogeneous, oriented
groups are those in Proposition 12.13, with some bistochastic versions excluded.

This is of course something quite heavy, well beyond easiness, with the potential tools
available for proving such things coming from advanced finite group theory and Lie algebra
theory. Our uniformity axiom could play a key role here, when combined with [84], in
order to exclude all the exceptional objects which might appear on the way.

(2) In the free case, under similar assumptions, we believe that the solutions should
be those in Proposition 12.14, once again with some bistochastic versions excluded.

This is something heavy, too, related to the above-mentioned well-known conjecture
< GN , S

+
N >= {G′N , S+

N}. Indeed, assuming that we would have such a formula, and
perhaps some more formulae of the same type as well, we can in principle work out our
way inside the cube, from the edge and face projections to GN itself, and in this process
GN would become easy. This would be the straightforward strategy here.

(3) In the group dual case, the orientability axiom simplifies, because the group duals
are discrete in our sense. We believe that the uniform, twistable, oriented group duals
should appear as combinations of certain abelian groups, which appear in the classical
case, with duals of varieties of real reflection groups, which appear in the real case.

This is probably the easiest question in the present series, and the most reasonable
one, to start with. However, there are no concrete results so far, in this direction.
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12d. Maximality questions

Let us go back now to the standard cube, and to edge problems, but without the
easiness assumption, this time. An interesting family of questions here is that of proving
that the easy solutions of various edge problems are in fact the only ones, even in the
non-easy case. We will see that these are several results and conjectures here.

We have the following result from [17], to start with:

Theorem 12.20. The following inclusions are maximal:

(1) TON ⊂ UN .
(2) PON ⊂ PUN .

Proof. In order to prove these results, consider as well the group TSON .
Observe that we have TSON = TON if N is odd. If N is even the group TON has two

connected components, with TSON being the component containing the identity.
Let us denote by soN , uN the Lie algebras of SON , UN . It is well-known that uN

consists of the matrices M ∈MN(C) satisfying M∗ = −M , and that:

soN = uN ∩MN(R)

Also, it is easy to see that the Lie algebra of TSON is soN ⊕ iR.

Step 1. Our first claim is that if N ≥ 2, the adjoint representation of SON on the
space of real symmetric matrices of trace zero is irreducible.

Let indeed X ∈ MN(R) be symmetric with trace zero. We must prove that the
following space consists of all the real symmetric matrices of trace zero:

V = span
{
UXU t

∣∣∣U ∈ SON

}
We first prove that V contains all the diagonal matrices of trace zero. Since we may

diagonalize X by conjugating with an element of SON , our space V contains a nonzero
diagonal matrix of trace zero. Consider such a matrix:

D = diag(d1, d2, . . . , dN)

We can conjugate this matrix by the following matrix:0 −1 0
1 0 0
0 0 IN−2

 ∈ SON

We conclude that our space V contains as well the following matrix:

D′ = diag(d2, d1, d3, . . . , dN)

More generally, we see that for any 1 ≤ i, j ≤ N the diagonal matrix obtained from
D by interchanging di and dj lies in V . Now since SN is generated by transpositions, it
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follows that V contains any diagonal matrix obtained by permuting the entries of D. But
it is well-known that this representation of SN on the diagonal matrices of trace zero is
irreducible, and hence V contains all such diagonal matrices, as claimed.

In order to conclude now, assume that Y is an arbitrary real symmetric matrix of
trace zero. We can find then an element U ∈ SON such that UY U t is a diagonal matrix
of trace zero. But we then have UY U t ∈ V , and hence also Y ∈ V , as desired.

Step 2. Our claim is that the inclusion TSON ⊂ UN is maximal in the category of
connected compact groups.

Let indeed G be a connected compact group satisfying TSON ⊂ G ⊂ UN . Then G is
a Lie group. Let g denote its Lie algebra, which satisfies:

soN ⊕ iR ⊂ g ⊂ uN

Let adG be the action of G on g obtained by differentiating the adjoint action of G on
itself. This action turns g into a G-module. Since SON ⊂ G, g is also a SON -module.

Now if G 6= TSON , then since G is connected we must have soN ⊕ iR 6= g. It follows
from the real vector space structure of the Lie algebras uN and soN that there exists a
nonzero symmetric real matrix of trace zero X such that:

iX ∈ g

We know that the space of symmetric real matrices of trace zero is an irreducible
representation of SON under the adjoint action. Thus g must contain all such X, and
hence g = uN . But since UN is connected, it follows that G = UN .

Step 3. Our claim is that the commutant of SON in MN(C) is as follows:

(1) SO′2 =

{(
α β
−β α

) ∣∣∣α, β ∈ C
}

.

(2) If N ≥ 3, SO′N = {αIN |α ∈ C}.

Indeed, at N = 2 this is a direct computation.
At N ≥ 3, an element in X ∈ SO′N commutes with any diagonal matrix having exactly

N − 2 entries equal to 1 and two entries equal to −1. Hence X is a diagonal matrix.
Now since X commutes with any even permutation matrix and N ≥ 3, it commutes

in particular with the permutation matrix associated with the cycle (i, j, k) for any 1 <
i < j < k, and hence all the entries of X are the same.

We conclude that X is a scalar matrix, as claimed.

Step 4. Our claim is that the set of matrices with nonzero trace is dense in SON .

At N = 2 this is clear, since the set of elements in SO2 having a given trace is finite.
So assume N > 2, and let:

T ∈ SON ' SO(RN)

Tr(T ) = 0
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Let E ⊂ RN be a 2-dimensional subspace preserved by T , such that:

T|E ∈ SO(E)

Let ε > 0 and let Sε ∈ SO(E) with ||T|E − Sε|| < ε, and with Tr(T|E) 6= Tr(Sε), in
the N = 2 case. Now define Tε ∈ SO(RN) = SON by:

Tε|E = Sε , Tε|E⊥ = T|E⊥

It is clear that we have:

||T − Tε|| ≤ ||T|E − Sε|| < ε

Also, we have:

Tr(Tε) = Tr(Sε) + Tr(T|E⊥) 6= 0

Thus, we have proved our claim.

Step 5. Our claim is that TON is the normalizer of TSON in UN , i.e. is the subgroup
of UN consisting of the unitaries U for which, for all X ∈ TSON :

U−1XU ∈ TSON

It is clear that the group TON normalizes TSON , so in order to prove the result, we
must show that if U ∈ UN normalizes TSON then U ∈ TON .

First note that U normalizes SON . Indeed if X ∈ SON then:

U−1XU ∈ TSON

Thus U−1XU = λY for some λ ∈ T and Y ∈ SON .
If Tr(X) 6= 0, we have λ ∈ R and hence:

λY = U−1XU ∈ SON

The set of matrices having nonzero trace being dense in SON , we conclude that
U−1XU ∈ SON for all X ∈ SON . Thus, we have:

X ∈ SON =⇒ (UXU−1)t(UXU−1) = IN

=⇒ X tU tUX = U tU

=⇒ U tU ∈ SO′N
It follows that at N ≥ 3 we have U tU = αIN , with α ∈ T, since U is unitary. Hence

we have U = α1/2(α−1/2U) with:

α−1/2U ∈ ON , U ∈ TON

If N = 2, (U tU)t = U tU gives again that U tU = αI2, and we conclude as in the
previous case.

Step 6. Our claim is that the inclusion TON ⊂ UN is maximal in the category of
compact groups.
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Suppose indeed that TON ⊂ G ⊂ UN is a compact group such that G 6= UN . It is a
well-known fact that the connected component of the identity in G is a normal subgroup,
denoted G0. Since we have TSON ⊂ G0 ⊂ UN , we must have:

G0 = TSON

But since G0 is normal in G, the group G normalizes TSON , and hence G ⊂ TON .

Step 7. Our claim is that the inclusion PON ⊂ PUN is maximal in the category of
compact groups.

This follows from the above result. Indeed, if PON ⊂ G ⊂ PUN is a proper interme-
diate subgroup, then its preimage under the quotient map UN → PUN would be a proper
intermediate subgroup of TON ⊂ UN , which is a contradiction. �

In connection now with the “edge question” of classifying the intermediate groups
ON ⊂ G ⊂ UN , the above result leads to a dichotomy, coming from:

PG ∈ {PON , PUN}
Here are some basic examples of such intermediate groups:

Proposition 12.21. We have compact groups ON ⊂ G ⊂ UN as follows:

(1) The following groups, depending on a parameter r ∈ N ∪ {∞},

Zr = ON

{
wU
∣∣∣w ∈ Zr, U ∈ ON

}
whose projective versions equal PON , and the biggest of which is the group TON ,
which appears as affine lift of PON .

(2) The following groups, depending on a parameter d ∈ 2N ∪ {∞},

Ud
N =

{
U ∈ UN

∣∣∣ detU ∈ Zd
}

interpolating between U2
N and U∞N = UN , whose projective versions equal PUN .

Proof. All the assertions are elementary, and well-known. �

The above results suggest that the solutions of ON ⊂ G ⊂ UN should come from
ON , UN , by succesively applying the constructions G→ ZrG and G→ G ∩ Ud

N .

These operations do not exactly commute, but normally we should be led in this way
to a 2-parameter series, unifying the two 1-parameter series from (1,2) above.

However, some other groups like ZNSON work too, so all this is probably a bit more
complicated. We do not know the precise answer to this question.

We have as well the following result, also from [17]:
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Theorem 12.22. The inclusion of compact quantum groups

ON ⊂ O∗N

is maximal in the category of compact quantum groups.

Proof. The idea is that this follows from the result regarding PON ⊂ PUN , by taking
affine lifts, and using algebraic techniques. Consider indeed a sequence of surjective Hopf
∗-algebra maps as follows, whose composition is the canonical surjection:

C(O∗N)
f−→ A

g−→ C(ON)

This produces a diagram of Hopf algebra maps with pre-exact rows, as follows:

C // C(PO∗N)

f|

��

// C(O∗N)

f

��

// C(Z2) // C

C // PA

g|

��

// A

g

��

// C(Z2) // C

C // PC(ON) // C(ON) // C(Z2) // C

Consider now the following composition, with the isomorphism on the left being some-
thing well-known, coming from [44], that we will explain in chapter 16 below:

C(PUN) ' C(PO∗N)
f|−→ PA

g|−→ PC(ON) ' C(PON)

This induces, at the group level, the embedding PON ⊂ PUN . Thus f| or g| is an
isomorphism. If f| is an isomorphism we get a commutative diagram of Hopf algebra
morphisms with pre-exact rows, as follows:

C // C(PO∗N) // C(O∗N)

f

��

// C(Z2) // C

C // C(PO∗N) // A // C(Z2) // C

Then f is an isomorphism. Similarly if g| is an isomorphism, then g is an isomorphism.
For further details on all this, we refer to [17]. �

Summarizing, we are reaching to the conclusion formulated in the beginning of this
chapter, namely that some of the easy solutions of the easy edge problems for the standard
cube stay unique, even when lifting the easiness assumption.
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In relation with these questions, we have as well the well-known question of proving
that the quantum group inclusion SN ⊂ S+

N is maximal, in the sense that there is no
intermediate quantum group, as follows:

SN ⊂ G ⊂ S+
N

As evidence for this latter conjecture, the inclusions S4 ⊂ S+
4 and S5 ⊂ S+

5 can be
both shown to be maximal, by using advanced quantum algebra techniques. However,
there is no good idea so far in order to deal with the general case. We refer to [17] and
related papers for a discussion here.

Finally, let us discuss twisting results. Let us go back to the standard cube, namely:

K+
N

// U+
N

H+
N

//

==

O+
N

>>

KN
//

OO

UN

OO

HN

OO

<<

// ON

OO

==

According to the general Schur-Weyl twisting method from chapter 7 above, all these
quantum groups can be twisted. In addition, the continuous twists were explicitely com-
puted in chapter 7 above, and the discrete objects were shown in chapter 10 above to be
equal to their own twists. Thus, we are led to the following conclusion:

Theorem 12.23. The Schur-Weyl twists of the main quantum groups are

K+
N

// U+
N

H+
N

//

==

O+
N

>>

KN
//

OO

ŪN

OO

HN

OO

==

// ŌN

OO

==

and we will call this diagram “twisted standard cube”.

Proof. This follows indeed from the above discussion. �
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This construction raises the perspective of finding the twisted versions of the above
classification results. Following [6], in the uniform case, the result here is as follows:

Theorem 12.24. The classical and free uniform twisted easy quantum groups are

K+
N

// K++
N

// U+
N

Hs+
N

<<

H+
N

//

<<

O+
N

??

KN
//

OO

ŪN

OO

Hs
N

;;

HN

OO

;;

// ŌN

OO

>>

where Hs = Zs o SN , Hs+
N = Zs o∗ S+

N with s = 4, 6, 8 . . . , and where K+
N = K̃+

N .

Proof. This follows indeed from Theorem 12.1 above, dealing with the untwisted
case, and from the above discussion, regarding the twists. �

We can merge the above result with the untwisted result, and we are led to the
following statement:

Theorem 12.25. The uniform classical/twisted and free quantum groups are

UN , ŪN

**
KN

//

11

K+
N

// K++
N

// U+
N

Hs
N

//

OO

Hs+
N

OO

HN
//

OO

--

H+
N

//

OO

O+
N

OO

ON , ŌN

44

where Hs
N = Zs o SN , Hs+

N = Zs o∗ S+
N , with s ∈ {2, 4, . . . ,∞}, and K++

N = K̃+
N .

Proof. This is a slight extension of Theorem 12.1, the idea being as follows:

(1) All the above quantum groups are quizzy, and the uniformity condition is clear
as well, for each of the quantum groups under consideration. Finally, all these quantum
groups are either classical/twisted or free.
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(2) In order to prove now the converse, in view of our Schur-Weyl twisting method,
which only needs a category of partitions as input, it is enough to deal with the q = 1
case. So, consider a uniform category of partitions D ⊂ Peven. We must prove that in the
classical/free cases, the solutions are:

P2

uu
Peven

��

NCevenoo

��

NC−evenoo NC2
oo

oo

��

P s
even

��

NCs
even

oo

��
Peven NCevenoo NC2

oo

oo

P2

ii

To be more precise, in the classical case, where \/ ∈ D, we must prove that the only
solutions are the categories P2,P2, P

s
even, and that in the free case, where D ⊂ NCeven,

we must prove that the only solutions are the categories NC2,NC2,NC−even, NCs
even.

(3) We jointly investigate these two problems. Let B be the set of all possible labelled
blocks in D, having no upper legs. Observe that B is stable under the switching of colors
operation, ◦ ↔ •. We have two possible situations, as follows:

Case 1. The set B consists of pairings only. Here the pairings in question can be
either all labelled pairings, namely ◦ − ◦, ◦ − •, • − ◦, • − •, or just the matching ones,
namely ◦ − •, • − ◦, and we obtain here the categories P2,P2 in the classical case, and
the categories NC2,NC2 in the free case.

Case 2. B has at least one block of size ≥ 4. In this case we can let s ∈ {2, 4, . . . ,∞}
to be the length of the smallest ◦ . . . ◦ block, and we obtain in this way the category P s

even

in the classical case, and the categories NC−even, NCs
even in the free case. �

It is quite unclear on how to add an extra axiom, as to avoid K++
N .

It is possible to get beyond this, with further classification results in the twisted case,
and also with noncommutative geometry considerations, in the spirit of those mentioned
at the end of chapter 11. We refer here to [4], [5], [6] and related papers.

Finally, we have the following classification result:
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Theorem 12.26. The easy quantum groups HN ⊂ G ⊂ O+
N and their twists are

ON
// O∗N

''
HN

//

77

''

HΓ
N

// H�kN
// O+

N

ŌN
// Ō∗N

77

and the set formed by these quantum groups is stable by intersections.

Proof. There are several things to be proved here, the idea being as follows:

(1) According to the various classification and twisting results presented so far in
this book, and to some straightforward extensions of them, the easy quantum groups
HN ⊂ G ⊂ O+

N and their twists are the quantum groups in the above diagram.

(2) Regarding now the intersection assertion, some straightforward computations show
that we have the following intersection diagram:

ON
// O∗N

''
HN

//

77

''

H∗N
//

77

''

H+
N

// O+
N

ŌN
// Ō∗N

77

But with this diagram in hand, the assertion follows. Indeed, the intersections between
the quantum groups O×N are their twists are all on this diagram, and hence on the diagram
in the statement as well. Regarding now the intersections of an easy quantum group
HN ⊂ G ⊂ H+

N with the twists ŌN , Ō
∗
N , we can use again the above diagram. Indeed,

from H+
N ∩ Ō∗N = H∗N we deduce that both K = G ∩ ŌN , K

′ = G ∩ Ō∗N appear as
intermediate easy quantum groups HN ⊂ K× ⊂ H∗N , and we are done. �

As a conclusion to all this, the classification of the compact quantum groups is a very
interesting topic, and the general idea is that of stating and proving the results in the
easy case first, and then trying to lift the easiness assumption.

12e. Exercises

As before with the previous chapter, there has been a lot of theory here, and our
exercises will be basically about details on all this. First, we have:
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Exercise 12.27. Prove that the easy quantum groups

HN ⊂ G ⊂ O+
N

must fall into one of the following two classes:

ON ⊂ G ⊂ O+
N

HN ⊂ G ⊂ H+
N

This is something that we mentioned in the above, and whose proof is normally not
that difficult. In case this turns to be too difficult, the exercise is that of finding the
relevant results in the relevant literature, and making a brief account of that.

Along the same lines, but at a more advanced level, we have:

Exercise 12.28. Prove that the easy quantum groups

HN ⊂ G ⊂ H+
N

must fall into one of the following two classes:

HN ⊂ G ⊂ H
[∞]
N

H
[∞]
N ⊂ G ⊂ H+

N

As before, in case this turns to be too difficult, the exercise is that of finding the
relevant results in the relevant literature, and making a brief account of that.

Finally, regarding the unitary quantum groups, we have:

Exercise 12.29. Prove that the easy quantum groups

UN ⊂ G ⊂ U+
N

must fall into one of the following two classes:

UN ⊂ G ⊂ U
(∞)
N

U
(∞)
N ⊂ G ⊂ U+

N

As usual, in case this turns to be too difficult, the exercise is that of finding the relevant
results in the relevant literature, and making a brief account of that.
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Advanced topics



And we’ll talk of trails we walked up
Far above the timber line

There are nights I only feel right
With Carolina in the pines



CHAPTER 13

Toral subgroups

13a. Diagonal tori

We have seen in the previous chapters that the group dual subgroups Λ̂ ⊂ G play an
important role in the theory. Our purpose here is to understand how the structure of a
closed subgroup G ⊂ U+

N can be recovered from the knowledge of such subgroups.

Let us start with a basic statement, regarding the classical and group dual cases:

Proposition 13.1. Let G ⊂ U+
N be a compact quantum group, and consider the group

dual subgroups Λ̂ ⊂ G, also called toral subgroups, or simply “tori”.

(1) In the classical case, where G ⊂ UN is a compact Lie group, these are the usual
tori, where by torus we mean here closed abelian subgroup.

(2) In the group dual case, G = Γ̂ with Γ =< g1, . . . , gN > being a discrete group,
these are the duals of the various quotients Γ→ Λ.

Proof. Both these assertions are elementary, as follows:

(1) This follows indeed from the fact that a closed subgroup H ⊂ U+
N is at the same

time classical, and a group dual, precisely when it is classical and abelian.

(2) This follows from the general propreties of the Pontrjagin duality, and more pre-

cisely from the fact that the subgroups Λ̂ ⊂ Γ̂ correspond to the quotients Γ→ Λ. �

Based on the above simple facts, regarding the groups and the group duals, we can

see that in general, there are two motivations for the study of toral subgroups Λ̂ ⊂ G:

(1) It is well-known that the fine structure of a compact Lie group G ⊂ UN is partly
encoded by its maximal torus. Thus, in view of Proposition 13.1, the various tori

Λ̂ ⊂ G encode interesting information about a quantum group G ⊂ U+
N , both in

the classical and the group dual case. We can expect this to hold in general.

(2) Any action G y X on some geometric object, such as a manifold, will produce

actions of its tori on the same object, Λ̂ y X. And, due to the fact that Λ are
familiar objects, namely discrete groups, these latter actions are easier to study,
and this can ultimately lead to results about the action Gy X itself.

299
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At a more concrete level now, most of the tori that we met appear as diagonal tori,
in the sense of chapter 2 above. Let us first review this material. We first have:

Theorem 13.2. Given a closed subgroup G ⊂ U+
N , consider its “diagonal torus”,

which is the closed subgroup T ⊂ G constructed as follows:

C(T ) = C(G)
/〈

uij = 0
∣∣∣∀i 6= j

〉
This torus is then a group dual, T = Λ̂, where Λ =< g1, . . . , gN > is the discrete group
generated by the elements gi = uii, which are unitaries inside C(T ).

Proof. This is something that we already know, from chapter 2. Indeed, the elements
gi = uii are unitaries and group-like inside C(T ), and this gives the result. �

Alternatively, we have the following construction:

Proposition 13.3. The diagonal torus T ⊂ G can be defined as well by

T = G ∩ T+
N

where T+
N ⊂ U+

N is the free complex torus, appearing as

T+
N = F̂N

with FN =< g1, . . . , gN > being the free group on N generators.

Proof. We recall from Theorem 12.2 that the diagonal torus is defined via:

C(T ) = C(G)
/〈

uij = 0
∣∣∣∀i 6= j

〉
On the other hand, the free complex torus T+

N appears as follows:

C(T+
N) = C(U+

N )
/〈

uij = 0
∣∣∣∀i 6= j

〉
Thus, by intersecting with G we obtain the diagonal torus of G. �

Most of our computations so far of diagonal tori, that we will recall in a moment,
concern various classes of easy quantum groups. In the general easy case, we have:

Proposition 13.4. For an easy quantum group G ⊂ U+
N , coming from a category of

partitions D ⊂ P , the associated diagonal torus is T = Γ̂, with:

Γ = FN

/〈
gi1 . . . gik = gj1 . . . gjl

∣∣∣∀i, j, k, l, ∃π ∈ D(k, l), δπ

(
i
j

)
6= 0

〉
Moreover, we can just use partitions π which generate the category D.
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Proof. Let gi = uii be the standard coordinates on the diagonal torus T , and set
g = diag(gi). We have then the following computation:

C(T ) =
[
C(U+

N )
/〈

Tπ ∈ Hom(u⊗k, u⊗l)
∣∣∣∀π ∈ D〉]/〈uij = 0

∣∣∣∀i 6= j
〉

=
[
C(U+

N )
/〈

uij = 0
∣∣∣∀i 6= j

〉]/〈
Tπ ∈ Hom(u⊗k, u⊗l)

∣∣∣∀π ∈ D〉
= C∗(FN)

/〈
Tπ ∈ Hom(g⊗k, g⊗l)

∣∣∣∀π ∈ D〉
The associated discrete group, Γ = T̂ , is therefore given by:

Γ = FN

/〈
Tπ ∈ Hom(g⊗k, g⊗l)

∣∣∣∀π ∈ D〉
Now observe that, with g = diag(g1, . . . , gN) as above, we have:

Tπg
⊗k(ei1 ⊗ . . .⊗ eik) =

∑
j1...jl

δπ

(
i1 . . . ik
j1 . . . jl

)
ej1 ⊗ . . .⊗ ejl · gi1 . . . gik

We have as well the following formula:

g⊗lTπ(ei1 ⊗ . . .⊗ eik) =
∑
j1...jl

δπ

(
i1 . . . ik
j1 . . . jl

)
ej1 ⊗ . . .⊗ ejl · gj1 . . . gjl

We conclude that the relation Tπ ∈ Hom(g⊗k, g⊗l) reformulates as follows:

∑
j1...jl

δπ

(
i1 . . . ik
j1 . . . jl

)
ej1 ⊗ . . .⊗ ejl · gi1 . . . gik

=
∑
j1...jl

δπ

(
i1 . . . ik
j1 . . . jl

)
ej1 ⊗ . . .⊗ ejl · gj1 . . . gjl

Thus, the following condition must be satisfied:

δπ

(
i1 . . . ik
j1 . . . jl

)
6= 0 =⇒ gi1 . . . gik = gj1 . . . gjl

Thus, we obtain the formula in the statement. Finally, the last assertion follows from
Tannakian duality, because we can replace everywhere D by a generating subset. �

In practice now, in the continuous case we have the following result:
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Theorem 13.5. The diagonal tori of the basic unitary quantum groups, namely

UN // U∗N
// U+

N

ON
//

OO

O∗N
//

OO

O+
N

OO

and of their q = −1 twists as well, are the standard cube and torus, namely

TN = ZN2

TN = TN

in the classical case, and their liberations in general, which are as follows:

TN // T∗N // T+
N

TN //

OO

T ∗N
//

OO

T+
N

OO

Also, for the quantum groups BN , B
+
N , CN , C

+
N , the diagonal torus collapses to {1}.

