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ABSTRACT. The unitary group Uy has a free analogue U]J\;, and the closed subgroups
G C UI"\'} can be thought of as being the “compact quantum Lie groups”. We review
here the general theory of such quantum groups. We discuss as well a number of more
advanced topics, selected for their beauty, and potential importance.



Preface

A quantum group is something similar to a group, except for the fact that the functions
on it f : G — C do not necessarily commute, fg # gf. As the name indicates, quantum
groups are meant to have something with do with quantum physics.

This book is an introduction to the quantum groups, or rather to the “simplest”
such quantum groups. Everything is accessible with a minimal knowledge of basic linear
algebra, basic group theory, basic functional analysis, and basic probability. The book
itself covers what can be taught during a 1-year graduate course.

The idea is that the unitary group Uy has a certain free analogue Uy, and the closed
quantum subgroups G C Uy can be thought of as being the “compact quantum Lie
groups”. And it is about these latter quantum groups that the present book is about.
We will see, following work of Woronowicz from the late 80s, that a nice abstract theory,
including an existence result for the Haar measure, an analogue of the Peter-Weyl theory,
and an analogue of the Tannakian duality as well, can be developed for such quantum
groups. This is certainly less sharp that what can be done with the classical Lie groups,
but in what concerns everything algebra and probability, Tannakian duality, leading to
Brauer theorems and Weingarten calculus, will prove to be a quite efficient tool.

At the level of basic examples, we have of course the usual compact Lie groups G C Uy,
as well as, by an extension of the usual Pontrjagin duality, the abstract duals G = T of
the finitely generated discrete groups, I' =< g¢1,...,g9xy >. These latter examples are
quite interesting, philosophically speaking, because they suggest completing the general
theory mentioned above, for the arbitrary closed subgroups G C Uy, with considerations
regarding the Kesten amenability, Cayley graph and growth for the duals I' = G. This is
something which is not very hard to develop, and we will discuss this too.

At the level of the really new and interesting examples, we have U, itself, to start
with. There are in fact many other other objects of the same type, GT C Uy, obtained
by “liberating” suitable compact Lie groups G C Uy. Variations of this construction can
be obtained by half-liberating instead of liberating, or twisting at ¢ = —1, and so on. We
will end up in this way with a whole menagery of new quantum groups, waiting to be
further investigated, and applied to various questions in math and physics.
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4 PREFACE

So far, so good, obviously there is some nice mathematics going on here, worth ex-
plaining in a graduate textbook, and this is what we will do. As already mentioned, the
present book covers what can be taught during a 1-year graduate course, with each of the
4 parts corresponding to what can be taught during a half-semester, and with this being
certified information, based on my own experience with classes at Toulouse and Cergy,
and with various graduate school minicourses. For a 1-semester course, the lineup would
be Part I, then selected topics from Part II and Part III, and with a look into Part IV
as well. Finally, the overall content is mostly algebra and probability, with a flavor of
physics, and this can be taught in parallel or as a complement to topics of the same type,
such as Lie groups, Operator algebras, Free probability or Random matrices.

At the level of things which are not done in this book, there are of course so many
of them. In what regards the general theory, much work has gone into the study of the
quantum permutation group Sy, and of its closed subgroups G C Sy, and the present
book is only an introduction to the subject. There is certainly room for a second book
here, on precisely this topic, quantum permutation groups, but at a more advanced level,
and I would like to recommend here my future research monograph on the subject.

Also, and importantly, although quantum groups belong somewhat by definition to
mathematical physics, and the material presented here was developed by Woronowicz
and others with physics applications in mind, there will be no actual physics in this book.
Following Connes, Jones, Voiculescu and others, the potential applications of what we
do here are to statistical mechanics, then quantum mechanics of all types, concrete or
more speculative, and quantum information. However, all this is not really understood
and developed, and this is rather material to be hopefully explained in a future book.
For the interested young reader, the main problem, which is currently unsolved, is that
of developing a kind of Yang-Mills theory for Sj;, with the case N = 4 corresponding to
a modified QED, and with the case N = 9 corresponding to a modified QCD.

Getting back now to the present book, the mathematics here is based on a massive
number of research papers, starting with those of Woronowicz from the late 80s. I was
personally involved in all this, during the last 30 years, and it is a pleasure to thank
my coworkers, and particularly Julien Bichon, Benoit Collins, Steve Curran and Roland
Speicher, for substantial joint work on the subject, and for having taught me so many
things. Finally, many thanks go as well to my cats, for sharing with me some of their
quantum mechanical knowledge, cat common sense, and other skills.



Contents

Preface 3
Part I. Quantum groups 9
Chapter 1. Quantum spaces 11
la. Operator algebras 11
1b. Gelfand theorem 17
lc. Algebraic manifolds 22
1d. Axiomatization fix 26
le. Exercises 30
Chapter 2. Quantum groups 33
2a. Hopf algebras 33
2b. Axioms, theory 36
2c. Product operations 43
2d. Free constructions 46
2e. Exercises 95
Chapter 3. Representation theory 57
3a. Representations o7
3b. Peter-Weyl theory 60
3c. The Haar measure 65
3d. More Peter-Weyl 71
3e. Exercises 79
Chapter 4. Tannakian duality 81
4a. Tensor categories 81
4b. Abstract algebra 87
4c. The correspondence 91
4d. Brauer theorems 96
4e. Exercises 102



6

Part II. Quantum rotations

Chapter 5. Free rotations
Ha. Gram determinants
5b. The Wigner law
5c¢. Clebsch-Gordan rules
5d. Symplectic groups
5e. Exercises

Chapter 6. Unitary groups
6a. Gaussian laws
6b. Circular variables
6¢. Fusion rules
6d. Further results
6e. Exercises

Chapter 7. Easiness, twisting
Ta. Partitions, easiness
7b. Basic operations
7c. Ad-hoc twisting
7d. Schur-Weyl twisting
Te. Exercises

Chapter 8. Probabilistic aspects
8a. Free probability
8b. Limiting theorems
8c. Laws of characters
8d. Truncated characters
8e. Exercises

Part III. Quantum permutations

Chapter 9. Quantum permutations
9a. Magic matrices
9b. Representations
9c. Twisted extension
9d. Poisson laws
9e. Exercises

CONTENTS

105

107
107
113
117
124
128

129
129
134
143
148
151

153
153
157
163
167
175

177
177
186
192
194
199

201

203
203
207
212
219
223



CONTENTS

Chapter 10. Quantum reflections
10a. Finite graphs
10b. Reflection groups
10c. Complex reflections
10d. Bessel laws
10e. Exercises

Chapter 11. Classification results
11a. Uniform groups
11b. Twistability
11c. Orientability
11d. Ground zero
11e. Exercises

Chapter 12. The standard cube
12a. Face results
12b. Edge results
12c. Beyond easiness
12d. Maximality questions
12e. Exercises

Part IV. Advanced topics

Chapter 13. Toral subgroups
13a. Diagonal tori
13b. The skeleton
13c. Generation questions
13d. Fourier liberation
13e. Exercises

Chapter 14. Amenability, growth
14a. Functional analysis
14b. Amenability
14c. Growth
14d. Toral conjectures
14e. Exercises

Chapter 15. Homogeneous spaces

225
225
232
237
241
247

249
249
254
257
262
271

273
273
278
282
287
295

297

299
299
303
306
312
319

321
321
325
332
335
342

345



15a. Quotient spaces
15b. Partial isometries
15c. Free isometries
15d. Integration theory
15e. Exercises

Chapter 16. Modelling questions
16a. Matrix models
16b. Stationarity
16c. Weyl matrices
16d. Fourier models
16e. Exercises

Bibliography

Index

CONTENTS

345
351
354
363
368

369
369
375
379
386
390

393
397



Part 1

Quantum groups



Country roads, take me home
To the place I belong
West Virginia, mountain mama
Take me home, country roads



CHAPTER 1

Quantum spaces

la. Operator algebras

A quantum group G is something similar to a classical group, except for the fact that
the functions on it f : G — C do not necessarily commute, fg # gf. Due to this fact, G
is not exactly a set of points, or transformations, but rather an abstract object, described
by the algebra A of functions on it f : G — C, which can be noncommutative.

In order to introduce the quantum groups, we need some sort of algebraic geometry
correspondence, between spaces and algebras. We will use the space/algebra correspon-
dence coming from operator algebra theory. Here by “operator” we mean bounded linear
operator T': H — H on a Hilbert space, and as a starting point, we have:

DEFINITION 1.1. A Hilbert space is a complex vector space H given with a scalar
product < x,y >, satisfying the following conditions:

(1) <z,y > is linear in x, and antilinear in y.

(2) <x,y>=<y,z >, foranyx Y.

(3) <x,x >>0, for any x # 0.

(4) H is complete with respect to the norm ||z|| = /< x, T >.

Here the fact that ||.|| is indeed a norm comes from the Cauchy-Schwarz inequality,
which states that if (1,2,3) above are satisfied, then we have:

| <ay> [ <[] [lyll

Indeed, this inequality comes from the fact that the following degree 2 polynomial,
with t € R and w € T, being positive, its discriminant must be negative:

f(t) = llz + twyl]?

In finite dimensions, any algebraic basis {f1,..., fy} can be turned into an orthonor-
mal basis {ey,...,en}, by using the Gram-Schmidt procedure. Thus, we have H ~ CV,
with this latter space being endowed with its usual scalar product:

<wy>=) il

11



12 1. QUANTUM SPACES

The same happens in infinite dimensions, once again by Gram-Schmidt, coupled if
needed with the Zorn lemma, in case our space is really very big. In other words, any
Hilbert space has an orthonormal basis {e;}ic7, and we have H ~ [*(I).

Of particular interest is the “separable” case, where I is countable. According to the
above, there is up to isomorphism only one Hilbert space here, namely H = [*(N).

All this is, however, quite tricky, and can be a bit misleading. Consider for instance
the space H = L?[0, 1] of square-summable functions f : [0,1] — C, with:

< fg >:/0 f(@)g(x)da

This space is of course separable, because we can use the basis f,, = 2™ with n € N,
orthogonalized by Gram-Schmidt. However, the orthogonalization procedure is something
non-trivial, and so the isomorphism H ~ [*(N) that we obtain is something non-trivial as
well. Doing some computations here is actually a very good exercise.

Let us get now into the study of operators. We first have:

PROPOSITION 1.2. Let H be a Hilbert space, with orthonormal basis {e;}ic;. The
algebra L(H) of linear operators T : H — H embeds then into the matriz algebra M (C),
with T corresponding to the matriz M;; =< Te;,e; >. In particular:

(1) In the finite dimensional case, where dim(H) = N < oo, we obtain in this way a
usual matriz algebra, L(H) ~ My(C).

(2) In the separable infinite dimensional case, where I ~ N, we obtain in this way a
subalgebra of the infinite matrices, L(H) C My (C).

PRrROOF. The correspondence T'— M in the statement is indeed linear, and its kernel
is {0}. As for the last two assertions, these are clear as well. O

The above result is something quite theoretical, because for basic spaces like L?[0, 1],
which do not have a simple orthonormal basis, the embedding £(H) C M. (C) that we
obtain is not very useful. Thus, while the operators T': H — H are basically some infinite
matrices, it is better to think of these operators as being objects on their own.

In what follows we will be interested in the operators 17" : H — H which are bounded.
Regarding such operators, we have the following result:

THEOREM 1.3. Given a Hilbert space H, the linear operators T : H — H which are
bounded, in the sense that ||T|| = sup, < [[Tx|| is finite, form a complex algebra with
unit, denoted B(H). This algebra has the following properties:

(1) B(H) is complete with respect to ||.||, and so we have a Banach algebra.
(2) B(H) has an involution T'— T*, given by < Tx,y >=< x,T*y >.
In addition, the norm and the involution are related by the formula ||TT*|| = ||T|[?.
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PROOF. The fact that we have indeed an algebra follows from:
1S+ T < |[S]] + |17
[IAT]] = [A[-[[T]]
ST < [IS1]- 1T
(1) Assuming that {7T,,} C B(H) is Cauchy, the sequence {T,x} is Cauchy for any
x € H, so we can define the limit 7" = lim,,_,, T}, by setting:
Tx = lim T,z

n—o0

It is routine to check that this formula defines indeed a bounded operator T' € B(H),
and that we have T,, — T in norm, and this gives the result.

(2) Here the existence of T* comes from the fact that ¢(x) =< T'z,y > being a linear
map H — C, we must have a formula as follows, for a certain vector T*y € H:

o) =<uz,T"y >
Moreover, since this vector is unique, 7™ is unique too, and we have as well:
(S+T)y=5"+1"
(AT)* = \T*
(ST)" =T"5"
() =T
Observe also that we have indeed T* € B(H ), because:

|T|| = sup sup <Tz,y>
[lzl|=1 llyl|=1

= sup sup <z, THy >
llyll=1||z||=1

= [|77]]
Regarding now the last assertion, we have:
77| < |7 - [|T*]) = |7
Also, we have the following estimate:

IT|]? = ||81\TI—)1‘ <Tz,Tx > |
= sup | <z, T"Tx > |
[lz]|=1

< I

By replacing in this formula T — T™* we obtain ||T||* < ||TT*||. Thus, we have proved
both the needed inequalities, and we are done. U
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Observe that, in view of Proposition 1.2, we embeddings of x-algebras, as follows:
B(H) C L(H) C M;(C)

In this picture the adjoint operation 7" — T™ constructed above takes a very simple
form, namely (M*);; = M ;, at the level of the associated matrices.

We will be interested here in the algebras of operators, rather than in the operators
themselves. The axioms here, coming from Theorem 1.3, are as follows:
DEFINITION 1.4. A unital C*-algebra is a complex algebra with unit A, having:
(1) A norm a — ||al|, making it a Banach algebra (the Cauchy sequences converge).
(2) An involution a — a*, which satisfies ||aa*|| = ||a||?, for any a € A.

We know from Theorem 1.3 that the full operator algebra B(H) is a C*-algebra, for any
Hilbert space H. More generally, any closed x-subalgebra A C B(H) is a C*-algebra. The
celebrated Gelfand-Naimark-Segal (GNS) theorem states that any C*-algebra appears in
fact in this way. This is something non-trivial, and we will be back to it later on.

For the moment, we will be interested in developing the theory of C'*-algebras, without
reference to operators, or Hilbert spaces. Our first task will be that of understanding the
structure of the commutative C*-algebras. As a first observation, we have:

PROPOSITION 1.5. If X is an abstract compact space, the algebra C(X) of continuous
functions f : X — C is a C*-algebra, with structure as follows:

(1) The norm is the usual sup norm, ||f|| = sup,ex |f(2)].

(2) The involution is the usual involution, f*(x) = f(x).
This algebra is commutative, in the sense that fg = gf, for any f,g € C(X).

PROOF. Almost everything here is trivial. Observe also that we have indeed:
LFIl = sup |f(2) f(2)]
zeX
= sup|f(z)?
zeX

= [IfI]
Finally, we have fg = gf, since f(x)g(x) = g(z)f(x) for any z € X. O

Our claim now is that any commutative C*-algebra appears in this way. This is a
non-trivial result, which requires a number of preliminaries. Let us begin with:

DEFINITION 1.6. The spectrum of an element a € A is the set
o(a) = {A = C(a g A—l}

where A=Y C A is the set of invertible elements.



1A. OPERATOR ALGEBRAS 15

As a basic example, the spectrum of a usual matrix M € My(C) is the collection of
its eigenvalues. Also, the spectrum of a continuous function f € C'(X) is its image. In
the case of the trivial algebra A = C, the spectrum of an element is the element itself.

As a first, basic result regarding spectra, we have:
PROPOSITION 1.7. We have the following formula, valid for any a,b € A:
o(ab) U {0} = o(ba) U {0}

Moreover, there are examples where o(ab) # o(ba).

Proor. We first prove that we have the following implication:
1¢o(ab) = 1¢ o(ba)
Assume indeed that 1 — ab is invertible, with inverse ¢ = (1 — ab)~'. We have then
abc = cab = ¢ — 1, and by using these identities, we obtain:
(1+bca)(1 —ba) = 1+ bca — ba — bcaba
= 14 bca — ba — beca + ba
=1
A similar computation shows that we have as well (1 —ba)(1 + bca) = 1. We conclude

that 1 — ba is invertible, with inverse 1 + bca, which proves our claim. By multiplying by
scalars, we deduce from this that we have, for any A € C — {0}, as desired:

A ¢ o(ab) = X ¢ o(ba)

Regarding now the last claim, let us first recall that for usual matrices a,b € My (C)
we have 0 € o(ab) <= 0 € o(ba), because ab is invertible if any only if ba is.

However, this latter fact fails for general operators on Hilbert spaces. As a basic
example, we can take a, b to be the shift S(e;) = e;;1 on the space [?(N), and its adjoint.
Indeed, we have S*S = 1, and SS* being the projection onto eg, it is not invertible. [

Given an element a € A, and a rational function f = P/Q having poles outside o(a),
we can construct the element f(a) = P(a)Q(a)™!. For simplicity, we write:

_ Pla)
f(CL) - Q(CL)

With this convention, we have the following result:

THEOREM 1.8. We have the “rational functional calculus” formula

o(f(a)) = f(o(a))

valid for any rational function f € C(X) having poles outside o(a).



16 1. QUANTUM SPACES

PROOF. In order to prove this result, we can proceed in two steps, as follows:

(1) Assume first that we are in the polynomial case, f € C[X]. We pick A € C, and
we write f(X) —A=¢(X —r)...(X —r,). We have then, as desired:

Ago(fla)
—
—
—
—

fla) =X e A
cla—ry)...(a—ry,) €A™
a—71,...,a—1, € AL
T1, ..y Tn & o(a)

A ¢ fa(a))

(2) Assume now that we are in the general case, f € C(X). We pick A € C, we write
f=P/Q, and we set ' = P — A\Q. By using (1), we obtain:

A€ a(f(a))

11111

F(a) ¢ A™
0€o(F(a))
0 € F(o(a))
Jueo(a), Flp) =0
A€ flo(a))

Thus, we have obtained the formula in the statement. Il

Given an element a € A, its spectral radius p(a) is the radius of the smallest disk
centered at 0 containing o(a). We have the following key result:

THEOREM 1.9. Let A be a C*-algebra.

(1) The spectrum of a norm one element is in the unit disk.

(2) The spectrum of a unitary element (a* = a™') is on the unit circle.

(3) The spectrum of a self-adjoint element (a = a*) consists of real numbers.
(4) The spectral radius of a normal element (aa* = a*a) is equal to its norm.

PRrRoOOF. We use the various results established above.

(1) This comes from the following formula, valid when ||a|| < 1:

1 2
—=14+a+a" +...

1—a

(2) Assuming a* = a™!

, we have the following norm computations:

lall = Vlaa*]] = V1 =1
la™"]] = la"[| = |lall = 1
If we denote by D the unit disk, we obtain from this, by using (1):
lla||] =1 = o(a) C D
jla™'||=1 = o(a')C D
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1 we have:

On the other hand, by using the rational function f(z) = 2z~
ola’yc D = o(a)Cc D!
Now by putting everything together we obtain, as desired:
olayc DND =T

(3) This follows by using (2), and the rational function f(z) = (z +it)/(z — it), with
t € R. Indeed, for t >> 0 the element f(a) is well-defined, and we have:

a + it *_a—it_ a+it\ !
a—it) a+it \a—it

Thus f(a) is a unitary, and by (2) its spectrum is contained in T. We conclude that
we have f(o(a)) = o(f(a)) C T, and so o(a) C f~(T) = R, as desired.

(4) We have p(a) < ||a|| from (1). Conversely, given p > p(a), we have:

2" -
/ dz = E (/ z”_k_ldz) a® =a"?
jzl=p # — @ k=0 \lzl=p

By applying the norm and taking n-th roots we obtain:

p= lim [la"]|""
n—oo
In the case a = a* we have ||a"|| = ||a||" for any exponent of the form n = 2¥, and by
taking n-th roots we get p > ||a||. This gives the missing inequality, namely:
pla) = [lal]
In the general case, aa* = a*a, we have a"(a")" = (aa*)". We obtain from this
p(a)? = p(aa*), and since aa* is self-adjoint, we get p(aa*) = ||al|?, and we are done. [

Summarizing, we have so far a collection of useful results regarding the spectra of the
elements in C*-algebras, which are quite similar to the results regarding the eigenvalues
of the usual matrices. We will heavily use these results, in what follows.

1b. Gelfand theorem

In this section we discuss the two main results regarding the C*-algebras. First we
have the Gelfand theorem, which is particularly interesting for us, in view of our quantum
space and quantum group motivations. Then we have the GNS representation theorem,
that we will use less often, but which is something fundamental too.

The Gelfand theorem, from [62], is as follows:
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THEOREM 1.10 (Gelfand). Any commutative C*-algebra is the form
A=C(X)
with its “spectrum” X = Spec(A) appearing as the space of characters x : A — C.

PROOF. Given a commutative C*-algebra A, we can define indeed X to be the set
of characters xy : A — C, with the topology making continuous all the evaluation maps
ev, : x — x(a). Then X is a compact space, and a — ev, is a morphism of algebras:

ev:A— C(X)

(1) We first prove that ev is involutive. We use the following formula, which is similar
to the z = Re(z) 4+ iIm(z) formula for the usual complex numbers:
a+a*  ila—a*)
2 2
Thus it is enough to prove the equality ev,« = ev? for self-adjoint elements a. But this
is the same as proving that a = a* implies that ev, is a real function, which is in turn
true, because ev,(x) = x(a) is an element of o(a), contained in R.

(2) Since A is commutative, each element is normal, so ev is isometric:

|leval| = p(a) = |lal|
(3) It remains to prove that ev is surjective. But this follows from the Stone-Weierstrass
theorem, because ev(A) is a closed subalgebra of C'(X), which separates the points. O

The Gelfand theorem suggests writing any C*-algebra A, not necessarily commutative,
as A = C(X), with X being a “compact quantum space”. We will be back to this.

As a first consequence of the Gelfand theorem, we can extend Theorem 1.8 above to
the case of the normal elements (aa* = a*a), in the following way:

PROPOSITION 1.11. Assume that a € A is normal, and let f € C(co(a)).
(1) We can define f(a) € A, with f — f(a) being a morphism of C*-algebras.
(2) We have the “continuous functional calculus™ formula o(f(a)) = f(o(a)).

PROOF. Since a is normal, the C*-algebra < a > that is generates is commutative, so
if we denote by X the space formed by the characters y :< a >— C, we have:

<a>=C(X)
Now since the map X — o(a) given by evaluation at a is bijective, we obtain:
<a>=C(o(a))
Thus, we are dealing with usual functions, and this gives all the assertions. U

As another consequence of the Gelfand theorem, we can develop as well the theory of
positive elements, in analogy with the theory of positive operators, as follows:
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THEOREM 1.12. For a normal element a € A, the following are equivalent:
(1) a is positive, in the sense that o(a) C [0,00).
(2) a = b2 for some b € A satisfying b = b*.
(3) a = cc*, for some c € A.

Proor. This is something very standard, as follows:

(1) = (2) This follows from Proposition 1.11, because we can use the function
f(z) = /z, which is well-defined on o(a) C [0,000), and so set b = \/a.
(2) = (3) This is trivial, because we can set ¢ = b.

(2) = (1) Observe that this is clear too, because we have:
ola) = o(b?)
= o(b)’
C [0,00)

(3) = (1) We proceed by contradiction. By multiplying ¢ by a suitable element of
< cc® >, we are led to the existence of an element d # 0 satisfying:

—dd* >0
By writing now d = x + iy with x = x*,y = y* we have:
dd* + d*d = 2(z* +y*) > 0

Thus d*d > 0. But this contradicts the elementary fact that o(dd*),o(d*d) must
coincide outside {0}, coming from Proposition 1.7 above. O

Let us review now the other fundamental result regarding the C*-algebras, namely the
representation theorem of Gelfand, Naimark and Segal. We first have:

PROPOSITION 1.13. Let A be a commutative C*-algebra, write A = C(X), with X
being a compact space, and let ju be a positive measure on X. We have then an embedding

AC B(H)
where H = L*(X), with f € A corresponding to the operator g — fg.
PROOF. Given f € C(X), consider the following operator, on the space H = L*(X):

Ty(9) = fg
Observe that T is indeed well-defined, and bounded as well, because:

1 Fgll2 = \//X | (2)Plg(@)[2dp(z) < [[f]lollgll2

The application f — T being linear, involutive, continuous, and injective as well, we
obtain in this way a C*-algebra embedding A C B(H), as claimed. U
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In general, the idea will be that of extending this construction. We will need:

DEFINITION 1.14. Consider a linear map ¢ : A — C.

(1) ¢ is called positive when a >0 = p(a) > 0.
(2) ¢ is called faithful and positive when a >0 = ¢(a) > 0.

In the commutative case, A = C(X), the positive linear forms appear as follows, with
1 being positive, and strictly positive if we want ¢ to be faithful and positive:

o(f) = /X f (@) dpz)

In general, the positive linear forms can be thought of as being integration functionals
with respect to some underlying “positive measures”. We can use them as follows:

PROPOSITION 1.15. Let ¢ : A — C be a positive linear form.

(1) < a,b>= @(ab*) defines a generalized scalar product on A.
(2) By separating and completing we obtain a Hilbert space H .
(3) m(a) : b — ab defines a representation m: A — B(H).

(4) If  is faithful in the above sense, then m is faithful.

PROOF. Almost everything here is straightforward, as follows:
(1) This is clear from definitions, and from Theorem 1.12.

(

2)
(3) All the verifications here are standard algebraic computations.
4)

(

In order to establish the GNS theorem, it remains to prove that any C*-algebra has a
faithful and positive linear form ¢ : A — C. This is something more technical:

This is a standard procedure, which works for any scalar product.

This follows indeed from a # 0 = 7(aa*) # 0 = 7(a) # 0. O

PROPOSITION 1.16. Let A be a C*-algebra.

(1) Any positive linear form ¢ : A — C is continuous.

(2) A linear form ¢ is positive iff there is a norm one h € Ay such that ||p|| = ¢(h).
(3) For any a € A there exists a positive norm one form ¢ such that p(aa*) = ||a||*.
(4) If A is separable there is a faithful positive form ¢ : A — C.

PROOF. The proof here, which is quite technical, inspired from the existence proof of
the probability measures on abstract compact spaces, goes as follows:

(1) This follows from Proposition 1.15, via the following inequality:

[p(a)] < [lm(a)lle(1)
< |lafle(1)
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(2) In one sense we can take h = 1. Conversely, let a € A, ||a|| < 1. We have:
() = (@)l < el - ||h = all
< p(h)1
= ¢(h)
Thus we have Re(yp(a)) > 0, and it remains to prove that the following holds:
a=a" = p(a) €R
By using 1 — h > 0 we can apply the above to a =1 — h and we obtain:
Re(p(l —h)) =0

We conclude that Re(¢(1)) > Re(p(h)) = ||¢||, and so ¢(1) = ||¢||-
Summing up, we can assume h = 1. Now observe that for any self-adjoint element a,
and any t € R we have the following inequality:
(1 +ita)l* < [lol|*- [|1 + ital|*
= o(1)’|l1 + ||
< p(1)°(1+¢f]al]?)

On the other hand with ¢(a) = x + iy we have:
lp(1+ita)] = |p(1) — ty + itz
> (p(1) —ty)?
We therefore obtain that for any t € R we have:
P(L* 1+ [al]?) = (p(1) - ty)®
Thus we have y = 0, and this finishes the proof of our remaining claim.

(3) Consider the linear subspace of A spanned by the element aa*. We can define here
a linear form by the following formula:

p(Aaa”) = Allalf?

This linear form has norm one, and by Hahn-Banach we get a norm one extension to
the whole A. The positivity of ¢ follows from (2).

(4) Let (an) be a dense sequence inside A. For any n we can construct as in (3) a
positive form satisfying ¢, (a,a’) = ||a,||?, and then define ¢ in the following way:

wzzlz,f

| AS)
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Let a € A be a nonzero element. Pick a, close to a and consider the pair (H, )
associated to the pair (A, p,), as in Proposition 1.15. We have then:

pn(aa®) = |[l(a)1]]
> |lw(@n)1]] = lla = a]
= lanll = [la = an]]
> 0
Thus ¢, (aa*) > 0. It follows that we have p(aa*) > 0, and we are done. O

With these ingredients in hand, we can now state and prove:

THEOREM 1.17 (GNS theorem). Let A be a C*-algebra.

(1) A appears as a closed x-subalgebra A C B(H), for some Hilbert space H.
(2) When A is separable (usually the case), H can be chosen to be separable.
(3) When A is finite dimensional, H can be chosen to be finite dimensional.

PRrOOF. This result, from [63], follows indeed by combining the construction from
Proposition 1.15 above with the existence result from Proposition 1.16. U

Generally speaking, the GNS theorem is something very powerful and concrete, which
perfectly complements the Gelfand theorem, and the resulting compact quantum space
formalism. We can go back to good old Hilbert spaces, whenever we get lost.

1lc. Algebraic manifolds

The Gelfand theorem has some important philosophical consequences. Indeed, in view
of this theorem, we can formulate the following definition:

DEFINITION 1.18. Given an arbitrary C*-algebra A, we write A = C(X), and call X
a compact quantum space. FEquivalently, the category of the compact quantum spaces is
the category of the C*-algebras, with the arrows reversed.

When A is commutative, the space X considered above exists indeed, as a Gelfand
spectrum, X = Spec(A). In general, X is something rather abstract, and our philosophy
here will be that of studying of course A, but formulating our results in terms of X. For
instance whenever we have a morphism ® : A — B, we will write A = C(X),B = C(Y),
and rather speak of the corresponding morphism ¢ : Y — X. And so on.

We will see later on, after developing some more theory, that this formalism has its
limitations, and needs a fix. For the moment, however, let us explore the possibilities that
it opens up, and leave the technical issues and their fixes for later.

Inspired by the Connes philosophy [53], we have the following definition, which is
something quite recent, coming from the work in [4], [30], [64]:
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DEFINITION 1.19. We have compact quantum spaces, constructed as follows,

T = xf,fo = 1)
C(ngrl) =C" (a:l, . ,xN‘ szwf = foxl = 1)

called respectively the free real sphere, and the free complex sphere.

C(Sﬂgll) =C" (l‘l,...,ZEN

Here the C* symbols on the right stand for “universal C*-algebra generated by”. The
fact that such universal C*-algebras exist indeed follows by considering the corresponding
universal x-algebras, and then completing with respect to the biggest C*-norm. Observe
that this biggest C*-norm exists indeed, because the quadratic conditions give:

il P = lzsaf|| < |1 wiaf|l = 1
7

Given a compact quantum space X, its classical version is the compact space X uss
obtained by dividing C'(X) by its commutator ideal, and using the Gelfand theorem:

C(Xcla33> = C(X)/[ , =< [a7 b] >

Observe that we have an embedding of compact quantum spaces X455 C X. In this
situation, we also say that X appears as a “liberation” of X.

As a first result regarding the above free spheres, we have:

PROPOSITION 1.20. We have embeddings of compact quantum spaces, as follows,

N-—1 N—1
SC > SC,_,'_

N—-1 N—-1
S]R > SR,+

and the spaces on the right appear as liberations of the spaces of the left.

PRrROOF. The first assertion is clear. For the second one, we must establish the following
isomorphisms, where C* stands for “universal commutative C*-algebra”:

comm
T =], E ri = 1)
i
N—l * * *
C(Se ) =Crm (ml,...,x]\/’ g Tl = g xixi:1>
i i

But these isomorphisms are both clear, by using the Gelfand theorem. U

C(Sgil) = C:omm (ml, .., N
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We can enlarge our class of basic manifolds by introducing tori, as follows:

DEFINITION 1.21. Given a closed subspace S C S(]C\fjrl, the subspace T' C S given by

18 called associated torus. In the real case, S C Sﬂgjrl, we also call T' cube.

As a basic example here, for S = S(]CV ~! the corresponding submanifold 7" C S appears
by imposing the relations |z;| = \/LN to the coordinates, so we obtain a torus:

S=5" = T:{xGCN‘\m:\/Lﬁ}

As for the case of the real sphere, S = S5 !, here the submanifold T C S appears by
imposing the relations x; = :I:\/Lﬁ to the coordinates, so we obtain a cube:

S=5" = T:{xeRN

1
T = t——=
=t
Observe that we have a relation here with group theory, because the complex torus
computed above is the group TV, and the cube is the finite group Z%'.

In general now, in order to compute 7', we can use the following simple fact:

ProPOSITION 1.22. When S C Sg;l 1s an algebraic manifold, in the sense that

C(8) = (S [ (filan, .. aw) = 0)
for certain noncommutative polynomials f; € C < x1,...,xNn >, we have

c(Tr)=cr (ul,...,uN

uf =u; "t gi(u, .., uy) = 0>

with the poynomials g; being given by gi(uq, ..., uy) = fi(v Nuy, ...,V Nuy).
PROOF. According to our definition of the torus 7' C S, the following variables must
be unitaries, in the quotient algebra C'(S) — C(7T):
i

VN

Now if we assume that these elements are unitaries, the quadratic conditions ), x;2} =
> Tix; = 1 are automatic. Thus, we obtain the space in the statement. O

U; =

Summarizing, we are led to the question of computing certain algebras generated by
unitaries. In order to deal with this latter problem, let us start with:
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PROPOSITION 1.23. Let I' be a discrete group, and consider the complex group algebra
C[I'], with involution given by the fact that all group elements are unitaries:
g=g' , VgeT

The mazimal C*-seminorm on C[I'] is then a C*-norm, and the closure of C[I'| with
respect to this norm is a C*-algebra, denoted C*(I).