Proof. We have several assertions here, the idea being as follows:

(1) The main assertion, regarding the basic unitary quantum groups, is something
that we already know, from chapter 2 above, with the various liberations T×N ,T

×
N of the

basic tori TN ,TN in the statement being by definition those appearing there.

(2) Regarding the invariance under twisting, this is best seen by using Proposition
13.4. Indeed, the computation in the proof there applies in the same way to the general
quizzy case, and shows that the diagonal torus is invariant under twisting.

(3) In the bistochastic case the fundamental corepresentation g = diag(g1, . . . , gN) of
the diagonal torus must be bistochastic, and so we obtain:

g1 = . . . = gN = 1

Thus, we are led to the conclusion in the statement. �

Regarding now the discrete case, the result is as follows:
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Theorem 13.6. The diagonal tori of the basic quantum reflection groups, namely

KN
// K∗N

// K+
N

HN
//

OO

H∗N
//

OO

H+
N

OO

are the same as those for O×N , U
×
N described above, namely:

TN // T∗N // T+
N

TN //

OO

T ∗N
//

OO

T+
N

OO

Also, for the quantum permutation groups SN , S
+
N we have T = {1}.

Proof. The first assertion follows from the general fact that the diagonal torus of
GN ⊂ U+

N equals the diagonal torus of the discrete version, namely:

Gd
N = GN ∩K+

N

Indeed, this fact follows from definitions, for instance via Proposition 13.3. As for the
second assertion, this follows from:

SN ⊂ BN , S+
N ⊂ B+

N

Indeed, by using the last assertion in Theorem 13.5, we obtain the result. �

13b. The skeleton

As a conclusion, the diagonal torus T ⊂ G is usually a quite interesting object, but
for certain quantum groups like the bistochastic ones, or the quantum permutation group
ones, this torus collapses to {1}, and so it cannot be of use in the study of G. In order to
deal with this issue, the idea, from [10], [32], will be that of using:

Theorem 13.7. Given a closed subgroup G ⊂ U+
N and a matrix Q ∈ UN , we let

TQ ⊂ G be the diagonal torus of G, with fundamental representation spinned by Q:

C(TQ) = C(G)
/〈

(QuQ∗)ij = 0
∣∣∣∀i 6= j

〉
This torus is then a group dual, given by TQ = Λ̂Q, where ΛQ =< g1, . . . , gN > is the
discrete group generated by the elements

gi = (QuQ∗)ii

which are unitaries inside the quotient algebra C(TQ).
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Proof. This follows from Theorem 13.2, because, as said in the statement, TQ is by
definition a diagonal torus. Equivalently, since v = QuQ∗ is a unitary corepresentation,
its diagonal entries gi = vii, when regarded inside C(TQ), are unitaries, and satisfy:

∆(gi) = gi ⊗ gi
Thus C(TQ) is a group algebra, and more specifically we have C(TQ) = C∗(ΛQ), where

ΛQ =< g1, . . . , gN > is the group in the statement, and this gives the result. �

Summarizing, associated to any closed subgroup G ⊂ U+
N is a whole family of tori,

indexed by the unitaries U ∈ UN . We use the following terminology:

Definition 13.8. Let G ⊂ U+
N be a closed subgroup.

(1) The tori TQ ⊂ G constructed above are called standard tori of G.
(2) The collection of tori T =

{
TQ ⊂ G

∣∣Q ∈ UN} is called skeleton of G.

This might seem a bit awkward, but in view of various results, examples and coun-
terexamples, to be presented below, this is perhaps the best terminology.

As a first general result now regarding these tori, coming from [99], we have:

Theorem 13.9. Any torus T ⊂ G appears as follows, for a certain Q ∈ UN :

T ⊂ TQ ⊂ G

In other words, any torus appears inside a standard torus.

Proof. Given a torus T ⊂ G, we have an inclusion as follows:

T ⊂ G ⊂ U+
N

On the other hand, we know from chapter 3 above that each torus T ⊂ U+
N has a

fundamental corepresentation as follows, with Q ∈ UN :

u = Q

g1

. . .
gN

Q∗

But this shows that we have T ⊂ TQ, and this gives the result. �

Let us do now some computations. In the classical case, the result is as follows:

Proposition 13.10. For a closed subgroup G ⊂ UN we have

TQ = G ∩ (Q∗TNQ)

where TN ⊂ UN is the group of diagonal unitary matrices.

Proof. This is indeed clear at Q = 1, where Γ1 appears by definition as the dual of
the compact abelian group G ∩ TN . In general, this follows by conjugating by Q. �

In the group dual case now, we have the following result:
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Proposition 13.11. Given a finitely generated discrete group

Γ =< g1, . . . , gN >

consider its dual compact quantum group G = Γ̂, diagonally embedded into U+
N . We have

ΛQ = Γ/
〈
gi = gj

∣∣∣∃k,Qki 6= 0, Qkj 6= 0
〉

with the embedding TQ ⊂ G = Γ̂ coming from the quotient map Γ→ ΛQ.

Proof. Assume indeed that Γ =< g1, . . . , gN > is a discrete group, with dual Γ̂ ⊂ U+
N

coming via u = diag(g1, . . . , gN). With v = QuQ∗, we have the following computation:∑
s

Q̄sivsk =
∑
st

Q̄siQstQ̄ktgt =
∑
t

δitQ̄ktgt = Q̄kigi

Thus the condition vij = 0 for i 6= j gives Q̄kivkk = Q̄kigi, which tells us that:

Qki 6= 0 =⇒ gi = vkk

Now this latter equality reads:

gi =
∑
j

|Qkj|2gj

We conclude from this that, as desired:

Qki 6= 0, Qkj 6= 0 =⇒ gi = gj

As for the converse, this is elementary to establish as well. �

According to the above results, we can expect the skeleton T to encode various alge-
braic and analytic properties of G. We will discuss this in what follows, with a number
of results and conjectures. We first have the following result:

Theorem 13.12. The following results hold, both over the category of compact Lie
groups, and over the category of duals of finitely generated discrete groups:

(1) Injectivity: the construction G→ T is injective, in the sense that G 6= H implies,
for some Q ∈ UN :

TQ(G) 6= TQ(H)

(2) Monotony: the construction G→ T is increasing, in the sense that passing to a
subgroup H ⊂ G decreases at least one of the tori TQ:

TQ(H) 6= TQ(G)

(3) Generation: any closed quantum subgroup G ⊂ U+
N is generated by its tori, or,

equivalently, has the following generation property:

G =< TQ|Q ∈ UN >
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Proof. We have two cases to be investigated, as follows:

(1) Assume first that we are in the classical case, G ⊂ UN . In order to prove the
generation property we use the following formula, established above:

TQ = G ∩Q∗TNQ

Now since any group element U ∈ G is unitary, and so diagonalizable, we can write,
for certain matrices Q ∈ UN and D ∈ TN :

U = Q∗DQ

But we have then, for this precise value of the spinning matrix Q ∈ UN :

U ∈ TQ
Thus we have proved the generation property, and the injectivity and monotony prop-

erties follow from this.

(2) Regarding now the group duals, here everything is trivial. Indeed, when the
group duals are diagonally embedded we can take Q = 1, and when the group duals are
embedded by using a spinning matrix Q ∈ UN , we can use precisely this matrix Q. �

As explained in [32], it is possible to go beyond the above verifications, notably with
some results regarding the half-classical and the free cases. However, there is no serious
idea so far, in order to deal with the general case. See [32].

We will be back to this, in chapter 14 below, with a number of more specialized
statements, which are for the moment conjectural as well, on the question of recovering
the fine analytic properties of G out of the fine analytic properties of its tori.

13c. Generation questions

Let us focus now on the generation property, from Theorem 13.12 (3), which is perhaps
the most important, in view of the various potential applications.

In order to discuss the general case, we will need:

Proposition 13.13. Given a closed subgroup G ⊂ U+
N and a matrix Q ∈ UN , the

corresponding standard torus and its Tannakian category are given by

TQ = G ∩ TQ

CTQ =< CG, CTQ >

where TQ ⊂ U+
N is the dual of the free group FN =< g1, . . . , gN >, with the fundamental

corepresentation of C(TQ) being the matrix u = Qdiag(g1, . . . , gN)Q∗.
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Proof. The first assertion comes from the well-known fact that given two closed
subgroups G,H ⊂ U+

N , the corresponding quotient algebra C(U+
N ) → C(G ∩H) appears

by dividing by the kernels of both the following quotient maps:

C(U+
N )→ C(G)

C(U+
N )→ C(H)

Indeed, the construction of TQ from Theorem 13.7 amounts precisely in performing
this operation, with H = TQ, and so we obtain, as claimed:

TQ = G ∩ TQ

As for the Tannakian category formula, this follows from this, and from the following
general Tannakian duality formula from chapter 6 above:

CG∩H =< CG, CH >

Thus, we are led to the conclusion in the statement. �

We have the following Tannakian reformulation of the toral generation property:

Theorem 13.14. Given a closed subgroup G ⊂ U+
N , the subgroup

G′ =< TQ|Q ∈ UN >

generated by its standard tori has the following Tannakian category:

CG′ =
⋂

Q∈UN

< CG, CTQ >

In particular we have G = G′ when this intersection reduces to CG.

Proof. Consider indeed the subgroup G′ ⊂ G constructed in the statement. We
have:

CG′ =
⋂

Q∈UN

CTQ

Together with the formula in Proposition 13.13, this gives the result. �

Let us further discuss now the toral generation property, with some modest results,
regarding its behaviour with respect to product operations. We first have:

Proposition 13.15. Given two closed subgroups G,H ⊂ U+
N , and Q ∈ UN , we have:

< TQ(G), TQ(H) >⊂ TQ(< G,H >)

Also, the toral generation property is stable under the operation < ,>.
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Proof. The first assertion can be proved either by using Theorem 13.14, or directly.
For the direct proof, which is perhaps the simplest, we have:

TQ(G) = G ∩ TQ ⊂< G,H > ∩TQ
= TQ(< G,H >)

We have as well the following computation:

TQ(H) = H ∩ TQ ⊂< G,H > ∩TQ
= TQ(< G,H >)

Now since A,B ⊂ C implies < A,B >⊂ C, this gives the result.

Regarding now the second assertion, we have the following computation:

< G,H > = << TQ(G)|Q ∈ UN >,< TQ(H)|Q ∈ UN >>

= < TQ(G), TQ(H)|Q ∈ UN >

= << TQ(G), TQ(H) > |Q ∈ UN >

⊂ < TQ(< G,H >)|Q ∈ UN >

Thus the quantum group < G,H > is generated by its tori, as claimed. �

We have as well the following result:

Proposition 13.16. We have the following formula, for any G,H and R, S:

TR⊗S(G×H) = TR(G)× TS(H)

Also, the toral generation property is stable under usual products ×.

Proof. The product formula in the statement is clear from definitions. Regarding
now the second assertion, we have the following computation:

< TQ(G×H)|Q ∈ UMN >

⊃ < TR⊗S(G×H)|R ∈ UM , S ∈ UN >

= < TR(G)× TS(H)|R ∈ UM , S ∈ UN >

= < TR(G)× {1}, {1} × TS(H)|R ∈ UM , S ∈ UN >

= < TR(G)|R ∈ UM > × < TG(H)|H ∈ UN >

= G×H
Thus the quantum group G×H is generated by its tori, as claimed. �

In order to get beyond these results, which are all quite elementary, let us discuss
now some weaker versions of the generation property, which are partly related to the
classification program for the compact quantum groups, explained in chapters 11-12.

We have here the following technical definition:
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Definition 13.17. A closed subgroup GN ⊂ U+
N , with classical version GN ∩ UN

denoted Gc
N ⊂ UN , is called:

(1) Weakly generated by its tori, when:

GN =< Gc
N , (TQ)Q∈UN >

(2) A diagonal liberation of Gc
N , when:

GN =< Gc
N , T1 >

According to our results above, the first property is satisfied for the compact groups,
for the discrete group duals, and is stable under generation, and direct products.

Regarding the second property, this is something quite interesting, which takes us
away from our original generation questions. The idea here, from [49] and subsequent
papers, is that such things can be proved by recurrence on N ∈ N.

In order to discuss this, let us start with:

Proposition 13.18. Assume that G = (GN) is weakly uniform, let n ∈ {2, 3, . . . ,∞}
be minimal such that Gn is not classical, and consider the following conditions:

(1) Strong generation: GN =< Gc
N , Gn >, for any N > n.

(2) Usual generation: GN =< Gc
N , GN−1 >, for any N > n.

(3) Initial step generation: Gn+1 =< Gc
n+1, Gn >.

We have then (1) ⇐⇒ (2) =⇒ (3), and (3) is in general strictly weaker.

Proof. All the implications and non-implications are elementary, as follows:

(1) =⇒ (2) This follows from Gn ⊂ GN−1 for N > n, coming from uniformity.

(2) =⇒ (1) By using twice the usual generation, and then the uniformity, we have:

GN = < Gc
N , GN−1 >

= < Gc
N , G

c
N−1, GN−2 >

= < Gc
N , GN−2 >

Thus we have a descent method, and we end up with the strong generation condition.

(2) =⇒ (3) This is clear, because (2) at N = n+ 1 is precisely (3).

(3) 6=⇒ (2) In order to construct counterexamples here, the simplest is to use group

duals. Indeed, with GN = Γ̂N and ΓN =< g1, . . . , gN >, the uniformity condition tells us
that we must be in a projective limit situation, as follows:

Γ1 ← Γ2 ← Γ3 ← Γ4 ← . . .

ΓN−1 = ΓN/ < gN = 1 >

Now by assuming for instance that Γ2 is given and not abelian, there are many ways
of completing the sequence, and so the uniqueness coming from (2) can only fail. �



310 13. TORAL SUBGROUPS

Let us introduce now a few more notions, as follows:

Proposition 13.19. Assume that G = (GN) is weakly uniform, let n ∈ {2, 3, . . . ,∞}
be as above, and consider the following conditions, where IN ⊂ GN is the diagonal torus:

(1) Strong diagonal liberation: GN =< Gc
N , In >, for any N ≥ n.

(2) Technical condition: GN =< Gc
N , IN−1 > for any N > n, and Gn =< Gc

n, In >.
(3) Diagonal liberation: GN =< Gc

N , IN >, for any N .
(4) Initial step diagonal liberation: Gn =< Gc

n, In >.

We have then (1) =⇒ (2) =⇒ (3) =⇒ (4).

Proof. Our claim is that when assuming that G = (GN) is weakly uniform, so is the
family of diagonal tori I = (IN). Indeed, we have the following computation:

IN ∩ U+
N−1 = (GN ∩ T+

N) ∩ U+
N−1

= (GN ∩ U+
N−1) ∩ (T+

N ∩ U
+
N−1)

= GN−1 ∩ T+
N−1

= IN−1

Thus our claim is proved, and this gives the various implications in the statement. �

We can now formulate a key theoretical observation, as follows:

Theorem 13.20. If G = (GN) is weakly uniform, and with n ∈ {2, 3, . . . ,∞} being
as above, the following conditions are equivalent, modulo their initial steps:

(1) Generation: GN =< Gc
N , GN−1 >, for any N > n.

(2) Strong generation: GN =< Gc
N , Gn >, for any N > n.

(3) Diagonal liberation: GN =< Gc
N , IN >, for any N ≥ n.

(4) Strong diagonal liberation: GN =< Gc
N , In >, for any N ≥ n.

Proof. Our first claim is that generation plus initial step diagonal liberation imply
the technical diagonal liberation condition. Indeed, the recurrence step goes as follows:

GN = < Gc
N , GN−1 >

= < Gc
N , G

c
N−1, IN−1 >

= < Gc
N , IN−1 >

In order to pass now from the technical diagonal liberation condition to the strong
diagonal liberation condition itself, observe that we have:

GN = < Gc
N , GN−1 >

= < Gc
N , G

c
N−1, IN−1 >

= < Gc
N , IN−1 >
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With this condition in hand, we have then as well:

GN = < Gc
N , GN−1 >

= < Gc
N , G

c
N−1, IN−2 >

= < Gc
N , IN−2 >

This procedure can be of course be continued. Thus we have a descent method, and
we end up with the strong diagonal liberation condition.

In the other sense now, we want to prove that we have, at N ≥ n:

GN =< Gc
N , GN−1 >

At N = n+ 1 this is something that we already have. At N = n+ 2 now, we have:

Gn+2 = < Gc
n+2, In >

= < Gc
n+2, G

c
n+1, In >

= < Gc
n+2, Gn+1 >

This procedure can be of course be continued. Thus, we have a descent method, and
we end up with the strong generation condition. �

It is possible to prove that many interesting quantum groups have the above properties,
and hence appear as diagonal liberations, but the whole subject is quite technical.

Here is however a statement, collecting most of the known results on the subject:

Theorem 13.21. The basic quantum unitary and reflection groups are as follows:

(1) O∗N , U
∗
N appear via diagonal liberation.

(2) O+
N , U

+
N appear via diagonal liberation.

(3) H∗N , K
∗
N appear via diagonal liberation.

(4) H+
N , K

+
N do not appear via diagonal liberation.

In addition, B+
N , C

+
N , S

+
N do not appear either via diagonal liberation.

Proof. All this is quite technical, the idea being as follows:

(1) The half-classical quantum groups O∗N , U
∗
N are not uniform, and so cannot be

investigated with the above techniques. However, these quantum groups can be studied
by using the matrix model technology in [15], [42], [44], which will be briefly discussed
in chapter 16 below, and this leads to the following generation formulae:

O∗N =< ON , T
∗
N >

U∗N =< UN , T
∗
N >

But these formulae imply as well U∗N =< UN ,T∗N >, as desired.
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(2) The quantum groups O+
N , U

+
N are uniform, and a quite technical computation,

from [46], [47], [49], [50], shows that the generation conditions from Theorem 13.20 are
satisfied for O+

N . Thus we obtain the following generation formula:

O+
N =< ON , T

+
N >

From this we can deduce via the results in [17] that we have:

U+
N =< UN , T

+
N >

But this implies U+
N =< UN ,T+

N >, as desired. See [50].

(3) The situation for H∗N , K
∗
N is quite similar to the one for O∗N , U

∗
N , explained above.

Indeed, the technology in [15], [42], [44] applies, and this leads to:

H∗N =< HN , T
∗
N >

K∗N =< KN , T
∗
N >

Thus, we have as well the following formula, as desired:

K∗N =< KN ,T∗N >

As a comment here, in fact these results are stronger than the above-mentioned ones
for the quantum groups O∗N , U

∗
N , via some standard generation formulae.

(4) This is something subtle as well, coming from the quantum groups H
[∞]
N , K

[∞]
N from

[82], discussed before. The idea here is that the following relations, related to the defining

relations for H
[∞]
N , K

[∞]
N , are trivially satisfied for real reflections:

gigigj = gjgigi

Thus, the diagonal tori of these quantum groups coincide with those for H+
N , K

+
N .

Thus, the diagonal liberation procedure “stops” at H
[∞]
N , K

[∞]
N .

Finally, regarding the last assertion, here B+
N , C

+
N , S

+
N do not appear indeed via diag-

onal liberation, and this because of a trivial reason, namely T = {1}. �

13d. Fourier liberation

As a conclusion to all the above, all this is quite technical. Now regardless of these
difficulties, and of the various positive results on the subject, the notion of diagonal
liberation is obviously not the good one. As a conjectural solution to these difficulties,
we have the notion of Fourier liberation, that we will discuss now.

Let us start with the following basic fact, which generalizes the embedding D̂∞ ⊂ S+
4

that we met in chapter 9 above, when proving that we have S+
4 6= S4:
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Proposition 13.22. Consider a discrete group generated by elements of finite order,
written as a quotient group, as follows:

ZN1 ∗ . . . ∗ ZNk → Γ

We have then an embedding of quantum groups Γ̂ ⊂ S+
N , where N = N1 + . . .+Nk.

Proof. We have a sequence of embeddings and isomorphisms as follows:

Γ̂ ⊂ ̂ZN1 ∗ . . . ∗ ZNk
= ẐN1 ∗̂ . . . ∗̂ ẐNk
' ZN1 ∗̂ . . . ∗̂ZNk
⊂ SN1 ∗̂ . . . ∗̂SNk
⊂ S+

N1
∗̂ . . . ∗̂S+

Nk

⊂ S+
N

Thus, we are led to the conclusion in the statement. �

The above result is quite abstract, and it is worth working out the details, with an
explicit formula for the associated magic matrix.

Let us start with a study of the simplest situation, where k = 1, and where Γ = ZN1 .
The result here is as follows:

Proposition 13.23. The magic matrix for the quantum permutation group

ẐN ' ZN ⊂ SN ⊂ S+
N

with standard Fourier isomorphism on the left, is given by the formula

u = FIF ∗

where F = 1√
N

(wij) with w = e2πi/N is the Fourier matrix, and where

I =


1

g
. . .

gN−1


is the diagonal matrix formed by the elements of ZN , regarded as elements of C∗(ZN).

Proof. The magic matrix for the quantum group ZN ⊂ SN ⊂ S+
N is given by:

vij = χ
(
σ ∈ ZN

∣∣∣σ(j) = i
)

= δi−j
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Let us apply now the Fourier transform. According to our Pontrjagin duality conven-
tions from chapter 1 above, in one sense this is given by the following formula:

Φ : C(ZN)→ C∗(ZN)

δi →
1

N

∑
k

wikgk

As for the inverse isomorphism, this is given by the following formula:

Ψ : C∗(ZN)→ C(ZN)

gi →
∑
k

w−ikδk

Here w = e2πi/N , and we use the standard Fourier analysis convention that the indices
are 0, 1, . . . , N − 1. With F = 1√

N
(wij) and I = diag(gi) as above, we have:

uij = Φ(vij)

=
1

N

∑
k

w(i−j)kgk

=
1

N

∑
k

wikgkw−jk

=
∑
k

FikIkk(F
∗)kj

= (FIF ∗)ij

Thus, the magic matrix that we are looking for is u = FIF ∗, as claimed. �

With the above result in hand, we can complement Proposition 13.22 with:

Proposition 13.24. Given a quotient group ZN1 ∗ . . . ∗ ZNk → Γ, the magic matrix

for the subgroup Γ̂ ⊂ S+
N found in Proposition 13.22, with N = N1 + . . .+Nk, is given by

u =

FN1I1F
∗
N1

. . .
FNkIkF

∗
Nk


where FN = 1√

N
(wijN) with wN = e2πi/N are Fourier matrices, and where

Ir =


1

gr
. . .

gNr−1
r


with g1, . . . , gk being the standard generators of Γ.
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Proof. This follows indeed from Proposition 13.22 and Proposition 13.23. �

Following [41], let us prove now that this construction provides us with all the group

duals Γ̂ ⊂ S+
N . The idea will be that of using orbit theory, which is as follows:

Theorem 13.25. Given a closed subgroup G ⊂ S+
N , with standard coordinates denoted

uij ∈ C(G), the following defines an equivalence relation on {1, . . . , N},

i ∼ j ⇐⇒ uij 6= 0

that we call orbit decomposition associated to the action Gy {1, . . . , N}. In the classical
case, G ⊂ SN , this is the usual orbit equivalence coming from the action of G.

Proof. We first check the fact that we have indeed an equivalence relation:

(1) The condition i ∼ i follows from ε(uij) = δij, which gives:

ε(uii) = 1

(2) The condition i ∼ j =⇒ j ∼ i follows from S(uij) = uji, which gives:

uij 6= 0 =⇒ uji 6= 0

(3) The condition i ∼ j, j ∼ k =⇒ i ∼ k follows from:

∆(uik) =
∑
j

uij ⊗ ujk

Indeed, in this formula, the right-hand side is a sum of projections, so assuming that
we have uij 6= 0, ujk 6= 0 for a certain index j, we have:

uij ⊗ ujk > 0

Thus we have ∆(uik) > 0, which gives uik 6= 0, as desired. Finally, in the classical
case, G ⊂ SN , the standard coordinates are the following characteristic functions:

uij = χ
(
σ ∈ G

∣∣∣σ(j) = i
)

Thus uij 6= 0 is equivalent to the existence of an element σ ∈ G such that σ(j) = i.
But this means precisely that i, j must be in the same orbit of G, as claimed. �

We should mention that it is possible to talk about orbitals as well, by using a similar
definition for them. We will be back to this.

Generally speaking, the theory from the classical case extends well to the quantum
group setting, and we have in particular the following result, also from [41]:
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Theorem 13.26. Given a closed subgroup G ⊂ S+
N , with magic matrix denoted u =

(uij), consider the associated coaction map, on the space X = {1, . . . , N}:

Φ : C(X)→ C(X)⊗ C(G) , ei →
∑
j

ej ⊗ uji

The following three subalgebras of C(X) are then equal

Fix(u) =
{
ξ ∈ C(X)

∣∣∣uξ = ξ
}

Fix(Φ) =
{
ξ ∈ C(X)

∣∣∣Φ(ξ) = ξ ⊗ 1
}

F =
{
ξ ∈ C(X)

∣∣∣i ∼ j =⇒ ξ(i) = ξ(j)
}

where ∼ is the orbit equivalence relation constructed in Theorem 13.25.

Proof. There are several assertions here, the idea being as follows:

(1) The fact that we have the equality Fix(u) = Fix(Φ) is standard, with this being
valid for any corepresentation of a compact quantum group u = (uij).

(2) Regarding now the equality with F , we know from Theorem 13.25 that the magic
unitary u = (uij) is block-diagonal, with respect to the orbit decomposition there. But
this shows that the algebra Fix(u) = Fix(Φ) decomposes as well with respect to the
orbit decomposition, and so in order to prove the result, we are left with a study in the
transitive case, where the result is clear. See [41]. �

We have as well the following result, of analytic flavor:

Proposition 13.27. For a closed subgroup G ⊂ S+
N , the following are equivalent:

(1) G is transitive.
(2) Fix(u) = Cξ, where ξ is the all-one vector.
(3)

∫
G
uij = 1

N
, for any i, j.

Proof. This is well-known in the classical case. In general, the proof is as follows:

(1) ⇐⇒ (2) This follows from the identifications in Theorem 13.26.

(2) ⇐⇒ (3) This is clear from the general properties of the Haar integration. �

As a comment here, we should mention that the whole theory of quantum group orbits
and transitivity, originally developed in [41], has an interesting extension into a theory of
quantum group orbitals and 2-transitivity, recently developed in [72].

Now back to the tori, we have the following key result, from [41]:
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Theorem 13.28. Consider a quotient group as follows, with N = N1 + . . .+Nk:

ZN1 ∗ . . . ∗ ZNk → Γ

We have then Γ̂ ⊂ S+
N , and any group dual subgroup of S+

N appears in this way.

Proof. This result, from [41], can be proved in two steps, as follows:

(1) The fact that we have a subgroup as in the statement is something that we al-

ready know. Conversely, assume that we have a group dual subgroup Γ̂ ⊂ S+
N . The

corresponding magic unitary must be of the following form, with U ∈ UN :

u = U

g1

. . .
gN

U∗

Consider now the orbit decomposition for Γ̂ ⊂ S+
N , coming from Theorem 13.25:

N = N1 + . . .+Nk

We conclude that u has a N = N1 + . . . + Nk block-diagonal pattern, and so that U
has as well this N = N1 + . . .+Nk block-diagonal pattern.

(2) But this discussion reduces our problem to its k = 1 particular case, with the

statement here being that the cyclic group ZN is the only transitive group dual Γ̂ ⊂ S+
N .

The proof of this latter fact being elementary, we obtain the result. See [41]. �

Here is a related result, from [10], which is useful for our purposes:

Theorem 13.29. For the quantum permutation group S+
N , we have:

(1) Given Q ∈ UN , the quotient FN → ΛQ comes from the following relations:
gi = 1 if

∑
lQil 6= 0

gigj = 1 if
∑

lQilQjl 6= 0

gigjgk = 1 if
∑

lQilQjlQkl 6= 0

(2) Given a decomposition N = N1+. . .+Nk, for the matrix Q = diag(FN1 , . . . , FNk),
where FN = 1√

N
(ξij)ij with ξ = e2πi/N is the Fourier matrix, we obtain:

ΛQ = ZN1 ∗ . . . ∗ ZNk
(3) Given an arbitrary matrix Q ∈ UN , there exists a decomposition N = N1 + . . .+

Nk, such that ΛQ appears as quotient of ZN1 ∗ . . . ∗ ZNk .

Proof. This is more or less equivalent to Theorem 13.28, and the proof can be
deduced either from Theorem 13.28, or from some direct computations, as follows:
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(1) Fix a unitary matrix Q ∈ UN , and consider the following quantities:
ci =

∑
lQil

cij =
∑

lQilQjl

dijk =
∑

l Q̄ilQ̄jlQkl

We write w = QvQ∗, where v is the fundamental corepresentation of C(S+
N). Assume

X ' {1, . . . , N}, and let α be the coaction of C(S+
N) on C(X). Let us set:

ϕi =
∑
l

Q̄ilδl ∈ C(X)

Also, let gi = (QvQ∗)ii ∈ C∗(ΛQ). If β is the restriction of α to C∗(ΛQ), then:

β(ϕi) = ϕi ⊗ gi
Now recall that C(X) is the universal C∗-algebra generated by elements δ1, . . . , δN

which are pairwise orthogonal projections. Writing these conditions in terms of the lin-
early independent elements ϕi by means of the formulae δi =

∑
lQilϕl, we find that the

universal relations for C(X) in terms of the elements ϕi are as follows:
∑

i ciϕi = 1

ϕ∗i =
∑

j cijϕj

ϕiϕj =
∑

k dijkϕk

Let Λ̃Q be the group in the statement. Since β preserves these relations, we get:
ci(gi − 1) = 0

cij(gigj − 1) = 0

dijk(gigj − gk) = 0

We conclude from this that ΛQ is a quotient of Λ̃Q. On the other hand, it is immediate
that we have a coaction map as follows:

C(X)→ C(X)⊗ C∗(Λ̃Q)

Thus C(Λ̃Q) is a quotient of C(S+
N). Since w is the fundamental corepresentation of

S+
N with respect to the basis {ϕi}, it follows that the generator wii is sent to g̃i ∈ Λ̃Q,

while wij is sent to zero. We conclude that Λ̃Q is a quotient of ΛQ. Since the above

quotient maps send generators on generators, we conclude that ΛQ = Λ̃Q, as desired.

(2) We apply the result found in (1), with the N -element set X used in the proof there
chosen to be the following set:

X = ZN1 t . . . t ZNk
With this choice, we have ci = δi0 for any i. Also, we have cij = 0, unless i, j, k belong

to the same block to Q, in which case cij = δi+j,0, and also dijk = 0, unless i, j, k belong
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to the same block of Q, in which case dijk = δi+j,k. We conclude from this that ΛQ is the
free product of k groups which have generating relations as follows:

gigj = gi+j , g−1
i = g−i

But this shows that our group is ΛQ = ZN1 ∗ . . . ∗ ZNk , as stated.

(3) This follows indeed from (2). See [10]. �

Summarizing, for the quantum permutation groups, the standard tori parametrized
by Fourier matrices play a special role.

This suggests formulating the following definition:

Definition 13.30. Consider a closed subgroup G ⊂ U+
N .

(1) Its standard tori TF , with F = FN1 ⊗ . . . ⊗ FNk , and N = N1 + . . . + Nk being
regarded as a partition, are called Fourier tori.

(2) In the case where we have GN =< Gc
N , (TF )F >, we say that GN appears as a

Fourier liberation of its classical version Gc
N .

We believe that the easy quantum groups should appear as Fourier liberations.

With respect to Theorem 13.21 above, the situation in the free case is as follows:

(1) O+
N , U

+
N are diagonal liberations, so they are Fourier liberations as well.

(2) B+
N , C

+
N are Fourier liberations too, by using the results in chapter 7.

(3) S+
N is a Fourier liberation too, being generated by its tori [46], [50].

(4) H+
N , K

+
N remain to be investigated, by using the general theory in [82].

Finally, as a word of warning here, observe that an arbitrary classical group GN ⊂ UN
is not necessarily generated by its Fourier tori, and nor is an arbitrary discrete group
dual, with spinned embedding. Thus, the Fourier tori, and the related notion of Fourier
liberation, remain something quite technical, in connection with the easy case.

13e. Exercises

There are many interesting computations in relation with the above, and as a first
exercise on the subject, we have:

Exercise 13.31. Find the spinned tori of the dual of a discrete group

Γ =< g1, . . . , gN >

arbitrarily embedded into U+
N .
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To be more precise, the computation was given in the above, in the case where the

embedding Γ̂ ⊂ U+
N is diagonal. The problem is that of adapting this computation, as to

work for twisted embeddings Γ̂ ⊂ U+
N as well.

As a second exercise now, which is a bit more theoretical, we have:

Exercise 13.32. Find more evidence for the injectivity and monotony conjectures
formulated in the above.

There are many things that can be done here, for instance in relation with the various
product operations for the compact quantum groups, in the spirit of the study that we
did in the above for the generation conjecture.

As a third exercise now, which is very instructive, we have:

Exercise 13.33. Find the group dual subgroups

Γ̂ ⊂ S+
N

at N = 4, 5, with explicit formulae for the embeddings.

To be more precise here, the problem was solved in the above, abstractly, for any
N ∈ N. The problem is that of working out the N = 4, 5 particular cases, explicitely.



CHAPTER 14

Amenability, growth

14a. Functional analysis

We have seen so far that the theory of the compact quantum Lie groups, G ⊂ U+
N ,

can be developed with inspiration from the theory of compact Lie groups, G ⊂ UN .

In this chapter we discuss an alternative approach to all this, by looking at the finitely

generated discrete quantum groups Γ = Ĝ which are dual to our objects. Thus, the idea
will be that of developing the theory of the finitely generated discrete quantum groups,

Û+
N → Γ, with inspiration from the theory of finitely generated discrete groups, FN → Γ.

As a first observation, the theory is already there, as developed in the previous chap-

ters, which equally concern the compact quantum group G and its discrete dual Γ = Ĝ.
However, from the discrete group viewpoint, what has been worked out so far looks more
like specialized mathematics, and there are still a lot of basic things, to be developed.

In short, what we will be doing here will be a “complement” to the material from the
previous chapters, obtained by using a different, and somehow opposite, philosophy.

Let us begin with a reminder regarding the cocommutative Woronowicz algebras,
which will be our “main objects” in this section, coming before the commutative ones,
that we are so used to have in the #1 spot. As explained in chapter 3 above, we have:

Theorem 14.1. For a Woronowicz algebra A, the following are equivalent:

(1) A is cocommutative, Σ∆ = ∆.
(2) The irreducible corepresentations of A are all 1-dimensional.
(3) A = C∗(Γ), for some group Γ =< g1, . . . , gN >, up to equivalence.

Proof. This follows from the Peter-Weyl theory, as follows:

(1) =⇒ (2) The assumption Σ∆ = ∆ tells us that the inclusion Acentral ⊂ A
is an isomorphism, and by using Peter-Weyl theory we conclude that any irreducible
corepresentation of A must be equal to its character, and so must be 1-dimensional.

(2) =⇒ (3) This follows once again from Peter-Weyl, because if we denote by Γ the
group formed by the 1-dimensional corepresentations, then we have A = C[Γ], and so
A = C∗(Γ) up to the standard equivalence relation for Woronowicz algebras.

321
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(3) =⇒ (1) This is something trivial, that we already know from chapter 2. �

The above result is not the end of the story, because one can still ask what are the
cocommutative Woronowicz algebras, without reference to the equivalence relation.

More generally, we are led in this way into the question, that we have usually avoided
so far, as being not part of the “compact” philosophy, of computing the equivalence class
of a given Woronowicz algebra A. We first have here the following construction:

Theorem 14.2. Given a Woronowicz algebra (A, u), the enveloping C∗-algebra Afull
of the algebra of “smooth functions” A =< uij > has morphisms

∆ : Afull → Afull ⊗ Afull
ε : Afull → C

S : Afull → Aoppfull

which make it a Woronowicz algebra, which is equivalent to A. In the cocommutative
case, where A ∼ C∗(Γ), we obtain in this way the full group algebra C∗(Γ).

Proof. There are several assertions here, the idea being as follows:

(1) Consider indeed the algebra Afull, obtained by completing the ∗-algebra A ⊂ A
with respect to its maximal C∗-norm. We have then a quotient map, as follows:

π : Afull → A

By universality of Afull, the comultiplication, counit and antipode of A lift into mor-
phisms ∆, ε, S as in the statement, and the Woronowicz algebra axioms are satisfied.

(2) The fact that we have an equivalence Afull ∼ A is clear from definitions, because
at the level of ∗-algebras of coefficients, the above quotient map π is an isomorphism.

(3) Finally, in the cocommutative case, where A ∼ C∗(Γ), the coefficient algebra is
A = C[Γ], and the corresponding enveloping C∗-algebra is Afull = C∗(Γ). �

Summarizing, in connection with our equivalence class question, we already have an
advance, with the construction of a biggest object in each equivalence class:

Afull → A

We could of course stop our study here, by formulating the following statement, which
apparently terminates any further discussion about equivalence classes:

Proposition 14.3. Let us call a Woronowicz algebra “full” when the following canon-
ical quotient map is an isomorphism:

π : Afull → A

Then any Woronowicz algebra is equivalent to a full Woronowicz algebra, and when re-
stricting the attention to the full algebras, we have 1 object per equivalence class.
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Proof. The first assertion is clear from Theorem 14.2, which tells us that we have
A ∼ Afull, and the second assertion holds as well, for exactly the same reason. �

As a first observation, restricting the attention to the full Woronowicz algebras is
more or less what we have being doing so far in this book, with all the algebras that we
introduced and studied being full by definition. However, there are several good reasons
for not leaving things like this, and for further getting into the subject, one problem for
instance coming from the fact that for the non-amenable groups Γ, we have:

C∗(Γ) 6⊂ L(Γ)

To be more precise, on the right we have the group von Neumann algebra L(Γ),
appearing by definition as the weak closure of C[Γ], in the left regular representation. It
is known that the above non-inclusion happens indeed in the non-amenable case, and in

terms of the quantum group G = Γ̂, we are led to the following bizarre conclusion:

C(G) 6⊂ L∞(G)

In other words, we have noncommutative continuous functions which are not measur-
able. This is something that we must clarify. Welcome to functional analysis.

Before anything, we must warn the reader that a lot of modesty and faith is needed, in
order to deal with such questions. We are basically doing quantum mechanics here, where
the moving objects don’t have clear positions, or clear speeds, and where the precise laws
of motion are not known, and where any piece of extra data costs a few billion dollars.
Thus, the fact that we have C(G) 6⊂ L∞(G) is just one problem, among many other.

With this discussion made, let us go back now to Theorem 14.2. As a next step in our
study, we can attempt to construct a smallest object Ared in each equivalence class. The
situation here is more tricky, and we have the following statement:

Theorem 14.4. Given a Woronowicz algebra (A, u), its quotient A → Ared by the
null ideal of the Haar integration tr : A→ C has morphisms as follows,

∆ : Ared → Ared × Ared
ε : Ared → C
S : Ared → Aoppred

where × is the spatial tensor product of C∗-algebras, and where Ared =< uij >. In the
case where these morphisms lift into morphisms

∆ : Ared → Ared ⊗ Ared
ε : Ared → C

S : Ared → Aoppred

we have a Woronowicz algebra, which is equivalent to A. Also, in the cocommutative case,
where A ∼ C∗(Γ), we obtain in this way the reduced group algebra C∗red(Γ).
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Proof. We have several assertions here, the idea being as follows:

(1) Consider indeed the algebra Ared, obtained by dividing A by the null ideal of the
Haar integration tr : A→ C. We have then a quotient map, as follows:

π : A→ Ared

Also, by GNS construction, we have an embedding as follows:

i : Ared ⊂ B(L2(A))

By using these morphisms π, i, we can see that the comultiplication, counit and an-
tipode of the ∗-algebra A lift into morphisms ∆, ε, S as in the statement, or, equivalently,
that the comultiplication, counit and antipode of the C∗-algebra A factorize into mor-
phisms ∆, ε, S as in the statement. Thus, we have our morphisms, as claimed.

(2) In the case where the morphisms ∆, ε, S that we just constructed lift, as indicated
in the statement, the Woronowicz algebra axioms are clearly satisfied, and so the algebra
Ared, together with the matrix u = (uij), is a Woronowicz algebra, in our sense.

(3) The fact that we have an equivalence Ared ∼ A is clear from definitions, because
at the level of ∗-algebras of coefficients, the above quotient map π is an isomorphism.

(4) Finally, in the cocommutative case, where A ∼ C∗(Γ), the above embedding i is
the left regular representation, and so we have Ared = C∗red(Γ), as claimed. �

With the above result in hand, which is complementary to Theorem 14.2, we can now
answer some of our philosophical questions, the idea being as follows:

(1) In the group dual case we have C∗red(Γ) ⊂ L(Γ), as subalgebras of B(l2(Γ)), and

so in terms of the compact quantum group G = Γ̂, the conclusion is that we have
C(G) ⊂ L∞(G), as we should, with the convention C(G) = C∗red(Γ).

(2) In view of this, it is tempting to modify our Woronowicz algebra axioms, with
∆, ε, S being redefined as in the first part of Theorem 14.4, as to include the
reduced group algebras C∗red(Γ), and more generally, all the algebras Ared.

(3) With such a modification done, we could call then a Woronowicz algebra “re-
duced” when the quotient map A→ Ared is an isomorphism. This would lead to
a nice situation like in Proposition 14.3, with 1 object per equivalence class.

(4) However, we will not do this, simply because the bulk of the present book, which
is behind us, is full of interesting examples of Woronowicz algebras constructed
with generators and relations, which are full by definition.

In short, nevermind for the philosophy, we will keep our axioms which are nice, simple
and powerful, keeping however in mind the fact that the full picture is as follows:
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Theorem 14.5. Given a Woronowicz algebra A, we have morphisms

Afull → A→ Ared ⊂ A′′red

which in terms of the associated compact quantum group G read

Cfull(G)→ A→ Cred(G) ⊂ L∞(G)

and in terms of the associated discrete quantum group Γ read

C∗(Γ)→ A→ C∗red(Γ) ⊂ L(Γ)

with Woronowicz algebras at left, and with von Neumann algebras at right.

Proof. This is something rather philosophical, coming by putting together the results
that we have, namely Theorem 14.2 and Theorem 14.4. �

With this discussion made, and with the reiterated warning that a lot of modesty and
basic common sense is needed, in order to deal with such questions, let us get now into
the real thing, namely the understanding of the following projection map:

π : Afull → Ared

As already mentioned before, on numerous occasions, when the algebra A is cocom-
mutative, A ∼ C∗(Γ), and with the underlying group Γ being assumed amenable, this
projection map is an isomorphism. And the contrary happens when Γ is not amenable.

14b. Amenability

This leads us into the amenability question for the general Woronowicz algebras A.
We have seen the basic theory here in chapter 3 above, in the form of a list of equivalent
conditions, which altogether are called amenability.

The theory presented there, worked out now in more detail, and with a few items
added, is as follows:

Theorem 14.6. Let Afull be the enveloping C∗-algebra of A, and let Ared be the
quotient of A by the null ideal of the Haar integration. The following are then equivalent:

(1) The Haar functional of Afull is faithful.
(2) The projection map Afull → Ared is an isomorphism.
(3) The counit map ε : A→ C factorizes through Ared.
(4) We have N ∈ σ(Re(χu)), the spectrum being taken inside Ared.
(5) ||axk − ε(a)xk|| → 0 for any a ∈ A, for certain norm 1 vectors xk ∈ L2(A).

If this is the case, we say that the underlying discrete quantum group Γ is amenable.
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Proof. Before starting, we should mention that amenability and the present result
are a bit like the Spectral Theorem, in the sense that knowing that the result formally
holds does not help much, and in practice, one needs to remember the proof as well.
For this reason, we will work out explicitely all the possible implications between (1-5),
whenever possible, adding to the global formal proof, which will be linear, as follows:

(1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (5) =⇒ (1)

In order to prove these implications, and the other ones too, the general idea is that
this is is well-known in the group dual case, A = C∗(Γ), with Γ being a usual discrete
group, and in general, the result follows by adapting the group dual case proof.

(1) ⇐⇒ (2) This follows from the fact that the GNS construction for the algebra
Afull with respect to the Haar functional produces the algebra Ared.

(2) =⇒ (3) This is trivial, because we have quotient maps Afull → A → Ared, and
so our assumption Afull = Ared implies that we have A = Ared.

(3) =⇒ (2) Assume indeed that we have a counit map ε : Ared → C. In order to
prove Afull = Ared, we can use the right regular corepresentation. Indeed, as explained in
[79], we can define such a corepresentation by the following formula:

W (a⊗ x) = ∆(a)(1⊗ x)

This corepresentation is unitary, so we can define a morphism as follows:

∆′ : Ared → Ared ⊗ Afull
a→ W (a⊗ 1)W ∗

Now by composing with ε⊗ id, we obtain a morphism as follows:

(ε⊗ id)∆′ : Ared → Afull

uij → uij
Thus, we have our inverse for the canonical projection Afull → Ared, as desired.

(3) =⇒ (4) This implication is clear, because we have:

ε(Re(χu)) =
1

2

(
N∑
i=1

ε(uii) +
N∑
i=1

ε(u∗ii)

)
=

1

2
(N +N)

= N

Thus the element N −Re(χu) is not invertible in Ared, as claimed.

(4) =⇒ (3) In terms of the corepresentation v = u + ū, whose dimension is 2N and
whose character is 2Re(χu), our assumption N ∈ σ(Re(χu)) reads:

dim v ∈ σ(χv)
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By functional calculus the same must hold for w = v + 1, and then once again by
functional calculus, the same must hold for any tensor power of w:

wk = w⊗k

Now choose for each k ∈ N a state εk ∈ A∗red having the following property:

εk(wk) = dimwk

By Peter-Weyl we must have εk(r) = dim r for any r ≤ wk, and since any irreducible
corepresentation appears in this way, the sequence εk converges to a counit map:

ε : Ared → C
(4) =⇒ (5) Consider the following elements of Ared, which are positive:

ai = 1−Re(uii)
Our assumption N ∈ σ(Re(χu)) tells us that a =

∑
ai is not invertible, and so there

exists a sequence xk of norm one vectors in L2(A) such that:

< axk, xk >→ 0

Since the summands < aixk, xk > are all positive, we must have, for any i:

< aixk, xk >→ 0

We can go back to the variables uii by using the following general formula:

||vx− x||2 = ||vx||2 + 2 < (1−Re(v))x, x > −1

Indeed, with v = uii and x = xk the middle term on the right goes to 0, and so the
whole term on the right becomes asymptotically negative, and so we must have:

||uiixk − xk|| → 0

Now let Mn(Ared) act on Cn ⊗ L2(A). Since u is unitary we have:∑
i

||uijxk||2 = ||u(ej ⊗ xk)|| = 1

From ||uiixk|| → 1 we obtain ||uijxk|| → 0 for i 6= j. Thus we have, for any i, j:

||uijxk − δijxk|| → 0

Now by remembering that we have ε(uij) = δij, this formula reads:

||uijxk − ε(uij)xk|| → 0

By linearity, multiplicativity and continuity, we must have, for any a ∈ A, as desired:

||axk − ε(a)xk|| → 0

(5) =⇒ (1) This is something well-known, which follows via some standard functional
analysis arguments, worked out in Blanchard’s paper [45].
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(1) =⇒ (5) Once again this is something well-known, which follows via some standard
functional analysis arguments, worked out in Blanchard’s paper [45]. �

This was for the basic amenability theory. We will be back to this on several occasions,
with more specialized amenability conditions, which will add to the above list.

As a first application of the above result, we can now advance on a problem left before,
in chapter 3 above, and then in the beginning of the present section as well:

Theorem 14.7. The cocommutative Woronowicz algebras are the intermediate quo-
tients of the following type, with Γ =< g1, . . . , gN > being a discrete group,

C∗(Γ)→ C∗π(Γ)→ C∗red(Γ)

and with π being a unitary representation of Γ, subject to weak containment conditions of
type π ⊗ π ⊂ π and 1 ⊂ π, which guarantee the existence of ∆, ε.

Proof. We use Theorem 14.1 above, combined with Theorem 14.5 and then with
Theorem 14.6, the idea being to proceed in several steps, as follows:

(1) Theorem 14.1 and standard functional analysis arguments show that the cocom-
mutative Woronowicz algebras should appear as intermediate quotients, as follows:

C∗(Γ)→ A→ C∗red(Γ)

(2) The existence of ∆ : A → A ⊗ A requires our intermediate quotient to appear as
follows, with π being a unitary representation of Γ, satisfying the condition π ⊗ π ⊂ π,
taken in a weak containment sense, and with the tensor product ⊗ being taken here to
be compatible with our usual maximal tensor product ⊗ for the C∗-algebras:

C∗(Γ)→ C∗π(Γ)→ C∗red(Γ)

(3) With this condition imposed, the existence of the antipode S : A → Aopp is then
automatic, coming from the group antirepresentation g → g−1.

(4) The existence of the counit ε : A → C, however, is something non-trivial, related
to amenability, and leading to a condition of type 1 ⊂ π, as in the statement. �

The above result is of course not the end of the story, because as formulated, with
the above highly abstract conditions on π, it comes along with 0 non-trivial examples.
We refer to Woronowicz’s paper [99] for more on these topics, and to [70] for a more
advanced discussion, dealing with the non-cocommutative case as well.