PROOF. In order to prove this, we must find a *-algebra embedding C[I'] C B(H),
with H being a Hilbert space. For this purpose, consider the space H = [*(T'), having
{h}ner as orthonormal basis. Our claim is that we have an embedding, as follows:

7 CIT C B(H) , =(g)(h) = gh

Indeed, since w(g) maps the basis {h}er into itself, this operator is well-defined,
bounded, and is an isometry. It is also clear from the formula 7(g)(h) = gh that ¢ —
7(g) is a morphism of algebras, and since this morphism maps the unitaries g € I" into
isometries, this is a morphism of x-algebras. Finally, the faithfulness of « is clear. U

In the abelian group case, we have the following result:
THEOREM 1.24. Given an abelian discrete group I', we have an isomorphism
Cc*(T') ~ C(G)
where G =T is its Pontrjagin dual, formed by the characters x : I' — T.

PROOF. Since I' is abelian, the corresponding group algebra A = C*(I') is commu-
tative. Thus, we can apply the Gelfand theorem, and we obtain A = C'(X), with X =
Spec(A). But the spectrum X = Spec(A), consisting of the characters y : C*(I') — C,
can be identified with the Pontrjagin dual G = /f, and this gives the result. U

The above result suggests the following definition:
DEFINITION 1.25. Given a discrete group I', the compact quantum space G given by
C(G)=Cc*(I)
15 called abstract dual of I, and is denoted G = r.

This notion should be taken in the general sense of Definition 1.18. The same warning
as there applies, because there is a functoriality problem, which needs a fix. To be more
precise, in the context of Proposition 1.23, we can see that the closure C?,,(I") of the group
algebra C[I['] in the regular representation is a C*-algebra as well. We have a quotient

map C*(I') — C?,,(T"), and if this map is not an isomorphism, we are in trouble.
We will be back later to this problem, with a fix for it.

By getting back now to the spheres, we have the following result:
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THEOREM 1.26. The tori of the basic spheres are all group duals, as follows,

—

™ Fy

—_—

* N
ZZ

Zy
where Fy is the free group on N generators, and * is a group-theoretical free product.

ProOF. By using the presentation result in Proposition 1.24 above, we obtain that
the diagram formed by the algebras C(T) is as follows:

C(Z7) C(Z5")

According to Definition 1.25, the corresponding compact quantum spaces are:

7 7N
7N 7+ N
ZQ ZZ

Together with the Fourier transform identifications from Theorem 1.24 above, and
with our free group convention Fy = Z*V, this gives the result. U

As a conclusion to these considerations, the Gelfand theorem alone produces out
of nothing, or at least out of some basic common sense, some potentially interesting
mathematics. We will be back later on to all this, on several occasions.

1d. Axiomatization fix

Let us get back now to the bad functoriality properties of the Gelfand correspondence,
coming from the fact that certain compact quantum spaces, such as the duals I' of the
discrete groups I', can be represented by several C*-algebras, instead of one.

We can fix these issues by using the GNS theorem, as follows:
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DEFINITION 1.27. The category of compact quantum measured spaces (X, ) is the
category of the C*-algebras with faithful traces (A, tr), with the arrows reversed. In the
case where we have a C*-algebra A with a non-faithful trace tr, we can still talk about the
corresponding space (X, u), by performing the GNS construction.

Observe that this definition fixes the functoriality problem with Gelfand duality, at
least for the group algebras. Indeed, in the context of the comments following Definition
1.25, consider an arbitrary intermediate C*-algebra, as follows:

c*(T) = A—C ()

red

If we perform the GNS construction with respect to the canonical trace, we obtain

the reduced algebra C* ,(I'). Thus, all these algebras A correspond to a unique compact

quantum measured space in the above sense, which is the abstract group dual . Let us
record a statement about this finding, as follows:

PROPOSITION 1.28. The category of group duals Tisa well-defined subcategory of the
category of compact quantum measured spaces, with each I' corresponding to the full group
algebra C*(T"), or the reduced group algebra C% ,(I'), or any algebra in between.

ProoOF. This is more of an empty statement, coming from the above discussion. [J

With this in hand, it is tempting to go even further, namely forgetting about the
C*-algebras, and trying to axiomatize instead the operator algebras of type L>(X). Such
an axiomatization is possible, and the resulting class of operator algebras consists of a
certain special type of C*-algebras, called “finite von Neumann algebras”.

However, and here comes our point, doing so would be bad, and would lead to a weak
theory, because many spaces such as the compact groups, or the compact homogeneous
spaces, do not come with a measure by definition, but rather by theorem.

In short, our “fix” is not a very good fix, and if we want a really strong theory, we
must invent something else. In order to do so, our idea will be that of restricting the
attention to certain special classes of quantum algebraic manifolds, as follows:

DEFINITION 1.29. A real algebraic submanifold X C Sg;l 1s a closed quantum sub-
space defined, at the level of the corresponding C*-algebra, by a formula of type

O(X) = C(S{C\fjrl)/<f,~(x1, ay) = 0>

for certain noncommutative polynomials f; € C < zy,...,xnx >. We denote by C(X) the
x-subalgebra of C(X) generated by the coordinate functions xq,...,Ty.
Observe that any family of noncommutative polynomials f; € C < x1,...,2y >

produces such a manifold X, simply by defining an algebra C'(X) as above.
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Observe also that the use of the free complex sphere is essential in all this, because
the quadratic condition ), z,a} = >, zfx; = 1 implies by positivity ||z;|| < 1 for any 1,
and so guarantees the fact that the universal C*-norm is bounded.

We have already met such manifolds, in the context of the free spheres, free tori, and
more generally in Proposition 1.22 above. Here is a list of examples:

ProproOSITION 1.30. The following are algebraic submanifolds X C S(]C\fjrl:
(1) The spheres S§ " C Sév_l,SH]{f C ng.
(2) Any compact Lie group, G c U,, when N = n?.
(3) The duals T of finitely generated groups, I' =< gq,...,gn >.
PROOF. These facts are all well-known, the proof being as follows:
(1) This is true by definition of our various spheres.

(2) Given a closed subgroup G C U,, we have indeed an embedding G C S¥ !, with
N = n?, given in double indices by:
uij
Vn

We can further compose this embedding with the standard embedding S(]CV ~lc Sg :Ll,
and we obtain an embedding as desired. As for the fact that we obtain indeed a real
algebraic manifold, this is well-known, coming either from Lie theory or from Tannakian
duality. We will be back to this later on, in a more general context.

Cl,’ij =

(3) This follows from the fact that the variables z; = \%v satisfy the quadratic relations

> wixy = wix; = 1, with the algebricity claim of the manifold being clear. O

At the level of the general theory, we have the following version of the Gelfand theorem,
which is something very useful, and that we will use many times in what follows:

THEOREM 1.31. When X C ngrl s an algebraic manifold, given by

C(X) = C(SET [ {fiwr,- . en) =0)
for certain noncommutative polynomials f; € C < x1,..., x5 >, we have

Xiass = {:L‘ € Sévfl filzq, ... xy) = O}

and X appears as a liberation of X -

ProoF. This is something that already met, in the context of the free spheres. In
general, the proof is similar, by using the Gelfand theorem. Indeed, if we denote by X/, ..
the manifold constructed in the statement, then we have a quotient map of C*-algebras

as follows, mapping standard coordinates to standard coordinates:

C(Xclass) — C( ! )

class
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Conversely now, from X C S(JCV’ jrl we obtain X .5 C S(]CV ~1 and since the relations
defining X/, .. are satisfied by X ,ss, we obtain an inclusion of subspaces Xugss C X[}y
Thus, at the level of algebras of continuous functions, we have a quotient map of C*-

algebras as follows, mapping standard coordinates to standard coordinates:

O( ! ) — C(Xclass>

class

Thus, we have constructed a pair of inverse morphisms, and we are done. U

With these results in hand, we are now ready for formulating our second “fix” for the
functoriality issues of the Gelfand correspondence, as follows:

DEFINITION 1.32. The category of the real algebraic submanifolds X C Sg;l is the
category of the universal C*-algebras of type

O(X) = C(ng)/<fi(x1, o Ty) = 0>

with f; € C < xq,...,xNn > being noncommutative polynomials, with the arrows X — Y
being the x-algebra morphisms between x-algebras of coordinates
C(Y) —C(X)

mapping standard coordinates to standard coordinates.

In other words, what we are doing here is that of proposing a definition for the mor-
phisms between the compact quantum spaces, in the particular case where these compact
quantum spaces are algebraic submanifolds of the free complex sphere Sg ;1.

The point is that this “fix” perfectly works for the group duals, as follows:

THEOREM 1.33. The category of finitely generated groups I' =< g1,...,gn >, with
the morphisms being the group morphisms mapping generators to generators, embeds con-
travariantly via I' — T into the category of real algebraic submanifolds X C S(]C\f jrl.

PRrROOF. We know from Proposition 1.30 above that, given a finitely generated group
I' =< ¢1,...,9n >, we have an embedding of algebraic manifolds T C Sé\f ;1, given by
z; = - Now since a morphism C [I'l — C[A] mapping coordinates to coordinates
means a morphism of groups I' — A mapping generators to generators, our notion of

isomorphism is indeed the correct one, as claimed. Il

We will see later on that Theorem 1.33 has various extensions to the quantum groups
and quantum homogeneous spaces that we will be interested in, which are all algebraic
submanifolds X C Sg ;1. We will also see that all these manifolds have Haar integration
functionals, which are traces, and so that for these manifolds, our functoriality fix from
Definition 1.32 coincides with the “von Neumann” fix from Definition 1.27.
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So, this will be our formalism, and operator algebra knowledge required. We should
mention that our approach heavily relies on Woronowicz’s philosophy in [99]. Also, part
of the above has been folklore for a long time, with the details worked out in [15].

le. Exercises

Generally speaking, the best complement to the material presented in this section is
some further reading on operator theory and operator algebras. Here are some exercises
in direct relation with what has been said above:

EXERCISE 1.34. Find an explicit orthonormal basis of the separable Hilbert space
H = L*0,1]
by applying the Gram-Schmidt procedure to the polynomials f, = x™, with n € N.

This is something quite tricky, and the answer can be found by doing an internet
search with the keyword “orthogonal polynomials”, then carefully reading what comes
out of that, and adapting it if needed to the H = L?[0, 1] situation.

Here is another exercise, this time in relation with operators and matrices:

EXERCISE 1.35. Given a Hilbert space H, prove that we have embeddings of x-algebras
as follows, which are both proper, unless H is finite dimensional:
B(H) C L(H) Cc M;(C)
Also, prove that in this picture the adjoint operation T'" — T™ takes a very simple form,
namely (M*);; = M j; at the level of the associated matrices.

Here the embedding assertions are elementary, and so is the fact that we have isomor-
phisms when H is finite dimensional. The counterexamples in the infinite dimensional
case are both instructive. As for the last assertion, this is something that must be worked
out first in the finite dimensional case, the proof in general being similar.

Going ahead with spectra, here is a key exercise:
EXERCISE 1.36. Prove that for the usual matrices A, B € Mn(A) we have
ot (AB) = ot (BA)
where ot denotes the set of eigenvalues, taken with multiplicities.

As a remark, we have seen in the above that o(AB) = o(BA) holds outside {0}, and
the equality on {0} holds as well, because AB is invertible if and only if BA is invertible.
However, in what regards the eigenvalues taken with multiplicities, things are more tricky
here, and the answer should be somewhere inside your linear algebra knowledge.

In relation now with abstract spectra, here is a useful exercise:
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EXERCISE 1.37. Draw the picture of the following rational function, and of its inverse,

z+it
J(z) = z—at

with t € R, and prove that for t >> 0 and a = a*, the element f(a) is well-defined.

This is something that we actually used, in the proof of the spectral radius theorem,
and the problem is that of working out all the details.

Here is an exercise in relation with the notion of positivity:
EXERCISE 1.38. Prove that an operator T € B(H) satisfies the condition
<Tzx,x>>0
for any x € H precisely when it is positive in our sense, o(T') € [0, 00).
In one sense this is normally something quite clear, and in the other sense this needs
some tricks with vectors and scalar products, such as the polarization identity. Working

out first the case of the usual matrices, M € My(C), with not much advanced linear
algebra involved, is actually a very good preliminary exercise.

In relation now with the various quantum manifolds, the most important examples
are the group duals. Here is a first exercise regarding them:

EXERCISE 1.39. Prove that the Pontrjagin dual of the cyclic group Zy is this group
itself
Zn = LN
and work out the details of the subsequent isomorphism C*(Zy) ~ C(Zy).

Here some knowledge of the roots of unity is needed, and in case you forgot this, the
thing to know is that the barycernter of a regular polygon is the obvious center.

Here is now a second exercise, which is more difficult, or at least which needs good
algebra knowledge, and which comes as a continuation of the above one:

EXERCISE 1.40. Prove that the Pontrjagin dual of a finite abelian group G is the group
itself
G=G
and work out the details of the subsequent isomorphism C*(G) ~ C(G).
This is definitely something more difficult. In case you have troubles with this, an
internet search with the keyword “finite abelian group” is the thing to start with.

And here is a third and last exercise about group duals, which is undoable:
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EXERCISE 1.41. Find a discrete group I' such that the quotient map
O*(F) - :ed(r)
1s not an isomorphism.

In case you do not find a solution here, this should be not a source of worries. Such
things are difficult, and fall into a delicate mathematical subject, called “amenability”.
We will be back to this, directly in the quantum group setting, later on.



CHAPTER 2

Quantum groups

2a. Hopf algebras

We have seen so far that the Gelfand philosophy, based on the operator algebra for-
malism, allows the construction of a number of interesting compact quantum spaces, such
as the free versions Sﬁ jrl and Sg jrl of the real and complex spheres. We have as well the

duals T of the discrete groups ['; which can be thought of as being “quantum tori”.

In this chapter we keep building on this, by introducing the compact quantum groups.
Let us start with the finite case, which is elementary, and easy to explain. The idea will
be that of calling “finite quantum groups” the quantum spaces GG appearing via a formula
as follows, with A being finite dimensional, and having some suitable extra structure:

A=C(G)
In order to simplify the presentation, we use the following terminology:

DEFINITION 2.1. Given a finite dimensional C*-algebra A, any morphisms of type

A:A=S AR A
e: A—C
S A— APP

will be called comultiplication, counit and antipode.

The terminology comes from the fact that in the commutative case, A = C'(X), the
morphisms A, e, .S are transpose to group-type operations, as follows:

m: X xX—-X
u:{}—=>X
1: X - X

The reasons for using AP instead of A will become clear in a moment. Now with
these conventions in hand, we can formulate our definition, as follows:

33
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DEFINITION 2.2. A finite dimensional Hopf algebra is a finite dimensional C*-algebra,
with a comultiplication, counit and antipode, satisfying the following conditions,

(A®id)A = (id® A)A

(e®id)A =id
(ld®e)A =1id
m(S ®id)A =e(.)1

m(id ® S)A =¢(.)1
along with the condition S* = id. Given such an algebra we write A = C(G) = C*(H),
and call G, H finite quantum groups, dual to each other.

In this definition everything is standard, except for our choice to use C*-algebras in
all that we are doing, and also for the last axiom, S? = id. This axiom corresponds to
the fact that, in the corresponding quantum group, we have:

(9 =g
It is possible to prove that this condition is automatic, in the present C*-algebra

setting. However, this is something non-trivial, and since all this is just a preliminary
discussion, not needed later, we have opted for including S? = id in our axioms.

We say that A as above is cocommutative if, with ¥(a ® b) = b ® a, we have:
YA=A
With this convention made, we have the following result, which summarizes the basic
theory of finite quantum groups, and justifies the terminology and axioms:
THEOREM 2.3. The following happen:
(1) If G is a finite group then C(QG) is a commutative Hopf algebra, with
Alp) = (9,h) = (gh)
e(p) = (1)
Slp)=g— (g™

as structural maps. Any commutative Hopf algebra is of this form.
(2) If H is a finite group then C*(H) is a cocommutative Hopf algebra, with

Alg)=9g®yg
e(g) =1
S(g)=g""

as structural maps. Any cocommutative Hopf algebra is of this form.
(3) If G, H are finite abelian groups, dual to each other via Pontrjagin duality, then
we have an identification of Hopf algebras C(G) = C*(H).
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PROOF. These results are all elementary, the idea being as follows:

(1) The fact that A ¢, S satisfy the axioms is clear from definitions, and the converse
follows from the Gelfand theorem, by working out the details, regarding A, e, S.

(2) Once again, the fact that A, e, S satisfy the axioms is clear from definitions, with
the remark that the use of the opposite multiplication (a,b) — a- b in really needed here,
in order for the antipode S to be an algebra morphism:

gh)™

S(gh) = )
71971

= h
g

~~

= S(g)-5(n)

For the converse, we use a trick. Let A be an arbitrary Hopf algebra, as in Definition
2.2, and consider its comultiplication, counit, multiplication, unit and antipode maps.
The transposes of these maps are then linear maps as follows:

A DA @ A — A
e C— A
m': A* — A* @ A*
u': A*— C
St AY — A*

It is routine to check that these maps make A* into a Hopf algebra. Now assuming that
A is cocommutative, it follows that A* is commutative, so by (1) we obtain A* = C(G)
for a certain finite group G, which in turn gives A = C*(G), as desired.

(3) This follows from the discussion in the proof of (2) above. O

This was for the basic theory of the finite quantum groups, and it is possible to further
build on this, but we will discuss this directly in the compact or discrete quantum group
setting, whenever such quantum groups, that we will meet, will be finite.

Let us mention as well that Definition 2.2 is the most rigid definition for the finite
quantum groups. It is possible to play with the axioms, and introduce more general
objects, but whether these more general objects can be called or not “quantum groups”
is subject to debate. In any case, our quantum groups are quantum groups for sure.
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2b. Axioms, theory

With this discussion made, let us get now into the compact quantum Lie group case.
Thinks are quite tricky here, with the origin of the modern theory going back to the work
of the Leningrad School of physics, by Faddeev and others. From that work emerged
a mathematical formalism, explained and developed in the papers of Drinfeld [59] and
Jimbo [66], and in parallel, in the papers of Woronowicz [99], [100].

For our purposes here, which are post-modern, we will only need a “light” version
of all this, somewhat in the spirit of Definition 2.2, and of old-style mathematics such
as that of Brauer [48] and Weyl [97]. The idea is very simple, coming from the usual
multiplicative formulae for the unitary matrices, namely:

(Uv)z’j - Z Uikvkj
k

(In)ij = 0y
Uy =U;,
A bit of Gelfand duality thinking, to be explained in the proof of Proposition 2.5
below, leads from this to the following definition, due to Woronowicz [99]:

DEFINITION 2.4. A Woronowicz algebra is a C*-algebra A, given with a unitary matriz
u € My(A) whose coefficients generate A, such that:
(1) A(wij) =D, wik @ uy; defines a morphism of C*-algebras A — A ® A.
(2) e(usj) = 6;; defines a morphism of C*-algebras A — C.
(3) S(uij) = uj; defines a morphism of C*-algebras A — A°PP.

In this case, we write A = C(G), and call G a compact matriz quantum group.

In this definition A® A is the universal C*-algebraic completion of the usual algebraic
tensor product of A with itself, and this choice will be explained later. Also, A°?? denotes
as usual the opposite C*-algebra, with multiplication a - b = ba.

The above morphisms A, e,S are called comultiplication, counit and antipode. Ob-
serve that if these morphisms exist, they are unique. This is analogous to the fact that a
closed set of unitary matrices G C Uy is either a compact group, or not.

The motivating examples are as follows:

PROPOSITION 2.5. Given a closed subgroup G C Uy, the algebra A = C(G), with the
matriz formed by the standard coordinates u;j(g) = gij, is a Woronowicz algebra, and:

(1) For this algebra, the morphisms A, e, S appear as functional analytic transposes
of the multiplication, unit and inverse maps m,u,i of the group G.

(2) This Woronowicz algebra is commutative, and conversely, any Woronowicz alge-
bra which is commutative appears in this way.
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PROOF. Since we have G C Uy, the matrix u = (u;;) is unitary. Also, since the
coordinate functions u;; separate the points of G, by the Stone-Weierstrass theorem we
obtain that the s-subalgebra A C C(G) generated by them is dense. Finally, the fact
that we have morphisms A, ¢, S as in Definition 2.4 follows from the proof of (1) below.

(1) We use the multiplication formulae for the elements of Uy, namely:

(UV),; Z U Vi

(In)ij = b5
Uy =Uj;
The fact that the transpose of the multiplication m! satisfies the condition in Definition
2.4 (1) follows from the following computation, with U,V € G:

m'(ug)(Ue V) = (UV)y
= > UaViy

= ) (un@uy)UaV)

Regarding now the transpose of the unit map u!, the verification of the condition in
Definition 2.4 (2) is trivial, coming from the following equalities:

u'(ui) = 1y = 0
Finally, the transpose of the inversion map ¢ verifies the condition in Definition 2.4
(3), because we have the following computation, valid for any U € G:

i (ug)(U) = (U™ )w = Uy = z<U>

(2) By using the Gelfand theorem, we can write A = C(G), with G being a certain
compact space. By using now the coordinates u;;, we obtain an embedding as follows:

G c Uy
Finally, by using the maps A, ¢, S, it follows that the subspace G C Uy that we have
obtained is in fact a closed subgroup, and we are done. O

Let us go back now to the general setting of Definition 2.4. According to Proposition
2.5, and to the general C*-algebra philosophy, the morphisms A, e, S can be thought of
as coming from a multiplication, unit map and inverse map, as follows:

m:GxG— G
u:{}—G
1:G@ =G
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Here is a first result of this type, expressing in terms of A, e, S the fact that the
underlying maps m, u, ¢« should satisfy the usual group theory axioms:

PROPOSITION 2.6. The comultiplication, counit and antipode have the following prop-
erties, on the dense x-subalgebra A C A generated by the variables u;;:

(1) Coassociativity: (A ® id)A = (id ® A)A.
(2) Counitality: (id @ e)A = (¢ ® id)A = id.
(3) Coinversality: m(id ® S)A =m(S ®@id)A = e(.)1.
In addition, the square of the antipode is the identity, S* = id.

PRrROOF. Observe first that the result holds in the case where A is commutative. In-
deed, by using Proposition 2.5 we can write:

A=mt | e=u" , S=1¢
The above 3 conditions come then by transposition from the basic 3 group theory
conditions satisfied by m, u, i, which are as follows, with d(g) = (g, 9):
m(m x id) = m(id X m)
m(id x u) = m(u X id) = id
m(id X )6 = m(i x id)d =1
Observe that S? = id is satisfied as well, coming from % = id, which is a consequence
of the group axioms. In general now, the proof goes as follows:

(1) We have indeed the following computation:
(A@id)A(uy) = > Alug) @ uy
I

= E Uik @ Ugy & Uyj
kl

We have as well the following computation:

(id ® A)A(uy) = > gk ® Alugy)

= Zuzk @ Uk & Uy
Kl

(2) The proof here is quite similar. We first have:
(id © &) Aluig) = > i @ e(un;) = i
k
On the other hand, we have as well the following computation:

(e @id)A(ui;) = > () @ urj = g
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(3) By using the fact that the matrix u = (u;;) is unitary, we obtain:
m(id @ S)Auy;) = > uiS(uk;)
k

= ) ugu,
k
= (uu’)y
= 0
Similarly, we have the following computation:

k

= Z U Uk
k
= (u'u)y
— 5
Finally, the formula S? = id holds as well on the generators, and we are done. U

Let us discuss now another class of basic examples, namely the group duals:

PROPOSITION 2.7. Given a finitely generated discrete group I' =< gq,...,g9n >, the
group algebra A = C*(I"), together with the diagonal matriz formed by the standard gen-
erators, u = diag(gy, ..., gn), is a Woronowicz algebra, with A, e,S given by:

Alg)=g®yg
e(g) =1
S(g) =g~

This Woronowicz algebra is cocommutative, in the sense that XA = A.

PROOF. Since the involution on C*(T') is given by g* = ¢!, the standard generators

g1, - .-, gn are unitaries, and so must be the diagonal matrix formed by them:
g1
u=
gnN
Also, since g1, ..., gy generate I', these elements generate the group algebra C*(I") as

well, in the algebraic sense. Let us verify now the axioms in Definition 2.4:
(1) Consider the following map, which is a unitary representation:
- c"(I)ec()
g—9®g
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This representation extends, as desired, into a morphism of algebras, as follows:
A:C*T) - C* () Cc(I)
Alg)=g®yg
(2) The situation for ¢ is similar, because this comes from the trivial representation:
I' — {1}
g—1
(3) Finally, the antipode S comes from the following unitary representation:
['— C*(I)rP
997"

Summarizing, we have shown that we have a Woronowicz algebra, with A e, S being
as in the statement. Regarding now the last assertion, observe that we have:

YA(g) = X(g®g)

= g®g

= Afg)
Thus YA = A holds on the group elements g € I', and by linearity and continuity,
this formula must hold on the whole algebra C*(T"), as desired. O

We will see later on that any cocommutative Woronowicz algebra appears in fact as
above, up to a standard equivalence relation for such algebras. In the abelian group case
now, we have a more precise result, as follows:

PROPOSITION 2.8. Assume that I' as above is abelian, and let G = T be its Pontrjagin
dual, formed by the characters x : I' — T. The canonical isomorphism

(D) =~ C(G)

transforms then the comultiplication, counit and antipode of C*(I"), given by

Alg)=9g®g
e(g) =1
S(g)=g"

into the comultiplication, counit and antipode of C(G), given by:
Ap(g,h) = p(gh)
e(p) = (1)

Se(9) = e(g™")
Thus, the identification G = T" is a compact quantum group isomorphism.
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PROOF. Assume indeed that I' =< g1,..., gy > is abelian. Our claim is that with
G =T we have a group embedding G C Uy, constructed as follows:
x(91)
X —
x(gn)

Indeed, this formula defines a unitary group representation, whose kernel is {1}.

Summarizing, we have two Woronowicz algebras to be compared, namely C(G), con-
structed as in Proposition 2.5, and C*(I"), constructed as in Proposition 2.7.

We already know from chapter 1 above that the underlying C*-algebras are isomorphic.
Now since the morphisms A, ¢, .S agree on the standard generators g1, ..., gy, they agree
everywhere, and we are led to the conclusions in the statement. U

As a conclusion to all this, we can supplement Definition 2.4 with:
DEFINITION 2.9. Given a Woronowicz algebra A = C(G), we write as well
A=C*I)
and callT =G a finitely generated discrete quantum group.

As usual with this type of definition, this comes with a warning, because we still
have to divide the Woronowicz algebras by a certain equivalence relation, in order for our
quantum spaces to be well-defined. We will be back to this in a moment, with the fix.

Let us develop now some further general theory. We first have:

PROPOSITION 2.10. Given a Woronowicz algebra (A,w), we have

uw=a!

so the matriz w = (u;;) is a biunitary, meaning unitary, with unitary transpose.

PROOF. The idea is that u' = @' comes from u* = «~!, by applying the antipode.
Indeed, by denoting (a,b) — a - b the multiplication of AP we have:

(UU*)Z']‘ = 51']‘ — Z uzku;k = 5ij
k
= > S(uw) - S(uly) = by
k
> Uiy =0
k
> ugup, = 6y
k

(u'a);; = &y

Ll
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Similarly, we have the following computation:
(wu)y =0 = Y ujuk; =0y

k

— ) S(up,) - S(uky) = 6
k

— Z Wik * u;k = 0
k

— Z ujkuzk = 0y

— (Zut)ji = 52‘3‘

Thus, we are led to the conclusion in the statement. Il

By using Proposition 2.10 we obtain the following theoretical result, which makes the
link with the algebraic manifold considerations from chapter 1:

PROPOSITION 2.11. Given a Woronowicz algebra A = C(G), we have an embedding

Gc Syt
giwen in double indices by x;; = 3—%, where u;; are the standard coordinates of G.
Proor. This is something that we already know for the classical groups, and for the
group duals as well, from chapter 1. In general, the proof is similar, coming from the fact
that the matrices u, u are both unitaries, that we know from Proposition 2.10. l

In view of the above result, we can take some inspiration from the Gelfand correspon-
dence “fix” presented in chapter 1, and formulate:

DEFINITION 2.12. Given two Woronowicz algebras (A,u) and (B,v), we write
A~B

and indentify as well the corresponding compact and discrete quantum groups, when we
have an isomorphism of x-algebras

A~B

mapping standard coordinates to standard coordinates.

In view of the various results and comments from chapter 1, the functoriality problem
for the compact and discrete quantum groups is therefore fixed. To be more precise, any
compact or discrete quantum group corresponds to a unique Woronowicz algebra, up to
equivalence. We will be back to this later, with a number of supplementary comments,
and some further results on the subject, when talking about amenability.
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2c. Product operations

We have seen so far that the compact quantum Lie groups can be axiomatized, and
that as a bonus, we obtain in this way a definition as well for the finitely generated discrete
quantum groups. The axiomatization uses Hopf algebra maps A, e, S, and at the level of
the general theory, the idea is that we can play with these maps exactly as we play with
the multiplication, unit and inverse maps m, u, i of a usual compact Lie group.

Let us get now into a more exciting question, namely the construction of examples.
We first have the following construction:

PROPOSITION 2.13. Given two compact quantum groups G, H, so is their product
G x H, constructed according to the following formula:

C(GxH)=C(G)®C(H)

Equivalently, at the level of the associated discrete duals T'; A, we can set
C*(C'x A)=C"(I") @ C*(A)

and we obtain the same equality of Woronowicz algebras as above.

PROOF. Assume indeed that we have two Woronowicz algebras, (A,u) and (B,v).
Our claim is that the following construction produces a Woronowicz algebra:

C=A®B , w=diag(u,v)

Indeed, the matrix w is unitary, and its coefficients generate C'. As for the existence
of the maps A, ¢, .9, this follows from the functoriality properties of ®, which is here, as
usual, the universal C*-algebraic completion of the algebraic tensor product.

With this claim in hand, the first assertion is clear. As for the second assertion, let us
recall that when G, H are classical and abelian, we have the following formula:

GxH=GxH
Thus, our second assertion is simply a reformulation of the first assertion, with the x
symbol used there being justified by this well-known group theory formula. O

Here is now a more subtle construction, due to Wang [93]:

PROPOSITION 2.14. Given two compact quantum groups G, H, so is their dual free
product G % H, constructed according to the following formula:

C(G*H)=C(G)«C(H)
Equivalently, at the level of the associated discrete duals I', A, we can set
C*(T'xA) =C*(I') « C*(A)

and we obtain the same equality of Woronowicz algebras as above.
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PROOF. The proof here is identical with the proof of Proposition 2.13, by replacing
everywhere the tensor product ® with the free product %, with this latter product being
by definition the universal C*-algebraic completion of the algebraic free product. O

Here is another construction, which once again, has no classical counterpart:

_ PROPOSITION 2.15. Given a compact quantum group G, so is ils free complezification
G, constructed according to the following formula, where z = id € C(T):

C(G)cCc(MxC(G) , u=zu
Equivalently, at the level of the associated discrete dual I', we can set
C*(T) Cc C*(Z)«C*(T) , a==zu
where z =1 € Z, and we obtain the same Woronowicz algebra as above.

ProoOF. This follows from Proposition 2.14. Indeed, we know from there that C(T)
C(G) is a Woronowicz algebra, with matrix of coordinates w = diag(z,u). Now, let us
try to replace this matrix with the matrix @ = zu. This matrix is unitary, and we have:

A1) = (2 ® 2) Zuzk R Up; = Z Uty @ Upj
k k

Similarly, in what regards the counit, we have the following formula:
5(’&@‘) =1- 5ij = (5,']‘
Finally, recalling that S takes values in the opposite algebra, we have as well:

S(ﬂij) = u;z "z = ﬂ;z
Summarizing, the conditions in Definition 2.4 are satisfied, except for the fact that
the entries of & = zu do not generate the whole algebra C(T) % C'(G). We conclude that

if we let C'(G) € C(T) * C(G) be the subalgebra generated by the entries of 4 = zu, as in
the statement, then the conditions in Definition 2.4 are satisfied, as desired. O

Another standard operation is that of taking subgroups:

PROPOSITION 2.16. Let G be compact quantum group, and let I C C(G) be a closed
x-ideal satisfying the following condition:

A(l)cCG)I+1®C(G)
We have then a closed quantum subgroup H C G, constructed as follows:
C(H) = C(G)/1
At the dual level we obtain a quotient of discrete quantum groups, T — A

Proor. This follows indeed from the above conditions on I, which are designed pre-
cisely as for A, e, S to factorize through the quotient. As for the last assertion, this is just
a reformulation, coming from the functoriality properties of the Pontrjagin duality.  [J
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In order to discuss now the quotient operation, let us agree to call “corepresentation”
of a Woronowicz algebra A any unitary matrix v € M, (.A) satisfying:

Alvyg) =Y vu®uy , elvy) =65 , S(vy) =0}
k

We will study in detail such corepresentations in chapter 3 below. For the moment,
we just need their definition, in order to formulate the following result:

PROPOSITION 2.17. Let G be a compact quantum group, and v = (v;;) be a corepre-
sentation of C(G). We have then a quotient quantum group G — H, given by:

C(H) =< v >
At the dual level we obtain a discrete quantum subgroup, AcT.