Let us get back now to real life, and concrete mathematics, and focus on the Kesten
amenability criterion, from Theorem 14.6 (4) above, which brings connections with in-
teresting mathematics and physics, and which in practice will be our main amenability
criterion. In order to discuss this, we will need the following standard fact:
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Proposition 14.8. Given a Woronowicz algebra (A, u), with u ∈ MN(A), the mo-
ments of the main character χ =

∑
i uii are given by:∫

G

χk = dim
(
Fix(u⊗k)

)
In the case u ∼ ū the law of χ is a usual probability measure, supported on [−N,N ].

Proof. There are two assertions here, the proof being as follows:

(1) The first assertion follows from the Peter-Weyl theory, which tells us that we have
the following formula, valid for any corepresentation v ∈Mn(A):∫

G

χv = dim(Fix(v))

Indeed, with v = u⊗k the corresponding character is:

χv = χk

Thus, we obtain the result, as a consequence of the above formula.

(2) As for the second assertion, if we assume u ∼ ū then we have χ = χ∗, and so
the general theory, explained above, tells us that law(χ) is in this case a real probability
measure, supported by the spectrum of χ. But, since u ∈MN(A) is unitary, we have:

uu∗ = 1 =⇒ ||uij|| ≤ 1,∀i, j
=⇒ ||χ|| ≤ N

Thus the spectrum of the character satisfies:

σ(χ) ⊂ [−N,N ]

Thus, we are led to the conclusion in the statement. �

In relation now with the notion of amenability, we have:

Theorem 14.9. A Woronowicz algebra (A, u), with u ∈MN(A), is amenable when

N ∈ supp
(
law(Re(χ))

)
and the support on the right depends only on law(χ).

Proof. There are two assertions here, the proof being as follows:

(1) According to the Kesten amenability criterion, from Theorem 14.6 (4) above, the
algebra A is amenable when the following condition is satisfied:

N ∈ σ(Re(χ))

Now since Re(χ) is self-adjoint, we know from spectral theory that the support of its
spectral measure law(Re(χ)) is precisely its spectrum σ(Re(χ)), as desired:

supp(law(Re(χ))) = σ(Re(χ))
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(2) Regarding the second assertion, once again the variable Re(χ) being self-adjoint,
its law depends only on the moments

∫
G
Re(χ)p, with p ∈ N. But, we have:∫

G

Re(χ)p =

∫
G

(
χ+ χ∗

2

)p
=

1

2p

∑
|k|=p

∫
G

χk

Thus law(Re(χ)) depends only on law(χ), and this gives the result. �

Let us work out now in detail the group dual case. Here we obtain a very interesting
measure, called Kesten measure of the group [68], as follows:

Proposition 14.10. In the case A = C∗(Γ) and u = diag(g1, . . . , gN), and with the
following normalization made,

1 ∈ u = ū

the moments of the main character are given by the formula∫
Γ̂

χp = #
{
i1, . . . , ip

∣∣∣gi1 . . . gip = 1
}

counting the loops based at 1, having lenght p, on the corresponding Cayley graph.

Proof. Consider indeed a discrete group Γ =< g1, . . . , gN >. The main character of
A = C∗(Γ), with fundamental corepresentation u = diag(g1, . . . , gN), is then:

χ = g1 + . . .+ gN

Given a colored integer k = e1 . . . ep, the corresponding moment is given by:∫
Γ̂

χk =

∫
Γ̂

(g1 + . . .+ gN)k

= #
{
i1, . . . , ip

∣∣∣ge1i1 . . . gepip = 1
}

In the self-adjoint case, u ∼ ū, we are only interested in the moments with respect to
usual integers, p ∈ N, and the above formula becomes:∫

Γ̂

χp = #
{
i1, . . . , ip

∣∣∣gi1 . . . gip = 1
}

Assume now that we have in addition 1 ∈ u, so that the condition 1 ∈ u = ū in the
statement is satisfied. At the level of the generating set S = {g1, . . . , gN} this means:

1 ∈ S = S−1

Thus the corresponding Cayley graph is well-defined, with the elements of Γ as vertices,
and with the edges g − h appearing when the following condition is satisfied:

gh−1 ∈ S



14B. AMENABILITY 331

A loop on this graph based at 1, having lenght p, is then a sequence as follows:

(1)− (gi1)− (gi1gi2)− . . .− (gi1 . . . gip−1)− (gi1 . . . gip = 1)

Thus the moments of χ count indeed such loops, as claimed. �

In order to generalize the above result to arbitrary Woronowicz algebras, we can use
the discrete quantum group philosophy. The fundamental result here is as follows:

Theorem 14.11. Let (A, u) be a Woronowicz algebra, and assume, by enlarging if
necessary u, that we have 1 ∈ u = ū. The following formula

d(v, w) = min
{
k ∈ N

∣∣∣1 ⊂ v̄ ⊗ w ⊗ u⊗k
}

defines then a distance on Irr(A), which coincides with the geodesic distance on the
associated Cayley graph. In the group dual case we obtain the usual distance.

Proof. The fact that the lengths are finite follows from Woronowicz’s analogue of
Peter-Weyl theory, and the other verifications are as follows:

(1) The symmetry axiom is clear.

(2) The triangle inequality is elementary to establish as well.

(3) Finally, the last assertion is elementary as well.

In the group dual case now, where our Woronowicz algebra is of the form A = C∗(Γ),
with Γ =< S > being a finitely generated discrete group, our normalization condition
1 ∈ u = ū means that the generating set must satisfy:

1 ∈ S = S−1

But this is precisely the normalization condition for the discrete groups, and the fact
that we obtain the same metric space is clear. �

Summarizing, we have a good understanding of what a discrete quantum group is. We
can now formulate a generalization of Proposition 14.10, as follows:

Theorem 14.12. Let (A, u) be a Woronowicz algebra, with the normalization assump-
tion 1 ∈ u = ū made. The moments of the main character,∫

G

χp = dim
(
Fix(u⊗p)

)
count then the loops based at 1, having lenght p, on the corresponding Cayley graph.

Proof. Here the formula of the moments, with p ∈ N, is the one coming from Propo-
sition 14.8 above, and the Cayley graph interpretation comes from Theorem 14.11. �

Here is a related useful result, in relation with the notion of amenability:
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Theorem 14.13. A Woronowicz algebra (A, u) is amenable precisely when

||X|| = N

where X is the principal graph of the associated planar algebra

Pk = End(u⊗k)

obtained by deleting the reflections in the Bratteli diagram of P = (Pk).

Proof. This is something which might look quite complicated, but the idea is very
simple, namely that, via some standard identifications and rescalings, we have:

||X|| = ||Mχu||Acentral
= ||χu||Acentral
= ||χu||Ared

Thus, the result follows from the Kesten amenability criterion. �

There are many concrete illustrations for the above results, and we will be back to
this, on several occasions, in what follows.

14c. Growth

As an application of this, we can introduce the notion of growth, as follows:

Definition 14.14. Given a closed subgroup G ⊂ U+
N , with 1 ∈ u = ū, consider the

series whose coefficients are the ball volumes on the corresponding Cayley graph,

f(z) =
∑
k

bkz
k

bk =
∑
l(v)≤k

dim(v)2

and call it growth series of the discrete quantum group Ĝ. In the group dual case, G = Γ̂,
we obtain in this way the usual growth series of Γ.

There are many things that can be said about the growth, and we will be back to this
in a moment, with explicit examples, and some general theory as well.

As a first result, in relation with the notion of amenability, we have:

Theorem 14.15. Polynomial growth implies amenability.

Proof. We recall from Theorem 14.11 above that the Cayley graph of Ĝ has by
definition the elements of Irr(G) as vertices, and the distance is as follows:

d(v, w) = min
{
k ∈ N

∣∣∣1 ⊂ v̄ ⊗ w ⊗ u⊗k
}
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By taking w = 1 and by using Frobenius reciprocity, the lenghts are given by:

l(v) = min
{
k ∈ N

∣∣∣v ⊂ u⊗k
}

By Peter-Weyl we have a decomposition as follows, where Bk is the ball of radius k,
and mk(v) ∈ N are certain multiplicities:

u⊗k =
∑
v∈Bk

mk(v) · v

By using now Cauchy-Schwarz, we obtain the following inequality:

m2k(1)bk =
∑
v∈Bk

mk(v)2
∑
v∈Bk

dim(v)2

≥

(∑
v∈Bk

mk(v) dim(v)

)2

= N2k

But shows that if bk has polynomial growth, then the following happens:

lim sup
k→∞

m2k(1)1/2k ≥ N

Thus, the Kesten type criterion applies, and gives the result. �

Let us discuss now as well, as a continuation of all this, the notions of connectedness

for G, and no torsion for Γ̂. These two notions are in fact related, as follows:

Theorem 14.16. For a closed subgroup G ⊂ U+
N the following conditions are equiva-

lent, and if they are satisfied, we call G connected:

(1) There is no finite quantum group quotient, as follows:

G→ F 6= {1}
(2) The following algebra is infinite dimensional, for any corepresentation v 6= 1:

Av =< vij >

In the classical case, G ⊂ UN , we recover in this way the usual notion of connectedness.

For the group duals, G = Γ̂, this is the same as asking for Γ to have no torsion.

Proof. The above equivalence comes from the fact that a quotient G → F must
correspond to an embedding C(F ) ⊂ C(G), which must be of the form:

C(F ) =< vij >

Regarding now the last two assertions, the situation here is as follows:

(1) In the classical case, G ⊂ UN , it is well-known that F = G/G1 is a finite group,
where G1 is the connected component of the identity 1 ∈ G, and this gives the result.
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(2) As for the group dual case, G = Γ̂, here the irreducible corepresentations are
1-dimensional, corresponding to the group elements g ∈ Γ, and this gives the result. �

Along the same lines, and at a more specialized level, we can talk as well about the
connected component of the identity, as follows:

Theorem 14.17. Associated to any compact quantum group G is the connected com-
ponent of the identity

G0 ⊂ G

coming via the following quotient Hopf algebra, obtained by dividing by a suitable Hopf
ideal, as to make dissapear the corepresentations v such that Av is finite dimensional,

C(G)→ C(G0)

and this compact quantum group is connected, in the above sense.

Proof. This statement, which is formulated here a bit informally, is something well-
known, and elementary. For more on these topics, and on the Lie theory in general, in
the present quantum group setting, we refer to [51], [54]. �

Finally, once again in connection with all this, we can talk about normal subgroups,
and about simple compact quantum groups, as follows:

Definition 14.18. Given a quantum subgroup H ⊂ G, coming from a quotient map
π : C(G)→ C(H), the following are equivalent:

(1) The following algebra satisfies ∆(A) ⊂ A⊗ A:

A =
{
a ∈ C(G)

∣∣∣(id⊗ π)∆(a) = a⊗ 1
}

(2) The following algebra satisfies ∆(B) ⊂ B ⊗B:

B =
{
a ∈ C(G)

∣∣∣(π ⊗ id)∆(a) = 1⊗ a
}

(3) We have A = B, as subalgebras of C(G).

If these conditions are satisfied, we say that H ⊂ G is a normal subgroup.

Proof. This is something well-known, the idea being as follows:

(1) The conditions in the statement are indeed equivalent, and in the classical case we
obtain the usual normality notion for the subgroups.

(2) In the group dual case the normality of any subgroup, which must be a group dual
subgroup, is then automatic, with this being something trivial.

(3) For more on these topics, and on the basic compact group theory in general,
extended to the present quantum group setting, we refer to [51], [54]. �

Summarizing, we have a quite complete theory for the notion of amenability, and for
other related notions, coming either from discrete group theory, or from Lie theory.
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14d. Toral conjectures

Let us discuss now some further questions, in relation with the theory of toral sub-
groups, developed in chapter 13 above. We recall from there that associated to any closed
subgroup G ⊂ U+

N is its diagonal torus, given by the following formula:

C(T1) = C(G)
/〈

uij = 0
∣∣∣∀i 6= j

〉
More generally, given a closed subgroup G ⊂ U+

N and a matrix Q ∈ UN , we let TQ ⊂ G
be the diagonal torus of G, with fundamental representation spinned by Q:

C(TQ) = C(G)
/〈

(QuQ∗)ij = 0
∣∣∣∀i 6= j

〉
This torus is then a group dual, given by the formula TQ = Λ̂Q, as usual up to

the standard equivalence relation for the compact quantum groups, in order to avoid
amenability issues, where ΛQ =< g1, . . . , gN > is the discrete group generated by the
following elements, which are unitaries inside the quotient algebra C(TQ):

gi = (QuQ∗)ii

As explained in chapter 13, the correct analogue of the maximal torus for G ⊂ U+
N is

the collection of these spinned tori, called skeleton of G:

T =
{
TQ ⊂ G

∣∣Q ∈ UN}
We have the following result, from [32], complementing the material in chapter 13:

Theorem 14.19. The following results hold, both over the category of compact Lie
groups, and over the category of duals of finitely generated discrete groups:

(1) Characters: if G is connected, for any nonzero P ∈ C(G)central there exists Q ∈
UN such that P becomes nonzero, when mapped into C(TQ).

(2) Amenability: a closed subgroup G ⊂ U+
N is coamenable if and only if each of the

tori TQ is coamenable, in the usual discrete group sense.

(3) Growth: assuming G ⊂ U+
N , the discrete quantum group Ĝ has polynomial growth

if and only if each the discrete groups T̂Q has polynomial growth.

Proof. In the classical case, where G ⊂ UN , the proof goes as follows:

(1) Characters. We can take here Q ∈ UN to be such that QTQ∗ ⊂ TN , where T ⊂ UN
is a maximal torus for G, and this gives the result.

(2) Amenability. This conjecture holds trivially in the classical case, G ⊂ UN , due to
the fact that these latter quantum groups are all coamenable.

(3) Growth. This is something nontrivial, well-known from the theory of compact Lie
groups, and we refer here for instance to [54].
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Regarding now the group duals, here everything is trivial. Indeed, when the group du-
als are diagonally embedded we can take Q = 1, and when the group duals are embedded
by using a spinning matrix Q ∈ UN , we can use precisely this matrix Q. �

As in the previous chapter with the general results regarding the tori there, it is
conjectures that the properties in Theorem 14.19 should hold in general.

Following [32], we have the following result, regarding the free quantum groups:

Theorem 14.20. The character, amenability and growth conjectures hold for the free
quantum groups G = O+

N , U
+
N , S

+
N , H

+
N .

Proof. We have 3 × 4 = 12 assertions to be proved, and the idea in each case will
be that of using certain special group dual subgroups. We will mostly use the group dual
subgroups coming at Q = 1, which are well-known to be as follows:

G = O+
N , U

+
N , S

+
N , H

+
N =⇒ Γ1 = Z∗N2 , FN , {1},Z∗N2

However, for some of our 12 questions, using these subgroups will not be enough, and
we will use as well some carefully chosen subgroups of type ΓQ, with Q 6= 1.

As a last ingredient, we will need some specialized structure results for G, in the cases
where G is coamenable. Once again, the theory here is well-known, and the situations
where G = O+

N , U
+
N , S

+
N , H

+
N is coamenable, along with the values of G, are as follows:

O+
2 = SU−1

2

S+
2 = S2, S

+
3 = S3, S

+
4 = SO−1

3

H+
2 = O−1

2

To be more precise, the equalities S+
N = SN at N ≤ 3 are known since Wang’s paper

[94], and the twisting results are all well-known, and we refer here to [10].

With these ingredients in hand, we can now go ahead with the proof. It is technically
convenient to split the discussion over the 3 conjectures, as follows:

(1) Characters. For G = O+
N , U

+
N , it is known that the algebra C(G)central is polyno-

mial, respectively ∗-polynomial, on the following variable:

χ =
∑
i

uii

Thus, it is enough to show that the following variable generates a polynomial, respec-
tively ∗-polynomial algebra, inside the group algebra of the discrete groups Z∗N2 , FN :

ρ =
∑
i

gi

But for Z∗N2 this is clear, and by using a multiplication by a unitary free from Z∗N2 ,
the result holds as well for FN .
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Regarding now G = S+
N , we have three cases to be discussed, as follows:

– At N = 2, 3 this quantum group collapses to the usual permutation group SN , and
the character conjecture holds indeed.

– At N = 4 we have S+
4 = SO−1

3 , the fusion rules are well-known to be the Clebsch-
Gordan ones, and the algebra C(G)central is therefore polynomial on χ =

∑
i uii. Now

observe that the spinned torus, with Q = diag(F2, F2), is the following discrete group:

ΓQ = Z2 ∗ Z2 = D∞

Since Tr(u) = Tr(Q∗uQ), the image of χ =
∑

i uii in the quotient C∗(ΓQ) is the
variable ρ = 2 + g + h, where g, h are the generators of the two copies of Z2. Now since
this latter variable generates a polynomial algebra, we obtain the result.

– At N ≥ 5 the fusion rules are once again known to be the Clebsch-Gordan ones,
the algebra C(G)central is, as before, polynomial on χ =

∑
i uii, and the result follows by

functoriality from the result at N = 4, by using the embedding S+
4 ⊂ S+

N .

Regarding now G = H+
N , here it is known, from the computations in [36], that the

algebra C(G)central is polynomial on the following two variables:

χ =
∑
i

uii

χ′ =
∑
i

u2
ii

We have two cases to be discussed, as follows:

– At N = 2 we have the following formula, which is well-known, and elementary:

H+
2 = O−1

2

Also, as explained in [10], with Q = F2 we have:

ΓQ = D∞

Let us compute now the images ρ, ρ′ of the variables χ, χ′ in the group algebra of D∞.
As before, from Tr(u) = Tr(Q∗uQ) we obtain the following formula, where g, h are the
generators of the two copies of Z2:

ρ = g + h

Regarding now ρ′, let us first recall that the quotient map C(H+
2 ) → C∗(D∞) is

constructed as follows:

1

2

(
1 1
1 −1

)(
u11 u12

u21 u22

)(
1 1
1 −1

)
→
(
g 0
0 h

)
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Equivalently, this quotient map is constructed as follows:(
u11 u12

u21 u22

)
→ 1

2

(
1 1
1 −1

)(
g 0
0 h

)(
1 1
1 −1

)
=

1

2

(
g + h g − h
g − h g + h

)
We can now compute the image of our character, as follows:

ρ′ =
1

2
(g + h)2

=
1

2
(2 + 2gh)

= 1 + gh

By using now the elementary fact that the variables ρ = g+h and ρ′ = 1+gh generate
a polynomial algebra inside C∗(D∞), this gives the result.

– Finally, at N ≥ 3 the result follows by functoriality, via the standard diagonal
inclusion H+

2 ⊂ H+
N , from the result at N = 2, that we established above.

(2) Amenability. Here the cases where G is not coamenable are those of O+
N with

N ≥ 3, U+
N with N ≥ 2, S+

N with N ≥ 5, and H+
N with N ≥ 3.

– For G = O+
N , H

+
N with N ≥ 3 the result is clear, because the discrete group Γ1 = Z∗N2

is not amenable.

– Clear as well is the result for U+
N with N ≥ 2, because the discrete group Γ1 = FN

is not amenable either.

– Finally, for S+
N with N ≥ 5 the result holds as well, because of the presence of

Bichon’s group dual subgroup Ẑ2 ∗ Z3.

(3) Growth. Here the growth is polynomial precisely in the situations where G is
infinite and coamenable, the precise cases being:

O+
2 = SU−1

2

S+
4 = SO−1

3

H+
2 = O−1

2

With these formulae in hand, the result follows from the fact that the growth invariants
are stable by twisting. �

As a second piece of evidence now for our conjectures, we will prove that these 3
conjectures hold for any half-classical quantum group.

In order to do so, we can use the approach to half-liberation from [44], based on
crossed products and 2× 2 matrix models, which is as follows:
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Theorem 14.21. Given a conjugation-stable closed subgroup H ⊂ UN , consider the
algebra

C([H]) ⊂M2(C(H))

generated by the following variables:

uij =

(
0 vij
v̄ij 0

)
Then [H] is a compact quantum group, we have [H] ⊂ O∗N , and any non-classical subgroup
G ⊂ O∗N appears in this way, with G = O∗N itself appearing from H = UN .

Proof. We have several things to be proved, the idea being as follows:

(1) As a first observation, the matrices in the statement are self-adjoint. Let us prove
now that these matrices are orthogonal. We have:∑

k

uikujk =
∑
k

(
0 vik
v̄ik 0

)(
0 vjk
v̄jk 0

)
=

∑
k

(
vikv̄jk 0

0 v̄ikvjk

)
=

(
1 0
0 1

)
In the other sense, the computation is similar, as follows:∑

k

ukiukj =
∑
k

(
0 vki
v̄ki 0

)(
0 vkj
v̄kj 0

)
=

∑
k

(
vkiv̄kj 0

0 v̄kivkj

)
=

(
1 0
0 1

)
(2) Our second claim is that the matrices in the statement half-commute. Indeed,

this comes from something general, regarding the antidiagonal 2 × 2 matrices. Consider
indeed arbitrary antidiagonal matrices, with commuting entries, as follows:

Xi =

(
0 xi
yi 0

)
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We have then the following computation:

XiXjXk =

(
0 xi
yi 0

)(
0 xj
yj 0

)(
0 xk
yk 0

)
=

(
0 xiyjxk

yixjyk 0

)
Since this quantity is symmetric in i, k, we obtain, as desired:

XiXjXk = XkXjXi

(3) According now to the definition of the quantum group O∗N , we have a representation
of algebras, as follows where w is the fundamental corepresentation of C(O∗N):

π : C(O∗N)→M2(C(H))

wij → uij

Thus, with the compact quantum space [H] being constructed as in the statement, we
have a representation of algebras, as follows:

ρ : C(O∗N)→ C([H])

wij → uij

(4) With this in hand, it is routine to check that the compact quantum space [H]
constructed in the statement is indeed a compact quantum group, with this being best
viewed via an equivalent construction, with a quantum group embedding as follows:

C([H]) ⊂ C(H) o Z2

(5) As for the proof of the converse, stating that any non-classical subgroup G ⊂ O∗N
appears in this way, this is something more tricky, and we refer here to [44].

(6) Finally, for the fact that we have indeed O∗N = [UN ], we refer here as well to [44].
We will be back to this as well in chapter 16 below, with a direct analytic proof of this,
based on the fact that the representation ρ constructed above, with H = UN , commutes
with the respective Haar functionals, and so must be faithful. �

Regarding now the maximal tori, the situation is very simple, as follows:

Proposition 14.22. The group dual subgroups

[̂Γ]Q ⊂ [H]

appear via the formula

[Γ]Q = [ΓQ]

from the group dual subgroups Γ̂Q ⊂ H associated to H ⊂ UN .
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Proof. Let us first discuss the case Q = 1. Consider the diagonal subgroup Γ̂1 ⊂ H,

with the associated quotient map C(H)→ C(Γ̂1) denoted:

vij → δijhi

At the level of the algebras of 2× 2 matrices, this map induces a quotient map:

M2(C(H))→M2(C(Γ̂1))

Our claim is that we have a factorization, as follows:

C([H]) ⊂ M2(C(H))

↓ ↓

C([Γ̂1]) ⊂ M2(C(Γ̂1))

Indeed, it is enough to show that the standard generators of C([H]) and of C([Γ̂1])

map to the same elements of M2(C(Γ̂1)). But these generators map indeed as follows:

uij →
(

0 vij
v̄ij 0

)
↓

δijvij →
(

0 δijhi
δijh

−1
i 0

)
Thus we have the above factorization, and since the map on the left is obtained by

imposing the relations uij = 0 with i 6= j, we obtain, as desired:

[Γ]1 = [Γ1]

In the general case now, Q ∈ UN , the result follows by applying the above Q = 1
result to the quantum group [H], with fundamental corepresentation w = QuQ∗. �

Now back to our conjectures, we have the following result:

Theorem 14.23. The 3 toral conjectures, regarding the characters, amenability and
growth, hold for any half-classical quantum group of the form

[H] ⊂ O∗N

with H ⊂ UN being connected.

Proof. We know that the conjectures hold for H ⊂ UN . The idea will be that of
“transporting” these results, via H → [H]:
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(1) Characters. We can pick here a maximal torus T = ΓQ for the compact group
H ⊂ UN , and by using the formula [Γ]Q = [ΓQ] = [T ] from Proposition 14.22 above, we
obtain the result, via the identification in Theorem 14.21.

(2) Amenability. There is nothing to be proved here, because O∗N is coamenable, and
so are all its quantum subgroups. Note however, in relation with the comments made in
section 3 above, that in the connected case, the Kesten measures of G, [T ] are intimately
related. For some explicit formulae here, for G = O∗N itself, see [35].

(3) Growth. Here the situation is similar to the one for the amenability conjecture,
because [H] has polynomial growth. �

Let us mention that the above results can be extended to the general, unitary half-
classical case, by using some variations of the models used in the above.