PROOF. Here the first assertion follows from the above definition of the corepresen-
tations, and the second assertion is just a reformulation of it, coming from the basic
functoriality properties of the Pontrjagin duality. O

Finally, here is one more construction, which is something more tricky, and which will
be of importance in what follows:

THEOREM 2.18. Given a compact quantum group G, with fundamental corepresenta-
tion denoted u = (u;;), the N* x N? matriz given in double index notation by

Via,jb = UijUap
is a corepresentation in the above sense, and we have the following results:
(1) The corresponding quotient G — PG is a compact quantum group.
(2) Via the standard embedding G C Sgi_l, this is the projective version.
(3) In the classical group case, G C Uy, we have PG = G /(G NTY).
(4) In the group dual case, with I' =< g; >, we have Pl =< gigj_1 >.

PROOF. The fact that v is indeed a corepresentation is routine, and follows as well
from the general properties of such corepresentations, to be discussed in chapter 3 below.
Regarding now other assertions, the proofs go as follows:

(1) This follows from Proposition 2.17 above.

(2) Observe first that, since the matrix v = (v;45) is biunitary, we have indeed an
Via,jb

embedding G C Sé\f i‘l as in the statement, given in double index notation by i, j» = —%

Now with this formula in hand, the assertion is clear from definitions.

(3) This follows from the elementary fact that, via Gelfand duality, w is the matrix
of coefficients of the adjoint representation of GG, whose kernel is the subgroup G'NT¥,
where TV C Uy denotes the subgroup formed by the diagonal matrices.

(4) This is something trivial, which follows from definitions. 0
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As a comment here, since the variables u;;, u}, do not commute, it is possible to talk

as well about projective versions defined by using the matrix v}, ; = uj;us. Thus, we

have in fact “left” and “right” projective versions, and the group dual examples, (4) in
the above statement, show that these are not necessarily isomorphic. All this is quite
technical, and for our purposes here, Theorem 2.18 as formulated is what we need.

2d. Free constructions

At the level of the really “new” examples now, we have basic liberation constructions,
going back to the pioneering work of Wang [93], [94], and to the subsequent papers [1],
[2] as well as several more recent constructions. We first have, following Wang [93]:

THEOREM 2.19. The following universal algebras are Woronowicz algebras,
coy) = ¢ ((uij)i,jzl,...,N‘U =u,u = u‘1>
CUy) = C ((uij)i,jzl,...,N‘U* =u L u = a‘1>

so the underlying compact quantum spaces O, Uy, are compact quantum groups.

PRrROOF. This follows from the elementary fact that if a matrix u = (u;;) is orthogonal
or biunitary, then so must be the following matrices:

A § € __ S, S __ %
k

Consider indeed the matrix U = u®. We have then:

(UU")iy = D uattfy, © gty

klm
*
= E Uit Uy, @ Ot
Ilm
= 0;

In the other sense the computation is similar, as follows:

* * *
U U)y = E :uklukm @ Up Uy
klm

*
= E Otm @ Up; U

Im

5
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The verification of the unitarity of U is similar. We first have:

UUYi; = Z Wiy Ujm @ Uk

klm
*
= E U Ujm & Ot
lm

J

]
In the other sense the computation is similar, as follows:

U0y = Y kit © wiu,

klm

*

= E Ot @ Uiy, ;
Im

Regarding now the matrix u® = 1y, this is clearly biunitary. Regarding the matrix
v’ there is nothing to prove here either, because its unitarity its clear too.

Thus, we can indeed define morphisms A, ¢, S as in Definition 2.4, by using the uni-
versal properties of C(O%;), C(U};), and this gives the result. O

Let us study now the above quantum groups, with the techniques that we have. As a
first observation, we have embeddings of compact quantum groups, as follows:

Uy U

Ox o,

The basic properties of O}, Uy can be summarized as follows:

THEOREM 2.20. The quantum groups O, Uy, have the following properties:

(1) The closed subgroups G C Uy are exactly the N x N compact quantum groups.
As for the closed subgroups G C O, these are those satisfying u = .

(2) We have liberation embeddings Ox C OF; and Uy C U}, obtained by dividing the
algebras C(O%), C(Uy,) by their respective commutator ideals.

(3) We have as well embeddings Ly C OF and Fy C Uy, where Ly is the free
product of N copies of Zo, and where Fi is the free group on N generators.

PROOF. All these assertions are elementary, as follows:

(1) This is clear from definitions, and from Proposition 2.10.
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(2) This follows from the Gelfand theorem, which shows that we have presentation
results for C(Oy), C'(Un) as follows, similar to those in Theorem 2.19:

COn) = Clm <(Uij)i7j=17.-~7N‘“ =, u' = u_1>
CUN) = Clomm <(Uij)z’,j=1,~--,N‘“* = 771)

(3) This follows from (1) and from Proposition 2.7 above, with the remark that with
u = diag(gi,- .., gn), the condition u = w is equivalent to g? = 1, for any 1. O

As an interesting philosophical conclusion, if we denote by L}, Fi; the discrete quan-
tum groups which are dual to O}, Uy, then we have embeddings as follows:

Ly C LE
Fy CF ;
Thus Fy is a kind of “free free group”, and L} is its real counterpart. This is not

surprising, since Fy, Ly are not “fully free”, their group algebras being cocommutative.

The last assertion in Theorem 2.20 suggests the following construction:

PROPOSITION 2.21. Given a closed subgroup G C Uy, consider its “diagonal torus”,
which is the closed subgroup T C G constructed as follows:

(1) = (@) {wiy = 0¥ £ 5)

This torus is then a group dual, T = /A\, where A =< gy1,...,gn > is the discrete group
generated by the elements g; = u;;, which are unitaries inside C(T).

PROOF. Since w is unitary, its diagonal entries g; = w;; are unitaries inside C(T).
Moreover, from A(u;;) = >, wix ® ug; we obtain, when passing inside the quotient:
A(gi) = 9: @ gi
It follows that we have C'(T") = C*(A), modulo identifying as usual the C*-completions
of the various group algebras, and so that we have T'= A, as claimed. O

With this notion in hand, Theorem 2.20 (3) tells us that the diagonal tori of O, Uy
are the group duals Ly, Fy. We will be back to this later.

Here is now a more subtle result on O3, Uy, having no classical counterpart:

PROPOSITION 2.22. Consider the quantum groups Ok, U, with the corresponding
fundamental corepresentations denoted v,u, and let z = id € C(T).
(1) We have a morphism C(Uy) — C(T) * C(O%,), given by u = 2v.
(2) In other words, we have a quantum group embedding OF, C Uy,.
(3) This embedding is an isomorphism at the level of the diagonal tori.
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PRrROOF. The first two assertions follow from Proposition 2.15 above, or simply from
the fact that u = zv is biunitary. As for the third assertion, the idea here is that we have a
similar model for the free group Fly, which is well-known to be faithful, Fy C Zx Ly. O

We will be back to the above morphism later on, with a proof of its faithfulness, after
performing a suitable GNS construction, with respect to the Haar functionals.

As a conclusion here, modulo some results which are still to be worked out, the re-
lation between O3, Uy, is in fact simpler than the one between Oy, Uy, which appears
by complexification at the Lie algebra level. We will see later on that, from many other
points of view, the quantum groups O3, U}, are in fact “simpler” than Oy, Uy.

Let us construct now some more examples of compact quantum groups. As a basic
construction here, coming however from the work in [25], [35], [37], [44], which is quite
advanced, we can introduce some intermediate liberations, as follows:

ProPOSITION 2.23. We have intermediate quantum groups as follows,

Uy U Uy

Ox o, o,

with * standing for the fact that u;;, uj; must satisfy the relations abc = cba.

PRrROOF. This is elementary, by using the fact that if the entries of u = (u;;) half-
commute, then so do the entries of the following matrices:

A § e _ S _ %
k

Thus, we have indeed morphisms A, ¢, .S, as in Definition 2.4. See [35], [37]. O

In the same spirit, we have as well intermediate spheres as follows, with the symbol
standing for the fact that z;, 7 must satisfy the relations abc = cba:

N—-1 N—1 N—-1
S¢ —>S<c,* —>S<c,+

N—-1 N—-1 N-1
Sg 5. —— S

At the level of the diagonal tori, we have the following result:
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THEOREM 2.24. The tori of the basic spheres and quantum groups are as follows,

7N 70N 7+N
Z Z Z
7N 70N 7xN
ZQ Z2 ZQ

with o standing for the half-classical product operation for groups.
PRrROOF. The idea here is as follows:
(1) The result on the left is well-known.
(2) The result on the right follows from Theorem 2.20 (3).

(3) The middle result follows as well, by imposing the relations abc = cba. U

Let us discuss now the relation with the noncommutative spheres. Having the things
started here is a bit tricky, and as a main source of inspiration, we have:

PROPOSITION 2.25. Given an algebraic manifold X C S(]Cv_l, the formula
a(x)={ve UN)U(X) = x}

defines a compact group of unitary matrices (a.k.a. isometries), called affine isometry
group of X. For the spheres Sg’l, S(]CV’1 we obtain in this way the groups Oy, Un.

PROOF. The fact that G(X) as defined above is indeed a group is clear, its compact-
ness is clear as well, and finally the last assertion is clear as well. In fact, all this works
for any closed subset X C CV, but we are not interested here in such general spaces. [

We have the following quantum analogue of the above construction:

PROPOSITION 2.26. Given an algebraic manifold X C ngrl, the category of the closed

subgroups G C Uy, acting affinely on X, in the sense that the formula
(I)(-:Ez) - ij X U'ji
J

defines a morphism of C*-algebras as follows,
O:C(X)— CX)®C(G)

has a universal object, denoted G (X), and called affine quantum isometry group of X.
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PROOF. Observe first that in the case where the above morphism & exists, this mor-
phism is automatically a coaction, in the sense that it satisfies the following conditions:
(P®id)® = (id® A)P
(ld®e)® =id

In order to prove now the result, assume that X C Sév jrl comes as follows:

O(X) = C(sgj)/<fa(x1, o ay) = 0>

Consider now the following variables:

Xi =Y z;®u; € C(X)®CUS)
J

Our claim is that G = G*(X) in the statement appears as follows:

@) = C(U]T,)/<fa(X1, L Xy) = 0>

In order to prove this claim, we have to clarify how the relations f,(Xi,...,Xy) =0
are interpreted inside C(Uy;), and then show that G is indeed a quantum group.
So, pick one of the defining polynomials, f = f,, and write it as follows:

f([L‘l,‘..,I'N) = Z Z )\r xz{ngr
Tyl
With X; = > ;T @ uj; as above, we have the following formula:
f(Xl, . ,XN) = Z Z )\r Z l’jvl" - .SC]';’T ®UJ{Z§ . "ujgrigr
Pl et
Since the variables on the right span a certain finite dimensional space, the relations

f(X1,...,Xn) =0 correspond to certain relations between the variables u;;.
Thus, we have indeed a closed subspace G C Uy, coming with a universal map:

o CX)— CX)®C(G)
In order to show now that G is a quantum group, consider the following elements:

A E e _ ) S %
k

Consider the following associated elements, with v € {A, ¢, S}:

X]:Z:CJ-@u}i

J
From the relations f(X,..., Xy) = 0 we deduce that we have:

(XY, 0, X)) =(dey)f(X1,...,Xn)=0
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Thus, for any v € {A, ¢, S}, we can map u;; — uy;. It follows that G is indeed a
quantum group, and we are done. Il

We can formulate a quantum isometry group result, from [4], as follows:

THEOREM 2.27. The quantum isometry groups of the basic spheres are

Uy U Uy

On Oy o)
modulo identifying, as usual, the various C*-algebraic completions.

PROOF. Let us first construct an action Uy ~ S¥ ~'. We must prove here that the

variables X; = Zj x; ® uj; satisfy the defining relations for Sg jrl, namely:

E xzxfzg rix; =1
i i

But this follows from the biunitarity of u. We have indeed:

* * *
E XX = E T;xy, @ Uiy,
i

ijk

= D el
J

— 1e1

In the other sense the computation is similar, as follows:

* * *
A

ijk

= Zx;azj®1
J

= 1®1

Regarding now Of ~ S]fg ;1, here we must check the extra relations X; = X/, and
these are clear from w;, = u},. Finally, regarding the remaining actions, the verifications
are clear as well, because if the coordinates u;, and x, are subject to commutation relations

of type ab = ba, or of type abc = cba, then so are the variables X; = Z]‘ Tj @ Uji.

We must prove now that all these actions are universal:
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S]{RX jrl, Sg jrl. The universality of U, ~ Sg jrl is trivial by definition. As for the uni-

versality of Oj(, N S]f{yjrl, this comes from the fact that X; = X/, with X; = Zj T; @ Uj;

as above, gives u;, = u},. Thus G ~ S]]RX ~! implies G C OF, as desired.
SH=1 SY=1 We use here a trick from [39]. Assuming first that we have an action
G S]fg ~1 consider the following variables:
Wkl i = UkiUly
Dij = TiZj

In terms of these variables, which can be thought of as being projective coordinates,
the corresponding projective coaction map is given by:

P(pyy) = Zpkl & Wk, ij
kl

We have the following formulae:

P(piy) = Zpkl ® (Wkiij + Wik,ij) + Zpkk & Wik,ij
k

P(pji) = Zpkl ® (Wit ji + Wik, ji) + Zpkk & Wk, ji
k

By comparing these two formulae, and then by using the linear independence of the
variables py; = xpx; with k£ <[, we conclude that we must have:

\iJ iy N Jt
Wy ;5 + Wik Wy ji + Wik

Following now a well-known trick from [39], let us apply the antipode to this formula.
For this purpose, observe first that we have:

S(wkl,ij) = S(“k@“lj) = S(UU)S(UM) = UjiUik, = Wy 1k
Thus by applying the antipode we obtain:
Wy 1k + Wikl = Wij ik + Wij kil
By relabelling the indices, we obtain from this:
W5 + Wkl ji = Wikgj T Wik, ji
Now by comparing with the original relation, we obtain:
Wik,ij = Wkl ji
But, recalling that we have wy; ;; = ugwy;, this formula reads:
U Uy = Ugj UL

We therefore conclude we have G C Oy, as claimed. The proof of the universality of
the action Uy Sév’l is similar.
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Sﬁ;l,sggl. Assume that we have an action G ~ Sg;l. From ®(z,) = >, 2 @

we obtain then that, with p,, = 2,2, we have:
(I)(pab) = me & uiau;b
]
By multiplying these two formulae, we obtain:

P (pavped) = Zpijpkl ® Uig Uy UkcUig

ijkl
P (paaper) = Zpilpkj ® umufdukcu;b

ijkl

The left terms being equal, and the first terms on the right being equal too, we deduce
that, with [a, b, ¢| = abc — cba, we must have the following equality:

sz'jpkz ® Wia [USp, Uke, Ujg) = 0
ijkl
Since the variables p;;jpu = 27,21z depend only on |{i,k}|, |[{j,{}| € {1,2}, and this
dependence produces the only relations between them, we are led to 4 equations:

(1) wig|uy, Uk, ujy] = 0, Va, b.

S
£
=

b Ukas Ujg] + Wia [W g, Ura, upp] = 0, Va, Vb # d.

[
(2) il
(3) wig|uly, Uke, ujy)] + uic[u’;b, Uka, Ujy] = 0, Ya # ¢, Vb.
(4) wia(

=
S

=
S %
s

=
ol

g

=
E*
_l’_
=
QL ¥
&

=
Bl

g

=
;*
_l’_
£
2
=
3.;*
=
ol

e

=
E*
_l’_
=
E:*
S
ol

8

=
;*
=
I
\.O
<
Q
Y
\.Q
<
S
Y

From (1,2) we conclude that (2) holds with no restriction on the indices. By multi-
plying now this formula to the left by « , and then summing over 4, we obtain:

ia?
[u;bv Uka, de] + [u;dv Uka, ufb] =0

By applying now the antipode, then the involution, and finally by suitably relabelling
all the indices, we successively obtain from this formula:

* *
[udl7 Ugkes ub]] + [ublv Ug e ud]] =0
* * * *
= |ug, Uak>ubj] + [ug, Uak, Udj] =0
* * * *
= [Uu:ukaaujb] + [ujd:ukaaulb] =0
Now by comparing with the original relation, above, we conclude that we have:
* * * *
[Ujba Upq, Ujg) = [ujd>ukaa up] =0

Thus we have reached to the formulae defining Uy, and we are done.
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Finally, in what regards the universality of Oy ~ S]]RX -1, this follows from the univer-
sality of Uy m Sg*_l and of O% ~ S]fgjrl, and from U} N O% = Ok. O
As a conclusion to all this, we have now a simple and reliable definition for the compact
quantum groups, in the Lie case, namely G C Uy, covering all the compact Lie groups,

G C Uy, covering as well all the duals T of the finitely generated groups, Fiy — I', and
allowing the construction of several interesting examples, such as OF;, Ux.

In respect to the noncommutative geometry questions raised in chapter 1 above, we
have some advances. In order to further advance, we would need representation theory
results, in the spirit of [97], for our quantum isometry groups.

2e. Exercises

In connection with quantum groups, a good familiarity with the Hopf algebra A, e, S
calculus is one of the main needed things. Here is a first exercise:

EXERCISE 2.28. Given a finite dimensional Hopf algebra A, prove that its dual A* is
a Hopf algebra too, with structural maps as follows:

Al A* @ A* — A*
g C— A
m': A* — AT @ A
u': A* — C
St A* — A*
Also, check that A is commutative if and only if A* is cocommutative, and also discuss

what happens in the cases A = C(G) and A = C*(H), with G, H being finite groups.

This is actually something that we already discussed, but a bit in a hurry, just as a
preliminary to the compact and discrete quantum groups that we are interested in here,
in this book, and the problem is that of filling all the details.

Here is another A, e, .S exercise, this time making the relation with the Woronowicz
axioms for the compact and discrete quantum groups:

EXERCISE 2.29. Prove that the compact quantum groups G which are finite, in the
sense that dim C(G) < oo, coincide with the discrete quantum groups I' which are finite,
in the sense that dim C*(I") < 0o, and coincide as well with the finite quantum groups.

This might sound obvious, but in practice, all this needs a proof. The first step is that
of clearly formulating, in terms of algebras, what exactly we want to prove.

Here is another abstract exercise, this time in relation with product operations:
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EXERCISE 2.30. Clarify the discrete quantum group formulation of the various compact
quantum group product operations, namely taking subgroups, quotients, dual free products,
free complexifications and projective versions.

This is something that was discussed in the above, but rather quickly, our general
policy here being rather of insisting on the compact quantum group formulation of the
things. The problem is that of working out all the details, in dual formulation.

In relation with free quantum groups, here is a first exercise:
EXERCISE 2.31. Prove that the free complexification embedding
Oy C U
is an isomorphism at the level of the associated diagonal tori.

As before, this is something that we talked about, but rather quickly, and this because

we will prove anyway, later on, that the embedding O C Uy itself is an isomorphism.
However, this is something non-trivial, and this exercise is a good introduction to this.
In practice, the thing to be proved is something group-theoretical, about free groups.

Here is another exercise, on the same topic, but of Lie group flavor:

EXERCISE 2.32. Find the correspondence On — Uy, by using linear algebra, or Lie
algebras, or whatever other means.

This latter exercise is actually something quite tricky, not to say of undoable type. On
the menu, you can either learn some Lie algebras and then solve it, or simply not solve
it and not worry, because we will be mainly interested here in free quantum groups, and
we will see that the correspondence OF; — Uy is something much simpler.



CHAPTER 3

Representation theory

3a. Representations

In order to reach to some more advanced insight into the structure of the compact
quantum groups, we can use representation theory. We follow Woronowicz’s paper [99],
with a few simplifications coming from our S? = id formalism. We first have:

DEFINITION 3.1. A corepresentation of a Woronowicz algebra (A, ) is a unitary ma-
triz v € M, (A) over the dense x-algebra A =< u;; >, satisfying:

A(vij) = Zvik & Vg
k

e(vij) = 0
S(viy) = v}
That is, v must satisfy the same conditions as u.

As basic examples here, we have the trivial corepresentation, having dimension 1, as
well as the fundamental corepresentation, and its adjoint:

1=(1) , w=(uy) , u=(u)

]
In the classical case, we recover in this way the usual representations of G:

PROPOSITION 3.2. Given a closed subgroup G C Uy, the corepresentations of the
associated Woronowicz algebra C(G) are in one-to-one correspondence, given by

v11(g) ... vin(9)
m(g9) = : :
Uni(g) - Unn(9)

with the finite dimensional unitary smooth representations of G.

Proor. With A = C(G), consider the unitary matrices v € My(A) satisfying the
equations in Definition 3.1. By using the computations from chapter 2, performed when
proving that any closed subgroup G C Uy is indeed a compact quantum group, we
conclude that we have a correspondence v <> 7 as in the statement, between such matrices,
and the finite dimensional unitary representations of G.

57
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Regarding now the smoothness part, this is something more subtle, which requires
some knowledge of Lie group theory. The point is that any closed subgroup G' C Uy is a
Lie group, and since the coefficient functions w;; : G — C are smooth, we have:

A C C™(G)
Thus, when assuming v € My(.A), the corresponding representation = : G — U, is
smooth, and the converse of this fact is known to hold as well. Il

In general now, we have the following operations on the corepresentations:

PROPOSITION 3.3. The corepresentations are subject to the following operations:
(1) Making sums, v+ w = diag(v,w).
(2) Making tensor products, (v & W)q jb = VijWap-
(3) Taking conjugates, (v);; = vj;.
PROOF. Observe that the result holds in the commutative case, where we obtain the
usual operations on the representations of the corresponding group. In general now:

(1) Everything here is clear, as already mentioned in chapter 2 above, when using such
corepresentations in order to construct quantum group quotients.

(2) First of all, the matrix v ® w is unitary. Indeed, we have:

D W@ WiV @ Whesp = D ViWapll U}

Jb Jb
*
= (5(10 E Uijvkj
J
= 5ik5ac

In the other sense, the computation is similar, as follows:

D (WOW (V@ Wibke = > Wi,V UKW
ib

b J
= O Z W, Whe
b
= 5ik5ac
The comultiplicativity condition follows from the following computation:

A((v @ w)iajp) = Z Uik Wae & VgjWep
ke

= ) (0@ Wigke ® (VD Wkep
ke

The proof of the counitality condition is similar, as follows:

£((v ® w)iqjp) = 0ij6ab = Oiajb
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As for the condition involving the antipode, this can be checked as follows:
S((v @ w)iage) = wyevj; = (V@ W)jp 44

(3) In order to check that v is unitary, we can use the antipode, exactly as we did in
section 2 above, for u. As for the comultiplicativity axioms, these are all clear. Il

We have as well the following supplementary operation:

PROPOSITION 3.4. Given a corepresentation v € M, (A), its spinned version
w = UvU"
is a corepresentation as well, for any unitary matriz U € U,.

PrROOF. The matrix w is unitary, and its comultiplicativity properties can be checked
by doing some computations. Here is however another proof of this fact, using a useful
trick. In the context of Definition 3.1, if we write v € M,,(C) ® A, the axioms read:

(Zd &® A)U = V12V13
(id@e)v =1
(id® S)v =v"

Here we use standard tensor calculus conventions. Now when spinning by a unitary
the matrix that we obtain, with these conventions, is w = UyvU, and we have:

(ld@ A)w = UyvpuizUs
= UyUs - UyosUy
= Wi2Wis
The proof of the counitality condition is similar, as follows:
([deaw=U-1-U=1
Finally, the last condition, involving the antipode, can be checked as follows:
(id® S)w = Upv*U] = w*
Thus, with usual notations, w = UvU™ is a corepresentation, as claimed. Il

As a philosophical comment, the above proof might suggest that the more abstract our
notations and formalism, the easier our problems will become. This is wrong. Bases and
indices are a blessing: they can be understood by undergraduate students, computers,
fellow scientists, engineers, and of course also by yourself, when you’re tired or so.

In addition, in the quantum group context, we will see later on, starting from section
4 below, that bases and indices can be turned into something very beautiful and powerful,
allowing us to do some serious theory, well beyond the level of abstractions.

Back to work now, in the group dual case, we have the following result:
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PROPOSITION 3.5. Assume A = C*(T'), with I' =< ¢1,...,gny > being a discrete
group.

(1) Any group element h € T is a 1-dimensional corepresentation of A, and the
operations on corepresentations are the usual ones on group elements.

(2) Any diagonal matriz of type v = diag(hy, ..., hy), with n € N arbitrary, and with
hi,...,h, €T, is a corepresentation of A.

(3) More generally, any matriz of type w = Udiag(hs, ..., h,)U* with hy,... h, €T
and with U € U, is a corepresentation of A.

PROOF. These assertions are all elementary, as follows:

(1) The first assertion is clear from definitions and from the comultiplication, counit
and antipode formulae for the discrete group algebras, namely:

A(h)=h®h
e(h)=1
S(h) = h~?

The assertion on the operations is clear too, because we have:
(9) ® (k) = (gh)
(9)=(97")

(2) This follows from (1) by performing sums, as in Proposition 3.3 above.

(3) This follows from (2) and from the fact that we can conjugate any corepresentation
by a unitary matrix, as explained in Proposition 3.4 above. U

Observe that the class of corepresentations in (3) is stable under all the operations
from Propositions 3.3 and 3.4. When I is abelian we can apply Proposition 3.2 with
G =T, and after performing a number of identifications, we conclude that these are all
the corepresentations of C*(I"). We will see later that this holds in fact for any I

Summarizing, the representations of a compact quantum group can be defined as in the
classical case, but by using coefficients, and in the group dual case we obtain something
which is a priori quite simple too, namely formal direct sums of group elements.

3b. Peter-Weyl theory

In this section and the next two ones we develop the Peter-Weyl theory for the rep-
resentations of the compact quantum groups, following [99]. There is quite some work
to be done here, and we will do it in 3 parts, first with some algebraic results, which are
quite elementary, and then with more advanced results, mixing algebra and analysis.

Let us start with the following definition:
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DEFINITION 3.6. Given two corepresentations v € M,(A),w € M,,(A), we set
Hom(v,w) = {T € men(C)‘TU = wT}

and we use the following conventions:

(1) We use the notations Fixz(v) = Hom(1,v), and End(v) = Hom(v,v).
(2) We write v ~ w when Hom(v,w) contains an invertible element.
(3) We say that v is irreducible, and write v € Irr(G), when End(v) = Cl1.

In the classical case A = C(G) we obtain the usual notions concerning the represen-
tations. Observe also that in the group dual case we have:

g~h < g=nh

Finally, observe that v ~ w means that v, w are conjugated by an invertible matrix.
Here are a few basic results, regarding the above Hom spaces:

PROPOSITION 3.7. We have the following results:

(1) T € Hom(u,v),S € Hom(v,w) = ST € Hom(u,w).
(2) S e Hom(p,q), T € Hom(v,w) = S®T € Hom(p @ v,q @ w).
(3) T € Hom(v,w) = T* € Hom(w,v).

In other words, the Hom spaces form a tensor x-category.
PRrROOF. The proofs are all elementary, as follows:
(1) By using our assumptions Tu = vT" and Sv = Ws we obtain, as desired:
STu = SvT = wST

(2) Assume indeed that we have Sp = ¢S and Tv = wT. With tensor product
notations, as in the proof of Proposition 3.4 above, we have:

(Se@T)(p@v) = SiTopizves
= (Sp)13(Tv)23
We have as well the following computation:
(qRw)(S®T) = qzwsSiTs
= (¢9)13(wT)a3
The quantities on the right being equal, this gives the result.
(3) By conjugating, and then using the unitarity of v, w, we obtain, as desired:
Tv=wlT = v'T"=T"Ww"
=  w'T"w = vT"w*w

= T'w=10T"



62 3. REPRESENTATION THEORY

Finally, the last assertion follows from definitions, and from the obvious fact that, in
addition to (1,2,3) above, the Hom spaces are linear spaces, and contain the units. In
short, this is just a theoretical remark, that will be used only later on. O

As a main consequence of the above result, the spaces End(v) C M,(C) are unital
subalgebras stable under the involution *, and so are C*-algebras.

In order to exploit this fact, we will need a basic result, complementing the operator
algebra theory presented in section 1 above, namely:

THEOREM 3.8. Let B C M,(C) be a C*-algebra.

(1) We can write 1 = py + ... + pg, with p; € B central minimal projections.
(2) Each of the linear spaces B; = p; Bp; is a non-unital x-subalgebra of B.

(3) We have a non-unital x-algebra sum decomposition B = B; @ ... ® By.

(4) We have unital x-algebra isomorphisms B; ~ M,,(C), where r; = rank(p;).
(5) Thus, we have a C*-algebra isomorphism B ~ M, (C) & ... & M, (C).

In addition, the final conclusion holds for any finite dimensional C*-algebra.

PRroOOF. This is something well-known, with the proof of the various assertions in the
statement being something elementary, and routine:

(1) This is more of a definition.

(2) This is elementary, coming from p? = p; = p;.

(3) The verification of the direct sum conditions is indeed elementary.

(4) This follows from the fact that each p; was assumed to be central and minimal.
(5) This follows by putting everything together.

As for the last assertion, this follows from (5) by using the GNS representation theo-
rem, which provides us with an embedding B C M,,(C), for some n € N. O

Following Woronowicz’s paper [99], we can now formulate a first Peter-Weyl theorem,
and to be more precise a first such theorem from a 4-series, as follows:

THEOREM 3.9 (PW1). Let v € M,(A) be a corepresentation, consider the C*-algebra
B = End(v), and write its unit as 1 = py + ...+ px, as above. We have then

V=01 + ...+ v
with each v; being an irreducible corepresentation, obtained by restricting v to Im(p;).
ProoF. This can be deduced from Theorem 3.8 above, as follows:

(1) We first associate to our corepresentation v € M, (A) the corresponding coaction
map ¢ : C" — C" ® A, given by the following formula:

Ole;) =Y e; vy

J
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We say that a linear subspace V' C C" is invariant under v if:
PV)CcV®A
In this case, we can consider the following restriction map:
Py V-2VRA
This is a coaction map too, which must come from a subcorepresentation w C v.

(2) Consider now a projection p € End(v). From pv = vp we obtain that the linear
space V' = I'm(p) is invariant under v, and so this space must come from a subcorepre-
sentation w C v. It is routine to check that the operation p — w maps subprojections to
subcorepresentations, and minimal projections to irreducible corepresentations.

(3) With these preliminaries in hand, let us decompose the algebra End(v) as in
Theorem 3.8 above, by using the decomposition of 1 into minimal projections there:

1:p1+...+pk

Consider now the following vector spaces:

Vi = Im(p;)
If we denote by v; C v the subcorepresentations coming from these vector spaces, then
we obtain in this way a decomposition v = vy + ... 4+ v, as in the statement. O

In order to formulate our second Peter-Weyl type theorem, we will need:

DEFINITION 3.10. We denote by u®*, with k = o e @ o ... being a colored integer, the
various tensor products between u,u, indexed according to the rules

u® =1 ®o _ e

, U =u o, U =1u
and multiplicativity, u®* = u®* @ u®', and call them Peter-Weyl corepresentations.

Here are a few examples of such corepresentations, namely those coming from the
colored integers of length 2, to be often used in what follows:

U =u®u
U =u®u
U =u®u
Ut =u®u

There are some particular cases of interest, where simplifications appear:

PROPOSITION 3.11. The Peter-Weyl corepresentations u®* are as follows:

(1) In the real case, uw = u, we can assume k € N.
(2) In the classical case, we can assume, up to equivalence, k € N x N.
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PROOF. These assertions are both elementary, as follows:

(1) Here we have indeed u®* = u®*| where |k| € N is the length. Thus the Peter-Weyl
corepresentations are indexed by N, as claimed.

(2) In the classical case, our claim is that we have equivalences v @ w ~ w ® v,
implemented by the flip operator ¥(a ® b) = b ® a. Indeed, we have:

VR@W = Vi3Wasz
= W23V13
= Ywi3v3d
= J(wev)x
In particular we have an equivalence u ® u ~ u ® u. We conclude that the Peter-Weyl
corepresentations are the corepresentations of type u®* ® u®', with k,l € N. O

Here is the second Peter-Weyl theorem, also from [99], complementing Theorem 3.9:

THEOREM 3.12 (PW2). Fach irreducible corepresentation of A appears as:

v C u®”

That s, v appears inside a certain Peter-Weyl corepresentation.

PROOF. Given an arbitrary corepresentation v € M,(A), consider its space of co-
efficients, C(v) = span(v;;). It is routine to check that the construction v — C(v) is
functorial, in the sense that it maps subcorepresentations into subspaces.

By definition of the Peter-Weyl corepresentations, we have:

A=) Cu™)
keN+N

Now given a corepresentation v € M, (A), the corresponding coefficient space is a
finite dimensional subspace C(v) C A, and so we must have, for certain &y, ..., k,:

C(v) c Clu® @ ... @ u®k)
We deduce from this that we have an inclusion of corepresentations, as follows:
v CuP . Ut
Together with Theorem 3.9, this leads to the conclusion in the statement. U

Summarizing, we have seen so far that the corepresentations decompose into sums
of irreducible corepresentations, and that for finding these latter corepresentations, it is
enough to decompose into irreducibles the Peter-Weyl corepresentations.
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3c. The Haar measure

In order to further advance, with some finer results, we need to integrate over G. In
the classical case the existence of such an integration is well-known, as follows:

PROPOSITION 3.13. Any commutative Woronowicz algebra, A = C(G) with G C Uy,
has a unique faithful positive unital linear form fG : A — C satisfying

/G F(ey)ds = /G F(yz)ds = /G f(@)da

called Haar integration. This Haar integration functional can be constructed by starting
with any faithful positive unital form ¢ € A*, and taking the Cesaro limit

1 n
= lim — @*F
where the convolution operation for linear forms is given by ¢ x 1 = (¢ @ ¥)A.

ProoOF. This is the existence theorem for the Haar measure of GG, in functional analytic
formulation. Observe first that the invariance conditions in the statement read:

d(zy) =d(yx) =dz , Vyed

Thus, we are looking indeed for the integration with respect to the Haar measure on
G. Now recall that this Haar measure exists, is unique, and can be constructed by starting
with any probability measure p, and performing the following Cesaro limit:

do = Jim 3 3 du't(a)

In functional analysis terms, this corresponds precisely to the second assertion. U

The above statement and proof are of course more of a reminder, with all the details
missing. However, we will reprove all this later on, as a particular case of a general Haar
integration existence result, in the general Woronowicz algebra setting.

In general now, let us start with a definition, as follows:

DEFINITION 3.14. Given an arbitrary Woronowicz algebra A = C(G), any positive
unital tracial state fG : A — C subject to the invariance conditions

(/G®id>A:<id®/G>A:/G('>1

is called Haar integration over G.
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As a first observation, in the commutative case, this notion agrees with the one in
Proposition 3.13. To be more precise, Proposition 3.13 tells us that any commutative
Woronowicz algebra has a Haar integration in the above sense, which is unique, and
which can be constructed by performing the Cesaro limiting procedure there.

Before getting into the general case, let us discuss the group dual case. Here things
are quite elementary, and we have the following result:

PROPOSITION 3.15. Given a discrete group I' =< g1, ...,gn >, the Woronowicz alge-
bra A = C*(T") has a Haar functional, given on the standard generators g € T' by:

/\g:(sg,l
I

This functional is faithful on the image on C*(T') in the reqular representation. Also, in
the abelian case, we obtain in this way the counit of C(I).
PROOF. Consider indeed the left regular representation 7 : C*(T') — B(I*(T)), given

by 7(g)(h) = gh, that we already met in chapter 1. By composing it with the functional
T —< T1,1 >, the functional ff that we obtain is given by:

[g =<< gl, 1 >= 5971

r

But this gives all the assertions in the statement, namely the existence, traciality, left
and right invariance properties, and faithfulness on the reduced algebra. As for the last
assertion, this is clear from the Pontrjagin duality isomorphism. U

With a bit of functional analysis knowledge, one can improve the above result, with
a proof of the fact that the Haar integration is unique, and appears via a Cesaro limiting
procedure, as in Proposition 3.13. We will do this directly, in the general case.

In order to discuss now the general case, that of the arbitrary Woronowicz algebras,
let us define the convolution operation for linear forms by:

¢xP = (0RP)A
We have then the following result, from Woronowicz’s paper [99]:

PROPOSITION 3.16. Given an arbitrary unital linear form ¢ € A*, the limit
1 n
a=lim — Y ¢*(a)

exists, and for a coefficient of a corepresentation a = (T ® id)v, we have

/@a:T(P)

where P is the orthogonal projection onto the 1-eigenspace of (id ® p)v.
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PROOF. By linearity, it is enough to prove the first assertion for elements of the
following type, where v is one of the Peter-Weyl corepresentations, and 7 is a linear form:

a=(T®1id)v

Thus we are led into the second assertion, and more precisely we can have the whole
result proved if we can establish the following formula, with a = (7 ® id)v:

o1
lim —
n—oo N

> ¢™(a) =7(P)

k=1

In order to prove this latter formula, observe that we have:
¢*(a) = (1@ ™o = 7((id @ "))

Consider now the following scalar matrix:

M = (id ® p)v

In terms of this matrix, we have the following formula:

((id ® 9™ )0)igis = > Migiy -+ My, = (M*)igi,

i1
Thus for any £ € N we have the following formula:
(id ® **)v = M*

It follows that our Cesaro limit is given by:

1 1
lim —Zcp*k(a) = lim — Y 7(MF)
k=1

n—oo 1, n—oo M
k=1
1 n
_ 1 k
= (JL%ZM )
k=1
Now since v is unitary we have ||v|| = 1, and we conclude that we have:
M|l <1

Thus, by standard calculus, the above Cesaro limit on the right exists, and equals the
orthogonal projection onto the 1-eigenspace of M:

N R
fom 7 2 M= P

k=1

Thus our initial Cesaro limit converges as well, to 7(P), as desired. U

When ¢ is chosen faithful, we have the following finer result, also from [99]:
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PROPOSITION 3.17. Given a faithful unital linear form ¢ € A*, the limit

[

exists, and is independent of ¢, given on coefficients of corepresentations by

(@-m/)v:p

where P is the orthogonal projection onto Fix(v) = {£ € C"|v€ = &},

PROOF. In view of Proposition 3.16, it remains to prove that when ¢ is faithful, the
1-eigenspace of M = (id ® p)v equals Fiz(v).

“D” This is clear, and for any ¢, because we have:
=€ = ME=¢

“C” Here we must prove that, when ¢ is faithful, we have:
M{=¢§ = vE=¢

For this purpose, we use a standard positivity trick. Assume that we have M¢ = &,
and consider the following element:

k
We want to prove that we have a = 0. Since v is biunitary, we have:

(Sl (Bl )

? J

= Zvijvz}céjgk Uzjgjgl - N zkgzgk‘i‘ 12&5—1

ijk

= Z &1~ szjsj& — 2 vt lal

ik
= IISIIQ— < g, €> —< € &>+ [P
= 2(/l¢]]* — Re(< v&, € >))
By using now our assumption M¢ = £, we obtain from this:
pla) = 20(|[¢|* — Re(< v, € >))
= 2(|lgl* — Re(< ME,€ >))

= 2(/[¢]1* — 1€
=0
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Since the functional ¢ was assumed to be faithful, this gives, as claimed:
a=0
Now since a was by definition a certain sum of positive elements, each of these positive
elements must vanish, and so we obtain v& = &, as claimed. O

We can now formulate the general Haar measure result, due to Woronowicz [99]:

THEOREM 3.18. Any Woronowicz algebra has a unique Haar integration, which can
be constructed by starting with any faithful positive unital state o € A*, and setting
1 n
[= 2

where ¢ x 1p = (¢ @ Y)A. Moreover, for any corepresentation v we have

(ias [ Jo=r

where P is the orthogonal projection onto Fix(v) = {£ € C*"|v€ = &}.

PROOF. Let us first go back to the general context of Proposition 3.16 above. Since
convolving one more time with ¢ will not change the Cesaro limit appearing there, the
functional fs@ € A* constructed there has the following invariance property:

[oo=ee[=]

In the case where ¢ is assumed to be faithful, as in Proposition 3.17 above, our claim
is that we have the following formula, valid this time for any ¢ € A*:

L*¢=¢*L=¢(1>L

It is enough to prove this formula on a coefficient of a corepresentation, a = (7 ® id)v.
In order to do so, consider the following matrices:

pP= (z'd@/)v . Q= (d®Pw

In terms of these matrices, we have:

<[o *¢> - (T ® [p®¢) (v12013) = 7(PQ)

Similarly, we have the following computation:

<1p*/w>a: <T®w®/¥)> (vi2013) = T(QP)
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Finally, regarding the term on the right, this is given by:
v [ a=v()r(P
©

Thus, our claim is equivalent to the following equality:

PQ=QP =¢(1)P
But this latter equality follows from the fact, coming from Proposition 3.17 above,
that P = (id® fw)v equals the orthogonal projection onto Fiz(v). Thus, we have proved
our claim. Now observe that our formula can be written as:

(fod)se{ae [Ja-s fo

This formula being true for any ¢ € A*, we can simply delete v, and we conclude that
the invariance formula in Definition 3.14 holds indeed, with |, o= f(p.

Finally, assuming that we have two invariant integrals [, fé, we have:
!/ /
(Lef)e = (L))
¢ Ja ¢ Jo

- [on
G
!/

= / ()1
G

Thus we have [, = [/, and this finishes the proof. See [99]. O

As a first observation, in the case of the classical groups, and of the group duals, we
recover in this way the various Haar measure results mentioned before.

As another illustration, for the basic product operations, we have:

PRrROPOSITION 3.19. We have the following results:
(1) For a product G x H, we have [, . = [,® [;.
(2) For a dual free product G % H, we have |, . = [5* [}
(3) For a quotient G — H, we have [, = (fG)‘C(H).

(4) For a projective version G — PG, we have [, = (fG)\C(PG)'

ProOOF. These formulae all follow from the invariance property, as follows:

(1) Here the tensor product form |, c® /  satisfies the left and right invariance prop-
erties of the Haar functional |, G > and so by uniqueness, it is equal to it.

(2) Here the situation is similar, with the free product of linear forms being defined
with some inspiration from the discrete group case, where ff g=10g1.
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(3) Here the restriction (fG)|C’(H)
invariance properties, so once again we can conclude by uniqueness.

satisfies by definition the required left and right

(4) Here we simply have a particular case of (3) above. O

In practice, the last assertion in Theorem 3.18 is the most useful one. By applying it
to the Peter-Weyl corepresentations, we obtain the following alternative statement:

THEOREM 3.20. The Haar integration of a Woronowicz algebra is given, on the coef-
ficients of the Peter-Weyl corepresentations, by the Weingarten formula

[ttt = X a5t o)
G m,0€Dy

valid for any colored integer k = ey . ..e, and any multi-indices i, j, where:
(1) Dy is a linear basis of Fiz(u®¥).
(2) 0.(i) =< m,e;, ® ... Qe >.
(3) Wy = Git, with Gy(m,0) =< m,0 >.

PROOF. As a first observation, the above formula computes indeed the Haar integral,
because the coefficients of the Peter-Weyl corepresentations span a dense subalgebra:

ei.ji k)

Regarding now the proof, we know from Theorem 3.18 that the integrals in the state-
ment form altogether the orthogonal projection P onto the following space:

Fiz(u®*) = span(Dy)

— T €1 €k
A =3Span (uilj1 Uty

Consider now the following linear map:

By a standard linear algebra computation, it follows that we have P = W E, where W
is the inverse on span(Dy) of the restriction of E. But this restriction is the linear map
given by Gy, and so W is the linear map given by Wy, and this gives the result. O

We will be back to the above two Haar measure theorems, which are both fundamental,
with versions, illustrations and applications, on several occasions, later on.

3d. More Peter-Weyl

Let us go back now to algebra, and establish two more Peter-Weyl theorems. We will
need the following result, which is very useful, and is of independent interest:
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THEOREM 3.21. We have a Frobenius type isomorphism
Hom(v,w) ~ Fiz(t @ w)
valid for any two corepresentations v, w.

PROOF. According to the definitions, we have the following equivalence:

T € Hom(v,w) <= Tv=uwT
<~ Z Tojvji = Z WabTbi
j b

On the other hand, we have as well the following equivalence:
TeFiz(vr@w) < @OewT=T

*
<~ E Uik;wabTbk = Tm'
kb

With these formulae in hand, we must prove that we have:
S Tovsi=> waTy <= Y viwaTy = Tu
J b kb

(1) In one sense, the computation is as follows, using the unitarity of v*:

Z ’UfkwabTbk = Z Ufk Z Wap Ty
kb k b
= > Ui Tajvin
k J
= ) (")yTy

J
Tai

(2) In the other sense we have, once again by using the unitarity of v*:
D Tty = D v ) VT
J J kb
= ) _(0"0)swaTh
Jeb
= Z Wap T s
b

Thus, we are led to the conclusion in the statement. Il

With these ingredients, namely first two Peter-Weyl theorems, Haar measure and
Frobenius duality, we can establish a third Peter-Weyl theorem, from [99], as follows:
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THEOREM 3.22 (PW3). The dense subalgebra A C A decomposes as a direct sum
A= D Mimw(C)

velrr(A)

with this being an isomorphism of x-coalgebras, and with the summands being pairwise
orthogonal with respect to the scalar product given by

<a,b >:/ab*
G

where fG 1s the Haar integration over G.

PROOF. By combining the previous Peter-Weyl results, from Theorem 3.9 and Theo-
rem 3.12 above, we deduce that we have a linear space decomposition as follows:

A= Z C(v) = Z Maim(v) (C)

velrr(A) velrr(A)

Thus, in order to conclude, it is enough to prove that for any two irreducible corepre-
sentations v, w € Irr(A), the corresponding spaces of coefficients are orthogonal:

vobw = C(v) L C(w)
But this follows from Theorem 3.18, via Theorem 3.21. Let us set indeed:

Piagb = / Vi Wap
a
Then P is the orthogonal projection onto the following vector space:
Fiz(v® w) ~ Hom(v,w) = {0}
Thus we have P = 0, and this gives the result. U

We can obtain further results by using characters, which are defined as follows:

PROPOSITION 3.23. The characters of the corepresentations, given by
Xv = Z%’i

behave as follows, in respect to the various operations:
Xotw = Xo T Xw

Xvaw = XvXw

Xo = X
In addition, given two equivalent corepresentations, v ~ w, we have X, = Xw-
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PROOF. The three formulae in the statement are all clear from definitions. Regarding
now the last assertion, assuming that we have v = T~'wT, we obtain:

Xo = Tr(v)
= Tr(T 'wT)
= Tr(w)
= Xw
We conclude that v ~ w implies x, = X, as claimed. U

We have the following result, also from [99], completing the Peter-Weyl theory:

THEOREM 3.24 (PW4). The characters of the irreducible corepresentations belong to
the x-algebra

Acenirar = {0 € A|ZA(0) = A0)}
of “smooth central functions” on G, and form an orthonormal basis of it.

PROOF. As a first remark, the linear space A.niro1 defined above is indeed an algebra.
In the classical case, we obtain the usual algebra of smooth central functions. Also, in
the group dual case, where we have ¥A = A, we obtain the whole convolution algebra.
Regarding now the proof, in general, this goes as follows:

(1) The algebra Acenira contains indeed all the characters, because we have:
YA(xe) = X (Z Vi @ Uji)
ij
= Z Vji & Vij

ij
= Alxw)
(2) Conversely, consider an element a € A, written as follows:
a= Z a,
velrr(A)
The condition a € Acnirq is then equivalent to the following conditions:

ay € Acentrar Vv € Irr(A)

But each condition a, € Apnirar Mmeans that a, must be a scalar multiple of the
corresponding character x,, and so the characters form a basis of Acenirar, as stated.

(3) The fact that we have an orthogonal basis follows from Theorem 3.22.
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(4) Finally, regarding the norm 1 assertion, consider the following integrals:

*
Pik,jl:/vijvkl
G

We know from Theorem 3.18 that these integrals form the orthogonal projection onto
the following vector space, computed via Theorem 3.21:

Fiz(v®v) ~ End(v) = C1

By using this fact, we obtain the following formula:

/GXUX:: = izj/cviiv;j
1
-2y

=1
Thus the characters have indeed norm 1, and we are done. l

As a first application of the Peter-Weyl theory, and more specifically of the last result
from the series, Theorem 3.24, we can now clarify a question that we left open in chapter
2 above, regarding the cocommutative case.

To be more precise, once again following [99], we have:

THEOREM 3.25. For a Woronowicz algebra A, the following are equivalent:

(1) A is cocommutative, SA = A.
(2) The irreducible corepresentations of A are all 1-dimensional.
(3) A=C*(I), for some group I' =< gq,...,gn >, up to equivalence.

Proor. This follows from the Peter-Weyl theory, as follows:

(1) = (2) The assumption XA = A tells us that the inclusion A.eprar C A is an iso-
morphism, and by using Theorem 3.24 we conclude that any irreducible corepresentation
of A must be equal to its character, and so must be 1-dimensional.

(2) = (3) This follows once again from Peter-Weyl, because if we denote by I' the
group formed by the 1-dimensional corepresentations, then we have A = C[I'], and so
A = C*(T") up to the standard equivalence relation for Woronowicz algebras.

(3) = (1) This is something trivial, that we already know from chapter 2. O

The above result is not the end of the story, because one can still ask what happens,
without reference to the equivalence relation. We will be back to this later on, after
developing some suitable analytic tools, in order to deal with this question.

At the level of the examples coming from operations, we have, following [93]:
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PROPOSITION 3.26. We have the following results:

(1) The irreducible corepresentations of C(G x H) are the tensor products of the form
v ®@ w, with v,w being irreducible corepresentations of C(G), C(H).

(2) The irreducible corepresentations of C(G % H) appear as alternating tensor prod-
ucts of irreducible corepresentations of C(G) and of C(H).

(3) The irreducible corepresentations of C(H) C C(G) are the irreducible corepre-
sentations of C(G) whose coefficients belong to C(H).

(4) The irreducible corepresentations of C(PG) C C(G) are the irreducible corepre-
sentations of C(G) which appear by decomposing the tensor powers of u & u.

ProoF. This is routine, the idea being as follows:

(1) Here we can integrate characters, by using Proposition 3.19 (1), and we conclude
that if v, w are irreducible corepresentations of C(G), C'(H), then v ® w is an irreducible
corepresentation of C'(G x H). Now since the coefficients of these latter corepresentations
span C(G x H), by Peter-Weyl these are all the irreducible corepresentations.

(2) Here we can use a similar method. By using Proposition 3.19 (2) we conclude
that if vy, vg, ... are irreducible corepresentations of C'(G) and wy, wy, ... are irreducible
corepresentations of C'(H), then v; ® wi @ vy @ wy ® ... is an irreducible corepresentation
of C(G % H), and then we can conclude by using the Peter-Weyl theory.

(3) This is clear from definitions, and from the Peter-Weyl theory.
(4) This is a particular case of the result (3) above. O

Let us go back now to Theorem 3.25, and try to understand what happens in general,
without reference to the equivalence relation. We know from chapter 1 that associated to
any discrete group I' are at least two group algebras, which are as follows:

C*(I) = Crey(l) € B(A(T))

For the finite, or abelian, or more generally amenable groups I', these two algebras
are known to coincide, but in the non-amenable case, the opposite happens. Thus, we
are led into the question on whether C”_,(I"), and other possible group algebras of I', are
Woronowicz algebras in our sense, having morphisms as follows:

A:A-S AR A
e: A—=C
S A— APP

Generally speaking, the answer here is “no”, and the subject is quite technical, requir-
ing a good knowledge of advanced functional analysis. In order to have C* ,(I') among
our examples, if we really want to, we must change a bit our axioms, as follows:
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PROPOSITION 3.27. Given a discrete group I' =< gy1,...,gn >, its reduced algebra
A =C? (T') has morphisms as follows, given on generators by the usual formulae,

A:A— AQpmin A

e: A—C

S A— AP
where Qi 15 the spatial tensor product of C*-algebras, and where A = C[I.

PROOF. In what regards the comultiplication, the diagonal embedding I' C I' x I'
given by g — (g,¢g) induces a x-algebra representation, as follows:

C[l] — B(*(T')) @umin B(I*(T))

g—9&g

We can extend then this representation into a morphism A, as in the statement. As
for the existence of morphisms ¢, .S as in the statement, this is clear. O

Summarizing, all this is quite technical, and after all not really related to what we
want to do here. We we are interested here in quantum spaces and quantum groups,
which are well-defined up to equivalence, and so Theorem 3.25 above is all we need.

Let us discuss now, however, the notion of amenability, which is important and useful,
and provides some partial answers to the questions which are left. The basic result here,
once again requiring a good knowledge of functional analysis, is as follows:

THEOREM 3.28. Let Ay, be the enveloping C*-algebra of A, and let A,.q be the
quotient of A by the null ideal of the Haar integration. The following are then equivalent:
(1) The Haar functional of Agu is faithful.
(2) The projection map Aguy — Apeq is an isomorphism.
(3) The counit map € : A — C factorizes through A,eq.
(4) We have N € o(Re(xy)), the spectrum being taken inside Ayeq.

If this is the case, we say that the underlying discrete quantum group I' is amenable.

PROOF. This is well-known in the group dual case, A = C*(I"), with I" being a usual
discrete group. In general, the result follows by adapting the group dual case proof:

(1) = (2) This follows from the fact that the GNS construction for the algebra
Ay with respect to the Haar functional produces the algebra A,.q4.

(2) == (3) This is trivial, because we have quotient maps Ap,y — A — A,eq, and
so our assumption Ay, = A,cq implies that we have A = A, 4.
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(3) = (4) This implication is clear too, because we have:
WA N
et = (3etu+ et
i=1 i=1
1
= N
Thus the element N — Re(y,,) is not invertible in A,.4, as claimed.

(4) = (1) In terms of the corepresentation v = u + u, whose dimension is 2N and
whose character is 2Re(x,,), our assumption N € o(Re(x,)) reads:

dimv € o(xw)

By functional calculus the same must hold for w = v 4+ 1, and then once again by
functional calculus, the same must hold for any tensor power of w:
Wy = w®k
Now choose for each k € N a state ¢, € A}, having the following property:

er(wy) = dim wy,

By Peter-Weyl we must have g;(r) = dimr for any r < wy, and since any irreducible
corepresentation appears in this way, the sequence ¢, converges to a counit map:

&TZATed—)C

In order to finish, we can use the right regular corepresentation. Indeed, as explained
in [79], we can define such a corepresentation by the following formula:

We®z)=Aa)(l®x)
This corepresentation is unitary, so we can define a morphism as follows:

A Aveq = Aved @ Apu

a— W )W*
Now by composing with £ ® id, we obtain a morphism as follows:

(8 ® Zd)A/ : Ared — Afull

Uij — U5

Thus, we have our inverse map for the projection Ay, — Ayeq, as desired. O
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All the above was of course quite short, but we will be back to this, with full details, and
with a systematic study of the notion of amenability, in chapter 14 below. In particular,
we will discuss in detail the case of the usual discrete group algebras A = C*(I'), by
further building on the findings in Theorem 3.25 and Proposition 3.27.

Here are now some basic applications of the above amenability result:

PROPOSITION 3.29. We have the following results:

(1) The compact Lie groups G C Uy are all coamenable.

(2) A group dual G =T is coamenable precisely when I' is amenable.
(3) A product G x H of coamenable compact quantum groups is coamenable.

PRroor. This follows indeed from the results that we have:

(1) This is clear by using any of the criteria in Theorem 3.28 above, because for an
algebra of type A = C(G), we have Apy = Ayeq.

(2) Here the various criteria in Theorem 3.28 above correspond to the various equiv-
alent definitions of the amenability of a discrete group.

(3) This follows from the description of the Haar functional of C'(G x H), from Propo-
sition 3.19 (1) above. Indeed, if fG, [;; are both faithful, then so is fG QR [y O

As already mentioned, we will be back to this, in chapter 14 below.

3e. Exercises

Generally speaking, the best complement to the material presented in this chapter is
some further reading, either in the classical case, for the finite groups, or for the compact
Lie groups, or in the quantum group case, say for the finite quantum groups. Indeed, in
all these situations some interesting simplifications, worth knowing, might appear.

In relation with what has been said above, here is a first exercise:

EXERCISE 3.30. Prove that the finite dimensional C*-algebras are exactly the direct
sums of matrix algebras

A=Myn(C)&...H My, (C)

by decomposing first the unit into a sum of central minimal projections.

This is self-explanatory, and we have talked about this in the above, the problem now
being that of clarifying all this, by doing all the needed computations.

Here is now a second exercise, in relation with the Haar measure:
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EXERCISE 3.31. Given a matrix M € My(C) having norm ||M|| < 1, prove that the
Cesaro limit

P=1 M*
Jm >
exists, and equals the projection onto the 1-eigenspace of M.

This is something which was at the core of the proof of the existence of the Haar
measure. Normally the proof is not very complicated, based on linear algebra.

As another exercise about the Haar measure, we have:

EXERCISE 3.32. Work out the details of the abstract Weingarten integration formula
in the group dual case, where A = C*(T") with ' =< gq,...,gn >.

The first problem here is that of reviewing what the Peter-Weyl theory exactly says in
the group dual case, then choosing a suitable basis for Fiz(u®*), which normally should
not cause any problems, and then writing down the explicit integration formula.

Finally, as an exercise regarding the whole Peter-Weyl theory, we have:

EXERCISE 3.33. Work out in detail the representation theory for the basic operations,
namely products, dual free products, quotients, projective versions.

As before, this is something that we already discussed, but a bit in a hurry, just as an
illustration, and the problem is now that of working out all the details.



CHAPTER 4

Tannakian duality

4a. Tensor categories

In order to have more insight into the structure of the compact quantum groups, in
general and for the concrete examples too, and to effectively compute their representa-
tions, we can use algebraic geometry methods, and more precisely Tannakian duality.

Tannakian duality rests on the basic principle in any kind of mathematics, algebra,
geometry or analysis, “linearize”. In the present setting, where we do not have a Lie
algebra, this will be in fact our only possible linearization method.

In practice, this duality is something quite broad, and there are many formulations
of it, sometimes not obviously equivalent. In what follows we will present Woronowicz’s
original Tannakian duality result from [100], in its “soft” form, worked out by Malacarne
in [73]. This is something which is very efficient, in what regards the applications.

Let us start with the following result, that we already know:

THEOREM 4.1. Given a Woronowicz algebra (A,w), the Hom spaces for its corepre-
sentations form a tensor x-category, in the sense that:
(1) T € Hom(u,v),S € Hom(v,w) = ST € Hom(u,w).
(2) Se€ Hom(p,q), T € Hom(v,w) = S®T € Hom(p ® v,q @ w).
(3) T € Hom(v,w) = T* € Hom(w,v).

ProOF. This is something that we already know, from chapter 3 above, the proofs
being all elementary, as follows:

(1) By using our assumptions Tu = vT" and Sv = Ws we obtain, as desired:
STu = SvT = wST

(2) Assume indeed that we have Sp = ¢S and Tv = wT. With standard tensor
product notations, we have the following computation:

(S@T)(p®v) = 51Top13vaz = (Sp)13(Tv)a3
We have as well the following computation, which gives the result:

(q2w)(S®T) = q3wSiTs = (¢5)13(wT )23
81
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(3) By conjugating, and then using the unitarity of v, w, we obtain, as desired:
Tv=uwT — v'T"=T"w"
= T 'w =vT"w*w
= Tr'w=0vT"
Thus, we are led to the conclusion in the statement. U

Generally speaking, Tannakian duality amounts in recovering (A, ) from the tensor
category constructed in Theorem 4.1. In what follows we will present a “soft form” of
this duality, coming from [73], [100], which uses the following smaller category:

DEFINITION 4.2. The Tannakian category associated to a Woronowicz algebra (A, )
is the collection C' = (C(k,l)) of vector spaces

C(k,1) = Hom(u®", u®")

where the corepresentations u®* with k = o e @ o ... colored integer, defined by
u®? =1
u® =
u® =1

and multiplicativity, u®* = u®* @ u®', are the Peter-Weyl corepresentations.

We know from Theorem 4.1 above that C'is a tensor x-category. To be more precise,
if we denote by H = CV the Hilbert space where u € My(A) coacts, then C is a tensor
x-subcategory of the tensor *-category formed by the following linear spaces:

E(k,1) = L(H®* H®

Here the tensor powers H®* with k = o @ @ o ... colored integer are those where the
corepresentations u®* act, defined by the following formulae, and multiplicativity:

o* =c
H® =H
H** =H~H

Our purpose in what follows will be that of reconstructing (A, u) in terms of the
category C' = (C'(k,1)). We will see afterwards that this method has many applications.

As a first, elementary result on the subject, we have:
PROPOSITION 4.3. Given a morphism 7 : (A,u) — (B,v) we have inclusions
Hom(u®*, u®) € Hom(v®*,v®")

for any k,l, and if these inclusions are all equalities, w is an isomorphism.



4A. TENSOR CATEGORIES 83

PRrROOF. The fact that we have indeed inclusions as in the statement is clear from
definitions. As for the last assertion, this follows from the Peter-Weyl theory.

Indeed, if we assume that 7 is not an isomorphism, then one of the irreducible corep-
resentations of A must become reducible as a corepresentation of B.

But the irreducible corepresentations being subcorepresentations of the Peter-Weyl
corepresentations u®*, one of the spaces End(u®*) must therefore increase strictly, and
this gives the desired contradiction. U

The Tannakian duality result that we want to prove states, in a simplified form, that
in what concerns the last conclusion in the above statement, the assumption that we
have a morphism 7 : (A, u) — (B,v) is not needed. In other words, if we know that the
Tannakian categories of A, B are different, then A, B themselves must be different.

In order to get started now, our first goal will be that of gaining some familiarity with
the notion of Tannakian category. And, as a starting point here, we have to use the only
general fact that we know about u, namely that this matrix is biunitary.

The biunitarity condition translates as follows:
PROPOSITION 4.4. An abstract matriz u € My (A) is biunitary if and only if
Re Hom(l,u® u)
Re Hom(l,u® u)
R* € Hom(u® u, 1)
R* € Hom(u ® u, 1)
where R : C — CN @ CV is the linear operator given by:

R(l) = Zei & €;

Proor. With R being as in the statement, we have the following computation:
wT)(R1)®1) = Y e® e @ ugug,
ijk
= Z €; X €L X (UU*)Z/C

ik

We conclude from this that we have the following equivalence:
Re Hom(l,u®u) <= wu* =1
Consider now the adjoint operator R* : C¥ @ C¥ — C, which is given by:
R*<€i ® ej) = 5ij
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We have then the following computation:

(R @id)(uxa)(e;®ea®l) = Y ujuj

= (W)
We conclude from this that we have the following equivalence:
R*€ Hom(u® u,1) <= v'ui=1

Similarly, or simply by replacing u in the above two conclusions with its conjugate ,
which is a corepresentation too, we have as well the following two equivalences:

Re Hom(l,u®u) < uu' =1
R* € Hm(u®u,1) <= v'u=1
Thus, we are led to the biunitarity conditions, and we are done. Il

As a consequence of this computation, we have the following result:

PROPOSITION 4.5. The Tannakian category C = (C(k,1)) associated to a Woronowicz
algebra (A, u) must contain the operators

RZl-)Z@i(X)BZ'

R*(e; ® ej) = ;5
in the sense that we must have:
ReC(D,0ce) , ReC(D e0)
R* € C(oe,()) , R* € (C(e0,0)
In fact, C' must contain the whole tensor category < R, R* > generated by R, R*.

PROOF. The first assertion is clear from the above result. As for the second assertion,
this is clear from definitions, because C' = (C'(k, 1)) is indeed a tensor category. O

Let us formulate now the following key definition:

DEFINITION 4.6. Let H be a finite dimensional Hilbert space. A tensor category over
H is a collection C = (C(k,1)) of subspaces

C(k,l) C L(H®* H®Y
satisfying the following conditions:
(1) S, T € C implies SRT € C.
(2) If S,T € C are composable, then ST € C.
(3) T € C implies T* € C.
(4) Each C(k,k) contains the identity operator.
(5) C(0,0e) and C(0, e0) contain the operator R: 1 — >, e; @ e;.
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As a basic example here, the collection of the vector spaces £(H®*, H®!) is of course
a tensor category over H. There are many other concrete examples, which can be con-
structed by using various combinatorial methods, and we will discuss this later on.

In relation with the quantum groups, this formalism generalizes the Tannakian cate-
gory formalism from Definition 4.2 above, because we have the following result:

PROPOSITION 4.7. Let (A, u) be a Woronowicz algebra, with fundamental corepresen-
tation u € My(A). The associated Tannakian category C' = (C(k,1)), given by

C(k,1) = Hom(u®", u®")
is then a tensor category over the Hilbert space H = CV.
PROOF. The fact that the above axioms (1-5) are indeed satisfied is clear, as follows:
(1) This follows from Theorem 4.1.
(2) Once again, this follows from Theorem 4.1.
(3) This once again follows from Theorem 4.1.
(4) This is clear from definitions.
(5) This follows from Proposition 4.5 above. O

Our main purpose in what follows will be that of proving that the converse of the
above statement holds. In other words, we would like to prove that any tensor category
in the sense of Definition 4.6 must appear as a Tannakian category.

As a first result on this subject, we have:

PROPOSITION 4.8. Given a tensor category C' = (C(k,l)), the following algebra, with
u being the fundamental corepresentation of C(Uy), is a Woronowicz algebra:

Ao = C(UR)/ (T € Hom(u®, )|k, 1, ¥T € C(k,1) )
In the case where C' comes from a Woronowicz algebra (A,v), we have a quotient map:
AC — A
Moreover, this map is an isomorphism in the discrete group algebra case.

PROOF. Given colored integers k, [ and an arbitrary linear operator T € L(H®* H®!),
consider the following *-ideal of the algebra C(Uy):

I = <T € Hom(u®k,u®l)>

Our claim is that I is a Hopf ideal. Indeed, let us set:

U= Zuik@)ukj
k
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It is elementary to check that we have the following implication, which proves our
claim:
T € Hom(u®*, u®) = T € Hom(U®*, U®")

With this claim in hand, A¢ appears from C(Uy;) by dividing by a collection of Hopf
ideals, and is therefore a Woronowicz algebra. Since the relations defining Aq are satisfied
in A, we have a quotient map as in the statement:

Ac—>A

Regarding now the last assertion, assume that we are in the case A = C*(I'), with
I' =< ¢1,...,9n > being a finitely generated discrete group. If we denote by R the
complete collection of relations between the generators, then we have:

I'=Fy/R

By using now the basic functoriality properties of the group algebra construction, we

deduce from this that we have:
)

Thus the quotient map Ac — A is indeed an isomorphism, as claimed. O

With the above construction in hand, the theorem that we want to prove states that
the operations A — A¢ and C' — Cy are inverse to each other.