14e. Exercises

There are many interesting computations in relation with the material from the present
chapter, which was quite varied, and as a first exercise, we have:

Exercise 14.24. Draw the Cayley graphs of the duals of the main quantum groups,
namely

K+
N

// U+
N

H+
N

//

==

O+
N

>>

KN
//

OO

UN

OO

HN

OO

<<

// ON

OO

==

with respect to suitably chosen fundamental representations.

To be more precise, in order to draw the Cayley graph we need to know the fusion
rules for the representations, and this is something that we already know, for the quantum
groups in the statement. The problem, however, is that we need the fundamental corepre-
sentation to be suitably modified, as to satisfy 1 ∈ u ∼ ū, and this is what the exercise is
about, namely performing this modification, where needed, and with the simplest possible
solution to this, and then computing the Cayley graph.

As a second exercise now, in connection with the notion of connectedness, we find:

Exercise 14.25. Find examples and counterexamples for the notion of connectedness,
for the compact quantum groups.
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There are many things that can be done here, for instance in conenction with the
various product operations for the compact quantum groups.

As a third exercise now, in connection with the notion of growth, we have:

Exercise 14.26. Compute the growth function of the main quantum groups,

K+
N

// U+
N

H+
N

//

==

O+
N

>>

KN
//

OO

UN

OO

HN

OO

<<

// ON

OO

==

as well as the corresponding exponential growth exponent.

As before with the first exercise in this series, we basically have all the needed ingre-
dients here, and the problem is that of doing the computation.

In relation now with the notion of normality, we have:

Exercise 14.27. Find examples and counterexamples for the notion of normality of
subgroups, for the compact quantum groups.

There are many things that can be done here, for instance in conenction with the
various product operations for the compact quantum groups.

Regarding now the toral conjectures, we have here:

Exercise 14.28. Establish the toral conjectures for all the main quantum groups,

K+
N

// U+
N

H+
N

//

==

O+
N

>>

KN
//

OO

UN

OO

HN

OO

<<

// ON

OO

==

by building on the verifications presented in the above.
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As before with the previous exercises on the standard cube, we basically have all the
needed ingredients here, and the problem is that of doing the computation.

Finally, in relation with the notion of half-liberation, we have:

Exercise 14.29. Work out explicitely the formulae

O∗N = [UN ]

H∗N = [KN ]

appearing as particular cases of the theory developed above.

Here the problem is that of working out what happens to the half-liberation theory
explained in the above, in the particular cases of the quantum groups O∗N and H∗N .



CHAPTER 15

Homogeneous spaces

15a. Quotient spaces

We have seen that the closed subgroups G ⊂ U+
N can be investigated with a variety

of techniques, for the most belonging to algebraic geometry and probability theory. Our
purpose here is to extend some of these results to certain classes of “quantum homogeneous
spaces”. This is somehow the first step into extending what we have into a theory of
noncommutative geometry, of algebraic and probabilistic nature.

Let us begin with some generalities regarding the quotient spaces. We have:

Proposition 15.1. Given a quantum subgroup H ⊂ G, with associated quotient map
ρ : C(G)→ C(H), if we define the quotient space X = G/H by setting

C(X) =
{
f ∈ C(G)

∣∣∣(ρ⊗ id)∆f = 1⊗ f
}

then we have a coaction Φ : C(X) → C(X) ⊗ C(G), obtained as the restriction of the
comultiplication of C(G). In the classical case, we obtain the usual space X = G/H.

Proof. Observe that C(X) ⊂ C(G) is indeed a subalgebra, because it is defined via
a relation of type ϕ(f) = ψ(f), with ϕ, ψ morphisms. Observe also that in the classical
case we obtain the algebra of continuous functions on X = G/H, because:

(ρ⊗ id)∆f = 1⊗ f
⇐⇒ (ρ⊗ id)∆f(h, g) = (1⊗ f)(h, g),∀h ∈ H,∀g ∈ G
⇐⇒ f(hg) = f(g),∀h ∈ H,∀g ∈ G
⇐⇒ f(hg) = f(kg),∀h, k ∈ H,∀g ∈ G

Regarding now the construction of Φ, observe that for f ∈ C(X) we have:

(ρ⊗ id⊗ id)(∆⊗ id)∆f = (ρ⊗ id⊗ id)(id⊗∆)∆f

= (id⊗∆)(ρ⊗ id)∆f

= (id⊗∆)(1⊗ f)

= 1⊗∆f

Thus f ∈ C(X) implies ∆f ∈ C(X)⊗C(G), and this gives the existence of Φ. Finally,
the other assertions are clear. �

345
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As an illustration, in the group dual case we have:

Proposition 15.2. Assume that G = Γ̂ is a discrete group dual.

(1) The quantum subgroups of G are H = Λ̂, with Γ→ Λ being a quotient group.

(2) For such a quantum subgroup Λ̂ ⊂ Γ̂, we have Γ̂/Λ̂ = Θ̂, where Θ = ker(Γ→ Λ).

Proof. This is well-known, the idea being as follows:

(1) In one sense, this is clear. Conversely, since the algebra C(G) = C∗(Γ) is cocom-
mutative, so are all its quotients, and this gives the result.

(2) Consider a quotient map r : Γ → Λ, and denote by ρ : C∗(Γ) → C∗(Λ) its
extension. With f =

∑
g∈Γ λg · g ∈ C∗(Γ) we have:

f ∈ C(Γ̂/Λ̂) ⇐⇒ (ρ⊗ id)∆(f) = 1⊗ f
⇐⇒

∑
g∈Γ

λg · r(g)⊗ g =
∑
g∈Γ

λg · 1⊗ g

⇐⇒ λg · r(g) = λg · 1,∀g ∈ Γ

⇐⇒ supp(f) ⊂ ker(r)

But this means Γ̂/Λ̂ = Θ̂, with Θ = ker(Γ→ Λ), as claimed. �

Given two quantum spaces X, Y , we say that X is a quotient space of Y when we
have an embedding of algebras α : C(X) ⊂ C(Y ). With this convention, we have:

Definition 15.3. We call a quotient space G→ X homogeneous when

∆(C(X)) ⊂ C(X)⊗ C(G)

where ∆ : C(G)→ C(G)⊗ C(G) is the comultiplication map.

In other words, an homogeneous quotient space G → X is a quantum space coming
from a subalgebra C(X) ⊂ C(G), which is stable under the comultiplication.

The relation with the quotient spaces from Proposition 15.1 is as follows:

Theorem 15.4. The following results hold:

(1) The quotient spaces X = G/H are homogeneous.
(2) In the classical case, any homogeneous space is of type G/H.
(3) In general, there are homogeneous spaces which are not of type G/H.

Proof. Once again these results are well-known, the proof being as follows:

(1) This is clear from Proposition 15.1 above.

(2) Consider a quotient map p : G → X. The invariance condition in the statement
tells us that we must have an action Gy X, given by g(p(g′)) = p(gg′). Thus:

p(g′) = p(g′′) =⇒ p(gg′) = p(gg′′), ∀g ∈ G
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Now observe that the following subset H ⊂ G is a subgroup:

H =
{
g ∈ G

∣∣∣p(g) = p(1)
}

Indeed, g, h ∈ H implies p(gh) = p(g) = p(1), so gh ∈ H, and the other axioms are
satisfied as well. Our claim is that we have X = G/H, via:

p(g)→ Hg

Indeed, the map p(g) → Hg is well-defined and bijective, because p(g) = p(g′) is
equivalent to p(g−1g′) = p(1), and so to Hg = Hg′, as desired.

(3) Given a discrete group Γ and an arbitrary subgroup Θ ⊂ Γ, the quotient space

Γ̂→ Θ̂ is homogeneous. Now by using Proposition 15.2 above, we can see that if Θ ⊂ Γ

is not normal, the quotient space Γ̂→ Θ̂ is not of the form G/H. �

Let us try now to understand the properties of the homogeneous spaces G → X, in
the above sense. We have the following result, which is once again well-known:

Proposition 15.5. Assume that a quotient space G→ X is homogeneous.

(1) The restriction Φ : C(X)→ C(X)⊗ C(G) of ∆ is a coaction.
(2) We have Φ(f) = f ⊗ 1 =⇒ f ∈ C1, and (id⊗

∫
)Φf =

∫
f .

(3) The restriction of
∫

is the unique unital form satisfying (τ ⊗ id)Φ = τ(.)1.

Proof. These results are all elementary, the proof being as follows:

(1) This is clear from definitions, because ∆ itself is a coaction.

(2) If f ∈ C(G) is such that ∆(f) = f ⊗ 1, then by applying the counit we obtain:

(ε⊗ id)∆f = (ε⊗ id)(f ⊗ 1)

We conclude from this that we have, as desired:

f = ε(f)1

As for the second assertion, (id ⊗
∫

)Φf =
∫
f , this follows from the left invariance

property (id⊗
∫

)∆f =
∫
f of the Haar functional of C(G), by restriction to C(X).

(3) By using the right invariance property (
∫
⊗id)∆f =

∫
f of the Haar functional of

C(G), we obtain that tr =
∫
|C(X)

is G-invariant, in the sense that:

(tr ⊗ id)Φf = tr(f)1

Conversely, assuming that τ : C(X)→ C satisfies (τ ⊗ id)Φf = τ(f)1, we have:(
τ ⊗

∫ )
Φ(f) =

∫
(τ ⊗ id)Φ(f)

=

∫
(τ(f)1)

= τ(f)
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On the other hand, we can compute the same quantity as follows:(
τ ⊗

∫ )
Φ(f) = τ

(
id⊗

∫ )
Φ(f)

= τ(tr(f)1)

= tr(f)

Thus we have τ(f) = tr(f) for any f ∈ C(X), and this finishes the proof. �

Let us discuss now an extra issue, of analytic nature. The point is that for one of the
most basic examples of actions, O+

N y SN−1
R,+ , the associated morphism α : C(X)→ C(G)

is not injective. In order to include such examples, we must relax our axioms:

Definition 15.6. An extended homogeneous space consists of a morphism of algebras
α : C(X)→ C(G), and a coaction map Φ : C(X)→ C(X)⊗ C(G), such that

C(X)
Φ //

α

��

C(X)⊗ C(G)

α⊗id

��
C(G)

∆ // C(G)⊗ C(G)

commutes, and such that

C(X)
Φ //

α

��

C(X)⊗ C(G)

id⊗
∫

��
C(G)

∫
(.)1

// C(X)

commutes as well, where
∫

is the Haar integration over G. We write then G→ X.

When α is injective we obtain an homogeneous space in the previous sense. The
examples with α not injective, which motivate the above formalism, include the standard
action O+

N y SN−1
R,+ , and the standard action U+

N y SN−1
C,+ .

Here are a few general remarks on the above axioms:

Proposition 15.7. Assume that we have morphisms of algebras α : C(X) → C(G)
and Φ : C(X)→ C(X)⊗ C(G), satisfying (α⊗ id)Φ = ∆α.

(1) If α is injective on a dense ∗-subalgebra A ⊂ C(X), and Φ(A) ⊂ A⊗C(G), then
Φ is automatically a coaction map, and is unique.

(2) The ergodicity type condition (id ⊗
∫

)Φ =
∫
α(.)1 is equivalent to the existence

of a linear form λ : C(X)→ C such that (id⊗
∫

)Φ = λ(.)1.
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Proof. This is something elementary, the idea being as follows:

(1) Assuming that we have a dense ∗-subalgebra A ⊂ C(X) as in the statement,
satisying Φ(A) ⊂ A⊗ C(G), the restriction Φ|A is given by:

Φ|A = (α|A ⊗ id)−1∆α|A

This restriction and is therefore coassociative, and unique. By continuity, Φ itself
follows to be coassociative and unique, as desired.

(2) Assuming (id ⊗
∫

)Φ = λ(.)1, we have (α ⊗
∫

)Φ = λ(.)1. On the other hand, we
have as well the following formula:(

α⊗
∫ )

Φ =

(
id⊗

∫ )
∆α =

∫
α(.)1

Thus we obtain λ =
∫
α, as claimed. �

Given an extended homogeneous space G → X, with associated map α : C(X) →
C(G), we can consider the image of this latter map:

α : C(X)→ C(Y ) ⊂ C(G)

Equivalently, at the level of the associated noncommutative spaces, we can factorize
the corresponding quotient map G→ Y ⊂ X. With these conventions, we have:

Proposition 15.8. Consider an extended homogeneous space G→ X.

(1) Φ(f) = f ⊗ 1 =⇒ f ∈ C1.
(2) tr =

∫
α is the unique unital G-invariant form on C(X).

(3) The image space obtained by factorizing, G→ Y , is homogeneous.

Proof. We have several assertions to be proved, the idea being as follows:

(1) This follows indeed from (id⊗
∫

)Φ(f) =
∫
α(f)1, which gives:

f =

∫
α(f)1

(2) The fact that tr =
∫
α is indeed G-invariant can be checked as follows:

(tr ⊗ id)Φf = (∫ α⊗ id)Φf

= (∫ ⊗id)∆αf

= ∫ α(f)1

= tr(f)1

As for the uniqueness assertion, this follows as before.
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(3) The condition (α⊗ id)Φ = ∆α, together with the fact that i is injective, allows us
to factorize ∆ into a morphism Ψ, as follows:

C(X)
Φ //

α

��

C(X)⊗ C(G)

α⊗id

��
C(Y )

Ψ //

i

��

C(Y )⊗ C(G)

i⊗id

��
C(G)

∆ // C(G)⊗ C(G)

Thus the image space G→ Y is indeed homogeneous, and we are done. �

Finally, we have the following result:

Theorem 15.9. Let G → X be an extended homogeneous space, and construct quo-
tients X → X ′, G→ G′ by performing the GNS construction with respect to

∫
α,
∫

. Then
α factorizes into an inclusion α′ : C(X ′)→ C(G′), and we have an homogeneous space.

Proof. We factorize G → Y ⊂ X as above. By performing the GNS construction
with respect to

∫
iα,
∫
i,
∫

, we obtain a diagram as follows:

C(X)
p //

α

��

C(X ′)

α′

��

tr′

''
C(Y )

q //

i

��

C(Y ′)

i′

��

C

C(G)
r // C(G′)

∫ ′
77

Indeed, with tr =
∫
α, the GNS quotient maps p, q, r are defined respectively by:

ker p =
{
f ∈ C(X)

∣∣∣tr(f ∗f) = 0
}

ker q =
{
f ∈ C(Y )

∣∣∣ ∫(f ∗f) = 0
}

ker r =
{
f ∈ C(G)

∣∣∣ ∫(f ∗f) = 0
}
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Next, we can define factorizations i′, α′ as above. Observe that i′ is injective, and that
α′ is surjective. Our claim now is that α′ is injective as well. Indeed:

α′p(f) = 0 =⇒ qα(f) = 0

=⇒
∫
α(f ∗f) = 0

=⇒ tr(f ∗f) = 0

=⇒ p(f) = 0

We conclude that we have X ′ = Y ′, and this gives the result. �

Summarizing, the basic homogeneous space theory from the classical case extends to
the quantum group setting, with a few twists, both of algebraic and analytic nature.

15b. Partial isometries

We discuss now some explicit examples of homogeneous spaces. This can be done at
several levels of generality, and there has been quite some work here, starting with [30],
[34], then going further with [6], and even further with [7]. In what follows we discuss
the formalism in [6], which is quite broad, while remaining not very abstract. We will
study the spaces of the following type:

X = (GM ×GN)
/

(GL ×GM−L ×GN−L)

These spaces cover indeed the quantum groups and the spheres. And also, they are
quite concrete and useful objects, consisting of certain classes of “partial isometries”. Our
main result will be a verification of the Bercovici-Pata liberation criterion, for certain
variables associated χ ∈ C(X), in a suitable L,M,N →∞ limit.

We begin with a study in the classical case. Our starting point will be:

Definition 15.10. Associated to any integers L ≤M,N are the spaces

OL
MN =

{
T : E → F isometry

∣∣∣E ⊂ RN , F ⊂ RM , dimRE = L
}

UL
MN =

{
T : E → F isometry

∣∣∣E ⊂ CN , F ⊂ CM , dimCE = L
}

where the notion of isometry is with respect to the usual real/complex scalar products.

As a first observation, at L = M = N we obtain the groups ON , UN :

ON
NN = ON , UN

NN = UN

Another interesting specialization is L = M = 1. Here the elements of O1
1N are the

isometries T : E → R, with E ⊂ RN one-dimensional. But such an isometry is uniquely
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determined by T−1(1) ∈ RN , which must belong to SN−1
R . Thus, we have O1

1N = SN−1
R .

Similarly, in the complex case we have U1
1N = SN−1

C , and so our results here are:

O1
1N = SN−1

R , U1
1N = SN−1

C

Yet another interesting specialization is L = N = 1. Here the elements of O1
1N are the

isometries T : R→ F , with F ⊂ RM one-dimensional. But such an isometry is uniquely
determined by T (1) ∈ RM , which must belong to SM−1

R . Thus, we have O1
M1 = SM−1

R .
Similarly, in the complex case we have U1

M1 = SM−1
C , and so our results here are:

O1
M1 = SM−1

R , U1
M1 = SM−1

C

In general, the most convenient is to view the elements of OL
MN , U

L
MN as rectangular

matrices, and to use matrix calculus for their study. We have indeed:

Proposition 15.11. We have identifications of compact spaces

OL
MN '

{
U ∈MM×N(R)

∣∣∣UU t = projection of trace L
}

UL
MN '

{
U ∈MM×N(C)

∣∣∣UU∗ = projection of trace L
}

with each partial isometry being identified with the corresponding rectangular matrix.

Proof. We can indeed identify the partial isometries T : E → F with their corre-
sponding extensions U : RN → RM , U : CN → CM , obtained by setting UE⊥ = 0. Then,
we can identify these latter maps U with the corresponding rectangular matrices. �

As an illustration, at L = M = N we recover in this way the usual matrix description
of ON , UN . Also, at L = M = 1 we obtain the usual description of SN−1

R , SN−1
C , as row

spaces over the corresponding groups ON , UN . Finally, at L = N = 1 we obtain the usual
description of SN−1

R , SN−1
C , as column spaces over the corresponding groups ON , UN .

Now back to the general case, observe that the isometries T : E → F , or rather their
extensions U : KN → KM , with K = R,C, obtained by setting UE⊥ = 0, can be composed
with the isometries of KM ,KN , according to the following scheme:

KN B∗ // KN U // KM A // KM

B(E) //

OO

E
T //

OO

F //

OO

A(F )

OO

With the identifications in Proposition 15.11 made, the precise statement here is:
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Proposition 15.12. We have an action map as follows, which is transitive,

OM ×ON y OL
MN

(A,B)U = AUBt

as well as an action map as follows, transitive as well,

UM × UN y UL
MN

(A,B)U = AUB∗

whose stabilizers are respectively:

OL ×OM−L ×ON−L

UL × UM−L × UN−L
Proof. We have indeed action maps as in the statement, which are transitive. Let

us compute now the stabilizer G of the following point:

U =

(
1 0
0 0

)
Since (A,B) ∈ G satisfy AU = UB, their components must be of the following form:

A =

(
x ∗
0 a

)
, B =

(
x 0
∗ b

)
Now since A,B are both unitaries, these matrices follow to be block-diagonal, and so:

G =

{
(A,B)

∣∣∣A =

(
x 0
0 a

)
, B =

(
x 0
0 b

)}
The stabilizer of U is then parametrized by triples (x, a, b) belonging respectively to:

OL ×OM−L ×ON−L

UL × UM−L × UN−L
Thus, we are led to the conclusion in the statement. �

Finally, let us work out the quotient space description of OL
MN , U

L
MN . We have here:

Theorem 15.13. We have isomorphisms of homogeneous spaces as follows,

OL
MN = (OM ×ON)/(OL ×OM−L ×ON−L)

UL
MN = (UM × UN)/(UL × UM−L × UN−L)

with the quotient maps being given by (A,B)→ AUB∗, where:

U =

(
1 0
0 0

)
Proof. This is just a reformulation of Proposition 15.12 above, by taking into account

the fact that the fixed point used in the proof there was U = (1
0

0
0). �
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Once again, the basic examples here come from the cases L = M = N and L = M = 1.
At L = M = N the quotient spaces at right are respectively:

ON , UN

At L = M = 1 the quotient spaces at right are respectively:

ON/ON−1 , UN/UN−1

In fact, in the general orthogonal L = M case we obtain the following spaces:

OM
MN = (OM ×ON)/(OM ×ON−M)

= ON/ON−M

Also, in the general unitary L = M case we obtain the following spaces:

UM
MN = (UM × UN)/(UM × UN−M)

= UN/UN−M

Similarly, the examples coming from the cases L = M = N and L = N = 1 are
particular cases of the general L = N case, where we obtain the following spaces:

ON
MN = (OM ×ON)/(OM ×OM−N)

= ON/OM−N

In the unitary case, we obtain the following spaces:

UN
MN = (UM × UN)/(UM × UM−N)

= UN/UM−N

Summarizing, we have here some basic homogeneous spaces, unifying the real and
complex spheres with the orthogonal and unitary groups.

15c. Free isometries

We can liberate the spaces OL
MN , U

L
MN , as follows:

Definition 15.14. Associated to any integers L ≤M,N are the algebras

C(OL+
MN) = C∗

(
(uij)i=1,...,M,j=1,...,N

∣∣∣u = ū, uut = projection of trace L
)

C(UL+
MN) = C∗

(
(uij)i=1,...,M,j=1,...,N

∣∣∣uu∗, ūut = projections of trace L
)

with the trace being by definition the sum of the diagonal entries.

Observe that the above universal algebras are indeed well-defined, as it was previously
the case for the free spheres, and this due to the trace conditions, which read:∑

ij

uiju
∗
ij =

∑
ij

u∗ijuij = L
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We have inclusions between the various spaces constructed so far, as follows:

OL+
MN

// UL+
MN

OL
MN

//

OO

UL
MN

OO

At the level of basic examples now, we first have the following result:

Proposition 15.15. At L = M = 1 we obtain the following diagram,

SN−1
R,+

// SN−1
C,+

SN−1
R

//

OO

SN−1
C

OO

and at L = N = 1 we obtain the following diagram:

SM−1
R,+

// SM−1
C,+

SM−1
R

//

OO

SM−1
C

OO

Proof. Both the assertions are clear from definitions. �

We have as well the following result:

Proposition 15.16. At L = M = N we obtain the diagram

O+
N

// U+
N

ON
//

OO

UN

OO

consisting of the groups ON , UN , and their liberations.
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Proof. We recall that the various quantum groups in the statement are constructed
as follows, with the symbol × standing once again for “commutative” and “free”:

C(O×N) = C∗×

(
(uij)i,j=1,...,N

∣∣∣u = ū, uut = utu = 1
)

C(U×N ) = C∗×

(
(uij)i,j=1,...,N

∣∣∣uu∗ = u∗u = 1, ūut = utū = 1
)

On the other hand, according to Proposition 15.11 and to Definition 15.14 above, we
have the following presentation results:

C(ON×
NN) = C∗×

(
(uij)i,j=1,...,N

∣∣∣u = ū, uut = projection of trace N
)

C(UN×
NN ) = C∗×

(
(uij)i,j=1,...,N

∣∣∣uu∗, ūut = projections of trace N
)

We use now the standard fact that if p = aa∗ is a projection then q = a∗a is a
projection too. We use as well the following formulae:

Tr(uu∗) = Tr(utū)

Tr(ūut) = Tr(u∗u)

We therefore obtain the following formulae:

C(ON×
NN) = C∗×

(
(uij)i,j=1,...,N

∣∣∣u = ū, uut, utu = projections of trace N
)

C(UN×
NN ) = C∗×

(
(uij)i,j=1,...,N

∣∣∣uu∗, u∗u, ūut, utū = projections of trace N
)

Now observe that, in tensor product notation, and by using the normalized trace, the
conditions at right are all of the following form:

(tr ⊗ id)p = 1

To be more precise, p must be follows, for the above conditions:

p = uu∗, u∗u, ūut, utū

We therefore obtain that, for any faithful state ϕ, we have:

(tr ⊗ ϕ)(1− p) = 0

It follows from this that the following projections must be all equal to the identity:

p = uu∗, u∗u, ūut, utū

But this leads to the conclusion in the statement. �

Regarding now the homogeneous space structure of OL×
MN , U

L×
MN , the situation here is

a bit more complicated in the free case than in the classical case, due to a number of
algebraic and analytic issues, and we will discuss this now.

We first have the following result:
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Proposition 15.17. The spaces UL×
MN have the following properties:

(1) We have an action U×M × U
×
N y UL×

MN , given by:

uij →
∑
kl

ukl ⊗ aki ⊗ b∗lj

(2) We have a map U×M × U
×
N → UL×

MN , given by:

uij →
∑
r≤L

ari ⊗ b∗rj

Similar results hold for the spaces OL×
MN , with all the ∗ exponents removed.

Proof. In the classical case, consider the action and quotient maps:

UM × UN y UL
MN

UM × UN → UL
MN

The transposes of these two maps are as follows, where J = (1
0

0
0):

ϕ → ((U,A,B)→ ϕ(AUB∗))

ϕ → ((A,B)→ ϕ(AJB∗))

But with ϕ = uij we obtain precisely the formulae in the statement. The proof in the
orthogonal case is similar. Regarding now the free case, the proof goes as follows:

(1) Assuming uu∗u = u, let us set:

Uij =
∑
kl

ukl ⊗ aki ⊗ b∗lj

We have then:

(UU∗U)ij =
∑
pq

∑
klmnst

uklu
∗
mnust ⊗ akia∗mqasq ⊗ b∗lpbnpb∗tj

=
∑
klmt

uklu
∗
mlumt ⊗ aki ⊗ b∗tj

=
∑
kt

ukt ⊗ aki ⊗ b∗tj

= Uij

Also, assuming that we have
∑

ij uiju
∗
ij = L, we obtain:∑

ij

UijU
∗
ij =

∑
ij

∑
klst

uklu
∗
st ⊗ akia∗si ⊗ b∗ljbtj

=
∑
kl

uklu
∗
kl ⊗ 1⊗ 1

= L
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(2) Assuming uu∗u = u, let us set:

Vij =
∑
r≤L

ari ⊗ b∗rj

We have then:

(V V ∗V )ij =
∑
pq

∑
x,y,z≤L

axia
∗
yqazq ⊗ b∗xpbypb∗zj

=
∑
x≤L

axi ⊗ b∗xj

= Vij

Also, assuming that we have
∑

ij uiju
∗
ij = L, we obtain:∑

ij

VijV
∗
ij =

∑
ij

∑
r,s≤L

aria
∗
si ⊗ b∗rjbsj

=
∑
l≤L

1

= L

By removing all the ∗ exponents, we obtain as well the orthogonal results. �

Let us examine now the relation between the above maps. In the classical case, given
a quotient space X = G/H, the associated action and quotient maps are given by:{

a : X ×G→ X : (Hg, h)→ Hgh

p : G→ X : g → Hg

Thus we have a(p(g), h) = p(gh). In our context, a similar result holds:

Theorem 15.18. With G = GM ×GN and X = GL
MN , where GN = O×N , U

×
N , we have

G×G m //

p×id

��

G

p

��
X ×G a // X

where a, p are the action map and the map constructed in Proposition 15.17.
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Proof. At the level of the associated algebras of functions, we must prove that the
following diagram commutes, where Φ, α are morphisms of algebras induced by a, p:

C(X)
Φ //

α

��

C(X ×G)

α⊗id

��
C(G)

∆ // C(G×G)

When going right, and then down, the composition is as follows:

(α⊗ id)Φ(uij) = (α⊗ id)
∑
kl

ukl ⊗ aki ⊗ b∗lj

=
∑
kl

∑
r≤L

ark ⊗ b∗rl ⊗ aki ⊗ b∗lj

On the other hand, when going down, and then right, the composition is as follows,
where F23 is the flip between the second and the third components:

∆π(uij) = F23(∆⊗∆)
∑
r≤L

ari ⊗ b∗rj

= F23

(∑
r≤L

∑
kl

ark ⊗ aki ⊗ b∗rl ⊗ b∗lj

)
Thus the above diagram commutes indeed, and this gives the result. �

Let us discuss now some discrete extensions of the above constructions:

Definition 15.19. Associated to any partial permutation, σ : I ' J with I ⊂
{1, . . . , N} and J ⊂ {1, . . . ,M}, is the real/complex partial isometry

Tσ : span
(
ei

∣∣∣i ∈ I)→ span
(
ej

∣∣∣j ∈ J)
given on the standard basis elements by Tσ(ei) = eσ(i).

We denote by SLMN the set of partial permutations σ : I ' J as above, with range
I ⊂ {1, . . . , N} and target J ⊂ {1, . . . ,M}, and with L = |I| = |J |. In analogy with the
decomposition result Hs

N = Zs o SN , we have:

Proposition 15.20. The space of partial permutations signed by elements of Zs,

HsL
MN =

{
T (ei) = wieσ(i)

∣∣∣σ ∈ SLMN , wi ∈ Zs
}

is isomorphic to the quotient space

(Hs
M ×Hs

N)/(Hs
L ×Hs

M−L ×Hs
N−L)

via a standard isomorphism.
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Proof. This follows by adapting the computations in the proof of Proposition 15.12
above. Indeed, we have an action map as follows, which is transitive:

Hs
M ×Hs

N → HsL
MN

(A,B)U = AUB∗

Consider now the following point:

U =

(
1 0
0 0

)
The stabilizer of this point follows to be the following group:

Hs
L ×Hs

M−L ×Hs
N−L

To be more precise, this group is embedded via:

(x, a, b)→
[(
x 0
0 a

)
,

(
x 0
0 b

)]
But this gives the result. �

In the free case now, the idea is similar, by using inspiration from the construction of
the quantum group Hs+

N = Zs o∗ S+
N in [9]. The result here is as follows:

Proposition 15.21. The compact quantum space HsL+
MN associated to the algebra

C(HsL+
MN ) = C(UL+

MN)
/〈

uiju
∗
ij = u∗ijuij = pij = projections, usij = pij

〉
has an action map, and is the target of a quotient map, as in Theorem 15.18 above.

Proof. We must show that if the variables uij satisfy the relations in the statement,
then these relations are satisfied as well for the following variables:

Uij =
∑
kl

ukl ⊗ aki ⊗ b∗lj

Vij =
∑
r≤L

ari ⊗ b∗rj

We use the fact that the standard coordinates aij, bij on the quantum groups Hs+
M , Hs+

N

satisfy the following relations, for any x 6= y on the same row or column of a, b:

xy = xy∗ = 0

We obtain, by using these relations:

UijU
∗
ij =

∑
klmn

uklu
∗
mn ⊗ akia∗mi ⊗ b∗ljbmj

=
∑
kl

uklu
∗
kl ⊗ akia∗ki ⊗ b∗ljblj
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We have as well the following formula:

VijV
∗
ij =

∑
r,t≤L

aria
∗
ti ⊗ b∗rjbtj

=
∑
r≤L

aria
∗
ri ⊗ b∗rjbrj

In terms of the projections xij = aija
∗
ij, yij = bijb

∗
ij, pij = uiju

∗
ij, we have:

UijU
∗
ij =

∑
kl

pkl ⊗ xki ⊗ ylj

VijV
∗
ij =

∑
r≤L

xri ⊗ yrj

By repeating the computation, we conclude that these elements are projections. Also,
a similar computation shows that U∗ijUij, V

∗
ijVij are given by the same formulae.

Finally, once again by using the relations of type xy = xy∗ = 0, we have:

U s
ij =

∑
krlr

uk1l1 . . . uksls ⊗ ak1i . . . aksi ⊗ b∗l1j . . . b
∗
lsj

=
∑
kl

uskl ⊗ aski ⊗ (b∗lj)
s

We have as well the following formula:

V s
ij =

∑
rl≤L

ar1i . . . arsi ⊗ b∗r1j . . . b
∗
rsj

=
∑
r≤L

asri ⊗ (b∗rj)
s

Thus the conditions of type usij = pij are satisfied as well, and we are done. �

Let us discuss now the general case. We have the following result:

Proposition 15.22. The various spaces GL
MN constructed so far appear by imposing

to the standard coordinates of UL+
MN the relations∑

i1...is

∑
j1...js

δπ(i)δσ(j)ue1i1j1 . . . u
es
isjs

= L|π∨σ|

with s = (e1, . . . , es) ranging over all the colored integers, and with π, σ ∈ D(0, s).

Proof. According to the various constructions above, the relations defining GL
MN can

be written as follows, with σ ranging over a family of generators, with no upper legs, of
the corresponding category of partitions D:∑

j1...js

δσ(j)ue1i1j1 . . . u
es
isjs

= δσ(i)
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We therefore obtain the relations in the statement, as follows:∑
i1...is

∑
j1...js

δπ(i)δσ(j)ue1i1j1 . . . u
es
isjs

=
∑
i1...is

δπ(i)
∑
j1...js

δσ(j)ue1i1j1 . . . u
es
isjs

=
∑
i1...is

δπ(i)δσ(i)

= L|π∨σ|

As for the converse, this follows by using the relations in the statement, by keeping π
fixed, and by making σ vary over all the partitions in the category. �

In the general case now, where G = (GN) is an arbitary uniform easy quantum group,
we can construct spaces GL

MN by using the above relations, and we have:

Theorem 15.23. The spaces GL
MN ⊂ UL+

MN constructed by imposing the relations∑
i1...is

∑
j1...js

δπ(i)δσ(j)ue1i1j1 . . . u
es
isjs

= L|π∨σ|

with π, σ ranging over all the partitions in the associated category, having no upper legs,
are subject to an action map/quotient map diagram, as in Theorem 15.18.

Proof. We proceed as in the proof of Proposition 15.17. We must prove that, if the
variables uij satisfy the relations in the statement, then so do the following variables:

Uij =
∑
kl

ukl ⊗ aki ⊗ b∗lj

Vij =
∑
r≤L

ari ⊗ b∗rj

Regarding the variables Uij, the computation here goes as follows:∑
i1...is

∑
j1...js

δπ(i)δσ(j)U e1
i1j1

. . . U es
isjs

=
∑
i1...is

∑
j1...js

∑
k1...ks

∑
l1...ls

ue1k1l1 . . . u
es
ksls
⊗ δπ(i)δσ(j)ae1k1i1 . . . a

es
ksis
⊗ (beslsjs . . . b

e1
l1j1

)∗

=
∑
k1...ks

∑
l1...ls

δπ(k)δσ(l)ue1k1l1 . . . u
es
ksls

= L|π∨σ|
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For the variables Vij the proof is similar, as follows:∑
i1...is

∑
j1...js

δπ(i)δσ(j)V e1
i1j1

. . . V es
isjs

=
∑
i1...is

∑
j1...js

∑
l1,...,ls≤L

δπ(i)δσ(j)ae1l1i1 . . . a
es
lsis
⊗ (beslsjs . . . b

e1
l1j1

)∗

=
∑

l1,...,ls≤L

δπ(l)δσ(l) = L|π∨σ|

Thus we have constructed an action map, and a quotient map, as in Proposition 15.17
above, and the commutation of the diagram in Theorem 15.18 is then trivial. �

15d. Integration theory

Let us discuss now the integration over GL
MN . We have:

Definition 15.24. The integration functional of GL
MN is the composition∫

GLMN

: C(GL
MN)→ C(GM ×GN)→ C

of the representation uij →
∑

r≤L ari ⊗ b∗rj with the Haar functional of GM ×GN .

Observe that in the case L = M = N we obtain the integration over GN . Also, at
L = M = 1, or at L = N = 1, we obtain the integration over the sphere. In the general
case now, we first have the following result:

Proposition 15.25. The integration functional of GL
MN has the invariance property(∫

GLMN

⊗ id

)
Φ(x) =

∫
GLMN

x

with respect to the coaction map:

Φ(uij) =
∑
kl

ukl ⊗ aki ⊗ b∗lj

Proof. We restrict the attention to the orthogonal case, the proof in the unitary case
being similar. We must check the following formula:(∫

GLMN

⊗ id

)
Φ(ui1j1 . . . uisjs) =

∫
GLMN

ui1j1 . . . uisjs



364 15. HOMOGENEOUS SPACES

Let us compute the left term. This is given by:

X =

(∫
GLMN

⊗ id

)∑
kxlx

uk1l1 . . . uksls ⊗ ak1i1 . . . aksis ⊗ b∗l1j1 . . . b
∗
lsjs

=
∑
kxlx

∑
rx≤L

ak1i1 . . . aksis ⊗ b∗l1j1 . . . b
∗
lsjs

∫
GM

ar1k1 . . . arsks

∫
GN

b∗r1l1 . . . b
∗
rsls

=
∑
rx≤L

∑
kx

ak1i1 . . . aksis

∫
GM

ar1k1 . . . arsks ⊗
∑
lx

b∗l1j1 . . . b
∗
lsjs

∫
GN

b∗r1l1 . . . b
∗
rsls

By using now the invariance property of the Haar functionals of GM , GN , we obtain:

X =
∑
rx≤L

(∫
GM

⊗ id

)
∆(ar1i1 . . . arsis)⊗

(∫
GN

⊗ id

)
∆(b∗r1j1 . . . b

∗
rsjs)

=
∑
rx≤L

∫
GM

ar1i1 . . . arsis

∫
GN

b∗r1j1 . . . b
∗
rsjs

=

(∫
GM

⊗
∫
GN

)∑
rx≤L

ar1i1 . . . arsis ⊗ b∗r1j1 . . . b
∗
rsjs

But this gives the formula in the statement, and we are done. �

We will prove now that the above functional is in fact the unique positive unital
invariant trace on C(GL

MN). For this purpose, we will need the Weingarten formula:

Theorem 15.26. We have the Weingarten type formula∫
GLMN

ui1j1 . . . uisjs =
∑
πστν

L|π∨τ |δσ(i)δν(j)WsM(π, σ)WsN(τ, ν)

where the matrices on the right are given by WsM = G−1
sM , with GsM(π, σ) = M |π∨σ|.

Proof. By using the Weingarten formula for GM , GN , we obtain:∫
GLMN

ui1j1 . . . uisjs =
∑

l1...ls≤L

∫
GM

al1i1 . . . alsis

∫
GN

b∗l1j1 . . . b
∗
lsjs

=
∑

l1...ls≤L

∑
πσ

δπ(l)δσ(i)WsM(π, σ)
∑
τν

δτ (l)δν(j)WsN(τ, ν)

=
∑
πστν

( ∑
l1...ls≤L

δπ(l)δτ (l)

)
δσ(i)δν(j)WsM(π, σ)WsN(τ, ν)

The coefficient being L|π∨τ |, we obtain the formula in the statement. �

We can now derive an abstract characterization of the integration, as follows:
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Theorem 15.27. The integration of GL
MN is the unique positive unital trace

C(GL
MN)→ C

which is invariant under the action of the quantum group GM ×GN .

Proof. We use a standard method, from [30], [34], the point being to show that we
have the following ergodicity formula:(

id⊗
∫
GM

⊗
∫
GN

)
Φ(x) =

∫
GLMN

x

We restrict the attention to the orthogonal case, the proof in the unitary case being
similar. We must verify that the following holds:(

id⊗
∫
GM

⊗
∫
GN

)
Φ(ui1j1 . . . uisjs) =

∫
GLMN

ui1j1 . . . uisjs

By using the Weingarten formula, the left term can be written as follows:

X =
∑
k1...ks

∑
l1...ls

uk1l1 . . . uksls

∫
GM

ak1i1 . . . aksis

∫
GN

b∗l1j1 . . . b
∗
lsjs

=
∑
k1...ks

∑
l1...ls

uk1l1 . . . uksls
∑
πσ

δπ(k)δσ(i)WsM(π, σ)
∑
τν

δτ (l)δν(j)WsN(τ, ν)

=
∑
πστν

δσ(i)δν(j)WsM(π, σ)WsN(τ, ν)
∑
k1...ks

∑
l1...ls

δπ(k)δτ (l)uk1l1 . . . uksls

By using now the summation formula in Theorem 15.23, we obtain:

X =
∑
πστν

L|π∨τ |δσ(i)δν(j)WsM(π, σ)WsN(τ, ν)

Now by comparing with the Weingarten formula for GL
MN , this proves our claim.

Assume now that τ : C(GL
MN)→ C satisfies the invariance condition. We have:

τ

(
id⊗

∫
GM

⊗
∫
GN

)
Φ(x) =

(
τ ⊗

∫
GM

⊗
∫
GN

)
Φ(x)

=

(∫
GM

⊗
∫
GN

)
(τ ⊗ id)Φ(x)

=

(∫
GM

⊗
∫
GN

)
(τ(x)1)

= τ(x)

On the other hand, according to the formula established above, we have as well:

τ

(
id⊗

∫
GM

⊗
∫
GN

)
Φ(x) = τ(tr(x)1) = tr(x)



366 15. HOMOGENEOUS SPACES

Thus we obtain τ = tr, and this finishes the proof. �

As a main application, we have:

Proposition 15.28. For a sum of coordinates

χE =
∑

(ij)∈E

uij

which do not overlap on rows and columns we have∫
GLMN

χsE =
∑
πστν

K |π∨τ |L|σ∨ν|WsM(π, σ)WsN(τ, ν)

where K = |E| is the cardinality of the indexing set.

Proof. With K = |E|, we can write E = {(α(i), β(i))}, for certain embeddings:

α : {1, . . . , K} ⊂ {1, . . . ,M}

β : {1, . . . , K} ⊂ {1, . . . , N}
In terms of these maps α, β, the moment in the statement is given by:

Ms =

∫
GLMN

(∑
i≤K

uα(i)β(i)

)s

By using the Weingarten formula, we can write this quantity as follows:

Ms

=

∫
GLMN

∑
i1...is≤K

uα(i1)β(i1) . . . uα(is)β(is)

=
∑

i1...is≤K

∑
πστν

L|σ∨ν|δπ(α(i1), . . . , α(is))δτ (β(i1), . . . , β(is))WsM(π, σ)WsN(τ, ν)

=
∑
πστν

( ∑
i1...is≤K

δπ(i)δτ (i)

)
L|σ∨ν|WsM(π, σ)WsN(τ, ν)

But, as explained before, the coefficient on the left in the last formula is:

C = K |π∨τ |

We therefore obtain the formula in the statement. �

We can further advance in the classical/twisted and free cases, where the Weingarten
theory for the corresponding quantum groups is available from [9], [20], [35]:
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Theorem 15.29. In the context of the liberation operations

OL
MN → OL+

MN

UL
MN → UL+

MN

HsL
MN → HsL+

MN

the laws of the sums of non-overlapping coordinates,

χE =
∑

(ij)∈E

uij

are in Bercovici-Pata bijection, in the

|E| = κN,L = λN,M = µN

regime and N →∞ limit.

Proof. We use the general theory in [9], [20], [20], [35]. According to Proposition
15.28, in terms of K = |E|, the moments of the variables in the statement are given by:

Ms =
∑
πστν

K |π∨τ |L|σ∨ν|WsM(π, σ)WsN(τ, ν)

We use now two standard facts, namely:

(1) The fact that in the N →∞ limit the Weingarten matrix WsN is concentrated on
the diagonal.

(2) The fact that we have an inequality as follows, with equality precisely when π = σ:

|π ∨ σ| ≤ |π|+ |σ|
2

For details on all this, we refer to [20].

Let us discuss now what happens in the regime from the statement, namely:

K = κN,L = λN,M = µN,N →∞
In this regime, we obtain:

Ms '
∑
πτ

K |π∨τ |L|π∨τ |M−|π|N−|τ |

'
∑
π

K |π|L|π|M−|π|N−|π|

=
∑
π

(
κλ

µ

)|π|
In order to interpret this formula, we use general theory from [9], [20], [20]:
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(1) For GN = ON , ŌN/O
+
N , the above variables χE follow to be asymptotically Gauss-

ian/semicircular, of parameter κλ
µ

, and hence in Bercovici-Pata bijection.

(2) For GN = UN , ŪN/U
+
N the situation is similar, with χE being asymptotically

complex Gaussian/circular, of parameter κλ
µ

, and in Bercovici-Pata bijection.

(3) Finally, for GN = Hs
N/H

s+
N , the variables χE are asymptotically Bessel/free Bessel

of parameter κλ
µ

, and once again in Bercovici-Pata bijection. �

There are several possible extensions of the above result, for instance by using quantum
reflection groups instead of unitary quantum groups, and by using twisting operations as
well. We refer here to [7], and to [34] as well, for a number of supplementary results,
which can be obtained by using the stronger formalism there.

Finally, there are many interesting questions in relation with Connes’ noncommutative
geometry [53], and more specifically with the quantum extension of the Nash embedding
theorem [78]. We refer here to [55], [56], [57], [64].

15e. Exercises

There are several interesting questions, which appear as a continuation of the material
from this chapter. As a first exercise about this, we have:

Exercise 15.30. Work out explicitely the algebraic and probabilistic theory of the
spaces GL

MN , in the case G = SN , S
+
N .

To be more precise here, the general case G = Hs
N , H

s+
N was discussed in the above,

and the problem is that of working out the particular case s = 1 of all this.

As a second exercise now, in the same spirit, once again dealing with a particular case
of all the above, we have:

Exercise 15.31. Work out the algebraic and probabilistic theory of the spaces GL
MN ,

in the particular cases L = M and L = N .

The point here is that the case L = M = N corresponds to the quantum groups
themselves, and so the cases L = M and L = N correspond to a “minimal” extension of
the usual theory of the quantum groups, which is worth to be worked out in detail.



CHAPTER 16

Modelling questions

16a. Matrix models

One interesting method for the study of the closed subgroups G ⊂ U+
N , that we have

not tried yet, consists in modelling the standard coordinates uij ∈ C(G) by concrete
variables Uij ∈ B, where B is suitably chosen algebra, that we know well.

Indeed, assuming that the model is faithful in some suitable sense, that the algebra
B is something quite familiar, and that the variables Uij are not too complicated, all the
questions about G would correspond in this way to routine questions inside B.

Regarding the choice of B, some very convenient algebras are the random matrix ones,
B = MK(C(T )), with K ∈ N, and with T being a compact space. These algebras gen-
eralize indeed the most familiar algebras that we know, namely the matrix ones MK(C),
and the commutative ones C(T ). We are led in this way to:

Definition 16.1. A matrix model for G ⊂ U+
N is a morphism of C∗-algebras

π : C(G)→MK(C(T ))

where T is a compact space, and K ≥ 1 is an integer.

More generally, we can try to model in this way the standard coordinates xi ∈ C(X)
of the various algebraic manifolds X ⊂ SN−1

C,+ . Indeed, these manifolds generalize the
compact matrix quantum groups, which appear as:

G ⊂ U+
N ⊂ SN

2−1
C,+

Thus we have many other interesting examples of such manifolds, such as the homo-
geneous spaces discussed in chapter 15. However, at this level of generality, not much
general theory is available. It is elementary to show that, under the technical assumption
Xc 6= ∅, there exists a universal K ×K model for the algebra C(X), which factorizes as
follows, with X(K) ⊂ X being a certain algebraic submanifold:

πK : C(X)→ C(X(K)) ⊂MK(C(TK))

To be more precise, the universal K ×K model space TK appears by imposing to the
complex K × K matrices the relations defining X, and the algebra C(X(K)) is then by

369
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definition the image of πK . In relation with this, we can set as well:

X(∞) =
⋃
K∈N

X(K)

We are led in this way to a filtration of X, as follows:

Xc = X(1) ⊂ X(2) ⊂ X(3) ⊂ . . . . . . ⊂ X(∞) ⊂ X

It is possible to say a few non-trivial things about these manifolds X(K), by using
algebraic and functional analytic techniques, and we refer here to [15], [49].

In the compact quantum group case, however, that we are mainly interested in here,
the matrix truncations G(K) ⊂ G are generically not subgroups at K ≥ 2, and so this
theory is a priori not very useful, at least in its basic form presented here.

In order to reach, however, to some results, let us introduce as well:

Definition 16.2. A matrix model π : C(G)→MK(C(T )) is called stationary when∫
G

=

(
tr ⊗

∫
T

)
π

where
∫
T

is the integration with respect to a given probability measure on T .

Observe that this definition can be extended as well to the algebraic manifold case,
X ⊂ SN−1

C,+ , provided that our manifolds have certain integration functionals
∫
X

. This

is the case for instance with the homogeneous spaces discussed in chapter 15, where
∫
X

appears as the unique G-invariant trace, with respect to the underlying quantum group
G. However, the axiomatization of such manifolds being not available yet, we will keep
this as a remark, and get back in what follows, until the end, to the quantum groups.

So, back to Definition 16.2, as it is, our first comment concerns the terminology.
The term “stationary” comes from a functional analytic interpretation of all this, with a
certain Cesàro limit being needed to be stationary, and this will be explained later on.
Yet another explanation comes from a certain relation with the lattice models, but this
relation is rather something folklore, not axiomatized yet. We will be back to this later.