We have the following result, which simplifies our work:

PROPOSITION 4.9. Consider the following conditions:

(1) C = Ca,, for any Tannakian category C'.
(2) A= Ac,, for any Woronowicz algebra (A, u).
We have then (1) = (2). Also, C' C C}y,, is automatic.

PROOF. Given a Woronowicz algebra (A, u), let us set:

C=0Cy
By using (1) we have then:
Ca=Cha,
On the other hand, by Proposition 4.8 above we have an arrow:
Ac, — A

Thus, we are in the general situation from Proposition 4.3 above, with a surjective
arrow of Woronowicz algebras, which becomes an isomorphism at the level of the asso-
ciated Tannakian categories. We conclude that Proposition 4.3 can be applied, and this
gives the isomorphism of the associated Woronowicz algebras, Ac, = A, as desired.

Finally, the fact that we have an inclusion C' C C}y,, is clear from definitions. O
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Summarizing, in order to establish the Tannakian duality correspondence, it is enough
to prove that we have Cy, C C, for any Tannakian category C.

4b. Abstract algebra

In order to prove that we have Cy, C C, for any Tannakian category C, let us begin
with some abstract constructions. Following [73], we have:

PROPOSITION 4.10. Given a tensor category C' = C((k,l)) over a Hilbert space H,

ES = P ¢y P BH* H) =B | P H™

kLl <s |kl |1 <s k|<s
s a finite dimensional C*-subalgebra. Also,
Ec =@ C(k,1) c @ BHE™ H*)C B (@ H®’“)

k.l k.l k

is a closed x-subalgebra.

PROOF. This is clear indeed from the categorical axioms from Definition 4.6, via the
standard embeddings and isomorphisms in the statement. U

Now back to our reconstruction question, given a tensor category C' = (C(k,[)), we
want to prove that we have C' = C}y,, which is the same as proving that we have:

Ec = Ec,,,
Equivalently, we want to prove that we have isomorphisms as follows, for any s € N:
() _ go(s
EC - ECAC

The problem, however, is that these isomorphims are not easy to establish directly.
In order to solve this question, we will use a standard commutant trick, as follows:

THEOREM 4.11. For any C*-algebra B C M,(C) we have the formula
B — B//
where prime denotes the commutant, given by:

a={Te Mn(C)’Ta: —aT,Va € A}

PRroOOF. This is a particular case of von Neumann’s bicommutant theorem [92], which
follows as well from the explicit description of B given in chapter 3 above. To be more
precise, let us decompose B as there, as a direct sum of matrix algebras:

B=M,(C)&...® M, (C)
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The center of each matrix algebra being reduced to the scalars, the commutant of this
algebra is then as follows, with each copy of C corresponding to a matrix block:

B'=Ce®...0C

By taking once again the commutant, and computing over the matrix blocks, we obtain
the algebra B itself, and this gives the formula in the statement. U

Now back to our questions, we recall that we want to prove that we have C' = Cy4_,
for any Tannakian category C'. By using the bicommutant theorem, we have:

PROPOSITION 4.12. Given a Tannakian category C, the following are equivalent:

(1) C = Ca.
(2) Ec = Ec,,.

(3) Eg) = E(Cs,ch for any s € N.
(4) E(Cs)/ = Eéi/c, for any s € N.
In addition, the inclusions C, C, C, D are automatically satisfied.
Proor. This follows from the above results, as follows:
(1) <= (2) This is clear from definitions.

(2) <= (3) This is clear from definitions as well.

(3) <= (4) This comes from the bicommutant theorem. As for the last assertion,
we have indeed C' C Uy, from Proposition 4.9, and this shows that we have as well:

Eo C B¢ Ac
We therefore obtain the following inclusion:

Y  BY

Ac

By taking now the commutants, this gives:

(s) (s)
E¢’ D Eg,
Thus, we are led to the conclusion in the statement. U

Summarizing, in order to finish, given a tensor category C' = (C(k,[)), we would like
to prove that we have inclusions as follows, for any s € N:

(s)' (s)'

Let us first study the commutant on the right. As a first observation, we have:
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PROPOSITION 4.13. Given a Woronowicz algebra (A, ), we have

Eésl = End @ u®k

|k|<s
as subalgebras of the following algebra:
s (@ne
|k|<s
PRrOOF. The category C'4 is by definition given by:
Ca(k, 1) = Hom(u®* u®")

Thus, according to the various identifications in Proposition 4.10 above, the corre-
sponding algebra E(Csj appears as follows:

Eg’j = @ Hom/(u®*, u®")

||, |1 <s

k], |1<s

= B| P H™

|k|<s

On the other hand, the algebra of intertwiners of @l Kl<s u®* is given by:

End @u®k = @ Hom (u®*, u®")

|k|<s |kL|l<s
C @ B(H®k7 H®l>
|k, |U<s
- B @ H®
|k|<s
Thus we have indeed the same algebra, and we are done. U

In practice now, we have to compute the commutant of the above algebra.

For this purpose, we can use the following general result:
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PROPOSITION 4.14. Given a corepresentation v € M, (A), we have a representation
T, A" — M, (C)
@ — (p(vij))ij
whose 1mage is given by the following formula:
Im(m,) = End(v)’
PRrROOF. The first assertion is clear, with the multiplicativity claim coming from:
(Mol x )iy = (P @9)Avy)
= Z‘P(Uik)w(vkj>
k
= > (M) ()

k

= (mo(@)mo(¥))is

Let us first prove the inclusion C. Given ¢ € A* and T € End(v), we have:

mo(@), T)=0 <= > oi)Ti; = > _ Tup(vgy), Vi, j

= (Z Uz‘/chj> =@ <Z Tz‘k%j) Vi, j
k k
= @((vT)i) = e((T)i5), Vi, j
But this latter formula is true, because T € End(v) means that we have:
vl =Tv

As for the converse inclusion D, the proof is quite similar. Indeed, by using the
bicommutant theorem, this is the same as proving that we have:

Im(m,)" C End(v)
But, by using the above equivalences, we have the following computation:

T € Im(r,) <= [m(p),T] =0,y
= p((vT)i) = p((T)i;), Ve, i, j
<— vI'=Tv

Thus, we have obtained the desired inclusion, and we are done. U

By combining now the above results, we obtain:
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THEOREM 4.15. Given a Woronowicz algebra (A, u), we have
ES = Im(r,)

as subalgebras of the following algebra,

B @ H®F

|k|<s
where the corepresentation v 1s the sum
v = @ u®*
|k|<s
and where m, : A* — M,(C) is given by p — (©(vi;))ij-
Proor. This follows indeed from Proposition 4.13 and Proposition 4.14. U

Summarizing, we have some advances on the duality question, with the whole problem
tending to become something quite concrete, which can be effectively solved.

4c. The correspondence
We recall that we want to prove that we have Eg)/ C Egjlc, for any s € N. For this

purpose, we must first refine Theorem 4.15, in the case A = Ac. In order to do so, we
will use an explicit model for A¢. In order to construct such a model, let < u;; > be the
free x-algebra over dim(H)? variables, with comultiplication and counit as follows:

Alug;) = Z Uik & U
k

e(uij) = 04
Following [73], we can model this *-bialgebra, in the following way:

PROPOSITION 4.16. Consider the following pair of dual vector spaces,

F =& B(H)
F* =P B(H®)

and let fij, f; € F™* be the standard generators of B(H)*, B(H)*.
(1) F™* is a *-algebra, with multiplication @ and involution fi; < f7.
(2) F* is a x-bialgebra, with A(fi;) = >, fik ® fr; and e(fij) = 6i;.
(3) We have a *-bialgebra isomorphism < w;; >~ F*, given by u;; — fi;.
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PROOF. Since F™ is spanned by the various tensor products between the variables
Jij» [i;, we have a vector space isomorphism as follows, given by w;; — fij, uj; — fi5:

< uj >~ FF
The corresponding *-bialgebra structure induced on F™* is the one in the statement. [
Now back to our algebra Aq, we have the following modelling result for it:
PROPOSITION 4.17. The smooth part of the algebra Ac is given by

Ac ~ F*/J

where J C F* s the ideal coming from the following relations,

Z ﬂ1~~~iz7p1--~Pkfp1j1 ®...0 fpkjk

P1y---5Pk
= E : TQ1~~-Qz,j1--~jkfi1q1 ®...0 fimz . Vi
q1,---,91

one for each pair of colored integers k,l, and each T € C(k,1).

PROOF. Our first claim is that Ac appears as enveloping C*-algebra of the following
universal *-algebra, where u = (u;;) is regarded as a formal corepresentation:

T € Hom(u®* u®), Yk, I,VT € Ok, l)>

Indeed, this follows from Proposition 4.4 above, because according to the result there,
the relations defining C(Uy;) are included into those that we impose.

With this claim in hand, the conclusion is that we have a formula as follows, where I
is the ideal coming from the relations 7' € Hom(u®* u®), with T € C(k,1):

.AC =< U > /]

Now if we denote by J C F* the image of the ideal I via the x-algebra isomorphism
< u;; >~ F* from Proposition 4.16, we obtain an identification as follows:

AcﬁF*/J

In order to compute J, let us go back to I. With standard multi-index notations,
and by assuming that k,I € N are usual integers, for simplifying, a relation of type
T € Hom(u®*, u®') inside < u;; > is equivalent to the following conditions:

E , n1~~~il:p1-~~pkuplj1 - Upy gy

P1,--5Pk

= E : TQ1~~-QZJ1-~~jkui1q1"'uim . Vi

q1,---,91
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Now by recalling that the isomorphism of x-algebras < wu;; >— F* is given by
u;; — fij, and that the multiplication operation of F™* corresponds to the tensor product
operation ®, we conclude that J C F™* is the ideal from the statement. Il

With the above result in hand, let us go back to Theorem 4.15. We have:
PROPOSITION 4.18. The linear space A, is given by the formula
s = {a c F’Tak — o TVT € C(k:,l)}
and the representation
T Ay — B @ HE®*

lk|<s

appears diagonally, by truncating:
ot a — (ag) gk
Proor. We know from Proposition 4.17 that we have:
Ao~ F*/J
But this gives a quotient map F* — Ag, and so an inclusion as follows:
AL CF
To be more precise, we have the following formula:
A = {a e Flf(a)=0,vf ¢ J}

Now since J =< fr >, where fr are the relations in Proposition 4.17, we obtain:

5= {ae Flfr(a) = 0,97 € 0}
Given T € C(k,l), for an arbitrary element a = (ay), we have:
fr(a) =0
— Z Ty vy (O ) pr - pron e = Z Ty aqjrin (@) iy ivgroqrs V1,7
PPk q1seeesdl

= (Tar)iy ipjrgr = (@T)iy i gy s Vis J
<~— Ta=aT
Thus, the dual space A7, is given by the formula in the statement.

It remains to compute the representation m,, which appears as follows:

m Ag — B @H®k

|k|<s
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With a = (a), we have the following computation:

ﬂ-U(a)il---ikajl-ujk = a(vn--.ik,jl-.-jk)
- (fi1j1 ®...0 flk]k)<a>

= (Ar)iy.ipjr i

Thus, our representation 7, appears diagonally, by truncating, as claimed. Il
In order to further advance, consider the following vector spaces:

F,= P B (H®)

|k|<s

Fr = @) B (H)
Ik <s
We denote by a — a, the truncation operation F' — F;. We have:
PROPOSITION 4.19. The following hold:

(1) EY c F,.
(2) E, C F.
(3) A = EL.
(4) Im(m,) = (Eg)s-
PROOF. These results basically follow from what we have, as follows:

(1) We have an inclusion as follows, as a diagonal subalgebra:

F,CB @H®k

k] <s

The commutant of this algebra is given by:

Fl = {b € Flb= (by), by € c,wf}

On the other hand, we know from the identity axiom for C' that this algebra is con-
tained inside Eéf ).
F/ c EY
Thus, our result follows from the bicommutant theorem, as follows:

F/ CEY — F,o> EY

(2) This follows from (1), by taking inductive limits.

(3) With the present notations, the formula of Ag, from Proposition 4.18 reads:
AL = FNEg

Now since by (2) we have Ej, C F, we obtain from this A}, = Ef..
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(4) This follows from (3), and from the formula of 7, in Proposition 4.18. O
Following [73], we can now state and prove our main result, as follows:

THEOREM 4.20. The Tannakian duality constructions
C — AC
A— CA

are inverse to each other, modulo identifying full and reduced versions.

PRrROOF. According to Proposition 4.9, Proposition 4.12, Theorem 5.15 and Proposi-
tion 4.19, we have to prove that, for any Tannakian category C', and any s € N:

ES (B,

By taking duals, this is the same as proving that we have:

{f € F|fiam. =0} < { € F|f 00 = 0}
For this purpose, we use the following formula, coming from Proposition 4.19:
b= Eb
We know that we have:
Ac=F*/J

We conclude that the ideal J is given by:
J:{feFﬂm%zo}
Our claim is that we have the following formula, for any s € N:
Jﬂﬁjz{feﬂjmﬁmzﬂ

Indeed, let us denote by X, the spaces on the right. The categorical axioms for C'
show that these spaces are increasing, that their union X = U; X is an ideal, and that:

X,=XNF:

We must prove that we have J = X, and this can be done as follows:
“C” This follows from the following fact, for any T' € C(k,[) with |k|, |I| < s:
(fo)qry =0 = (fT)|E<Cs>’ =0
— fT € X,
“>” This follows from our description of J, because from Eg ) E¢ we obtain:
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Summarizing, we have proved our claim. On the other hand, we have:
INF = {JeF | =0}nF
= {fGFQk fieL, 20}
= {rer|fiw. =0}

Thus, our claim is exactly the inclusion that we wanted to prove, and we are done. [

Summarizing, we have proved Tannakian duality. As already mentioned in the begin-
ning of this chapter, there are many other forms of Tannakian duality for the compact
quantum groups, and we refer here to Woronowicz’s original paper [100], which contains
a full discussion of the subject, and to the subsequent literature.

As we will see in a moment, Tannakian duality in the above form is something quite
powerful, enabling us to recover the Brauer theorem for Oy, Uy, and for their free versions
O%, U as well. Later on, in chapter 7 below and afterwards, we will further build
on Tannakian duality, with a subsequent notion of “easiness” coming from it. Let us
also mention, for the concerned reader, that all this escalation of algebraic methods will
eventually lead into very concrete applications, of analytic and probabilistic nature.

As a first application now, let us record the following theoretical fact, from [15]:

THEOREM 4.21. Each closed subgroup G C Uy appears as an algebraic manifold of
the free complex sphere,

Gc Sy
the embedding being given by:
'LLZ']'
337;]' =

VN

Proor. This follows from Theorem 4.20, by using the following inclusions:
G cUf sy

Indeed, both these inclusions are algebraic, and this gives the result. U

4d. Brauer theorems

As a second application of the above Tannakian duality results, let us study now in
detail the representation theory of the free quantum groups O}, Uy

In order to get started, let us get back to the operators R, R*, discussed in the begin-
ning of this chapter. We know that these two operators must be present in any Tannakian
category, and in what concerns Uy, which is the biggest N x N compact quantum group,
a converse of this fact holds, by contravariant functoriality, as follows:
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PROPOSITION 4.22. The tensor caltegory < R, R* > generated by the operators

R:l—)Zei@)ei

R*<€i X ej) = 51'3‘
produces via Tannakian duality the algebra C(UY,).

PROOF. By using Proposition 4.5 above we see that the intertwining relations coming
from the operators R, R*, and so from any element of the tensor category < R, R* >,
hold automatically. Thus the quotient operation in Proposition 4.8 above is trivial, and
we obtain the algebra C'(Uy;) itself, as stated. g

As a conclusion, in order to compute the Tannakian category of Uy, we must simply
solve a linear algebra question, namely computing the category < R, R* >.

Regarding now O}, the result here is similar, as follows:

PROPOSITION 4.23. The tensor category < R, R* > generated by the operators

R:1—>Zei®ei

R (e; ® €;) = by
with identifying the colors, o = e, produces via Tannakian duality the algebra C(OY).

PRrROOF. By Proposition 4.5 the intertwining relations coming from R, R*, and so
from any element of the tensor category < R, R* >, hold automatically, so the quotient
operation in Proposition 4.8 is trivial, and we obtain C(O}) itself, as stated. U

Our goal now will be that of reaching to a better understanding of R, R*. In order to
do so, we use a diagrammatic formalism, as follows:

DEFINITION 4.24. Let k,l be two colored integers, having lengths |k|, || € N.

(1) Py(k,l) is the set of pairings between an upper row of |k| points, and a lower row
of l| points, with these two rows of points colored by k, 1.

(2) Pa(k,l) C Py(k,l) is the set of matching pairings, whose horizontal strings con-
nect o — o or e — e, and whose vertical strings connect o — e,

(3) NCy(k,l) C Py(k,l) is the set of pairings which are noncrossing, in the sense
that we can draw the pairing as for the strings to be noncrossing.

(4) NCa(k,l) C Py(k,l) is the subset of noncrossing matching pairings, obtained as
an intersection, NCa(k,1) = NCy(k,1) N Pa(k,1).

The relation with the Tannakian categories of linear maps comes from the fact that
we can associate linear maps to the pairings, as in [35], as follows:
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DEFINITION 4.25. Associated to any pairing m € Py(k,l) and any integer N € N is

the linear map
T7T . ((CN>®k N (CN>®l
given by the following formula, with {e1, ... ,ex} being the standard basis of CV,

Tﬂ(ei1®"'®eik): Z§ﬂ(z~1 Z.k)ej1®...®€jl

J o

and with the Kronecker symbols 6, € {0,1} depending on whether the indices fit or not.

To be more precise here, in the definition of the Kronecker symbols, we agree to put
the two multi-indices on the two rows of points of the pairing, in the obvious way. The
Kronecker symbols are then defined by 6, = 1 when all the strings of 7 join equal indices,
and by 0, = 0 otherwise. Observe that all this is independent of the coloring.

Here are a few basic examples of such linear maps:

PROPOSITION 4.26. The correspondence m — T has the following properties:

(1) Tn = R.
(2) T, = R*.
(3) Ty = id.
(4) Ty =%

PrRoOOF. We can assume if we want that all the upper and lower legs of 7w are colored
o. With this assumption made, the proof goes as follows:

(1) We have N € Py((, 00), and so the corresponding operator is a certain linear map
T : C — CN @ CV. The formula of this map is as follows:

Th(l) = ) dali jlei®e;
ij
= Z 51‘]‘61‘ ® €j
ij
= Z €; ® €;

We recognize here the formula of R(1), and so we have T, = R, as claimed.

(2) Here we have U € Py(oo, (), and so the corresponding operator is a certain linear
form Tr : CN @ CN — C. The formula of this linear form is as follows:

Tm(ei ® ej) = 50@ ])

Since this is the same as R*(e; ® e;), we have T, = R*, as claimed.
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(3) Consider indeed the “identity” pairing ||...|| € Pa(k, k), with k =oo...00. The
corresponding linear map is then the identity, because we have:

Tglea®...®ey) = Y Oy (]1 k) e ® ... ® ey,

— Jk
J1---Jk

= E 61'1]'1 SR 5ikjk€j1 ®...0 €k
Ji-Jk

= €i1®"'®€ik

(4) In the case of the basic crossing X € Py(oo,00), the corresponding linear map
Ty : CYN ® CN — CY @ CV can be computed as follows:

TX<€i®ej) = Z(SX (/i‘ ‘g) er X e
kl

= Z 5i15jkek ® €]
kl
= € e

Thus we obtain the flip operator ¥(a ® b) = b ® a, as claimed. O

Summarizing, the correspondence m — T provides us with some simple formulae for
the operators R, R* that we are interested in, and for other important operators, such as
the flip X(a ® b) = b ® a, and has as well some interesting categorical properties.

Let us further explore these properties, and make the link with the Tannakian cate-
gories. We have the following result, from [35]:

PROPOSITION 4.27. The assignement m — T 1s categorical, in the sense that we have

T7r ® Ta - 7—'[7T0']

T, T, = N Ty,

T* — T7r*

T

where ¢(m,0) are certain integers, coming from the erased components in the middle.

PROOF. The formulae in the statement are all elementary, as follows:
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(1) The concatenation axiom follows from the following computation:

(T @T,)(€, ®..Qe, Dep, ®...R ex,)

_ 225W<;1 ;;;)50(1;‘11 ];T)€j1®-.~®ejq®el1®"‘®€ls
- g N

G1odig L1l

- 225[7@(2} tp ll l)ejl®...®ejq®e,1®...®els
: g Jro--. jq 1 e s
J1-Jg li.ls

— T[ﬂ-o](eil Q... ®€ip ®6k1 X... ®€kr)
(2) The composition axiom follows from the following computation:

TﬂTa(eil X...Q Gip)

3 o o g
St T al o eenon

J1---Jq ki...k
= 3 N O
[2] L k €k, €k,
k.. ker Lo

= NI (e @...®e;)
(3) Finally, the involution axiom follows from the following computation:
Tie; ®...®¢;)
= Z<T:(eﬁ®"'®6jq)76i1®"'®eip>6i1®"'®€ip

i1

— S (' M) @ e
2 \Gr »
=

= Tﬂ*(ejl ® Ce ® ejq)
Summarizing, our correspondence is indeed categorical. O

We can now formulate a first non-trivial result regarding O}, Uy, which is a Brauer
type theorem for these quantum groups, as follows:

THEOREM 4.28. For the quantum groups O, Uy we have

Hom(u®* u®) = span (T,r TE D(k:,l))
with the sets on the right being respectively as follows,
D = NCy, NCy

and with the correspondence m — Ty being constructed as above.
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PROOF. We know from Proposition 4.22 above that the quantum group Uy, corre-
sponds via Tannakian duality to the following category:

C=<R,R">

On the other hand, it follows from the above categorical considerations that this latter
category is given by the following formula:

C = span <T7r T E NCg)
To be more precise, consider the following collection of vector spaces:
C’" = span (T,r = NCg)

According to the various formulae in Proposition 4.27, these vector spaces form a
tensor category. But since the two matching semicircles generate the whole collection of
matching pairings, via the operations in Proposition 4.27, we obtain from this C' = C".

As for the result from O}, this follows by adding to the picture the self-adjointness
condition u = u, which corresponds, at the level of pairings, to removing the colors. [J

The above result is very useful, and virtually solves any question about OF, Uy. We
will be back to it in the next chapter, and afterwards, with applications, both of algebraic
and analytic nature. As an example here, just by counting the dimensions of the spaces
in Theorem 4.28, we will be able to compute the laws of the main characters.

By using the same methods, namely the general Tannakian duality result established
above, we can recover as well the classical Brauer theorem [48], as follows:

THEOREM 4.29. For the groups On,Uyx we have

Hom/(u®* u®") = span (Tw

e D(k, 5))
with D = Py, Py respectively, and with m — T being constructed as above.

PROOF. As already mentioned, this result is due to Brauer [48], and is closely related
to the Schur-Weyl duality [97]. There are several proofs of this result, one classical proof
being via classical Tannakian duality, for the usual closed subgroups G' C Uy.

In the present context, we can deduce this result from the one that we already have,
for O%,Uy. The idea is very simple, namely that of “adding crossings”, as follows:

(1) The group Uy C Uy, is defined via the following relations:
[wij, ugr] = 0

[, U] =0
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But these relations which tell us that the following operators must be in the associated
Tannakian category C"

. , ==X
. , 7= x
Thus the associated Tannakian category is C' = span(T;|m € D), with:

D =< NCy, X, >= P>
Thus, we are led to the conclusion in the statement.
(2) In order to deal now with Oy, we can simply use the following formula:
Oy =05 NUy

At the categorical level, this tells us that the associated Tannakian category is given
by C' = span(T,|r € D), with:

D =< NCy, Py >= P,
Thus, we are led to the conclusion in the statement. U

Summarizing, the orthogonal and unitary groups Oy,Uy and their free analogues
O%, U appear to be “easy”, in the sense that their associated Tannakian categories
appear in the simplest possible way, namely from certain categories of pairings.

We will be exploit this phenomenon in chapters 5-6 below, with a detailed algebraic
and analytic study of these quantum groups, based on their “easiness” property. Then, we
will be back to this in chapter 7 below, with an axiomatization of the notion of category
of pairings, or more generally of a category of partitions, a definition for easiness, some
theory, and an exploration of the main examples of easy quantum groups.

4e. Exercises
Generally speaking, the best complement to the material presented in this chapter is

more reading on Tannakian duality, in its various versions, which are all useful.

With the technology presented above, however, we can work out a few interesting
particular cases of the Tannakian duality, and this will be the purpose of the first few
exercises that we have here. Let us start with something quite elementary:

EXERCISE 4.30. Work out the Tannakian duality for the closed subgroups
G C Of
first as a consequence of the general results that we have, regarding the closed subgroups
GcUy

and then independently, by pointing out the simplifications that appear in the real case.
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Regarding the first question, this is normally something quite quick, obtained by
adding the assumption u = u to the Tannakian statement that we have, and then working
out the details. Regarding the second question, the idea here is basically that the colored
exponents k,l = oe e o ... will become in this way usual exponents, k,I € N, and this
brings a number of simplifications in the proof, which are to be found.

Here is a related question, which is a bit more complicated:

EXERCISE 4.31. Work out the Tannakian duality for the closed subgroups
GCUy
whose fundamental corepresentation is self-adjoint, up to equivalence,
U~ U
first as a consequence of the results that we have, and then independently.

Here are there are several possible paths, either by proceeding a bit as for the previous
exercise, but with the condition v = w there replaced by the more general condition u ~ 1,
or by using what was done in the previous exercise, and generalizing, from u = u to u ~ u.
In any case, regardless of the method which is chosen, the problem is that understanding
what the condition u ~ u really means, categorially speaking.

Another related question, this time regarding the classical case, is as follows:
EXERCISE 4.32. Work out the Tannakian duality for the closed subgroups
G c Uy
first as a consequence of the results that we have, and then independently.

The same comments as before apply. Some supplementary questions appear along
these lines, regarding the closed subgroups G C Oy, or more generally the closed sub-
groups G C Uy satisfying u ~ @. Thus, there are in fact many questions here. In addition
to this, looking a bit at the Tannakian duality literature for the compact Lie groups is
definitely a very good idea, and the best possible exercise on the subject.

On the same topic, we have the following question:
EXERCISE 4.33. Work out the Tannakian duality for the group duals
T CUy
first as a consequence of the results that we have, and then independently.

This is actually the simplest exercise in the whole series, and the problem here is that
of writing down a clear statement, along with a full, independent proof.

Finally, we have the following exercise, on the same topic:
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EXERCISE 4.34. Work out the Tannakian duality for the arbitrary group duals
f Cc Uy
first as a consequence of the results that we have, and then independently.

The key word here, which distinguishes this exercise from the previous one, is the word
“arbitrary”. Thus, in practice, we must go back here to the Peter-Weyl theory developed
in chapter 3 above, see what happens exactly for the arbitrary group duals, and then go
ahead and solve the above Tannakian question, a bit as before.

Moving ahead now, in relation with diagrams and Brauer theorems, we have:
EXERCISE 4.35. Check the Brauer theorems for Oy, Uy, which are both of type
Hom/(u®* u®) = span (T7r T E D(k:,l))

for small values of the global length parameter, k +1 € {1,2,3}.

The idea here is to prove these results that we already know directly, by double
inclusion, with the inclusion in one sense being normally something quite elementary, and
with the inclusion in the other sense being probably somehing quite tricky.

Finally, as a second question regarding the Brauer theorems, we have:

EXERCISE 4.36. Write down Brauer theorems for the quantum groups Oy, Uy, by
identifying first the pairing which produces them, as subgroups of Ok, Uy:.

This is actually something that will be discussed later on in this book, but without
too much details, so the answer “done in the book” will not do.



Part 11

Quantum rotations



And there’s nothing short of dying
Half as lonesome as the sound
On the sleeping city sidewalks
Sunday morning coming down



CHAPTER 5

Free rotations

5a. Gram determinants

We have seen that Tannakian duality allows us to get some substantial insight into
the representation theory of O, Uy, with a free analogue of the classical Brauer theorem
for Oy, Uy. In what follows we discuss some concrete applications of this result.

Let us begin with a summary of the Brauer type results established in the previous

chapter. The statement here, collecting what we have so far, is as follows:
THEOREM b5.1. For the basic unitary quantum groups, namely

Uy U

On

Oy
the intertwiners between the Peter-Weyl representations are given by

Hom/(u®* u®) = span (T7r

© e D(k, 5))
with the linear maps T, associated to the pairings m being given by

Tﬂ(€“®®€%)225ﬂ(21 2k>€]1®®€ﬂ

— Ji
Ji---J1
and with the corresponding sets of pairings D being as follows,

P

NC,

with calligraphic standing for matching, and with NC standing for noncrossing.

107
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PRroOOF. This is indeed a summary of the results that we have, established in the
previous chapter, and coming from Tannakian duality, via some combinatorics. Il

In order to work out now some concrete applications, such as the classification of
the irreducible representations of O3, Uy, we must do some combinatorics. The problem
indeed is that we do not know whether the linear maps 7, in Theorem 5.1 are linearly
independent or not, so we must solve this problem first. Things are quite tricky here,
technically speaking, and we will solve this question as follows:

(1) By Frobenius duality, it is enough to examine the vectors &, = T, associated to
the pairings m € P»(0,1), having no upper points.

(2) In order to decide whether these vectors &, are linearly independent or not, we
will compute the determinant of their Gram matrix.

(3) We will actually compute the determinant of a bigger Gram matrix, that of the
vectors & = T, coming from arbitrary partitions 7 € P(0, 1), which is simpler.

In short, we have an accumulation of tricks here, and some changes of notations too,
and by replacing [ — k as well, as to reach to the standard representation theory notations
from chapter 3, prior to Tannakian duality, we are led to the following statement:

PROPOSITION 5.2. To any partition m € P(k) we associate the vector
fﬂ— = Z 57r(2.17---a7;k)6i1 ®®61k
010k
with the Kronecker symbols being defined as usual, according to whether the indices fit or
not. The Gram matriz of these vectors is then given by

Gp(m, o) = NI™vel
where TV o € P(k) is obtained by superposing 7,c, and |.| is the number of blocks.

PRrROOF. According to the formula of the vectors &, we have:

<& > = Y Oalin, . ik)0, (i, i)

i1

— Z Savo(it, ..y ik)

i1
— N|7TVO’|
Thus, we have obtained the formula in the statement. Il

As an illustration, at k = 2 we have P(2) = {||,M}, and the Gram matrix is:

N? N
=5 %)
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At k = 3 now, we have P(3) = {|||,M|,m, |, M1}, and the Gram matrix is:
N3 N? N? N?2 N
N2 N> N N N
G3=|N? N N* N N
N2 N N N? N
N N N N N

These matrices might not look that bad, to the untrained eye, but in practice, their
combinatorics can be fairly complicated. As an example here, the submatrix of G coming
from the usual pairings, that we are really interested in, according to Theorem 5.1, has
as determinant a product of terms indexed by Young tableaux. This is actually why we
use Gy, because, as we will soon discover, this matrix is something quite simple.

In order to compute the determinant of GG, we will use a standard combinatorial trick,
related to the Mobius inversion formula. Let us start with:
DEFINITION 5.3. Given two partitions w,0 € P(k), we write
T<o
if each block of 7 is contained in a block of o.

Observe that this order is compatible with the previous convention for 7 V o, in the
sense that the V operation is the supremum operation with respect to <. At the level of
examples, at k = 2 we have P(2) = {||,M}, and the order relation is as follows:

<
At k = 3 now, we have P(3) = {||[,N|,11,|M,T1}, and the order relation is:
IF<Almin<mm

Summarizing, this order is very intuitive, and simple to compute. By using now this
order, we can talk about the Mobius function of P(k), as follows:

DEFINITION 5.4. The Mébius function of any lattice, and so of P(k), is given by

1 itr=o0
o) =< =2 o ulm7) ifm<o
0 ifr Lo

with this construction being performed by recurrence.

This is something standard in combinatorics. As an illustration here, let us go back
to the set of 2-point partitions, P(2) = {||,M}. We have by definition:

pdlls 1) = p(m1,11) =1
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Next in line, we know that we have || < M, with no intermediate partition in between,
and so the above recurrence procedure gives:

ulll, ) = =udl 1)) = =1

Finally, we have M £ ||, and so the last value of the Mobius function is:

p(m, ) =0

Thus, as a conclusion, we have computed the M&bius matrix My(w,0) = p(w,0) of
the lattice P(2) = {||,M}, the formula of this matrix being as follows:

1 -1
(o)

The computation for P(3) = {||[, 1,11, |M,T1} is similar, and leads to the following
formula for the associated Mdbius matrix:

1 -1 -1 -1 2

0 1 0 0 -1
M;=|0 0 1 0 -1
o 0 0 1 -1
0o 0 0 0 1

In general, the Mobius matrix of P(k) looks a bit like the above matrices at k = 2,3,
being upper triangular, with 1 on the diagonal, and so on. We will be back to this.