As a first result now, the stationarity property implies the faithfulness:

Theorem 16.3. Assuming that G ⊂ U+
N has a stationary model,

π : C(G)→MK(C(T ))∫
G

=

(
tr ⊗

∫
T

)
π

it follows that G must be coamenable, and that the model is faithful.
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Proof. We have two assertions to be proved, the idea being as follows:

(1) Assume that we have a stationary model, as in the statement. By performing
the GNS construction with respect to

∫
G

, we obtain a factorization as follows, which
commutes with the respective canonical integration functionals:

π : C(G)→ C(G)red ⊂MK(C(T ))

Thus, in what regards the coamenability question, we can assume that π is faithful.
With this assumption made, observe that we have embeddings as follows:

C∞(G) ⊂ C(G) ⊂MK(C(T ))

The point now is that the GNS construction gives a better embedding, as follows:

L∞(G) ⊂MK(L∞(T ))

Now since the von Neumann algebra on the right is of type I, so must be its subalgebra
A = L∞(G). This means that, when writing the center of this latter algebra as Z(A) =
L∞(X), the whole algebra decomposes over X, as an integral of type I factors:

L∞(G) =

∫
X

MKx(C) dx

In particular, we can see from this that C∞(G) ⊂ L∞(G) has a unique C∗-norm, and
so G is coamenable. Thus we have proved our first assertion.

(2) The second assertion follows as well from the above, because our factorization of
π consists of the identity, and of an inclusion. �

Regarding now the examples of stationary models, we first have:

Proposition 16.4. The following have stationary models:

(1) The compact Lie groups.
(2) The finite quantum groups.

Proof. Both these assertions are elementary, with the proofs being as follows:

(1) This is clear, because we can use the identity id : C(G)→M1(C(G)).

(2) Here we can use the regular representation λ : C(G) → M|G|(C). Indeed, let us
endow the linear space H = C(G) with the scalar product < a, b >=

∫
G
ab∗. We have

then a representation, as follows:

λ : C(G)→ B(H)

a→ [b→ ab]

Now since we have H ' C|G| with |G| = dimA, we can view λ as a matrix model map,
as above, and the stationarity axiom

∫
G

= tr ◦ λ is satisfied, as desired. �
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In order to discuss now the group duals, consider a model as follows:

π : C∗(Γ)→MK(C(T ))

According to the general theory of group algebras, such a matrix model must come
from a group representation, as follows:

ρ : Γ→ C(T, UK)

With this identification made, we have:

Proposition 16.5. An matrix model ρ : Γ ⊂ C(T, UK) is stationary when:∫
T

tr(gx)dx = 0,∀g 6= 1

Moreover, the examples include all the abelian groups, and all finite groups.

Proof. Consider indeed a group embedding ρ : Γ ⊂ C(T, UK), which produces by
linearity a matrix model, as follows:

π : C∗(Γ)→MK(C(T ))

It is enough to formulate the stationarity condition on the group elements g ∈ C∗(Γ).
Let us set ρ(g) = (x→ gx). With this notation, the stationarity condition reads:∫

T

tr(gx)dx = δg,1

Since this equality is trivially satisfied at g = 1, where by unitality of our representa-
tion we must have gx = 1 for any x ∈ T , we are led to the condition in the statement.
Regarding now the examples, these are both clear. More precisely:

(1) When Γ is abelian we can use the following trivial embedding:

Γ ⊂ C(Γ̂, U1)

g → [χ→ χ(g)]

(2) When Γ is finite we can use the left regular representation:

Γ ⊂ L(CΓ)

g → [h→ gh]

Indeed, in both cases, the stationarity condition is trivially satisfied. �

In order to further advance, and to come up with some tools for discussing the non-

stationary case as well, let us keep looking at the group duals G = Γ̂.

We know that a matrix model π : C∗(Γ)→MK(C(T )) must come from a unitary group
representation ρ : Γ→ C(T, UK). Now observe that when ρ is faithful, the representation
π is in general not faithful, for instance because when T = {.} its target algebra is finite
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dimensional. On the other hand, this representation obviously “reminds” Γ, and so can
be used in order to fully understand Γ.

Summarizing, we have a new idea here, basically saying that, for practical purposes,
the faithfuless property can be replaced with something much weaker. This weaker notion
is called “inner faithfulness”, and the theory here, from [13], is as follows:

Definition 16.6. Let π : C(G)→MK(C(T )) be a matrix model.

(1) The Hopf image of π is the smallest quotient Hopf C∗-algebra C(G) → C(H)
producing a factorization of type π : C(G)→ C(H)→MK(C(T )).

(2) When the inclusion H ⊂ G is an isomorphism, i.e. when there is no non-trivial
factorization as above, we say that π is inner faithful.

As a basic illustration for these notions, in the case where G = Γ̂ is a group dual, π
must come from a group representation, as follows:

ρ : Γ→ C(T, UK)

We conclude that in this case, the minimal factorization constructed in Definition 16.6
is simply the one obtained by taking the image:

ρ : Γ→ Λ ⊂ C(T, UK)

Thus π is inner faithful when our group satisfies:

Γ ⊂ C(T, UK)

As a second illustration now, given a compact group G, and elements g1, . . . , gK ∈ G,
we have a representation π : C(G)→ CK , given by:

f → (f(g1), . . . , f(gK))

The minimal factorization of π is then via C(H), with:

H = < g1, . . . , gK >

Thus π is inner faithful precisely when our group satisfies:

G = H

In general, the existence and uniqueness of the Hopf image comes from dividing C(G)
by a suitable ideal, as explained in [13]. In Tannakian terms, we have:

Theorem 16.7. Consider a closed subgroup G ⊂ U+
N , with fundamental corepresenta-

tion denoted u = (uij). The Hopf image of a matrix model

π : C(G)→MK(C(T ))

comes then from the Tannakian category

Ckl = Hom(U⊗k, U⊗l)

where Uij = π(uij), and where the spaces on the right are taken in a formal sense.
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Proof. Since the morphisms increase the intertwining spaces, when defined either in
a representation theory sense, or just formally, we have inclusions as follows:

Hom(u⊗k, u⊗l) ⊂ Hom(U⊗k, U⊗l)

More generally, we have such inclusions when replacing (G, u) with any pair producing
a factorization of π. Thus, by Tannakian duality, the Hopf image must be given by the
fact that the intertwining spaces must be the biggest, subject to the above inclusions.

On the other hand, since u is biunitary, so is U , and it follows that the spaces on the
right form a Tannakian category. Thus, we have a quantum group (H, v) given by:

Hom(v⊗k, v⊗l) = Hom(U⊗k, U⊗l)

By the above discussion, C(H) follows to be the Hopf image of π, as claimed. �

The inner faithful models π : C(G) → MK(C(T )) are a very interesting notion,
because they are not subject to the coamenability condition on G, as it was the case with
the stationary models, as explained in Theorem 16.3.

In fact, there are no known restrictions on the class of subgroups G ⊂ U+
N which can

be modelled in an inner faithful way. Thus, our modelling theory applies a priori to any
compact quantum group.

Regarding now the study of the inner faithful models, a key problem is that of com-
puting the Haar integration functional. The result here, from [28], [95], is as follows:

Theorem 16.8. Given an inner faithful model π : C(G)→MK(C(T )), we have∫
G

= lim
k→∞

1

k

k∑
r=1

∫ r

G

where
∫ r
G

= (ϕ ◦ π)∗r, with ϕ = tr ⊗
∫
T

being the random matrix trace.

Proof. As a first observation, there is an obvious similarity here with the Woronowicz
construction of the Haar measure, explained in chapter 1 above. In fact, the above result
holds more generally for any model π : C(G) → B, with ϕ ∈ B∗ being a faithful trace.
With this picture in hand, the Woronowicz construction simply corresponds to the case
π = id, and the result itself is therefore a generalization of Woronowicz’s result.

In order to prove now the result, we can proceed as in chapter 1. If we denote by
∫ ′
G

the limit in the statement, we must prove that this limit converges, and that we have:∫ ′
G

=

∫
G
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It is enough to check this on the coefficients of corepresentations, and if we let v = u⊗k

be one of the Peter-Weyl corepresentations, we must prove that we have:(
id⊗

∫ ′
G

)
v =

(
id⊗

∫
G

)
v

We know from chapter 1 that the matrix on the right is the orthogonal projection onto
Fix(v). Regarding now the matrix on the left, this is the orthogonal projection onto the
1-eigenspace of (id⊗ ϕπ)v. Now observe that, if we set Vij = π(vij), we have:

(id⊗ ϕπ)v = (id⊗ ϕ)V

Thus, as in chapter 1, we conclude that the 1-eigenspace that we are interested in
equals Fix(V ). But, according to Theorem 16.7, we have:

Fix(V ) = Fix(v)

Thus, we have proved that we have
∫ ′
G

=
∫
G

, as desired. �

Summarizing, we have so far a notion of matrix model, and a notion of inner faithful-
ness which is quite broad, and that we can study via both algebra and analysis.

16b. Stationarity

Before getting into more about inner faithfulness, let us first go back to the stationary
models. These models are quite restrictive, because G must be coamenable. However,
there are many interesting examples of coamenable compact quantum groups, and in order
to better understand these examples, and also in order to construct some new examples,
our idea will be that of looking for stationary models for them.

We first have the following useful theoretical result:

Theorem 16.9. For π : C(G)→MK(C(T )), the following are equivalent:

(1) Im(π) is a Hopf algebra, and (tr ⊗
∫
T

)π is the Haar integration on it.
(2) ψ = (tr ⊗

∫
X

)π satisfies the idempotent state property ψ ∗ ψ = ψ.
(3) T 2

e = Te, ∀p ∈ N, ∀e ∈ {1, ∗}p, where:

(Te)i1...ip,j1...jp =

(
tr ⊗

∫
T

)
(U e1

i1j1
. . . U

ep
ipjp

)

If these conditions are satisfied, we say that π is stationary on its image.

Proof. Given a matrix model π : C(G) → MK(C(T )) as in the statement, we can
factorize it via its Hopf image, as in Definition 16.6 above:

π : C(G)→ C(H)→MK(C(T ))
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Now observe that the conditions (1,2,3) in the statement depend only on the factorized
representation:

ν : C(H)→MK(C(T ))

Thus, we can assume in practice that we have G = H, which means that we can assume
that π is inner faithful. With this assumption made, the general integration formula from
Theorem 16.8 applies to our situation, and the proof of the equivalences goes as follows:

(1) =⇒ (2) This is clear from definitions, because the Haar integration on any
compact quantum group satisfies the idempotent state equation:

ψ ∗ ψ = ψ

(2) =⇒ (1) Assuming ψ ∗ ψ = ψ, we have, for any r ∈ N:

ψ∗r = ψ

Thus Theorem 16.8 gives
∫
G

= ψ, and by using Theorem 16.3, we obtain the result.

In order to establish now (2)⇐⇒ (3), we use the following elementary formula, which
comes from the definition of the convolution operation:

ψ∗r(ue1i1j1 . . . u
ep
ipjp

) = (T re )i1...ip,j1...jp

(2) =⇒ (3) Assuming ψ ∗ ψ = ψ, by using the above formula at r = 1, 2 we obtain
that the matrices Te and T 2

e have the same coefficients, and so they are equal.

(3) =⇒ (2) Assuming T 2
e = Te, by using the above formula at r = 1, 2 we obtain that

the linear forms ψ and ψ ∗ ψ coincide on any product of coefficients ue1i1j1 . . . u
ep
ipjp

. Now

since these coefficients span a dense subalgebra of C(G), this gives the result. �

As a first illustration, we will apply this criterion to certain models for the quantum
groups O∗N , U

∗
N . We first have the following result:

Proposition 16.10. We have a matrix model as follows,

C(O∗N)→M2(C(UN))

uij →
(

0 vij
v̄ij 0

)
where v is the fundamental corepresentation of C(UN), as well as a model as follows,

C(U∗N)→M2(C(UN × UN))

uij →
(

0 vij
wij 0

)
where v, w are the fundamental corepresentations of the two copies of C(UN).
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Proof. It is routine to check that the matrices on the right are indeed biunitaries,
and since the first matrix is also self-adjoint, we obtain in this way models as follows:

C(O+
N)→M2(C(UN))

C(U+
N )→M2(C(UN × UN))

Regarding now the half-commutation relations, this comes from something general,
regarding the antidiagonal 2× 2 matrices. Consider indeed matrices as follows:

Xi =

(
0 xi
yi 0

)
We have then the following computation:

XiXjXk =

(
0 xi
yi 0

)(
0 xj
yj 0

)(
0 xk
yk 0

)
=

(
0 xiyjxk

yixjyk 0

)
Since this quantity is symmetric in i, k, we obtain from this:

XiXjXk = XkXjXi

Thus, the antidiagonal 2 × 2 matrices half-commute, and so our models factorize as
claimed. �

We can now formulate our first concrete modelling theorem, as folllows:

Theorem 16.11. The above antidiagonal models, namely

C(O∗N)→M2(C(UN))

C(U∗N)→M2(C(UN × UN))

are both stationary.

Proof. We first discuss the case of O∗N . We use Theorem 16.9 (3). Since the funda-
mental representation is self-adjoint, the matrices Te with e ∈ {1, ∗}p are all equal. We
denote this common matrix by Tp. According to the definition of Tp, we have:

(Tp)i1...ip,j1...jp =

(
tr ⊗

∫
H

)[(
0 vi1j1
v̄i1j1 0

)
. . . . . .

(
0 vipjp

v̄ipjp 0

)]
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Since when multipliying an odd number of antidiagonal matrices we obtain an atidi-
agonal matrix, we have Tp = 0 for p odd. Also, when p is even, we have:

(Tp)i1...ip,j1...jp =

(
tr ⊗

∫
H

)(
vi1j1 . . . v̄ipjp 0

0 v̄i1j1 . . . vipjp

)
=

1

2

(∫
H

vi1j1 . . . v̄ipjp +

∫
H

v̄i1j1 . . . vipjp

)
=

∫
H

Re(vi1j1 . . . v̄ipjp)

We have T 2
p = Tp = 0 when p is odd, so we are left with proving that we have T 2

p = Tp,
when p is even. For this purpose, we use the following formula:

Re(x)Re(y) =
1

2
(Re(xy) +Re(xȳ))

By using this identity for each of the terms which appear in the product, and multi-
index notations in order to simplify the writing, we obtain:

(T 2
p )ij

=
∑
k1...kp

(Tp)i1...ip,k1...kp(Tp)k1...kp,j1...jp

=

∫
H

∫
H

∑
k1...kp

Re(vi1k1 . . . v̄ipkp)Re(wk1j1 . . . w̄kpjp)dvdw

=
1

2

∫
H

∫
H

∑
k1...kp

Re(vi1k1wk1j1 . . . v̄ipkpw̄kpjp) +Re(vi1k1w̄k1j1 . . . v̄ipkpwkpjp)dvdw

=
1

2

∫
H

∫
H

Re((vw)i1j1 . . . (v̄w̄)ipjp) +Re((vw̄)i1j1 . . . (v̄w)ipjp)dvdw

Now since vw ∈ H is uniformly distributed when v, w ∈ H are uniformly distributed,
the quantity on the left integrates up to (Tp)ij. Also, since H is conjugation-stable, w̄ ∈ H
is uniformly distributed when w ∈ H is uniformly distributed, so the quantity on the right
integrates up to the same quantity, namely (Tp)ij. Thus, we have:

(T 2
p )ij =

1

2

(
(Tp)ij + (Tp)ij

)
= (Tp)ij

Summarizing, we have obtained that for any p, the condition T 2
p = Tp is satisfied.

Thus Theorem 16.9 applies, and shows that our model is stationary, as claimed.
As for the proof of the stationarity for the model for U∗N , this is similar. See [21]. �

As a second illustration, regarding H∗N , K
∗
N , we have:
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Theorem 16.12. We have a stationary matrix model as follows,

C(H∗N)→M2(C(KN))

uij →
(

0 vij
v̄ij 0

)
where v is the fundamental corepresentation of C(KN), as well as a stationary model

C(K∗N)→M2(C(KN ×KN))

uij →
(

0 vij
wij 0

)
where v, w are the fundamental corepresentations of the two copies of C(KN).

Proof. This follows by adapting the proof of Proposition 16.10 and Theorem 16.11
above, by adding there the H+

N , K
+
N relations. All this is in fact part of a more general

phenomenon, concerning half-liberation in general, and we refer here to [15], [44]. �

Summarizing, we have some interesting theory and examples for both the stationary
models, and for the general inner faithful models.

16c. Weyl matrices

Following [31], let us discuss now some more subtle examples of stationary models,
related to the Pauli matrices, and Weyl matrices, and physics. We first have:

Definition 16.13. Given a finite abelian group H, the associated Weyl matrices are

Wia : eb →< i, b > ea+b

where i ∈ H, a, b ∈ Ĥ, and where (i, b)→< i, b > is the Fourier coupling H × Ĥ → T.

As a basic example, consider the simplest cyclic group, namely:

H = Z2 = {0, 1}
Here the Fourier coupling is < i, b >= (−1)ib, and the Weyl matrices act as follows:

W00 : eb → eb , W10 : eb → (−1)beb

W11 : eb → (−1)beb+1 , W01 : eb → eb+1

Thus, we have the following formulae for the Weyl matrices:

W00 =

(
1 0
0 1

)
, W10 =

(
1 0
0 −1

)
W11 =

(
0 −1
1 0

)
, W01 =

(
0 1
1 0

)
We recognize here, up to some multiplicative factors, the four Pauli matrices. Now

back to the general case, we have the following well-known result:
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Proposition 16.14. The Weyl matrices are unitaries, and satisfy:

(1) W ∗
ia =< i, a > W−i,−a.

(2) WiaWjb =< i, b > Wi+j,a+b.
(3) WiaW

∗
jb =< j − i, b > Wi−j,a−b.

(4) W ∗
iaWjb =< i, a− b > Wj−i,b−a.

Proof. The unitary follows from (3,4), and the rest of the proof goes as follows:

(1) We have indeed the following computation:

W ∗
ia =

(∑
b

< i, b > Ea+b,b

)∗
=

∑
b

< −i, b > Eb,a+b

=
∑
b

< −i, b− a > Eb−a,b

= < i, a > W−i,−a

(2) Here the verification goes as follows:

WiaWjb =

(∑
d

< i, b+ d > Ea+b+d,b+d

)(∑
d

< j, d > Eb+d,d

)
=

∑
d

< i, b >< i+ j, d > Ea+b+d,d

= < i, b > Wi+j,a+b

(3,4) By combining the above two formulae, we obtain:

WiaW
∗
jb = < j, b > WiaW−j,−b

= < j, b >< i,−b > Wi−j,a−b

We obtain as well the following formula:

W ∗
iaWjb = < i, a > W−i,−aWjb

= < i, a >< −i, b > Wj−i,b−a

But this gives the formulae in the statement, and we are done. �

Observe that, with n = |H|, we can use an isomorphism l2(Ĥ) ' Cn as to view each
Wia as a usual matrix, Wia ∈Mn(C), and hence as a usual unitary, Wia ∈ Un.

Given a vector ξ, we denote by Proj(ξ) the orthogonal projection onto Cξ. We have:



16C. WEYL MATRICES 381

Proposition 16.15. Given a closed subgroup E ⊂ Un, we have a representation

πH : C(S+
N)→MN(C(E))

wia,jb → [U → Proj(WiaUW
∗
jb)]

where n = |H|, N = n2, and where Wia are the Weyl matrices associated to H.

Proof. The Weyl matrices being given by Wia : eb →< i, b > ea+b, we have:

tr(Wia) =

{
1 if (i, a) = (0, 0)

0 if (i, a) 6= (0, 0)

Together with the formulae in Proposition 16.14, this shows that the Weyl matrices
are pairwise orthogonal with respect to the following scalar product on Mn(C):

< x, y >= tr(x∗y)

Thus, these matrices form an orthogonal basis of Mn(C), consisting of unitaries:

W =
{
Wia

∣∣∣i ∈ H, a ∈ Ĥ}
Thus, each row and each column of the matrix ξia,jb = WiaUW

∗
jb is an orthogonal basis

of Mn(C), and so the corresponding projections form a magic unitary, as claimed. �

We will need the following well-known result:

Proposition 16.16. With T = Proj(x1) . . . P roj(xp) and ||xi|| = 1 we have

< Tξ, η >=< ξ, xp >< xp, xp−1 > . . . < x2, x1 >< x1, η >

for any ξ, η. In particular, we have:

Tr(T ) =< x1, xp >< xp, xp−1 > . . . < x2, x1 >

Proof. For ||x|| = 1 we have Proj(x)ξ =< ξ, x > x. This gives:

Tξ = Proj(x1) . . . P roj(xp)ξ

= Proj(x1) . . . P roj(xp−1) < ξ, xp > xp

= Proj(x1) . . . P roj(xp−2) < ξ, xp >< xp, xp−1 > xp−1

= . . .

= < ξ, xp >< xp, xp−1 > . . . < x2, x1 > x1

Now by taking the scalar product with η, this gives the first assertion. As for the
second assertion, this follows from the first assertion, by summing over ξ = η = ei. �

Now back to the Weyl matrix models, let us first compute Tp. We have:
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Proposition 16.17. We have the formula

(Tp)ia,jb

=
1

N
< i1, a1 − ap > . . . < ip, ap − ap−1 >< j1, b1 − b2 > . . . < jp, bp − b1 >∫

E

tr(Wi1−i2,a1−a2UWj2−j1,b2−b1U
∗) . . . tr(Wip−i1,ap−a1UWj1−jp,b1−bpU

∗)dU

with all the indices varying in a cyclic way.

Proof. By using the trace formula in Proposition 16.16 above, we obtain:

(Tp)ia,jb

=

(
tr ⊗

∫
E

)(
Proj(Wi1a1UW

∗
j1b1

) . . . P roj(WipapUW
∗
jpbp)

)
=

1

N

∫
E

< Wi1a1UW
∗
j1b1

,WipapUW
∗
jpbp > . . . < Wi2a2UW

∗
j2b2

,Wi1a1UW
∗
j1b1

> dU

In order to compute now the scalar products, observe that we have:

< WiaUW
∗
jb,WkcUW

∗
ld > = tr(WjbU

∗W ∗
iaWkcUW

∗
ld)

= tr(W ∗
iaWkcUW

∗
ldWjbU

∗)

= < i, a− c >< l, d− b > tr(Wk−i,c−aUWj−l,b−dU
∗)

By plugging these quantities into the formula of Tp, we obtain the result. �

Consider now the Weyl group W = {Wia} ⊂ Un, that we already met in the proof of
Proposition 16.15 above. We have the following result, from [31]:

Theorem 16.18. For any compact group W ⊂ E ⊂ Un, the model

πH : C(S+
N)→MN(C(E))

wia,jb → [U → Proj(WiaUW
∗
jb)]

constructed above is stationary on its image.
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Proof. We must prove that we have T 2
p = Tp. We have:

(T 2
p )ia,jb

=
∑
kc

(Tp)ia,kc(Tp)kc,jb

=
1

N2

∑
kc

< i1, a1 − ap > . . . < ip, ap − ap−1 >< k1, c1 − c2 > . . . < kp, cp − c1 >

< k1, c1 − cp > . . . < kp, cp − cp−1 >< j1, b1 − b2 > . . . < jp, bp − b1 >∫
E

tr(Wi1−i2,a1−a2UWk2−k1,c2−c1U
∗) . . . tr(Wip−i1,ap−a1UWk1−kp,c1−cpU

∗)dU∫
E

tr(Wk1−k2,c1−c2VWj2−j1,b2−b1V
∗) . . . tr(Wkp−k1,cp−c1VWj1−jp,b1−bpV

∗)dV

By rearranging the terms, this formula becomes:

(T 2
p )ia,jb

=
1

N2
< i1, a1 − ap > . . . < ip, ap − ap−1 >< j1, b1 − b2 > . . . < jp, bp − b1 >∫

E

∫
E

∑
kc

< k1 − kp, c1 − cp > . . . < kp − kp−1, cp − cp−1 >

tr(Wi1−i2,a1−a2UWk2−k1,c2−c1U
∗)tr(Wk1−k2,c1−c2VWj2−j1,b2−b1V

∗)

. . . . . .

tr(Wip−i1,ap−a1UWk1−kp,c1−cpU
∗)tr(Wkp−k1,cp−c1VWj1−jp,b1−bpV

∗)dUdV

Let us denote by I the above double integral. By using W ∗
kc =< k, c > W−k,−c for

each of the couplings, and by moving as well all the U∗ variables to the left, we obtain:

I =

∫
E

∫
E

∑
kc

tr(U∗Wi1−i2,a1−a2UWk2−k1,c2−c1)tr(W
∗
k2−k1,c2−c1VWj2−j1,b2−b1V

∗)

. . . . . .

tr(U∗Wip−i1,ap−a1UWk1−kp,c1−cp)tr(W
∗
k1−kp,c1−cpVWj1−jp,b1−bpV

∗)dUdV

In order to perform now the sums, we use the following formula:

tr(AWkc)tr(W
∗
kcB) =

1

N

∑
qrst

Aqr(Wkc)rq(W
∗
kc)stBts

=
1

N

∑
qrst

Aqr < k, q > δr−q,c < k,−s > δt−s,cBts

=
1

N

∑
qs

< k, q − s > Aq,q+cBs+c,s
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If we denote by Ax, Bx the variables which appear in the formula of I, we have:

I

=
1

Np

∫
E

∫
E

∑
kcqs

< k2 − k1, q1 − s1 > . . . < k1 − kp, qp − sp >

(A1)q1,q1+c2−c1(B1)s1+c2−c1,s1 . . . (Ap)qp,qp+c1−cp(Bp)sp+c1−cp,sp

=
1

Np

∫
E

∫
E

∑
kcqs

< k1, qp − sp − q1 + s1 > . . . < kp, qp−1 − sp−1 − qp + sp >

(A1)q1,q1+c2−c1(B1)s1+c2−c1,s1 . . . (Ap)qp,qp+c1−cp(Bp)sp+c1−cp,sp

Now observe that we can perform the sums over k1, . . . , kp. We obtain in this way a
multiplicative factor np, along with the condition:

q1 − s1 = . . . = qp − sp
Thus we must have qx = sx + a for a certain a, and the above formula becomes:

I =
1

np

∫
E

∫
E

∑
csa

(A1)s1+a,s1+c2−c1+a(B1)s1+c2−c1,s1 . . . (Ap)sp+a,sp+c1−cp+a(Bp)sp+c1−cp,sp

Consider now the variables rx = cx+1 − cx, which altogether range over the set Z of
multi-indices having sum 0. By replacing the sum over cx with the sum over rx, which
creates a multiplicative n factor, we obtain the following formula:

I =
1

np−1

∫
E

∫
E

∑
r∈Z

∑
sa

(A1)s1+a,s1+r1+a(B1)s1+r1,s1 . . . (Ap)sp+a,sp+rp+a(Bp)sp+rp,sp

For an arbitrary multi-index r we have:

δ∑
i ri,0

=
1

n

∑
i

< i, r1 > . . . < i, rp >

Thus, we can replace the sum over r ∈ Z by a full sum, as follows:

I =
1

np

∫
E

∫
E

∑
rsia

< i, r1 > (A1)s1+a,s1+r1+a(B1)s1+r1,s1

. . . . . .

< i, rp > (Ap)sp+a,sp+rp+a(Bp)sp+rp,sp

In order to “absorb” now the indices i, a, we can use the following formula:

W ∗
iaAWia

=

(∑
b

< i,−b > Eb,a+b

)(∑
bc

Ea+b,a+cAa+b,a+c

)(∑
c

< i, c > Ea+c,c

)
=

∑
bc

< i, c− b > EbcAa+b,a+c
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Thus we have:

(W ∗
iaAWia)bc =< i, c− b > Aa+b,a+c

Our formula becomes:

I

=
1

np

∫
E

∫
E

∑
rsia

(W ∗
iaA1Wia)s1,s1+r1(B1)s1+r1,s1 . . . (W

∗
iaApWia)sp,sp+rp(Bp)sp+rp,sp

=

∫
E

∫
E

∑
ia

tr(W ∗
iaA1WiaB1) . . . . . . tr(W ∗

iaApWiaBp)

Now by replacing Ax, Bx with their respective values, we obtain:

I =

∫
E

∫
E

∑
ia

tr(W ∗
iaU

∗Wi1−i2,a1−a2UWiaVWj2−j1,b2−b1V
∗)

. . . . . .

tr(W ∗
iaU

∗Wip−i1,ap−a1UWiaVWj1−jp,b1−bpV
∗)dUdV

By moving the W ∗
iaU

∗ variables at right, we obtain, with Sia = UWiaV :

I =
∑
ia

∫
E

∫
E

tr(Wi1−i2,a1−a2SiaWj2−j1,b2−b1S
∗
ia)

. . . . . .

tr(Wip−i1,ap−a1SiaWj1−jp,b1−bpS
∗
ia)dUdV

Now since Sia is Haar distributed when U, V are Haar distributed, we obtain:

I = N

∫
E

∫
E

tr(Wi1−i2,a1−a2UWj2−j1,b2−b1U
∗) . . . tr(Wip−i1,ap−a1UWj1−jp,b1−bpU

∗)dU

But this is exactly N times the integral in the formula of (Tp)ia,jb, from Proposition
16.17 above. Since the N factor cancels with one of the two N factors that we found in
the beginning of the proof, when first computing (T 2

p )ia,jb, we are done. �

As an illustration for the above result, going back to [22], we have:

Theorem 16.19. We have a stationary matrix model

π : C(S+
4 ) ⊂M4(C(SU2))

given on the standard coordinates by the formula

π(uij) = [x→ Proj(cixcj)]

where x ∈ SU2, and c1, c2, c3, c4 are the Pauli matrices.
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Proof. As already explained in the comments following Definition 16.13, the Pauli
matrices appear as particular cases of the Weyl matrices. To be more precise, consider
the group H = Z2 = {0, 1}, with standard Fourier coupling, as follows:

< i, b >= (−1)ib

The Weyl matrices, as defined in the above, act then as follows:

W00 : eb → eb , W10 : eb → (−1)beb

W11 : eb → (−1)beb+1 , W01 : eb → eb+1

Thus, we have the following formulae for the Weyl matrices:

W00 =

(
1 0
0 1

)
, W10 =

(
1 0
0 −1

)
W11 =

(
0 −1
1 0

)
, W01 =

(
0 1
1 0

)
We recognize here, up to some multiplicative factors, the four Pauli matrices. By

working out now the details of the various constructions above, we conclude that Theorem
16.18 produces in this case the model in the statement. �

Observe that, since the matrix Proj(cixcj) depends only on the image of x in the
quotient group SU2 → SO3, we can replace the model space SU2 by the smaller space
SO3, if we want to, and so we have a matrix model as follows:

π : C(S+
4 ) ⊂M4(C(SO3))

This is something that can be used in conjunction with the isomorphism S+
4 ' SO−1

3

from chapter 9 above, and as explained in [13], our model becomes in this way something
quite conceptual, algebrically speaking, as follows:

π : C(SO−1
3 ) ⊂M4(C(SO3))

In general, going beyond stationarity is a difficult task, and among the results here,
let us mention the universal modelling questions for quantum permutations and quan-
tum reflections [31], [46], various results on the flat models for the discrete groups [29],
questions regarding the Hadamard matrix models [13], [19], and the related fine analytic
study on the compact and discrete quantum groups [47], [61], [89].

16d. Fourier models

In what follows we discuss the Hadamard models, which are of particular importance.
Let us start with the following well-known definition:

Definition 16.20. A complex Hadamard matrix is a square matrix

H ∈MN(C)

whose entries are on the unit circle, and whose rows are pairwise orthogonal.
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Observe that the orthogonality condition tells us that the rescaled matrix U = H/
√
N

must be unitary. Thus, these matrices form a real algebraic manifold, given by:

XN = MN(T) ∩
√
NUN

The basic example is the Fourier matrix, FN = (wij) with w = e2πi/N . In standard
matrix form, and with indices i, j = 0, 1, . . . , N − 1, this matrix is as follows:

FN =


1 1 1 . . . 1
1 w w2 . . . wN−1

1 w2 w4 . . . w2(N−1)

...
...

...
...

1 wN−1 w2(N−1) . . . w(N−1)2


More generally, we have as example the Fourier coupling of any finite abelian group

G, regarded via the isomorphism G ' Ĝ as a square matrix, FG ∈MG(C):

FG =< i, j >i∈G,j∈Ĝ

Observe that for the cyclic group G = ZN we obtain in this way the above standard
Fourier matrix FN . In general, we obtain a tensor product of Fourier matrices FN .

To be more precise here, we have the following result:

Theorem 16.21. Given a finite abelian group G, with dual group Ĝ = {χ : G→ T},
consider the Fourier coupling FG : G× Ĝ→ T, given by (i, χ)→ χ(i).

(1) Via the standard isomorphism G ' Ĝ, this Fourier coupling can be regarded as a
square matrix, FG ∈MG(T), which is a complex Hadamard matrix.

(2) In the case of the cyclic group G = ZN we obtain in this way, via the standard
identification ZN = {1, . . . , N}, the Fourier matrix FN .

(3) In general, when using a decomposition G = ZN1 × . . .× ZNk , the corresponding
Fourier matrix is given by FG = FN1 ⊗ . . .⊗ FNk .

Proof. This follows indeed from some basic facts from group theory:

(1) With the identification G ' Ĝ made our matrix is given by (FG)iχ = χ(i), and the
scalar products between the rows are computed as follows:

< Ri, Rj > =
∑
χ

χ(i)χ(j)

=
∑
χ

χ(i− j)

= |G| · δij
Thus, we obtain indeed a complex Hadamard matrix.
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(2) This follows from the well-known and elementary fact that, via the identifications

ZN = ẐN = {1, . . . , N}, the Fourier coupling here is as follows, with w = e2πi/N :

(i, j)→ wij

(3) We use here the following well-known formula, for the duals of products:

Ĥ ×K = Ĥ × K̂
At the level of the corresponding Fourier couplings, we obtain from this:

FH×K = FH ⊗ FK
Now by decomposing G into cyclic groups, as in the statement, and by using (2) for

the cyclic components, we obtain the formula in the statement. �

There are many other examples of Hadamard matrices, with some being fairly exotic,
appearing in various branches of mathematics and physics. The idea is that the complex
Hadamard matrices can be though of as being “generalized Fourier matrices”, and this is
where the interest in these matrices comes from. See [85].

In relation with the quantum groups, the starting observation is as follows:

Proposition 16.22. If H ∈MN(C) is Hadamard, the rank one projections

Pij = Proj

(
Hi

Hj

)
where H1, . . . , HN ∈ TN are the rows of H, form a magic unitary.

Proof. This is clear, the verification for the rows being as follows:〈
Hi

Hj

,
Hi

Hk

〉
=

∑
l

Hil

Hjl

· Hkl

Hil

=
∑
l

Hkl

Hjl

= Nδjk

The verification for the columns is similar, as follows:〈
Hi

Hj

,
Hk

Hj

〉
=

∑
l

Hil

Hjl

· Hjl

Hkl

=
∑
l

Hil

Hkl

= Nδik

Thus, we obtain the result. �
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We can proceed now exactly in the same way as we did with the Weyl matrices, namely
by constructing a model of C(S+

N), and performing the Hopf image construction.

We are led in this way to the following definition:

Definition 16.23. To any Hadamard matrix H ∈ MN(C) we associate the quantum
permutation group G ⊂ S+

N given by the fact that C(G) is the Hopf image of

π : C(S+
N)→MN(C)

uij → Proj

(
Hi

Hj

)
where H1, . . . , HN ∈ TN are the rows of H.

Summarizing, we have a construction H → G, and our claim is that this construction
is something really useful, with G encoding the combinatorics of H. To be more precise,
our claim is that “H can be thought of as being a kind of Fourier matrix for G”.

There are several results supporting this claim, with the main evidence coming from
the following result, which collects the basic results regarding the construction H → G:

Theorem 16.24. The construction H → G has the following properties:

(1) For a Fourier matrix H = FG we obtain the group G itself, acting on itself.
(2) For H 6∈ {FG}, the quantum group G is not classical, nor a group dual.
(3) For a tensor product H = H ′ ⊗H ′′ we obtain a product, G = G′ ×G′′.

Proof. All this material is standard, and elementary, as follows:

(1) Let us first discuss the cyclic group case, where our Hadamard matrix is a usual
Fourier matrix, H = FN . Here the rows of H are given by Hi = ρi, where:

ρ = (1, w, w2, . . . , wN−1)

Thus, we have the following formula, for the associated magic basis:

Hi

Hj

= ρi−j

It follows that the corresponding rank 1 projections Pij = Proj(Hi/Hj) form a cir-
culant matrix, all whose entries commute. Since the entries commute, the corresponding
quantum group must satisfy G ⊂ SN . Now by taking into account the circulant property
of P = (Pij) as well, we are led to the conclusion that we have:

G = ZN
In the general case now, where H = FG, with G being an arbitrary finite abelian

group, the result can be proved either by extending the above proof, of by decomposing
G = ZN1 × . . .× ZNk and using (3) below, whose proof is independent from the rest.
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(2) This is something more tricky, needing some general study of the representations
whose Hopf images are commutative, or cocommutative. For details here, along with a
number of supplementary facts on the construction H → G, we refer to [19].

(3) Assume that we have a tensor product H = H ′ ⊗ H ′′, and let G,G′, G′′ be the
associated quantum permutation groups. We have then a diagram as follows:

C(S+
N ′)⊗ C(S+

N ′′)
// C(G′)⊗ C(G′′) // MN ′(C)⊗MN ′′(C)

��
C(S+

N)

OO

// C(G) // MN(C)

Here all the maps are the canonical ones, with those on the left and on the right
coming from N = N ′N ′′. At the level of standard generators, the diagram is as follows:

u′ij ⊗ u′′ab // w′ij ⊗ w′′ab // P ′ij ⊗ P ′′ab

��
uia,jb

OO

// wia,jb // Pia,jb

Now observe that this diagram commutes. We conclude that the representation asso-
ciated to H factorizes indeed through C(G′)⊗ C(G′′), and this gives the result. �

Going beyond the above result is an interesting question, and we refer here to [14], and
follow-up papers. There are several computations available here, for the most regarding
the deformations of the Fourier models. We believe that the unification of all this with
the Weyl matrix models is a very good question, related to many interesting things.

16e. Exercises

The matrix modelling problematics is something quite exciting, and we have several
exercises here. To start with, we have the following question:

Exercise 16.25. Given a real algebraic manifold of the free complex sphere,

X ⊂ SN−1
C,+

and an integer K ∈ N, construct a universal K ×K model for C(X),

πK : C(X)→MK(C(TK))

with TK being the space of all K ×K models for C(X).
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This is something quite theoretical, the problem being that of proving that the uni-
versal model space TK in the above is indeed compact.

As a continuation of this exercise, dealing now with quantum groups, we have:

Exercise 16.26. Given X ⊂ SN−1
C,+ and K ∈ N as above, consider the submanifold

X(K) ⊂ X obtained by factorizing the universal K ×K model:

πK : C(X)→ C(X(K)) ⊂MK(C(TK))

Prove that at K = 1 we obtain in this way the classical version of X,

X(1) = Xclass

and that at K ≥ 2, assuming that X is a compact quantum group, X = G ⊂ U+
n with

N = n2, the space X(K) is not necessarily a compact quantum group.

Here the first question is something more or less trivial, and so the exercise is about
finding counterexamples at K ≥ 2, in the quantum group case.

In relation now with the notion of stationarity, we have:

Exercise 16.27. Work out the details for the fact that the stationarity of a model

π : C(G)→MK(C(T ))

implies its faithfulness.

This is something that we already discussed in the above, but with some standard
functional analysis details missing. The problem is that of working out these details.

In relation with the notion of inner faithfulness, we have:

Exercise 16.28. Find an example of an inner faithful model

π : C(G)→MK(C(T ))

which is not faithful, not coming from a classical group, or a group dual.

This is something quite tricky, and it is of course possible to cheat a bit here, by using
product operations. The exercise asks for a high-quality counterexample.

In relation now with the Weyl and Pauli matrices, we have:

Exercise 16.29. Extract from the general theory developed above a concise proof for
the fact that the Pauli matrix model

π : C(S+
4 ) ⊂M4(C(SU2))

π(uij) = [x→ Proj(cixcj)]

where x ∈ SU2, and c1, c2, c3, c4 are the Pauli matrices, is faithful.
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This is something that we discussed above, but the problem now is that of doing the
thing, and writing down a concise, self-contained proof for the faithfulness of π.

Finally, in connection with the Hadamard matrices, we have:

Exercise 16.30. Prove that the size of a real Hadamard matrix,

H ∈MN(±1)

must be N = 2 or must satisfy the condition

N ∈ 4N
and that conversely, given N ∈ 4N, there exists an Hadamard matrix H ∈MN(±1).

This final exercise should not be that difficult, given the fact that the Hadamard
matrices are very concrete objects, well below the abstractions from the present book.
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[72] M. Lupini, L. Mančinska and D.E. Roberson, Nonlocal games and quantum permutation groups, J.

Funct. Anal. 279 (2020), 1–39.
[73] S. Malacarne, Woronowicz’s Tannaka-Krein duality and free orthogonal quantum groups, Math.

Scand. 122 (2018), 151–160.
[74] A. Mang and M. Weber, Categories of two-colored pair partitions, part II: Categories indexed by

semigroups, J. Combin. Theory Ser. A 180 (2021), 1–37.



396 BIBLIOGRAPHY

[75] V.A. Marchenko and L.A. Pastur, Distribution of eigenvalues in certain sets of random matrices,
Mat. Sb. 72 (1967), 507–536.

[76] J.P. McCarthy, A state-space approach to quantum permutations, preprint 2021.
[77] B. Musto, D.J. Reutter and D. Verdon, A compositional approach to quantum functions, J. Math.

Phys. 59 (2018), 1–57.
[78] J. Nash, The imbedding problem for Riemannian manifolds, Ann. of Math. 63 (1956), 20–63.
[79] S. Neshveyev and L. Tuset, Compact quantum groups and their representation categories, SMF

(2013).
[80] A. Nica and R. Speicher, Lectures on the combinatorics of free probability, Cambridge University

Press (2006).
[81] S. Raum, Isomorphisms and fusion rules of orthogonal free quantum groups and their complexifica-

tions, Proc. Amer. Math. Soc. 140 (2012), 3207–3218.
[82] S. Raum and M. Weber, The full classification of orthogonal easy quantum groups, Comm. Math.

Phys. 341 (2016), 751–779.
[83] S. Schmidt, On the quantum symmetry groups of distance-transitive graphs, Adv. Math. 368 (2020),

1–43.
[84] G.C. Shephard and J.A. Todd, Finite unitary reflection groups, Canad. J. Math. 6 (1954), 274–304.
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Möbius matrix, 109
magic matrix, 203, 204, 388
magic unitary, 203, 204
main character, 192, 193, 199, 211, 220, 328
Marchenko-Pastur law, 216, 219, 221
matching pairing, 97, 101, 130
matrix model, 339, 369
maximal tensor product, 328
maximality, 287, 291
maximality conjecture, 292
minimal tensor product, 76, 328
moment, 177, 180
moment-cumulant formula, 196

noncommutative geometry, 270
noncrossing pairing, 97, 100
normal element, 18
normal law, 115, 117, 179
normal subgroup, 334

operator algebra, 14
opposite algebra, 33, 36
orbits, 315
order of partitions, 109
orientability, 281, 285
orthogonal group, 101, 193
orthogonal polynomial, 30
orthogonal quantum group, 46, 96, 100, 117

pairing, 97, 101
partial isometry, 351
partial permutation, 359
partitions with even blocks, 168
Pauli matrix, 379, 385
Pauli model, 385
Peter-Weyl corepresentation, 63, 82
Peter-Weyl representation, 63, 82
Peter-Weyl theorem, 62, 64, 72, 74
PLT, 221
Poisson law, 199, 220, 221
Poisson limit theorem, 221
polynomial growth, 332
Pontrjagin dual, 25, 31, 40
positive element, 18
product of quantum groups, 43, 70, 75
projective quantum group, 149
projective unitary group, 156
projective unitary quantum group, 156
projective version, 45, 70, 75, 149, 150, 156, 287

quantum affine isometry, 50
quantum automorphism group, 225
quantum group, 33, 36
quantum isometry, 50
quantum isometry group, 50, 174
quantum permutation, 204, 205, 292
quantum permutation group, 204, 208, 211
quantum reflection group, 242, 277, 302
quantum space, 18
quantum subgroup, 44, 45, 75
quizzy quantum group, 171
quotient quantum group, 44, 45, 70



400 INDEX

quotient space, 345

R-transform, 190, 191, 244
random matrix, 369
random variable, 177, 180
rational function, 15
rational functional calculus, 15
Rayleigh variable, 197
real algebraic manifold, 27, 96
real quantum group, 274, 277
real version, 258, 285
removing blocks, 250
representation, 57

Schur-Weyl twisting, 163, 171, 173, 198, 257
semicircle law, 115, 117, 122, 127, 138, 187, 191
semicircle partition, 98
semicircular variable, 141
shift, 15, 138, 187, 188
shrinking partitions, 210, 218
signature map, 168
simplex, 225
singletons and pairings, 162
skeleton, 304
slicing, 260, 261, 266
smooth representation, 57
smooth version, 258, 285
spatial tensor product, 76
special unitary group, 120
spectral decomposition, 226
spherical coordinates, 123
spinned corepresentation, 59
square graph, 225, 230
square of antipode, 38
standard cube, 273
standard tori, 304
stationary model, 370
stationary on its image, 375, 382
Stieltjes inversion, 116
Stirling numbers, 222
sudoku unitary, 235
sum of corepresentations, 58
super-identity, 120, 125
super-orthogonal group, 126, 150
super-orthogonal quantum group, 126
super-space, 125
symmetric group, 199, 203
symplectic group, 126

Tannakian category, 82, 373
Tannakian duality, 95, 103, 154
Temperley-Lieb algebra, 210, 216
tensor category, 61, 81, 84, 373
tensor product, 184
tensor product of corepresentation, 58
topological generation, 157
toral conjectures, 335, 341
torsion-free, 333
torus, 24, 299
transitivity, 316
truncated character, 194, 223, 246, 267
twist, 294
twistability, 256
twistable quantum group, 284
twisted integration, 198
twisted Kronecker symbol, 169
twisted orthogonal group, 164, 167
twisted sphere, 164
twisted standard cube, 292
twisted unitary group, 164, 167
twisted Weingarten formula, 198
twisting, 122, 163, 218, 240, 256, 257, 292

uniform quantum group, 250, 251, 256, 293
uniformity, 282
unitary group, 101, 194
unitary quantum group, 46, 96, 100, 145, 156
unitary version, 258, 285

vacuum vector, 139, 188
Voiculescu circular law, 138, 145, 192
Voiculescu law, 192
Voiculescu R-transform, 190, 191

Weingarten formula, 71, 195, 364
Weingarten integration, 71
Weyl matrix, 379
Wigner law, 115, 117, 122, 127, 191, 193
Wigner semicircle, 138, 187
Woronowicz, 36
Woronowicz algebra, 36

Young tableaux, 109, 117


	Preface
	Part I. Quantum groups
	Chapter 1. Quantum spaces
	1a. Operator algebras
	1b. Gelfand theorem
	1c. Algebraic manifolds
	1d. Axiomatization fix
	1e. Exercises

	Chapter 2. Quantum groups
	2a. Hopf algebras
	2b. Axioms, theory
	2c. Product operations
	2d. Free constructions
	2e. Exercises

	Chapter 3. Representation theory
	3a. Representations
	3b. Peter-Weyl theory
	3c. The Haar measure
	3d. More Peter-Weyl
	3e. Exercises

	Chapter 4. Tannakian duality
	4a. Tensor categories
	4b. Abstract algebra
	4c. The correspondence
	4d. Brauer theorems
	4e. Exercises


	Part II. Quantum rotations
	Chapter 5. Free rotations
	5a. Gram determinants
	5b. The Wigner law
	5c. Clebsch-Gordan rules
	5d. Symplectic groups
	5e. Exercises

	Chapter 6. Unitary groups
	6a. Gaussian laws
	6b. Circular variables
	6c. Fusion rules
	6d. Further results
	6e. Exercises

	Chapter 7. Easiness, twisting
	7a. Partitions, easiness
	7b. Basic operations
	7c. Ad-hoc twisting
	7d. Schur-Weyl twisting
	7e. Exercises

	Chapter 8. Probabilistic aspects
	8a. Free probability
	8b. Limiting theorems
	8c. Laws of characters
	8d. Truncated characters
	8e. Exercises


	Part III. Quantum permutations
	Chapter 9. Quantum permutations
	9a. Magic matrices
	9b. Representations
	9c. Twisted extension
	9d. Poisson laws
	9e. Exercises

	Chapter 10. Quantum reflections
	10a. Finite graphs
	10b. Reflection groups
	10c. Complex reflections
	10d. Bessel laws
	10e. Exercises

	Chapter 11. Classification results
	11a. Uniform groups
	11b. Twistability
	11c. Orientability
	11d. Ground zero
	11e. Exercises

	Chapter 12. The standard cube
	12a. Face results
	12b. Edge results
	12c. Beyond easiness
	12d. Maximality questions
	12e. Exercises


	Part IV. Advanced topics
	Chapter 13. Toral subgroups
	13a. Diagonal tori
	13b. The skeleton
	13c. Generation questions
	13d. Fourier liberation
	13e. Exercises

	Chapter 14. Amenability, growth
	14a. Functional analysis
	14b. Amenability
	14c. Growth
	14d. Toral conjectures
	14e. Exercises

	Chapter 15. Homogeneous spaces
	15a. Quotient spaces
	15b. Partial isometries
	15c. Free isometries
	15d. Integration theory
	15e. Exercises

	Chapter 16. Modelling questions
	16a. Matrix models
	16b. Stationarity
	16c. Weyl matrices
	16d. Fourier models
	16e. Exercises

	Bibliography
	Index