Back to the general case now, the main interest in the Mobius function comes from
the Mobius inversion formula, which states that the following happens:

flo)=) g(m) = glo) =) p(mo)f(r)

<o <o

In linear algebra terms, the statement and proof of this formula are as follows:
THEOREM 5.5. The inverse of the adjacency matriz of P(k), given by

1 fn<o

Ax(m, o) = {0 ifrLo

is the Mébius matriz of P, given by My(mw, o) = p(m, o).

PRroOF. This is well-known, coming for instance from the fact that A; is upper trian-
gular. Indeed, when inverting, we are led into the recurrence from Definition 5.4. U

As an illustration, for P(2) = {||,M} the formula M, = A;' appears as follows:

()-01)
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Also, for P(3) = {|||, ], 7, |1, T} the formula M; = A3" reads:

-1

1 -1 -1 -1 2 11111
o 1 0 0 -1 01001
0o 0 1 0 —-1]=1001P0T1
o 0 0 1 -1 000171
o 0 0 0 1 00001

Now back to our Gram matrix considerations, we have the following key result, based
on this technology, which basically solves our determinant question:

PROPOSITION 5.6. The Gram matriz is given by Gy = ALy, where

O
and where Ay, = M, ' is the adjacency matriz of P(k).
ProoFr. We have the following computation, using Proposition 5.2:
Gp(m,0) = NIl
- #{zlzk e {1,...,N}‘keri27r\/a}

_ #{il,...,ike{1,...,N}‘kem:T}

T>1mNVo

= ) N(N-1)...(N—|r|+1)

T>m\Vo

According now to the definition of Ay, Ly, this formula reads:

Gi(m,0) = Z Ly(1,0)

T>T
= j{:l4k(ﬂ77)[%(T7U)
= (ApLy)(m,0)
Thus, we are led to the formula in the statement. U

As an illustration for the above result, at k = 2 we have P(2) = {||,M}, and the above
decomposition Gy = Ay L appears as follows:

(v 3)=6) 5" 8
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At k = 3 now, we have P(3) = {|||,M|,m, |, M1}, and the Gram matrix is:

N3 N2 N2 N2 N
N2 N2> N N N
Gs=|N2 N N2 N N
N2 N N N? N
N N N N N
Regarding L3, this can be computed by writing down the matrix E5(m, o) = dy<x|7],

and then replacing each entry by the corresponding polynomial in N. We reach to the
conclusion that the product AsLs is as follows, producing the above matrix Gs:

11111 N3 —3N? 42N 0 0 0 0
01001 N? - N N2 - N 0 0 0
AsL; =0 0 1 0 1 N2 - N 0 N?2—-N 0 0
000T1°1 N2 - N 0 0 N2—-N 0
00001 N N N N N

In general, the formula G}, = AL, appears a bit in the same way, with A; being
binary and upper triangular, and with L, depending on N, and being lower triangular.

We are led in this way to the following formula, due to Lindstom [71]:

THEOREM 5.7. The determinant of the Gram matrixz Gy, is given by
N!
det(Gy) = —_
1 (N —[m])!

meP (k)

with the convention that in the case N < k we obtain 0.

ProoFr. If we order P(k) as usual, with respect to the number of blocks, and then
lexicographically, then Ay is upper triangular, and Ly is lower triangular. Thus, we have:

det(Gk) = det(Ak)det(Lk)

= H Lk <7T7 7T)
= [[¥V-1)...(N = x|+ 1)
Thus, we are led to the formula in the statement. Il

Getting back now to quantum groups, or rather to the corresponding Tannakian cat-
egories, written as spans of diagrams, we have the following result:
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THEOREM 5.8. The vectors associated to the partitions, namely

{gﬁ c (CN)®k‘7T c P(k)}
and in particular the vectors associated to the pairings, namely
{& € ©)|r € P}

are linearly independent for N > k.

PROOF. Here the first assertion follows from Theorem 5.7, the Gram determinant
computed there being nonzero for N > k, and the second assertion follows from it. U

In what follows, the above result will be all that we need, for deducing a number of
interesting consequences regarding Oy, Uy, O, Uyr. Once these corollaries exhausted, we
will have to go back to this, and work out some finer linear independence results.

5b. The Wigner law

We discuss here some applications of the above linear independence results. As a first
application, we can study the laws of characters. First, we have:

PROPOSITION 5.9. For the basic unitary quantum groups, namely

Uy U

Ox oF;

the moments of the main character, which are the numbers M, = fG ¥, depending on a
colored integer k, are smaller than the following numbers,

|Pa (k)] ——— [N Ca(k)]

| P2 (k)| ————[NCy(k)]

and with equality happening in each case at N > k.
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ProOOF. We have the following computation, based on Theorem 5.1, and on the char-
acter formulae from Peter-Weyl theory, for each of our quantum groups:

LLXE — dim(Fiz(u®))

= dim <3pan <§}r

Te D(k)))

< [D(k)|
Thus, we have the inequalities in the statement, coming from easiness and Peter-Weyl.
As for the last assertion, this follows from Theorem 5.8. U

In order to advance now, we must do some combinatorics and probability, first by
counting the numbers in Proposition 5.9, and then by recovering the measures having
these numbers as moments. We will restrict the attention to the orthogonal case, which
is simpler, and leave the unitary case, which is more complicated, for later.

Since there are no pairings when £ is odd, we can assume that k is even, and with the
change k — 2k, the partition count in the orthogonal case is as follows:
PRrROPOSITION 5.10. We have the following formulae for pairings,
| P2(2k)| = (2k)!!
INCy(2k)| = Cy
with the numbers involved, double factorials and Catalan numbers, being as follows:

26\ = (2k — 1)(2k — 3)(2k — 5) . ..

1 (2k
Ck_k+1<k)

ProOF. We have two assertions here, the idea being as follows:

(1) We must count the pairings of {1,...,2k}. Now observe that such a pairing
appears by pairing 1 to a certain number, and there are 2k — 1 choices here, then pairing
the next number, 2 if free or 3 if 2 was taken, to another number, and there are 2k — 3
choices here, and so on. Thus, we are led to the formula in the statement, namely:

|Po(2k)] = (2k — 1)(2k — 3)(2k — 5) ...

(2) We must count the noncrossing pairings of {1,...,2k}. Now observe that such a
pairing appears by pairing 1 to an odd number, 2a + 1, and then inserting a noncrossing
pairing of {2,...,2a}, and a noncrossing pairing of {2a + 2,...,2k}. We conclude from
this that we have the following recurrence for the numbers Cj, = |[NCy(2Fk)|:

Cr= > CuG

a+b=k—1
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Consider now the generating series of these numbers:
f(z) = Z Cr2"
k>0
In terms of this generating series, the recurrence that we found gives:

Zf2 _ Zoacvbza-i-b—I—l

a,b>0

=) D GG

k>1 a+b=k—1

= Z Ckzk

k>1
= f-1

Thus the generating series satisfies the following degree 2 equation:
2fP—f+1=0

Now by solving this equation, using the usual degree 2 formula, and choosing the
solution which is bounded at z = 0, we obtain:

- LA

By using now the Taylor formula for \/x, we obtain the following formula:

1= ()

k>0

Thus, we are led to the conclusion in the statement. Il

Let us do now the second computation, which is probabilistic. We must find the real
probability measures having the above numbers as moments, and we have here:

THEOREM b5.11. The standard Gaussian law, and standard Wigner semicircle law
1
g1 = o

1
v = 2—\/4 — 22dx
T

have as 2k-th moments the numbers (2k)!! and Cy, and their odd moments vanish.

e 2y

PROOF. There are several proofs here, depending on your calculus and probability
knowledge. Normally the “honest”, white belt proof would be by trying to find centered
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measures ¢;,7; having as even moments the numbers (2k)!! and Cy. But this is something
quite complicated, requiring the usage of the Stieltjes inversion formula, namely:

du(zr) = lim—l Im (G(x +it)) - dz

tNO T

Now the problem is that, assuming that you master this formula, you have certainly
learned enough probability as to know about the solutions g;,v; to our problem. In short,
we will just cheat, assume that the problem is solved, and proceed as follows:

(1) The moments of the normal law ¢; in the statement are given by:

My,

]_ k — 2/2
= —— | e " Pdr
\/27T/R
1 B RN
= E/R(xk b (—e /2> dx
1 2
= —— [ (k—=1)z"2e"2dz
\/27T/R

1 :
= (k=1 x — [ "%/

( )\/%/Rx o
= (k—1)My

Thus by recurrence we have My, = (2k)!!, and we are done.

(2) The moments of the Wigner law 7 in the statement are given by:

N, =

1 /2
— / V4 — 22 %% dg
2 ),
1 s
— | V4 —4cos?t (2cost)**(2sint)dt

2m Jo
22k+1 T
/ cos?* t sin? tdt
™ Jo
92k+1 (2k)12!!
T Qk+3) "
2:4-6...(2k+2)
22k+1 . (Qk)'
2k[12F+1 (K 4 1)
(2k)!
kl(k+ 1)!

Here we have used an advanced calculus formula, but a routine computation based on
partial integration works as well. Thus we have N, = C}, and we are done. U
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As a comment here, the advanced calculus formula used in (2) above is as follows, with
g(p) = 1if pis even and ¢(p) = 0 if p is odd, and with m!! = (m — 1)(m — 3)(m —5) ...,
with the product ending at 2 if m is odd, and ending at 1 if m is even:

/2 =(p)e(q) g
/ cosP tsin?tdt = <E> __prat
0 2 (p+q+ D!

This formula is something extremely useful, in everyday life, with the proof being by
partial integration, and then a double recurrence on p,q. With spherical coordinates and
Fubini it is possible to generalize this into an integration formula over the arbitrary real
spheres S]g ~! in arbitrary dimension N € N, but more on this later.

Now back to our orthogonal quantum groups, by using the above we can formulate a
clear and concrete result regarding them, as follows:

THEOREM 5.12. For the quantum groups Oy, O%;, the main character
X = Z Wij
follows respectively the standard Gaussian, and the Wigner semicircle law
1 2 1
= ——e "/ = —V4— 22
()1 \/%6 xr T o r=ax

m the N — oo limit.

Proor. This follows by putting together the results that we have, namely Proposition
5.9 applied with N > k, and then Proposition 5.10 and Theorem 5.11. O

The above result is quite interesting, and as a somewhat bizarre reminder, this is the
first application of our Tannakian duality methods, developed in chapter 4. We will see
in what follows countless versions and generalizations of it, basically obtained by using
the same method, Tannakian duality and easiness first, then combinatorics for linear
independence, and then more combinatorics and probability.

5c. Clebsch-Gordan rules

Let us try now to work out some finer results, at fixed values of N € N. In the case
of Oy the above result cannot really be improved, the fixed N € N laws being fairly
complicated objects, related to Young tableaux and their combinatorics.

In the case of O}, however, we will see that some miracles happen, and the convergence
in the above result is in fact stationary, starting from N = 2. Following [1], we have:
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THEOREM 5.13. For the quantum group Oy, the main character follows the standard
Wigner semicircle law, and this regardless of the value of N > 2:

1
X ~ 2—\/4 — x%dx
T

The irreducible representations of O are all self-adjoint, and can be labelled by positive
integers, with their fusion rules being the Clebsch-Gordan ones,

T QT =Tkt + Vk—t)+2 + - + Tkpi

as for the group SUs. The dimensions of these representations are given by

gL — gkl
q—q
where q,q~ " are the solutions of X — NX +1 = 0.

dimr, = -

PROOF. There are several proofs for this fact, the simplest one being via purely alge-
braic methods, based on the easiness property of O, from Theorem 5.1 alone:

(1) In order to get started, let us first work out the first few values of the representations
rr that we want to construct, computed by recurrence, according to the Clebsch-Gordan
rules in the statement, which will be useful for various illustrations:

o = 1
T =u
ro = u®? — 1
rs = u® —2u
ry=u® —3u®? 4+ 1

rs = u®® — 4u® 4+ 3u

(2) We can see that what we want to do is to split the Peter-Weyl representations u®*
into irreducibles, because the above formulae can be written as well as follows:

U,®0:T0

u®t =1y
u®? =1y + 10
u® =13 + 2r,
u®4 :T4—|—37’2+27’0

u® =15 + 4ry + 51y
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(3) In order to get fully started now, our claim, which will basically prove the theorem,
is that we can define, by recurrence on k£ € N, a sequence 1¢, 11,79, ... of irreducible, self-
adjoint and distinct representations of Oy, satisfying:

o = 1
T =u
T+ Thk—2 = Tg—1 Q71
(4) Indeed, at k = 0 this is clear, and at k = 1 this is clear as well, with the irreducibil-

ity of r{ = u coming from the embedding Oy C O]J(,. So assume now that rqg,...,7x_1 as
above are constructed, and let us construct r,. We have, by recurrence:

Th—1+ Tk—3 = Tk—2 QT
In particular we have an inclusion of representations, as follows:
Tp—1 C Tg—2 @1
Now since r;_s is irreducible, by Frobenius reciprocity we have:
Th—2 C Tp—1 ® T
Thus, there exists a certain representation r; such that:
Tk + T2 = Tip—1 QT

(5) As a first observation, this representation ry, is self-adjoint. Indeed, our recurrence
formula 7, 4+ ry_o = rx_1 ® r1 for the representations rq, 71,72, ... shows that the charac-
ters of these representations are polynomials in x,. Now since Y, is self-adjoint, all the
characters that we can obtain via our recurrence are self-adjoint as well.

(6) It remains to prove that r is irreducible, and non-equivalent to rq, ..., 7,_1. For
this purpose, observe that according to our recurrence formula, ry + ry_o = rp_1 ® r1, We
can now split ©u®*, as a sum of the following type, with positive coefficients:

k
u®® = ey + Ch_oTh_o + . ..

We conclude by Peter-Weyl that we have an inequality as follows, with equality pre-
cisely when 7y is irreducible, and non-equivalent to the other summands r;:

Zc? < dim(End(u®*))
(7) Now let us use the easiness property of OF.. This gives us an upper bound for the
number on the right, that we can add to our inequality, as follows:

Zcf < dim(End(u®*)) < Cy

The point now is that the coefficients ¢; come straight from the Clebsch-Gordan rules,
and their combinatorics shows that Y, ¢Z equals the Catalan number Cj, with the remark
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that this follows as well from the known theory of SU,. Thus, we have global equality in
the above estimate, and in particular we have equality at left, as desired.

(8) In order to finish the proof of our claim, it still remains to prove that 7 is non-
equivalent to r_1, 73, ... But these latter representations appear inside u®*~!, and the
result follows by using the embedding Oy C OF;, which shows that the even and odd
tensor powers of u cannot have common irreducible components.

(9) Summarizing, we have proved our claim, made in step (3) above.

(10) In order now to finish, since by the Peter-Weyl theory any irreducible repre-
sentation of O must appear in some tensor power of u, and we have a formula for
decomposing each u®* into sums of representations r;;, as explained above, we conclude
that these representations ry, are all the irreducible representations of O;.

(11) In what regards now the law of the main character, we obtain here the Wigner
law 71, as stated, due to the fact that the equality in (7) gives us the even moments of
this law, and that the observation in (8) tells us that the odd moments vanish.

(12) Finally, from the Clebsch-Gordan rules we have in particular:
TET1 = Tk—1 + k41
We obtain from this, by recurrence, with ¢> — Ng +1 = 0:
dimry, =¢"+ ¢+ ... +q¢ "2+ g
But this gives the dimension formula in the statement, and we are done. O

Let us discuss now the relation with SU,. This group is the most well-known group
in mathematics, and there is an enormous quantity of things known about it. For our
purposes, we need a functional analytic approach to it. This can be done as follows:

THEOREM 5.14. The algebra of continuous functions on SUy appears as
C(SUz) = C* ((Uz’j)i,j=1,2
where F' is the following matrix,
0 1
(4 0)

PROOF. This can be done in several steps, as follows:

uw=FuF ! = unitary)

called super-identity matriz.

(1) Let us first compute SU,. Consider an arbitrary 2 x 2 complex matrix:

v=(23)
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Assuming det U = 1, the unitarity condition U~! = U* reads:

(% D-63)

Thus we must have d = @, ¢ = —b, and we obtain the following formula:

SU, = {(_“b 2) \ laf? + [b]* = 1}

(2) With the above formula in hand, the fundamental corepresentation of SU, is:

= (% o)

Now observe that we have the following equality:

(a_ b)(o 1>_(—b a_)_(o 1)(& B)

—b a)\-1 0/ \—-a —-b) \-1 0)\-b a

Thus, with F' being as in the statement, we have uF' = F'u, and so:
u=FuF~!

We conclude that, if A is the universal algebra in the statement, we have:
A — C(SUy)

(3) Conversely now, let us compute the universal algebra A in the statement. For this
purpose, let us write its fundamental corepresentation as follows:

_f(a b
Y= le d
We have uF' = Fu, with these quantities being respectively given by:
a b 0 1 —-b a
= () (o) = (50 Y)
_ 0 1\ (a" b cdr
Fu= <—1 0) (c* d*> - (—a* —b*)
Thus we must have d = a*, ¢ = —b*, and we obtain the following formula:

[ a b
U= _b* CL*

We also know that this matrix must be unitary, and we have:

« [ a b a* —b\ [ aa*+ bb* ba — ab
=1\ _p o b* a ) \a*b* —b*a* a*a + b*b

« _ [a® —=b a b\ [(a'a+bb* a*b— ba*
ey g —b* a*)  \b*a—ab* aa*+ b
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Thus, the unitarity equations for u are as follows:
ac* =a*a=1—-0bb"=1-10"D
ab = ba,a*b = ba™,ab* = a*b,a"b* = b*a”

It follows that a,b,a*,b* commute, so our algebra is commutative. Now since this
algebra is commutative, the involution * becomes the usual conjugation —, and so:

(5 )

But this tells us that we have A = C(X) with X C SU,, and so we have a quotient
map C(SUy) — A, which is inverse to the map constructed in (2), as desired. d

Now with the above result in hand, we can see right away the relation with O3, and
more specifically with O5 . Indeed, this latter quantum group appears as follows:

C(03) =C" ((uz‘j)z,j=1,2

Thus, SU, appears from O by replacing the identity with the super-identity, or
perhaps vice versa, OF appears from SU, by replacing the super-identity with the identity.

U=1u= unitary)

In any case, these two quantum groups are definitely related by some “twisting”
operation, so they should have similar representation theory. This is indeed the case:

THEOREM 5.15. For the group SUs,, the main character follows the standard Wigner

semicircle law: )
X ~ 2—\/4 — 22dx
T

The irreducible representations of SUy are all self-adjoint, and can be labelled by positive
integers, with their fusion rules being the Clebsch-Gordan ones,

T @1 =Tkt +Tk—tj42 + -« + Tkpt
as for the quantum group OF;. The dimensions of these representations are given by
dimr,=k+1
exactly as for the quantum group OF .

ProoOF. This result is as old as modern mathematics, with many proofs available, all
instructive. Here is our take on the subject, in connection with what we do here:

(1) A first proof, which is straightforward but rather long, is by taking everything
that has been said so far about O}, starting from the middle of chapter 4 above, setting
N = 2, and then twisting everything with the help of the super-identity matrix:

(4 o)
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What happens then is that a Brauer theorem for SU, holds, involving the set D = NC)
as before, but with the implementation of the partitions = — 7). being twisted by F. In
particular, we obtain in this way, as before, inequalities as follows:

dim(End(u®*)) < G

But with such inequalities in hand, the proof of Theorem 5.13 applies virtually un-
changed, and gives the result, with of course ¢ = 1 in the dimension formula.

(2) Here is as well a second proof, or rather sketch of proof, which is quite original,
but is related to what we will be doing here, and is quite instructive. With a = x + iy,
b = z 4 it, the formula for SU, that we found in the proof of Theorem 5.14 reads:

B r+1y z+iat ‘ 2, .2, 2 42
O | L
Thus, SU, is isomorphic to the real unit sphere S3 C R*. The point now is that the

uniform measure on SU, corresponds in this way to the uniform measure on S5, and so
in this picture, the moments of the main character of SU, are given by:

M= [ @0)fdlay.z
Sg

In order to compute now such integrals, we can use the following advanced calculus
formula, valid for any exponents k; € 2N, which at N = 2 corresponds to the advanced
calculus formula mentioned after Theorem 5.11, and at N > 3 comes as well from that
advanced calculus formula, via spherical coordinates and Fubini:

/ x’fl...xﬁ}v dp — (N — DMk k!
gN-1 (N + Xk, — D!

Indeed, by using this formula at N = 4, we obtain:
3 (2k)!!
/ w*dr = SR
Sg

(2k + 3)!!
3.5-7...(2k—1)

=z 2-4-6...(2k+2)
(2k)!
CQREI2E (1)
- =

Thus the even moments of our character y = 2z, are the Catalan numbers, My, = Cy,
and since the odd moments vanish via x — —x, we conclude that we have y ~ ;. But
this formula, or rather the moment formula M, = C}, it comes from, gives:

dim(End(u®*)) = C
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Thus we can conclude as in the above first proof (1), by arguing that the recurrence
construction of r from the proof of Theorem 5.13 applies virtually unchanged, and gives
the result, with of course ¢ = 1 in the dimension formula. O

As a conclusion, we have two fringe proofs for the SU, result, one by crazy algebraists,
and one by crazy probabilists. We recommend, as a complement, any of the proofs by
geometers or physicists, which can be found in any good mathematical book.

5d. Symplectic groups

Let us discuss now the unification of the O}\L, and SUs; results. In view of Theorem
5.14, and of the comments made afterwards, the idea is clear, namely that of looking at
compact quantum groups appearing via relations of the following type:

u = FuF~' = unitary

In order to clarify what exact matrices F' € GLy(C) we can use, we must do some
computations. Following [1], [33], [43], we first have the following result:

PROPOSITION 5.16. Given a closed subgroup G C Uy, with irreducible fundamental
corepresentation u = (u;;), this corepresentation is self-adjoint, u ~ @, precisely when

u= FuF™!
for some unitary matriz F' € Uy, satisfying the following condition:
FF =+1
Moreover, when N is odd we must have FF = 1.

PROOF. Since u is self-adjoint, u ~ %, we must have u = FuF !, for a certain matrix
F € GLy(C). We obtain from this, by using our assumption that u is irreducible:

w=FuF'! = u=FuF!
= u=(FF)u(FF)™!

— FF=cl
— [F=c¢l
= ceR

Now by rescaling we can assume ¢ = +1, so we have proved so far that:

FF =+1



5D. SYMPLECTIC GROUPS 125

In order to establish now the formula FF* = 1, we can proceed as follows:

(id@ Su=u" = (ild®S)i="1u
— (id®S)(FuF')=Fu'F!
= o =FuF!
= u=(F*)'aF*
—  u=Fu(F)!
— a=F"FuF Y(F)!
— FF*=dl

We have FF* > 0, so d > 0. On the other hand, from FF = +1, FF* = d1 we get:
|det F|* = det(FF) = (£1)V
|det F|? = det(FF*) = d"

Since d > 0 we obtain from this d = 1, and so F'F* =1 as claimed. We obtain as well
that when N is odd the sign must be 1, and so F'F' = 1, as claimed. Il

It is convenient to diagonalize the matrices F' that we found. Once again following
[43], up to an orthogonal base change, we can assume that our matrix is as follows, where
N =2p+ q and ¢ = £1, with the 1, block at right disappearing if ¢ = —1:

0 1
el 0(0)

Lo
We are therefore led into the following definition, from [33]:

DEFINITION 5.17. The “super-space” CY is the usual space CN | with its standard basis
{e1,...,en}, with a chosen sign ¢ = £1, and a chosen involution on the set of indices,

i— i
with I being the “super-identity” matriz, Fi; = ;; for 1 < j and Fyj = €d;5 fori > j.

In what follows we will usually assume that F' is the explicit matrix appearing above.
Indeed, up to a permutation of the indices, we have a decomposition n = 2p+ ¢ such that
the involution is, in standard permutation notation:

(12)...2p—1,2p)(2p+1)...(q)
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Let us construct now some basic compact quantum groups, in our “super” setting.
Once again following [33], let us formulate:

DEFINITION 5.18. Associated to the super-space CY are the following objects:
(1) The super-orthogonal group, given by:

Or = {U e Ux|U = FUF'}
(2) The super-orthogonal quantum group, given by:
C(Of) =C" ((Uij)i,jzl,...,n

As explained in [33], it it possible to considerably extend this list, but for our purposes
here, this is what we need for the moment. We have indeed the following result, from
[33], making the connection with our unification problem for O3 and SUs:

w=FuF' = unitary>

THEOREM 5.19. The basic orthogonal groups and quantum groups are as follows:
(1) At e = —1 we have Op = Spy and Of = Spf;.
(2) Ate=—1 and N =2 we have Op = O} = SUs.
(3) At e =1 we have Op = Oy and OFf = OF,.

PROOF. These results are all elementary, as follows:

(1) At e = —1 this follows from definitions, because the symplectic group Spy C Uy
is by definition the following group:

Spx = {U e UN(U _ FUF—l}

(2) Still at e = —1, the equation U = FUF~! tells us that the symplectic matrices
U € Spy are exactly the unitaries U € Uy which are patterned as follows:

a b

Thus we have Spy = Us,, and the formula Sp; = Sp, is elementary as well, via an
analysis similar to the one in the proof of Theorem 5.14 above.

(3) At £ = 1 now, consider the root of unity p = e™/*

5
N

, and set:



5D. SYMPLECTIC GROUPS 127

This matrix J is then unitary, and we have:

01\ ,
)0 1)

Thus the following matrix is unitary as well, and satisfies K F K = 1:
JO

K= J®)

1
Thus in terms of the matrix V = KU K* we have:

q

U=FUF! =unitary <= V =V = unitary
We obtain in this way an isomorphism O}, = O}; as in the statement, and by passing

to classical versions, we obtain as well Or = Oy, as desired. U

With the above formalism and results in hand, we can now formulate the unification
result for OF; and SU,, which in complete form is as follows:

THEOREM 5.20. For the quantum group OFf € {Ok,Spi} with N > 2, the main
character follows the standard Wigner semicircle law,

1
X ~ 2—\/4 — 2%dx
T

the irreducible representations are all self-adjoint, and can be labelled by positive integers,
with their fusion rules being the Clebsch-Gordan ones,
T QT =Tkt + Vk—t)+2 + - - + Tkpi

and the dimensions of these representations are given by
gt — gl
q—q!
where q,q~ 1 are the solutions of X> — NX +1=0. Also, we have Sps = SU,.

dimr, =

Proor. This is a straightforward unification of the results that we already have for
Of; and SU,, the technical details being all standard. See [1]. O

We will be back to O and O} later on, first in chapter 7 below, with a number of
more advanced algebraic considerations, in relation with super-structures and twists, and
then in chapter 8 below, with a number of advanced probabilistic computations.

Finally, as the saying in geometry and physics goes, there is no SU; without SO3. We
will construct in chapter 9 below a kind of “SOs; companion” for Of. This companion
will be something quite unexpected, namely the quantum permutation group Sy;.
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5e. Exercises

There has been a lot of combinatorics and calculus in this above, and doing some more
combinatorics and calculus will be the goal of the exercises here. First, we have:

EXERCISE 5.21. Verify the Gram determinant formula for P(3) explicitly, without any
trick, just by computing the 5 X 5 determinant.

This might sound not very serious, because we have explained in the above a trick
for dealing with such things. But finding such tricks always requires a lot of efforts and
sweat, with computing 5 x 5 determinants being a daily occupation.

Here is another exercise, which will vastly improve your calculus knowledge:

EXERCISE 5.22. Establish the following integration formula over the sphere
b kg (V= DR ey
/Snlgflxl NN dr = (N+Zk2_1)”

that we used in the above, by using spherical coordinates and Fubini.

No special comments here, just enjoy. This is first-class mathematics.

Here is now a more advanced exercise, in relation with probability:

EXERCISE 5.23. Learn and use the Stieltjes inversion formula, namely

1
du(z) = 11{‘% - Im (G(x +it)) - dz

in order to find the centered laws having as 2k-th moments the numbers (2k)!! and Cj.

No comments here either. As before, this is first-class mathematics.

Finally, a quantum group exercise, which is actually a classical group one:

EXERCISE 5.24. Write down a complete proof, using a method of your choice, found
here or somewhere else, for the classification of the irreducible representations of SU,.

This is the most important exercise of them all, because the relation between SU, and
O}, will be something that will reappear regularly, in what follows.



CHAPTER 6

Unitary groups

6a. Gaussian laws

We have seen in the previous chapter that the Brauer type results for Ox, Ok, Uy, Uy
lead to concrete and interesting consequences regarding Oy, OF. In this chapter we discuss
similar results for Uy, Uy,. The situation here is a bit more complicated than for Oy, Oy,
and we will only do a part of the work here, namely algebra and basic probability, with
the other part, advanced probability, being left for later, in chapter 8 below.

Let us start with a summary of what we know so far about Uy, Uy
THEOREM 6.1. For the basic unitary quantum groups, namely
Un C Uy
the intertwiners between the Peter-Weyl representations are given by

Hom(u®* u®) = span <T7r T E D(k,l))

with the linear maps T, associated to the pairings m being given by

Tﬂ(€i1®...®€ik): Z(Sﬂ(]i jl)6j1®...®€jl

and with the pairings D being as follows, with calligraphic standing for matching:
Py D NCQ

At the level of the moments of the main character, we have in both cases

[ < 1w

with D being the above sets of pairings, with equality happening at N > k.

Proor. This is a summary of the results that we have, established in the previous
chapters, and coming from Tannakian duality, via some combinatorics. To be more pre-
cise, the Brauer type results are from chapter 4, the estimates for the moments follows
from this and from Peter-Weyl, as explained in chapter 5, and finally the last assertion,
regarding the equality at N > k, is something more subtle, explained in chapter 5. U
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Let us first investigate the unitary group Uy. As it was the case for the orthogonal
group Oy, in chapter 5 above, the representation theory here is something quite compli-
cated, related to Young tableaux, and we will not get into this subject. However, once
again in analogy with Oy, there is one straightforward thing to be done, namely the
computation of the law of the main character, in the N — oo limit.

In order to do this, we will need a basic probability result, as follows:

THEOREM 6.2. The moments of the complex Gaussian law, given by

with a,b being independent, each following the real Gaussian law g1, are given by
My = [Pa(k)]
for any colored integer k =oceeo ...
ProoF. This is something well-known, which can be done in several steps, as follows:

(1) We recall from chapter 5 above that the moments of the real Gaussian law g;, with
respect to integer exponents k € N, are the following numbers:

my, = | Py(k)|
Numerically, we have the following formula, explained as well in section 5:

k' (k even)
mp =
0 (kodd)

(2) We will show here that in what concerns the complex Gaussian law G, similar
results hold. Numerically, we will prove that we have the following formula, where a
colored integer k = o @ @ o ... is called uniform when it contains the same number of o
and e, and where |k| € N is the length of such a colored integer:

M. — (|k]/2)! (K uniform)
7o (k not uniform)

Now since the matching partitions m € Py (k) are counted by exactly the same numbers,
and this for trivial reasons, we will obtain the formula in the statement, namely:

My = [Pa(k)]
(3) This was for the plan. In practice now, we must compute the moments, with
respect to colored integer exponents k = oeeo ... of the variable in the statement:

c=—(a+1ib)

Sl
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As a first observation, in the case where such an exponent k = ceeo. .. is not uniform
in o, e, a rotation argument shows that the corresponding moment of ¢ vanishes. To be
more precise, the variable ¢ = wc can be shown to be complex Gaussian too, for any
w € C, and from Mj(c) = My(c') we obtain My(c) = 0, in this case.

(4) In the uniform case now, where k = oeeo. .. consists of p copies of o and p copies
of e the corresponding moment can be computed as follows:

M = [y

(cc)
_ 2lp / (@ + 1)

— i (p)/a2s/b2p—2s
2p — \s

= Qip S (i)(Qs)!!(Zp—Zs)!!

1 p! (2s)!  (2p — 2s)!
w = sl(p—s)! 25 2075(p — )

0ty

(5) In order to finish now the computation, let us recall that we have the following
formula, coming from the generalized binomial formula, or from the Taylor formula:

I i 2k\ [ —t\"
Vitt = \k)\4
By taking the square of this series, we obtain the following formula:
1 B Z 2k 2s —t s
1+t — k S 4
—t\? 2s\ (2p — 2s
- =006

p

Now by looking at the coefficient of ¥ on both sides, we conclude that the sum on the
right equals 4. Thus, we can finish the moment computation in (4), as follows:
p!

Mpzﬂxllp:p!
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(6) As a conclusion, if we denote by |k| the length of a colored integer k =ceeo. ..,
the moments of the variable ¢ in the statement are given by:

M. — (lk|/2)!  (k uniform)
"o (k not uniform)

On the other hand, the numbers |Py(k)| are given by exactly the same formula. Indeed,
in order to have matching pairings of k£, our exponent £ = o e @ o ... must be uniform,
consisting of p copies of o and p copies of e, with p = |k|/2. But then the matching
pairings of k correspond to the permutations of the e symbols, as to be matched with o
symbols, and so we have p! such matching pairings. Thus, we have the same formula as
for the moments of ¢, and we are led to the conclusion in the statement. U

We should mention that the above proof is just one proof among others, designed
for a reader having rather low background in probability. There is a lot of interesting
mathematics behind the complex Gaussian variables, whose knowledge can avoid some of
the above computations, and we recommend here any good probability book.

By getting back now to the unitary group Uy, with the above results in hand we can
formulate our first concrete result about it, as follows:

THEOREM 6.3. For the unitary group Uy, the main character
X = Z Uz
follows the standard complex Gaussian law
X~ Gi
in the N — oo limit.

Proor. This follows by putting together the results that we have, namely Theorem
6.1 applied with N > k, and then Theorem 6.2. U

As already mentioned above, as it was the case for the orthogonal group Oy, in chapter
5, the representation theory for Uy at fixed N € N is something quite complicated, related
to the combinatorics of Young tableaux, and we will not get into this subject here.

There is, however, one more interesting topic regarding Uy to be discussed, namely
its precise relation with Oy, and more specifically the passage Oy — Uy.

Contrary to the passage RY — C¥, or to the passage S]g_l — S(va_l, which are both
elementary, the passage Oy — Uy cannot be understood directly. In order to understand
this passage we must pass through the corresponding Lie algebras, a follows:
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THEOREM 6.4. The passage Oy — Uy appears via Lie algebra complexification,
ON — 0Ny — U, — UN
with the Lie algebra uy being a complezification of the Lie algebra oy .

ProoF. This is something rather philosophical, and advanced as well, that we will
not really need here, the idea being as follows:

(1) The unitary and orthogonal groups Uy, Oy are both Lie groups, in the sense
that they are smooth manifolds, and the corresponding Lie algebras uy, oy, which are
by definition the respective tangent spaces at 1, can be computed by differentiating the
equations defining Uy, Oy, with the conclusion being as follows:

1w:{AeMm@WM:— }

oNZ{BeJmNRWth—B}

(2) This was for the correspondences Uy — uy and Oy — oy. In the other sense,
the correspondences uy — Uy and oy — Op appear by exponentiation, the result here
stating that, around 1, the unitary matrices can be written as U = e?, with A € uy, and
the orthogonal matrices can be written as U = e, with B € oy.

(3) In view of all this, in order to understand the passage Oy — Uy it is enough to
understand the passage oy — uy. But, in view of the above explicit formulae for oy, uy,

this is basically an elementary linear algebra problem. Indeed, let us pick an arbitrary
matrix A € My(C), and write it as follows, with B,C' € My(R):

A=B+:iC
In terms of B, C, the equation A* = —A defining the Lie algebra uy reads:
B'=-B
C'=C

(4) As a first observation, we must have B € oy. Regarding now C, let us decompose
it as follows, with D being its diagonal, and C’ being the reminder:

C=D+C'

The reminder C” being symmetric with 0 on the diagonal, by swithcing all the signs
below the main diagonal we obtain a certain matrix C’. € oy. Thus, we have decomposed
A € uy as follows, with B,C" € oy, and with D € My(R) being diagonal:

A=B+iD+iC"

(5) As a conclusion now, we have shown that we have a direct sum decomposition of
real linear spaces as follows, with A C My (R) being the diagonal matrices:

LLNEUN@A@ON
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Thus, we can stop our study here, and say that we have reached the conclusion in the
statement, namely that uy appears as a “complexification” of oy. O
As before with many other things, that we will not really need in what follows, this

was just an introduction to the subject. More can be found in any Lie group book.

6b. Circular variables

Let us discuss now the unitary quantum group Uy. We have 3 main topics to be
discussed, namely the character law with N — oo, the representation theory at fixed
N € N, and complexification, and the situation with respect to Uy is as follows:

(1) The asymptotic character law appears as a “free complexification” of the Wigner
law, with the combinatorics being similar to the classical case one.

(2) The representation theory is definitely simpler, with the fusion rules being given
by a “free complexification” of the Clebsch-Gordan rules, at any N > 2.

(3) As for the complexification aspects, here the situation is extremely simple, with
the passage OF, — U}, being a usual free complexification.

More in detail now, let us first discuss the character problematics for Uy, or rather
the difficulties that appear here. We have the following theoretical result, to start with,
coming from the general C*-algebra theory developed in chapter 1 above:

THEOREM 6.5. Given a C*-algebra with a faithful trace (A,tr), any normal variable,
aa* = a*a

has a “law”, which is by definition a complex probability measure p € P(C) satisfying:

tr(a®) :/Czkd,u(z)

This law is unique, and is supported by the spectrum o(a) C C. In the non-normal case,
aa® # a*a, such a law does not exist.

PrRoOOF. We have two assertions here, the idea being as follows:

(1) In the normal case, aa* = a*a, the Gelfand theorem, or rather the subsequent
continuous functional calculus theorem, tells us that we have:

< a>=C(o(a))

Thus the functional f(a) — tr(f(a)) can be regarded as an integration functional on
the algebra C'(o(a)), and by the Riesz theorem this latter functional must come from a
probability measure p on the spectrum o(a), in the sense that we must have:

/fdu
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We are therefore led to the conclusions in the statement, with the uniqueness assertion
coming from the fact that the elements a”, taken as usual with respect to colored integer
exponents, k = oeeo ..., generate the whole C*-algebra C'(o(a)).

(2) In the non-normal case now, aa* # a*a, we must show that such a law does not
exist. For this purpose, we can use a positivity trick, as follows:

aa* —a*a #0

(aa* —a*a)® > 0

aa*aa” — aa*a*a — a*aaa” + a*aa*a > 0
tr(aa*aa” — aa*a*a — a*aaa™ 4+ a*aa*a) > 0

tr(aa*aa® + a*aa*a) > tr(aa*a*a + a*aaa®)

NN

tr(aa*aa®) > tr(aaa*a®)

Now assuming that a has a law u € P(C), in the sense that the moment formula
in the statement holds, the above two different numbers would have to both appear by
integrating |z|* with respect to this law p, which is contradictory, as desired. O

All the above might look a bit abstract, so as an illustration here, consider the following
matrix, which is the simplest example of a non-normal matrix:

0 1
7=(0 )
We have then the following formulae, which show that Z has no law, indeed:

0 0

e o (1 0) 1

tr(ZZ2*Z") =tr (0 0) =0

Getting back now to Uy, its main character is not normal, so it does not have a law
p € P(C). Here is a concrete illustration for this phenomenon:

PROPOSITION 6.6. The main character of Uy satisfies, at N > 4,

/ XXX =1
U+

N

/ XXxx" =2
Uy

and so this main character x does not have a law p € P(C).
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Proor. This follows from the last assertion in Theorem 6.1, which tells us that the
moments of x are given by the following formula, valid at any N > k:

| =wew)
Uy
Indeed, we obtain from this the following formula, valid at any N > 4:

/ XXX = [NCy(ooee)]
U+

N
= [m]
1

On the other hand, we obtain as well the following formula, once again at N > 4:

/ XXX = [NCyoeoe)
Uy

= |nnNn,m|

= 2

Thus, we have the formulae in the statement. Now since we cannot obtain both 1 and
2 by integrating |z|? with respect to a measure, our variable has no law p € P(C). d

Summarizing, we are a bit in trouble here, and we must proceed as follows:

DEFINITION 6.7. Given a C*-algebra with a faithful trace (A, tr), the law of a variable
a € A is the following abstract functional:

p:C< X, X*>—=C
P — tr(P(a))

In particular two variables a,b € A have the same law, and we write in this case a ~ b,
when all their moments coincide,

tr(a®) = tr(b*)
with these moments being taken with respect to colored integers, k =oceeo ...

Here the compatibility between the first and the second above conventions comes from
the fact that, by linearity, the functional p is uniquely determined by its values on the
monomials P(z) = z¥, with k = oeeo... being a colored integer.

In the normal case, aa* = a*a, it follows from Theorem 6.5 that the law, as defined
above, comes from a probability measure u € P(C), via the following formula:

r(P@) = [ PE)uc:)
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In particular, in the case where we have two normal variables a, b, the equality a ~ b
tells us that the laws of a, b, taken in the complex measure sense, must coincide.

In the general case, aa* # a*a, there is no such simple interpretation of the law, with
this coming from the last assertion in Theorem 6.5, and also from the concrete example
worked out in Proposition 6.6, and we must use Definition 6.4 as it is.

Next in line, we must talk about freeness. For this purpose, let us recall that the
independence of two subalgebras B, C' C A can be defined in the following way:
tr(b) =tr(c) =0 = tr(bc) =0
In analogy with this, we have the following definition of Voiculescu [90]:

DEFINITION 6.8. Two subalgebras B,C C A are called free when the following condi-
tion is satisfied, for any b; € B and ¢; € C':

tr(b;)) =tr(c;) =0 = tr(bicibacy...) =0
Also, two variables b,c € A are called free when the algebras that they generate,
B=<b> , C=<c¢>
are free inside A, in the above sense.

In short, freeness appears as a kind of “free analogue” of independence, taking into
account the fact that the variables do not necessarily commute. As a first result regarding
this notion, in analogy with the basic theory of the independence, we have:

PROPOSITION 6.9. Assuming that B,C' C A are free, the restriction of tr to < B,C' >
can be computed in terms of the restrictions of tr to B,C. To be more precise,

t’f’(blcleCQ .. ) = P({tr(b“bm .. )}“ {tT(lech .. )}J>

where P 1s certain polynomial in several variables, depending on the length of the word
bicibacy . . ., and having as variables the traces of products of type b; b, ... and c;cj, ...,
with the indices being chosen increasing, i1 < is < ... and j; < jo < ...

Proor. This is something quite theoretical, so let us begin with an example. Our
claim is that if b, ¢ are free then, exactly as in the case where we have independence:
tr(bc) = tr(b)tr(c)
Indeed, we have the following computation, with the convention a’ = a — tr(a):
tr(be) = tr[(b' + tr (b)) (' + tr(c))]
tr(b'd) + t(b")tr(c) + tr(b)tr(c) + tr(b)tr(c)
= tr(t/d) +tr(b)tr(c)
= tr(b)tr(c)
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In general now, the situation is a bit more complicated, but the same trick applies.
To be more precise, we can start our computation as follows:

tr(b1016202 .. )
= tr[(b’1 +tr(by)) (¢} 4 tr(cr))(by + tr(be))(cy +tr(ca)) ... ... }
= tr(bicbycy . . .) + other terms
other terms
Observe that we have used here the freeness condition, in the following form:
tr(b;) = tr(c;) =0 = tr(bjcibyey...) =0

Now regarding the “other terms”, those which are left, each of them will consist of a
product of traces of type tr(b;) and tr(c;), and then a trace of a product still remaining
to be computed, which is of the following form, with 5; € B and v; € C"

tr(BimBaya--.)

To be more precise, the variables [3; € B appear as ordered products of those b; € B
not getting into individual traces tr(b;), and the variables 7; € C' appear as ordered
products of those ¢; € C' not getting into individual traces tr(c;). Now since the length
of each such alternating product ;718272 ... is smaller than the length of the original
alternating product bycibscs . . ., we are led into of recurrence, and this gives the result. [J

As an illustration, given two discrete groups I', A, the algebras C*(I"), C*(A) are in-
dependent inside C*(I' x A), are free inside C*(I" * A). As before with the laws, there is
some theory that can be developed here, and we will do this later, in chapter 8 below.

The point now is that with the above definitions in hand, we can advance, in connection
with our questions, in the following rather formal way:

DEFINITION 6.10. The Voiculescu circular law I'y is defined by

Iy ~ L(04 +1if3)

V2

with o, B being self-adjoint and free, each following the Wigner semicircle law ;.

Our goal in what follows will be that of proving that the main character law of Uy
becomes circular with N — 0o, and in fact, more generally, with N > 2.

In order to prove these results, we need first to study the Voiculescu circular law, a
bit in the same way as we did with the Wigner semicircle law, in chapter 5 above. Let us
start with a useful modelling result for the Wigner law, as follows:
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PROPOSITION 6.11. Consider the shift operator S € B(I1*(N)). We have then
S+85" ~m
with respect to the state p(T') =< Tdy, do >.

Proor. We must compute the moments of the variable S 4+ S* with respect to the
state o(T') =< Tdg, 0y >. Our claim is that these moments are given by:

< (S + 5%, 00 >= [NCa(k)]

Indeed, when expanding (S+5*)¥ and computing the value of ¢ : T —< T, 5 >, the
only contributions will come via the formula S*S = 1, which must succesively apply, as
to collapse the whole product of S, S* variables into a 1 quantity. But these applications
of S*S = 1 must appear in a non-crossing manner, and so the contributions, which are
each worth 1, are parametrized by the partitions 7 € NC5(k). Thus, we obtain the above
moment formula, which shows that we have S 4+ S* ~ 1, as claimed. O

The next step is that of taking a free product of the model found in Proposition 6.11
with itself. For this purpose, we can use the following construction:

DEFINITION 6.12. Given a real Hilbert space H, we define the associated free Fock
space as being the infinite Hilbert space sum

FH)=CQoHo H*®® ...
and then we define the algebra A(H) generated by the creation operators
S, v =T
on this free Fock space.

At the level of examples, with H = R we recover the shift algebra A =< S > on
the Hilbert space H = [*(N). Also, with H = R?, we obtain the algebra A =< S, S, >
generated by the two shifts on the Hilbert space H = [*(N x N).

With the above notions in hand, we have the following key freeness result:

PROPOSITION 6.13. Given a real Hilbert space H, and two orthogonal vectors x,y € H,

r Ly
the corresponding creation operators Sy and S, are free with respect to
tr(T) =<TQ,Q >

called trace associated to the vacuum vector.
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PROOF. In standard tensor notation for the elements of the free Fock space F(H),
the formula of a creation operator associated to a vector x € H is as follows:

S ® .. QY) =2 QY Q... Yy
As for the formula of the adjoint of this creation operator, this is as follows:
SE @ Qyp) =< T, 91 > QY D ... D Y
We obtain from this the following formula, valid for any two vectors x,y € H:
SySy =<uwz,y >1id

With these formulae in hand, the result follows by doing some elementary computa-
tions, a bit similar to those in the proof of Proposition 6.11. U

In order now to explicitely model the circular variables, we can use:
PROPOSITION 6.14. Given two polynomials f,g € C[X], consider the variables
R4+ f(R) , S +g(9)

where R, S are two creation operators, or shifts, associated to a pair of orthogonal norm
1 vectors. These variables are then free, and their sum has the same law as

T+ (f + 9)(T)
with T being the usual shift on I*(N).

ProOOF. We have two assertions here, the idea being as follows:

(1) The freeness assertion comes from the general freeness result from Proposition
6.13, via the various identifications coming from the previous results.

(2) Regarding now the second assertion, the idea is that this comes from a 45° rotation
trick. Let us write indeed the two variables in the statement as follows:

X:R*+a0+a1R+a2R2—|—...
Y = S*+by+ b5 +aS%+...

Now let us perform the following 45° base change, on the real span of the vectors
r,s € H producing our two shifts R, S:

o r+s r—=s
Tvr T
The new shifts, associated to these vectors t,u € H, are then given by:
ReS  R-S
V2o V2

T —
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By using now these new shifts, which are free as well according to Proposition 6.13,
we obtain the following equality of distributions:

X+Y = R*+S*+ZakRk+kak
k
T+U\" T —U\*
_ AT+ (—) vh (_)

7\" 7\"
~ V2T + gak (E) + by (ﬁ)
k
To be more precise, here in the last two lines we have used the freeness property of

T,U in order to cut U from the computation, as it cannot bring anything, and then we
did a basic rescaling at the end. Thus, we are led to the conclusion in the statement. [J

Still following [90], we can now formulate an explicit and very useful modelling result
for the semicircular and circular variables, as follows:

THEOREM 6.15. Let H be the Hilbert space having as basis the colored integers k =
oceeo..., and consider the shift operators S : k — ok and T : k — ek. We have then

S+85 ~m
S + T* ~/ Fl
with respect to the state p(T) =< Te,e >, where e is the empty word.
Proor. This is standard free probability, the idea being as follows:

(1) The formula S+ S* ~ ~; is something that we already know, in a slightly different
formulation, from Proposition 6.11 above.

(2) The formula S + T™* ~ I'; follows from this, by using the freeness result in Propo-
sition 6.13, and the rotation trick in Proposition 6.14. U

At the combinatorial level now, we have the following result, which is in analogy with
the moment theory of the Wigner semicircle law, developed above:

THEOREM 6.16. A wvariable a € A is circular when its moments are given by
tr(a”) = N Ca(k)|

for any colored integer k =oceeo ...
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PRrOOF. By using Theorem 6.15, it is enough to do the computation in the model
there. With S : k — ok and T : k — ek, our claim is that we have:

< (S+T") ', e >= [NCy(k)|

In order to prove this formula, we can proceed as in the proof of Proposition 6.11.
Indeed, let us expand the quantity (S+7%), and then apply the state . With respect to
the previous computation, from Proposition 6.11, what happens is that the contributions
will come this time via the formulae S*S = 1, T*T = 1, which must succesively apply, as
to collapse the whole product of S, S*, T, T™* variables into a 1 quantity.

As before, in the proof of Proposition 6.11, these applications of the rules S*S =1,
T*T = 1 must appear in a non-crossing manner, but what happens now, in contrast with
the computation from the proof of Proposition 6.11, where S+ S* was self-adjoint, is that
at each point where the exponent k£ has a o entry we must use 77" = 1, and at each point
where the exponent k has a e entry we must use S*S = 1.

Thus the contributions, which are each worth 1, are parametrized by the partitions
7w € NCy(k). Thus, we obtain the above moment formula, as desired. U

We will be back with more explanations on all this in chapter 8 below. For our
purposes now, the above definitions and results are all we need.

Getting back now to the quantum group Uy, we can reformulate the main result that
we have so far about it, by using the above notions, as follows:

THEOREM 6.17. For the quantum group Uy with N > 2 we have

Hom(u®* u®") = span (T7r

= D(k,l))

and at the level of the moments of the main character we have
| ¢ e
UX

with equality at N > k, the numbers on the right being the moments of I'y.

ProoOF. This is something that we already know. To be more precise, the Brauer
type result is from chapter 4, the estimate for the moments follows from this and from
Peter-Weyl, as explained in chapter 5, the equality at N > k is something more subtle,
explained in chapter 5, and the last statement comes from the above discussion. U

Summarizing, with a bit of abstract probability theory, of free type, we are now on
our way into the study of Uy, paralleling the previous study of O}.
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6¢. Fusion rules

With the above result in hand, we can now go ahead and do with Uy, exactly what
we did with OF; in chapter 5, with modifications where needed, namely constructing the
irreducible representations by recurrence, using a Frobenius duality trick, computing the
fusion rules, and concluding as well that we have xy ~ I'y, at any N > 2.

In practice, all this will be more complicated than for Of;, mainly because the fusion
rules will be something new, in need of some preliminary combinatorial study. These
fusion rules will be a kind of “free Clebsch-Gordan rules”, as follows:

TE QT = E Tez

k=xy,l=1yz

Let W be the set of colored integers k = oceeo. .., and consider the complex algebra
E spanned by W. We have then an isomorphism, as follows:

(C<X7X* >7+7') = (E7+7)

X—=0 , X"—e

We define an involution on our algebra F, by antilinearity and antimultiplicativity,
according to the following formulae, with e being as usual the empty word:

eé=e¢ , O=e , =0

With these conventions, we have the following result:

PROPOSITION 6.18. The map x : W x W — E given by
rXy= Z ab
r=ag,y=gb
extends by linearity into an associative multiplication of E.

PROOF. Observe first that x is well-defined, the sum being finite. Let us prove now
that x is associative. Let x,y,z € W. Then:

(xxy) xz = Z ab x z

r=ag,y=gb

= Z cd

r=ag,y=gb,ab=ch,z=hd
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Now observe that for a, b, c, h € W the equality ab = ch is equivalent to b = uh,c = au
with uw € W, or to a = cv, h = vb with v € W. Thus, we have:

(rxy)xz = Z aud

r=ag,y=guh,z=hd
+ Z cd
z=cvg,y=gb,z=bvd
A similar computation shows that = x (y X z) is given by the same formula. O

Next, we have the following result:

PROPOSITION 6.19. Consider the following morphism, with S, T being the shifts,
P (E,+,-) = (B(I*(W)), +,0)
a—S+T"
and let B, C E be the linear space generated by the words of W having length < n.

(1) If J: E — E is the map f — P(f)e, then (J — Id)E,, C E, 1 for any n.
(2) J is an isomorphism of x-algebras (E,+,-) ~ (E,+, X).

PRrOOF. We have several assertions here, the idea being as follows:
(1) Let f € E. We have then the following formula:
Pla)f=(S+T")f=oxf
Thus, for any g € E, we have the following formula:
J(og) = P(o)J(g)
= oxJ(g)
= J(o) x J(g)
The same argument shows that we have, for any g € E:
J(eg) = J(e) x J(g)
Now the algebra (E, +, -) being generated by o and e, we conclude that J is a morphism
of algebras, as follows:
J:(E,+,) = (E,+, X)
We prove now by recurrence on n > 1 that we have:
(J—Id)E, C E, 4

At n = 1 we have J(o) = o, J(e) = @ and J(e) = e, and since F; is generated by
e,o,e, we have J = Id on F1, as desired. Now assume that the above formula is true for
n, and let k € E,,,. We write, with f,g,h € E,:

k=of +eg+h
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We have then the following computation:
(J —Id)k
J(of +eg+h)—(of +eg+h)
= [(S+T7)J(f) + (5" +T)J(g) + J(h)] = [Sf +Tg + h]
= SU) = N+TU(g) —g)+TI(f) + 5 (g) + (J(h) = h)
By using the recurrence assumption, applied to f, g, h we find that F,, contains all the

terms of the above sum, and so contains (J — Id)k, and we are done.

(2) Here we have to prove that J preserves the involution *, and that it is bijective.
We have Jx = *J on the generators {e, o, e} of E, so J preserves the involution. Also, by
(1), the restriction of J — Id to E, is nilpotent, so J is bijective. U

Following [1], we can now formulate a result about U, which is quite similar to the
result for O}, from chapter 5 above, as follows:

THEOREM 6.20. For the quantum group Uy, with N > 2, the main character follows
the Voiculescu circular law,

x ~ T
and the irreducible representations can be labelled by the colored integers, k = oceeo ...,
with ro = 1, 1o = u, re = u, and with the involution and the fusion rules being

Tk = Tg

TE T = E Txz

k=xy,l=yz

where k — k is obtained by reversing the word, and switching the colors.

PROOF. This is similar to the proof for OF;, as follows:

(1) In order to get familiar with the fusion rules, let us first work out a few values of
the representations rj, computed according to the formula in the statement:

re =1
To = U
Te = U

Too = U R U
Toe —UXRU— 1
Teo = UX@U—1

Tee = UX U
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(2) Equivalently, we want to decompose into irreducibles the Peter-Weyl representa-
tions, because the above formulae can be written as follows:

u =Te
u®° =r,
u® =r,
U = 7o
'LL®O. = Toe t T¢
u*® = Teo + Te
u*® = Tee

(3) In order to prove the fusion rule assertion, let us construct a morphism as follows,
by using the polynomiality of the algebra on the left:

U (E,+,x) = C(Uy)
o — x(u)
° — x(u)
Our claim is that, given an integer n > 1, assuming that W(x) is the character of an

irreducible representation r, of Uy, for any x € W having length < n, then ¥(z) is the
character of a non-null representation of Uy, for any x € W of length n + 1.

(4) At n =1 this is clear. Assume n > 2, and let x € W of length n+ 1. If = contains
a > 2 power of o or of e, for instance if x = z o oy, then we can set:

Te = Tz @ Toy

Assume now that x is an alternating product of o and e. We can assume that x begins
with o. Then x = o e oy, with y € W being of length n — 2. Observe that U(z) = ¥(2)*
holds on the generators {e, o, e} of W, so it holds for any z € W. Thus, we have:

< X(To @ Teoy)s X(Toy) > = < X(Teoy

|
A
=
~
[ 3
[*]
<
S~— ot ~—r ~—r

> 1
Now since 7., is by assumption irreducible, we have ro, C 15 ® recy. Consider now the
following quantity:
X(To ® Tcoy) - X(Toy) = \I/(O X @0y —oy)
= U(x)
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This is then the character of a representation, as desired.
(5) We know from easiness that we have the following estimate:
dim(Fiz(u®*)) < [N Cy(k)|

By identifying as usual (C < X, X* > +,-) = (E, +, ), the noncommutative mono-
mials in X, X* correspond to the elements of W C E. Thus, we have, on W:

hJ<rtJ

(6) We prove now by recurrence on n > 0 that for any z € W having length n, ¥(z)
is the character of an irreducible representation r,.

(7) At n = 0 we have Ug(e) = 1. So, assume that our claim holds at n > 0, and let
x € W having length n 4+ 1. By Proposition 6.19 (1) we have, with z € E,,:

J(x)=x+=z

Let EN C E be the set of functions f such that f(z) € N for any € W. Then
J(a),J(B) € EN, so by multiplicativity J(W) C EY. In particular, J(z) € EN. Thus
there exist numbers m(z) € N such that:

J(z) =2+ Z m(z)z
I(z)<n

(8) It is clear that for a,b € W we have 7(a X b) = §,3. Thus:
tJ(zZ) = T <(m + Z m(z)z) X (f + Z m(z)Z))
= 14+ Z m(z)?

(9) By recurrence and by (3), ¥U(z) is the character of a representation r,. Thus W.J(x)
is the character of r, + 37, m(z)r;, and we obtain from this:

W (xz) > h(x(ra)x(ra)") + Y m(z)’
(10) By using (5), (8), (9) we conclude that r, is irreducible, which proves (6).

(11) The fact that the r, are distinct comes from (5). Indeed, W being an orthonormal
basis of ((E,+, x), 1), for any z,y € W, x # y we have 7(x x ) = 0, and so:
h(x(r. ® 1)) = h¥J(zy)
< 7J(zy)
= 7(z x7y)
= 0
(12) The fact that we obtain all the irreducible representations is clear too, because
we can now decompose all the tensor powers u®* into irreducibles.
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(13) Finally, since W is an orthonormal system in ((E,+, x),7), the set (W) =
{x(r;)|z € W} is an orthonormal system in C(U}), and so we have:
hU.J = 74P
Now since the distribution of x(u) € (C(G), h) is the functional hW¥q.J, and the distri-
bution of S+7* € (B(I*(N*N)), 79) is the functional 7o P, we have y ~ I', as claimed. [

The above proof, from [1], is the original proof, but there are some alternatives as
well, to be discussed in the next section.

6d. Further results

Let us discuss now the relation with O3. As mentioned earlier in this chapter, in the
classical case the passage Oy — Uy is something not trivial, requiring a passage via the
associated Lie algebras. In the free case the situation is very simple, as follows:

THEOREM 6.21. We have an identification as follows,
Uy = 0%
modulo the usual equivalence relation for compact quantum groups.

Proor. We recall from chapter 2 that the free complexification operation G — G is
obtained by multiplying the coefficients of the fundamental representation by a unitary
free from them. We have embeddings as follows, with the first one coming by using the
counit, and with the second one coming from the universality property of Uy:

O} Cc Of, c Uy,

We must prove that the embedding on the right is an isomorphism, and there are
several ways of doing this, all instructive, as follows:

(1) The original argument, from [1], is something quick and advanced, based on the
standard free probability fact that when freely multiplying a semicircular variable by a
Haar unitary we obtain a circular variable. Thus, the main character of O} is circular,
exactly as for Uy, and by Peter-Weyl we obtain that the inclusion O} C Uy, must be an

isomorphism, modulo the usual equivalence relation for quantum groups.

(2) A version of this proof, not using any prior free probability knowledge, is by using
fusion rules. Indeed, as explained in chapter 2 above, the representations of the dual free
products, and in particular of the free complexifications, can be explicitely computed.

Thus the fusion rules for O}, appear as a “free complexification” of the Clebsch-Gordan
rules for O}, and in practice this leads to the same fusion rules as for U},. As before, by

Peter-Weyl we obtain from this that the inclusion O% C Uy must be an isomorphism,
modulo the usual equivalence relation for the compact quantum groups.
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(3) A third proof, based on the same idea, and which is perhaps the simplest, makes use
of the easiness property of O}, Uy only. Indeed, if we denote by v, zv, u the fundamental

representations of the quantum groups Of C Of C Uj, at the level of the associated
Hom spaces we obtain reverse inclusions, as follows:

Hom/(v®* v®) 5 Hom((2v)®*, (20)®") D Hom(u®*, u®")

The spaces on the left and on the right are known from chapter 4 above, the result
there stating that these spaces are as follows:

span (T,T m € NCy(k, l)> D span <T,r

Regarding the spaces in the middle, these are obtained from those on the left by “col-
oring”, so we obtain the same spaces as those on the right. Thus, by Tannakian duality,

m € NCy(k, 1)>

our embedding O}, C U, is an isomorphism, modulo the usual equivalence relation. [

As a comment here, the proof (3) above, when properly worked out, provides as well

an alternative proof for Theorem 6.20. Indeed, once we know that we have Uy, = OF, it
follows that the fusion rules for Uy, appear as a “free complexification” of the Clebsch-
Gordan rules for Oy, and in practice this leads to the formulae in Theorem 6.20.

As an interesting consequence of the above result, we have:
THEOREM 6.22. We have an identification as follows,
POY = PUY;
modulo the usual equivalence relation for compact quantum groups.
PROOF. As before, we have several proofs for this result, as follows:
(1) This follows from Theorem 6.21, because we have:
PU}; = POY = POY,;
(2) We can deduce this as well directly. With notations as before, we have:

Hom ((v®v)¥, (v®v)') = span (T,r T € NCy((ow)F, (oo)l)>

Hom ((u®)*, (u® u)') = span (T7r

™ € NCy((00)", (o))

The sets on the right being equal, we conclude that the inclusion PO} C PU}; pre-
serves the corresponding Tannakian categories, and so must be an isomorphism. U

As a conclusion, the passage OF, — U is something much simpler than the passage
On — Uy, with this ultimately coming from the fact that the combinatorics of O, Uy
is something much simpler than the combinatorics of Oy, Uy. In addition, all this leads
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as well to the interesting conclusion that the free projective geometry does not fall into
real and complex, but is rather unique and “scalarless”. We will be back to this.

More generally, once again by following [1], we have similar results obtained by replac-
ing O} with the more general super-orthogonal quantum groups O from the previous
chapter, which include as well the free symplectic groups Sp};. Let us start with:

THEOREM 6.23. We have an identification as follows,
Uy =07
valid for any super-orthogonal quantum group OF..

PRrooOF. This is a straightforward extension of Theorem 6.21 above, with any of the
proofs there extending to the case of the quantum groups OF.. See [1]. O

We have as well a projective version of the above result, as follows:
THEOREM 6.24. We have an identification as follows,
PUY = PO},
valid for any super-orthogonal quantum group OF..

PRrooOF. This is a straightforward extension of Theorem 6.22, with any of the proofs
there extending to the case of the quantum groups OF. Alternatively, the result follows
from Theorem 6.23, by taking the projective versions of the quantum groups there. [J

The free symplectic result at N = 2 is particularly interesting, because here we have
Spy = SU,, and so we obtain that U, is the free complexification of SUs:

THEOREM 6.25. We have an identification as follows,
Uy = SU,
modulo the usual equivalence relation for compact quantum groups.

PROOF. As explained above, this follows from Theorem 6.23, and from Sp; = SUs,
via the material explained in chapter 5 above. See [1]. U

Finally, we have a projective version of the above result, as follows:

THEOREM 6.26. We have an identification as follows, and this even without using the
standard equivalence relation for the compact quantum groups:

PU; = SO,

A similar result holds for the “left” projective version of Uy, constructed by using the
corepresentation u ® u instead of u ® u.
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PRrROOF. We have several assertions here, the idea being as follows:
(1) By using Theorem 6.25 we obtain, modulo the equivalence relation:
PU; = PSU, = PSU, = S04

(2) Now since SOj3 is coamenable, the above formula must hold in fact in a plain way,
meaning without using the equivalence relation. This can be checked as well directly, by
verifying that the coefficients of u ® 4 commute indeed.

(3) Finally, the last assertion can be either deduced from the first one, or proved
directly, by using “left” free complexification operations, in all the above. O

We refer to [1] for some further applications of the above N = 2 results, for instance
with structure results regarding the von Neumann algebra L>(Uy").

We will be back to the quantum groups Uy in chapter 8 below, with a number of more
advanced probabilistic results about them.

6e. Exercises

As with the exercices from the previous chapter, regarding the quantum group Oy,
we will mainly focus here on combinatorics and probability. Let us start with:

EXERCISE 6.27. Given two C*-algebras with traces A, B, prove that these algebras are
independent inside A ® B, and free inside A x B.

Here the independence assertion is quite straightforward, and the freeness assertion
requires some preliminary work, in order to construct a trace on A x B. For this latter
construction, the general formulae for freeness discussed in this chapter can be used.

Along the same lines, but at a more concrete level, we have:

EXERCISE 6.28. Given two discrete groups I', A, prove that the algebras C*(T"), C*(A)
are independent inside C*(I" x A), and free inside C*(I" % A).

The results here can be deduced either directly, by verifying the defining formulae for
independence and freeness, or via the result from the previous exercise.

In relation now with the unitary quantum groups, we first have:
EXERCISE 6.29. Prove that the quantum group inclusion
PO} C PUy,

1s an 1somorphism, by showing that the corresponding tensor categories coincide.
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This is something that we already discussed in the above, the problem now being that
of finding an explicit, complete proof for this, by using the above method.

As a second quantum group exercise now, we have:
EXERCISE 6.30. Work out the details of the identification
Uy = SU,
and of the corresponding isomorphism at the level of diagonal tori.
To be more precise, the above identification is something that we already know, coming
from abstract results, and the problem now is that of understanding all this explicitly.
Finally, as a third quantum group question, more theoretical, we have:

EXERCISE 6.31. Work out a theory of left and right projective versions for the compact
quantum groups, and prove that

PU, = S04
happens, independently of the projective version theory which is used.
Aa before with some other exercises, this is something that we already discussed in

the above, but just briefly, and the problem now is that of clarifying all this, with full
theory and details, examples and counterexamples, and so on.



CHAPTER 7

Easiness, twisting

7a. Partitions, easiness

Our purpose here will be that of extending the main findings about O, Uy, from the
previous sections to Oy, Uy too, and to other compact quantum groups as well.

Let us begin with a general definition, from [35], [87], as follows:

DEFINITION 7.1. Let P(k,l) be the set of partitions between an upper colored integer
k, and a lower colored integer [. A collection of subsets

D =| | D(k,1)

with D(k,1) C P(k,l) is called a category of partitions when it has the following properties:

(F,
(1) Stability under the horizontal concatenation, (w,0) — [wo].

(2) Stability under vertical concatenation (w, o) — [2], with matching middle symbols.
(3) Stability under the upside-down turning *, with switching of colors, o <> e.

(4) Each set P(k,k) contains the identity partztzon .. ]

(5) The sets P(D,0e) and P((), 80) both contain the semicircle N.

We have already met a number of such categories, in chapter 4 above. Indeed, the
sets there are categories of pairings, with inclusions between them as follows:

P NC,

P

NC,

There are many other examples, as for instance P itself, or the category NC' C P of
all noncrossing partitions. We have as well various categories of partitions formed by the

153
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partitions having even blocks. These form a diagram as follows:

Peven NC@’UE’VZ

Peven

NC’@’UGTL

We will gradually explore these examples, in what follows.

The relation with the Tannakian categories comes from:
PROPOSITION 7.2. FEach partition m € P(k,l) produces a linear map
T7r . ((CN>®k N ((CN)®I

given by the following formula, where e, ..., en is the standard basis of CV,
1 ... 1
Tolen ®...®€;,) :; O (Ji jl) E
101

and with the Kronecker type symbols 6, € {0,1} depending on whether the indices fit or
not. The assignement m — T, is categorical, in the sense that we have

T, T, = ﬂﬂa]
T.T, = N,
T: - TW*
where c(m,0) are certain integers, coming from the erased components in the middle.

Proor. This is something that we already know for the pairings, from chapter 4
above. In general, the proof is identical. O

In relation with the quantum groups, we have the following result, from [35]:

THEOREM 7.3. Each category of partitions D = (D(k, 1)) produces a family of compact
quantum groups G = (Gy), one for each N € N, via the formula

Hom(u®* u®") = span (T7r

© e D(k, l))
which produces a Tannakian category, and the Tannakian duality correspondence.

Proor. This follows indeed from Woronowicz’s Tannakian duality, in its “soft” form
from [73], as explained in chapter 4 above. Indeed, let us set:

C(k,l) = span (T7r

me D(k,l))
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By using the axioms in Definition 7.1, and the categorical properties of the operation
m — Ty, from Proposition 7.2 above, we deduce that C' = (C(k,l)) is a Tannakian
category. Thus the Tannakian duality applies, and gives the result. O

We already know, from chapter 4 above, that the quantum groups O}, U appear in
this way, with D being respectively NCy, NCs. In general now, let us formulate:

DEFINITION 7.4. A closed subgroup G C Uy; is called easy when we have

Hom/(u®* u®) = span (T7r

7w e D(k, l))
for any colored integers k,l, for a certain category of partitions D C P.

In other words, a compact quantum group is called easy when its Tannakian category
appears in the simplest possible way: from a category of partitions. The terminology is
quite natural, because Tannakian duality is basically our only serious tool.

Observe that the category D is not unique, for instance because at N = 1 all the
categories of partitions produce the same easy quantum group, namely G = {1}. We will
be back to this issue on several occasions, with various results about it.

We will see in what follows that many interesting examples of compact quantum
groups are easy. Moreover, most of the known series of “basic” compact quantum groups,
G = (Gy) with N € N, can be in principle made fit into some suitable extensions of the
easy quantum group formalism. We will discuss this too, in what follows.

In practice now, what we know so far, from chapter 4 above, is that Uy, Uy, On, OF
are easy. Regarding now the half-liberations, we have here:

THEOREM 7.5. We have the following results:
(1) UY is easy, coming from the category Py C Py of pairings having the property

that, when the legs are relabelled clockwise c e o e ... each string connects o — e.
(2) Oy is easy too, coming from the category Py C Ps of pairings having the same
property: when legs are labelled clockwise o @ o e ... each string connects o — e.

ProOOF. We can proceed here as in the proof for Uy, Oy, from chapter 4 above, by
replacing the basic crossing by the half-commutation crossing, as follows:

(1) Regarding Uy C Uy, the corresponding Tannakian category is generated by the
operators T}, with 7 = ¥, taken with all the possible 2 = 8 matching colorings. Since
these latter 8 partitions generate the category P;, we obtain the result.

(2) For O3 we can proceed similarly, by using the following formula:

Oy =0xNUy
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At the categorical level, this tells us that the associated Tannakian category is given
by C' = span(T,|r € D), with:

D =< NCy,P; >=PF;
Thus, we are led to the conclusion in the statement. Il
Let us collect now the results that we have so far in a single theorem, as follows:

THEOREM 7.6. The basic unitary quantum groups, namely

Uy U Us

On Ox o
are all easy, the corresponding categories of partitions being:

P P5 NC,

P, P; NC,

PRrooOF. This follows indeed from the various Brauer type results that we established
so far, in chapter 4 and here. O

We have seen in chapters 5-6 that the easiness property of OF, Uy leads to some
interesting consequences, at the level of representations, and of the general structure.

Regarding Oy, U}, as a main consequence, we can now compute their projective
versions, as part of the following general result:

THEOREM 7.7. The projective versions of the basic quantum groups are as follows,

PUy PUy PU}:

POy PU};

PUy

when identifying, in the free case, full and reduced version algebras.
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PROOF. In the classical case, there is nothing to prove. Regarding the half-classical
versions, consider the inclusions Oy, Uy C Uy. These induce inclusions as follows:

PO}, PUy C PU;

Our claim is that these inclusions are isomorphisms. Let indeed u, v, w be the funda-
mental corepresentations of Oy, Uy, Uy . According to Theorem 7.5, we have:

Hom ((u ® )", (u® 71)[) = span (T,r T € Py((o®)", (oo)l)>

Hom ((u ® )", (u® ﬂ)l) = span (T,T T € Py((ce)F, (oo)l)>

Hom ((u ® ﬁ)k, (u® ﬂ)l) = span <T7T T e P;((oo)k, (oo)l)>

The sets on the right being equal, we conclude that the inclusions O%,Uy C Uy
preserve the corresponding Tannakian categories, and so must be isomorphisms.

Finally, in the free case the result follows either from the free complexification result
from chapter 5, or from Theorem 7.6, by using the same method. U

The above result is quite interesting, philosophically, because it shows that, in the
nocommutative setting, the distinction between R and C becomes “blurred”. We will be
back to this later, with some related noncommutative geometry considerations.

7b. Basic operations

Let us discuss now composition operations. We will be interested in:

PROPOSITION 7.8. The closed subgroups of Uy, are subject to operations as follows:

(1) Intersection: H N K is the biggest quantum subgroup of H, K.
(2) Generation: < H, K > is the smallest quantum group containing H, K .

Proor. We must prove that the universal quantum groups in the statement exist
indeed. For this purpose, let us pick writings as follows, with I, J being Hopf ideals:

C(H)=C(Uy)/1
C(K)=CUy)/J
We can then construct our two universal quantum groups, as follows:
CHNK)=CUy)/ <I,J>
C(< H /K >)=C(Uy)/(INJ)
Thus, we obtain the result. U

In practice, the operation N can be usually computed by using:
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PROPOSITION 7.9. Assuming H, K C G, the intersection H N K 1is given by
C(HNK)=C(G)/{R,P}
whenever
CH)=C(G)/R , C(K)=C(G)/P
with R, P being certain sets of polynomial x-relations between the coordinates u;;.

Proor. This follows from Proposition 7.8 above, or rather from its proof, and from
the following trivial fact, regarding relations and ideals:

I=<R>J=<P> = <I[,J>=<R,P>
Thus, we obtain the result. U

In order to discuss the generation operation, let us call Hopf image of a representation
C(G) — A the smallest Hopf algebra quotient C'(L) producing a factorization:

C(G) — C(L) — A

The fact that this quotient exists indeed is routine, by dividing by a suitable ideal,
and we will be back to this in section 16 below. This notion can be generalized as follows:

PRoOPOSITION 7.10. Assuming H, K C G, the quantum group < H, K > is such that
CG)—CHNK)—C(H),C(K)
is the joint Hopf image of the following quotient maps:
C(G) — C(H),C(K)

PROOF. In the particular case from the statement, the joint Hopf image appears as
the smallest Hopf algebra quotient C'(L) producing factorizations as follows:

C(G)—-C(L)— C(H),C(K)
We conclude from this that we have L =< H, K >, as desired. See [50]. O
In the Tannakian setting now, we have the following result:

THEOREM 7.11. The intersection and generation operations N and <,> can be con-
structed via the Tannakian correspondence G — Cg, as follows:

(1) Intersection: defined via Cony =< Cq,Cy >.
(2) Generation: defined via C<g pgs = Ce N Ch.

Proor. This follows from Proposition 7.8, or rather from its proof, by taking I, J to
be the ideals coming from Tannakian duality, in its soft form, from section 4 above. [J

In relation now with our easiness questions, we first have the following result:
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PROPOSITION 7.12. Assuming that H, K are easy, then so is H N K, and we have
Dy =< Dy, Dk >
at the level of the corresponding categories of partitions.
Proor. We have indeed the following computation:
Cank = <Cq,Ckg >
= < span(Dpy), span(Dy) >
= span(< Dy, Dk >)
Thus, by Tannakian duality we obtain the result. U
Regarding the generation operation, the situation is more complicated, as follows:
PROPOSITION 7.13. Assuming that H, K are easy, we have an inclusion
< H K>C{H, K}
coming from an inclusion of Tannakian categories as follows,
Cy N Cxk D span(Dy N D)
where {H, K} is the easy quantum group having as category of partitions Dy N Dy

Proor. This follows from the definition and properties of the generation operation,
and from the following computation:

Cenxgs> = CpNCk
= span(Dg) N span(Dk)
D span(Dy N D)
Indeed, by Tannakian duality we obtain from this all the assertions. O

It is not clear if the inclusions in Proposition 7.13 are isomorphisms or not, and this
not even under a supplementary N >> 0 assumption. Technically speaking, the problem
comes from the fact that the operation 7 — T, does not produce linearly independent
maps. Summarizing, we have some problems here, and we must proceed as follows:

THEOREM 7.14. The intersection and easy generation operations N and {,} can be
constructed via the Tannakian correspondence G — D¢, as follows:

(1) Intersection: defined via Dgny =< Dg, Dy >.
(2) Easy generation: defined via Dig uy = Dg N Dy.

PROOF. Here the situation is as follows:
(1) This is a true result, coming from Proposition 7.12.

(2) This is more of an empty statement, coming from Proposition 7.13. U
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As already mentioned, there is some interesting mathematics still to be worked out,
in relation with all this. We will be back to this later.

With the above notions in hand, we can formulate a nice result, which improves our
main result so far, namely Theorem 7.6 above, as follows:

THEOREM 7.15. The basic unitary quantum groups, namely

Uy U Uy

On o5, o,

are all easy, and they form an intersection and easy generation diagram, in the sense that
any rectangular subdiagram

PcCcQRCS
of the above diagram satisfies the condition P = Q N R,{Q,R} = S.

Proor. We know from Theorem 7.6 that the quantum groups in the statement are
easy, the corresponding categories of partitions being as follows:

P P3 NC,

P, P; NC,

Now observe that this latter diagram is an intersection and generation diagram, in the
sense that any rectangular subdiagram P C ), R C S satisfies the following condition:

P=QNR

{Q R} =5
By using Theorem 7.14, this reformulates into the fact that the diagram of quantum
groups is an intersection and easy generation diagram, as claimed. U

It is possible to further improve the above result, by proving that the diagram there is
actually a plain generation diagram. However, this is something quite technical, requiring
advanced quantum group techniques, and we will comment on this later.

Let us explore now a number of further examples of easy quantum groups, which

14

appear as “versions” of the basic unitary groups.
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With the convention that a matrix is called bistochastic when its entries sum up to 1,
on each row and each column, we have the following result:

PROPOSITION 7.16. We have the following groups and quantum groups:

(1) By C Oy, consisting of the orthogonal matrices which are bistochastic.
(2) Cn C Uy, consisting of the unitary matrices which are bistochastic.
(3) By € OF, coming via u& = &, where £ is the all-one vector.
(4) CY C Uy, coming via ué = &, where £ is the all-one vector.

Also, we have inclusions By C By and Cy C C}, which are both liberations.

PROOF. Here the fact that By, Cy are indeed groups is clear. As for B}, CY;, these
are quantum groups as well, because the relation £ € Fix(u) is categorical.
Finally, observe that for U € Uy we have:

U§=¢ <= UE=¢

By conjugating, these conditions are equivalent as well to:

Ug=¢ , U€=¢
Thus U € Uy is bistochastic precisely when the following happens:
Ug=¢

But this gives the last assertion, and finishes the proof.
The above quantum groups are all easy, and following [35], [87], we have:

THEOREM 7.17. The basic orthogonal and unitary quantum groups and their bistochas-
tic versions are all easy, and they form a diagram as follows,

1

which is an intersection and easy generation diagram, in the sense of Theorem 7.15.

Un
Uy

PrROOF. The first assertion comes from the fact that the all-one vector £ used in
Proposition 7.16 above is the vector associated to the singleton partition:

£=T,
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Indeed, we obtain from this that the quantum groups By, Cy, By, Cy; are indeed easy,
appearing from the categories of partitions for Oy, Uy, O, Uy, by adding singletons.

In practice now, according to this observation, and to Theorem 7.15 above, the corre-
sponding categories of partitions are as follows, where the symbol 12 stands for “singletons
and pairings”, in the same way as the symbol 2 stands for “pairings”:

Nclz NCQ

NC <~— N(J/

Now since both this diagram and the one the statement are intersection diagrams, the
quantum groups form an intersection and easy generation diagram, as stated. U

Generally speaking, the above result is quite nice, among others because we are now
exiting the world of pairings. However, there are a few problems with it.

First, we cannot really merge it with Theorem 7.15, as to obtain as a final result a
nice cubic diagram, containing all the quantum groups considered so far. Indeed, the half-
classical versions of the bistochastic quantum groups collapse, and so cannot be inserted
into the cube, as shown by the following result:

PROPOSITION 7.18. The half-classical versions of B, C are given by:
Bi;NOy=By , CinUy=Cy
In other words, the half-classical versions collapse to the classical versions.

Proor. This follows from Tannakian duality, by using the fact that when capping the
half-classical crossing with 2 singletons, we obtain the classical crossing. Alternatively,
this follows from a direct computation. O

Yet another problem with the bistochastic groups and quantum groups comes from
the fact that these objects are not really “new”, because, following [81], we have:

PROPOSITION 7.19. We have isomorphisms as follows:
(1) BN ~ ONfl.
(2) By ~ 0% ;.
(3) CN ~ UN—l-
(4) Ch ~Uy_,.
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PROOF. Let us pick a matrix F' € Uy satisfying the following condition, where ¢ is
the all-one vector:
1
Feq=—=¢

VN
Such matrices exist of course, the basic example being the Fourier matrix:

1 g ,
Fy = (wlj)ij . w= 627rz/N

VN

We have then the following computation:

u =§¢ <= uFey= Fe
<~ F*uFey = e
— F"uF =diag(l,w)

Thus we have an isomorphism given by w;; — (F*uF);;, as desired. U

7c. Ad-hoc twisting

Back to generalities now, let us point out the fact that the easy quantum groups are
not the only ones “coming from partitions”, but are rather the simplest ones having this
property. An interesting and important class of compact quantum groups, which appear
in relation with many questions, are the ¢ = —1 twists of the compact Lie groups. Given
a compact Lie group G C Uy, there are several methods for twisting it, as follows:

(1) Ad-hoc twisting. This basically amounts in replacing the commutation relations
between the coordinates u;; € C(G) by anticommutation. In practice, this is
quite tricky, because some of these commutation relations must be kept as such.

(2) Cocycle twisting. This is something more conceptual, and more far-reaching,
both at the level of the general theory and of the examples which can be obtained,
the idea being that of twisting the multiplication of C(G) by a cocycle.

(3) Schur-Weyl twisting. This is a method which works only in the easy case, and
is the most powerful in this case, the idea here being that of using Tannakian
duality, and twisting the construction m — T}, by using a signature map.

We will discuss here this material, first by working out the main examples, by using
the ad-hoc strategy explained in (1), and then by getting into more advanced aspects, of
algebraic and representation theory flavor, following the ideas in (2) and (3).

In order to get started now, the best is to deform first the simplest objects that we
have, namely the noncommutative spheres. This can be done as follows:
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THEOREM 7.20. We have noncommutative spheres as follows, obtained via the twisted
commutation relations ab = +ba, and twisted half-commutation relations abc = +cba,

QN—-1 QN—-1 N—-1
S(C S(C,* S(C,Jr

aN—-1 aN—-1 N—-1
Sg  ——=Or, — Sy

where the signs at left correspond to the anticommutation of distinct coordinates, and their
adjoints, and the other signs come from functoriality.

PROOF. For the spheres on the left, if we want to replace some of the commutation
relations z;2; = 2;z; by anticommutation relations z;z; = —z;2;, a bit of thinking tells us
that the one and only natural choice is:

RiRkj = —TRZjZy Vi 7&]
In other words, with the notation ¢;; = 1 — d;;, we must have:
ZiZj = (—]_)EiijZi

Regarding now the spheres in the middle, the situation is a priori a bit more tricky,
because we have to take into account the various possible collapsings of {i, j, k}. However,
if we want to have embeddings as above, there is only one choice, namely:

zizjzp = (—1)Futenteng, 2z
Thus, we have constructed our spheres, and embeddings, as needed. O

As already mentioned, the above is something quite ad-hoc, but we will be back later
to this, with some more conceptual twisting methods as well. To be more precise, the
alternative idea will be that of twisting the quantum groups first, by using advanced
easiness theory, and then deducing from this the twisting formulae for the spheres.

Let us discuss now the quantum group case. The situation here is considerably more
complicated, because the coordinates u;; depend on double indices, and finding for in-
stance the correct signs for w;;jugUmn = FUmnurt;; looks nearly impossible.

However, we can solve this problem by taking some inspiration from the sphere case,
which was already solved. We first have the following result:
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PROPOSITION 7.21. We have quantum groups as follows,

i U

Ox oF;

defined via the following relations,

3 —Ba for a,b € {u;;} distinct, on the same row or column
(0% =
Ba otherwise

with the convention o = a,a* and 3 = b, b*.

PROOF. These quantum groups are well-known, see [16]. The idea indeed is that the
existence of ¢, S is clear. Regarding now A, set U;; = Y, u;, ® ugj. For j # k we have:

UijUp, = E UjsUip Q) UgjUgg + E UjsUis & UgjUsk

s#t s

= g —UjplUis Q) Ugplsj + E Uislis @ (—UgUsj)
s#t s

= —UuUy

Also, for ¢ # k,j # | we have:

UiijUg = § uisukt@)usjutl‘i‘g UjsUks @ UgjUs
s#t s

= ) Ukt @ Uiy + Y (—Ustlis) ® (—tgtig)
s#t s
= UnUj

This finishes the proof in the real case. In the complex case the remaining relations
can be checked in a similar way, by putting % exponents in the middle. U

It remains now to twist O, Uy. In order to do so, given three coordinates a,b,c €
{u;;}, let us set span(a,b,c) = (r,c), where r,c € {1,2,3} are the number of rows and
columns spanned by a,b,c. In other words, if we write a = u;;,0 = up,c = up, then
r=#{i, k,p} and [ = #{j,1, q}. With these conventions, we have the following result:
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PROPOSITION 7.22. We have intermediate quantum groups as follows,

Un U Uy

On 0%, or

defined via the following relations,

{—fyﬁa for a,b, c € {u;;} with span(a,b,c) = (<2,3) or (3,<2)
afy = .
vBa  otherwise

with the conventions a = a,a*,  =b,b* and v = ¢, c*.

PROOF. The rules for the various commutation/anticommutation signs are:

e 1 2 3
1+ 4+ -
2 4+ 4+ -
3 — — +

We first prove the result for O%. The construction of the counit, £(u;;) = &;;, requires
the Kronecker symbols d;; to commute/anticommute according to the above table. Equiv-
alently, we must prove that the situation ¢;;0x0,, = 1 can appear only in a case where
the above table indicates “+”. But this is clear, because 0;;040, = 1 implies r = c.

The construction of the antipode S is clear too, because this requires the choice of our
=+ signs to be invariant under transposition, and this is true, the table being symmetric.

With U;; = >, ui ® ug;, we have the following computation:

UianbUkc - E Uiz Ujy Utz X UgqUypUzc

TYZ

= E iukzujyuiz & iuzcuybuma

Tyz

= iUkojb Uia

We must prove that, when examining the precise two 4 signs in the middle formula,
their product produces the correct + sign at the end. The point now is that both these
signs depend only on s = span(z,y, z), and for s = 1,2, 3 respectively:

— For a (3, 1) span we obtain +—, +—, —+, so a product — as needed.
— For a (2,1) span we obtain ++, ++, ——, so a product + as needed.
— For a ( span we obtain ——, ——, +-+, so a product + as needed.
(
(

— For a span we obtain +—, +—, —+, so a product — as needed.
— For a span we obtain +4, ++, ——, so a product + as needed.

Y

2.1)
3,3)
3,2)
2,2)

?
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Together with the fact that our problem is invariant under (r,c) — (c,r), and with
the fact that for a (1,1) span there is nothing to prove, this finishes the proof. For U}
the proof is similar, by putting * exponents in the middle. U

The above results can be summarized as follows:

THEOREM 7.23. We have quantum groups as follows, obtained via the twisted com-
mutation relations ab = +ba, and twisted half-commutation relations abc = +cba,

Uy U Uy

On O% o)

where the signs at left correspond to anticommutation for distinct entries on rows and
columns, and commutation otherwise, and the other signs come from functoriality.

PRrROOF. As explained above, there is only one reasonable way of arranging the signs,
as for everything to work fine. So let us go ahead now, and present the solution.

Given abstract coordinates a, b, c, ... € {u;;}, let us set span(a,b,c,...) = (r,c), where
r,c € {1,2,3,...} are the numbers of rows and columns spanned by a,b,c, ..., inside the
matrix u = (u;;). Also, we make the conventions o = a, a*, f = b,b*, and so on.

With these conventions, the relations for the quantum groups on the left, which are
the only possible ones, as for having a good compatibility with the spheres, are:

—Ba  for a,b € {u;;} with span(a,b) = (1,2) or (2,1)
af = .
Ba otherwise
As for the relations for the quantum groups in the middle, once again these are uniquely
determined by various functoriality considerations, and must be as follows:
—vpa for a,b,c € {w;;} with span(a,b,c) = (<2,3) or (3,< 2)
apy = :
vBa otherwise
Summarizing, we are done with the difficult part, namely guessing the signs. What is
left is to prove that the above relations produce indeed quantum groups, with inclusions

between them, as in the statement. But this follows from the computations from the
proof of Proposition 7.21 and Proposition 7.22 above. U

7d. Schur-Weyl twisting

Our purpose now will be that of showing that the quantum groups constructed above
can be in fact defined in a more conceptual way, as “Schur-Weyl twists”. Let P.yen(k, 1) C
P(k,1) be the set of partitions with blocks having even size, and NCleyep(k, 1) C Poyen(k,1)
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be the subset of noncrossing partitions. Also, we use the standard embedding S, C
Py(k, k), via the pairings having only up-to-down strings. Given a partition 7 € P(k,1),
we call “switch” the operation which consists in switching two neighbors, belonging to
different blocks, in the upper row, or in the lower row. With these conventions, we have:

PROPOSITION 7.24. There is a signature map € : P, — {—1,1}, given by

e(r) = (-1
where ¢ is the number of switches needed to make T noncrossing. In addition:

(1) For T € Sk, this is the usual signature.
(2) For T € Py we have (—1)¢, where ¢ is the number of crossings.
(3) For 7 <m € NCoyen, the signature is 1.

PROOF. In order to show that the signature map e is well-defined, we must prove
that the number ¢ in the statement is well-defined modulo 2. It is enough to perform the
verification for the noncrossing partitions. More precisely, given 7,7 € NCype, having
the same block structure, we must prove that the number of switches ¢ required for the
passage T — 7' is even.

In order to do so, observe that any partition 7 € P(k,l) can be put in “standard
form”, by ordering its blocks according to the appearence of the first leg in each block,
counting clockwise from top left, and then by performing the switches as for block 1 to
be at left, then for block 2 to be at left, and so on. Here the required switches are also
uniquely determined, by the order coming from counting clockwise from top left.

Here is an example of such an algorithmic switching operation:

The point now is that, under the assumption 7 € NCepep(k, 1), each of the moves
required for putting a leg at left, and hence for putting a whole block at left, requires an
even number of switches. Thus, putting 7 is standard form requires an even number of
switches. Now given 7,7 € NC,,., having the same block structure, the standard form
coincides, so the number of switches ¢ required for the passage 7 — 7’ is indeed even.

Regarding now the remaining assertions, these are all elementary:

(1) For 7 € Sk the standard form is 7/ = id, and the passage 7 — id comes by
composing with a number of transpositions, which gives the signature.

(2) For a general 7 € Py, the standard form is of type 7/ =|... |33, and the passage

T — 7’ requires ¢ mod 2 switches, where ¢ is the number of crossings.
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(3) Assuming that 7 € P, comes from m € NCqye, by merging a certain number of
blocks, we can prove that the signature is 1 by proceeding by recurrence. O

We can use the above signature map, as follows:

DEFINITION 7.25. Associated to a partition ™ € Peyen(k, 1) is the linear map
Tﬂ . (CN)®k N ((CN)@)Z

given by the following formula, with ey, ..., en being the standard basis of CV,
— < (11 ... i
Tw(eh®-..®eik>=;‘sﬂ(ﬁ jl)%@“'@eﬁ
101

and where 6, € {—1,0,1} is 0, = &(7) if T > 7, and 0, = 0 otherwise, with T = ker (;)

In other words, what we are doing here is to add signatures to the usual formula of
T.. Indeed, observe that the usual formula for 7T, can be written as folllows:

Ti(en ®...Qe€;,) = Z e, ®...Qej
j:ker(é)Zﬂ'

Now by inserting signs, coming from the signature map ¢ : P.y, — {£1}, we are led
to the following formula, which coincides with the one given above:

Tr(e, ®...Q¢€,) = 25(7’) Z e, ®...Q0e¢€,
T2T j:ker(;):'r

We will be back later to this analogy, with more details on what can be done with it.

For the moment, we must first prove a key categorical result, as follows:
PROPOSITION 7.26. The assignement m — T is categorical, in the sense that
Tﬂ- X Ta = T[ﬂg] , Tﬂ-Tg = Nc(mJ)T[g] , T: = Tﬂ.*

where ¢(m, o) are certain positive integers.

ProOOF. We have to go back to the proof from the untwisted case, from section 4
above, and insert signs. We have to check three conditions, as follows:

1. Concatenation. In the untwisted case, this was based on the following formula:

R R I A I T s
(jqu) (llls [o) J1---Jq llls

In the twisted case, it is enough to check the following formula:

e [ ker lllp e [ ker kl...k}r — ¢ ker lep ]{31...]6,,«
J1---Jq ll...ls J1---Jq ll...ls
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Let us denote by 7,v the partitions on the left, so that the partition on the right is
of the form p < [rv]. Now by switching to the noncrossing form, 7 — 7" and v — v/, the
partition on the right transforms into:

p—p <[TV]

Now since the partition [7'2'] is noncrossing, we can use Proposition 7.24 (3), and we
obtain the result.

2. Composition. In the untwisted case, this was based on the following formula:

i) s (T de  vetmers (e
E:éﬂ(ﬁ.”%>5”(h.”&>__N' @ﬂ(m.”m)

J1---Jq

In order to prove now the result in the twisted case, it is enough to check that the
signs match. More precisely, we must establish the following formula:

il"'ip jl]q o lep
€ (ker (j1.--jq>) € <ker <k1k7")) =€ <ker <k1k5r>)

Let 7,v be the partitions on the left, so that the partition on the right is of the form
p < [7]. Our claim is that we can jointly switch 7,v to the noncrossing form. Indeed, we
can first switch as for ker(j; ... j,) to become noncrossing, and then switch the upper legs
of 7, and the lower legs of v, as for both these partitions to become noncrossing. Now
observe that when switching in this way to the noncrossing form, 7 — 7’ and v — v/, the
partition on the right transforms into:

p—p <[]

Since the partition [7,] is noncrossing, we can apply Proposition 7.24 (3), and we obtain

the result.

3. Involution. Here we must prove the following formula:
5. (i) g (9
"\J1---Jq T\t
But this is clear from the definition of §,, and we are done. O

As a conclusion, our twisted construction 7 — T, has all the needed properties for
producing quantum groups, via Tannakian duality. Thus, we can formulate:

THEOREM 7.27. Given a category of partitions D C Py, the construction

Hom(u®* u®) = span (Tw T E D(k,l))

produces via Tannakian duality o quantum group Gy C Uy, for any N € N.
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ProoF. This follows indeed from the Tannakian results from section 4 above, exactly
as in the easy case, by using this time Proposition 7.26 as technical ingredient.

To be more precise, Proposition 7.26 shows that the linear spaces on the right form a
Tannakian category, and so the results in chapter 4 apply, and give the result. O

We can unify the easy quantum groups, or at least the examples coming from categories
D C P,.yen, with the quantum groups constructed above, as follows:

DEFINITION 7.28. A closed subgroup G C Uy, is called q-easy, or quizzy, with defor-
mation parameter ¢ = +1, when its tensor category appears as follows,

Hom/(u®* u®) = span (T7r T E D(k:,l))

for a certain category of partitions D C P,ye,, where, for g = —1,1:
T=T,T
The Schur-Weyl twist of G is the quizzy quantum group G C Uy obtained via ¢ — —q.
We will see later on that the easy quantum group associated to P.,., itself is the
hyperochahedral group Hy, and so that our assumption D C P.,.,, replacing D C P,
simply corresponds to Hy C G, replacing the usual condition Sy C G.
In relation now with the basic quantum groups, we first have the following result:
PROPOSITION 7.29. The linear map associated to the basic crossing is:
_ —e;®e; fori+#j
Ty(e; ®e5) = ’ #.j
e @ e otherwise
The linear map associated to the half-liberating permutation is:

Ty(e;®e; ®ey) =

- —e,®e; ®e;  for 4, 7,k distinct
er Qej R e; otherwise

Also, for any noncrossing pairing m € NCsy, we have T, = T.

ProoF. We have to compute the signature of the various partitions involved, and we
can use here (1,2,3) in Proposition 7.24. We make the convention that the strings which
cross and which are of the same type, e.g. dotted, correspond to the same block.

Regarding the basic crossing and its collapsed version, the signatures are:

(e} o
>< —1
(o] (o]
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But this gives the first formula in the statement. Regarding now the second formula,
this follows from the following signature computations, obtained by counting the crossings,
in the first case, by switching twice as to put the partition in noncrossing form, in the
next 3 cases, and by observing that the partition is noncrossing, in the last case:

Finally, the last assertion follows from Proposition 7.24 (3). O
The relation with the basic quantum groups comes from:

PROPOSITION 7.30. For an orthogonal quantum group G, the following hold:
(1) Ty € End(u®?) precisely when G C Oy
(2) Ty € End(u®?) precisely when G C Oj.
ProOF. We know this in the untwisted case. In the twisted case, the proof is as

follows:

(1) By using the formula of Ty in Proposition 7.29, we obtain:
(Ty @ u®*(e; @ e; ®1) = Z ex @ e @ UpiUp;
k

- Z €1 & e & Uk;iUy
k#l
We have as well the following formula:

D ok €l ® e @ Uty if i =7

T @) (e 1) = if i=j
X ’ —Dom e ®er @uuy;  if i F# g
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For i = j the conditions are u?; = u?, for any k, and ugu; = —uyuy; for any k # 1.

For i # j the conditions are uy;ug; = —ugjuy; for any k, and ug;u;; = ugjuy,; for any k # 1.
Thus we have exactly the relations between the coordinates of Oy, and we are done.

(2) By using the formula of Ty in Proposition 7.29, we obtain:
(TX & 1)u®2(62‘ Re;Rep® 1)
- Z e epRe, Uq; Upj Uk

abc not distinct

— E €c @ ep Q ey @ UgiUp;Uck

a,b,c distinct
On the other hand, we have as well the following formula:
u(Ty @ 1)(e; ® e; @ e, ® 1)
B Y b €c @ €4 ® €4 ® UekUpjUgi for 7, 7, k not distinct
- Y abe €c @ €4 ® €4 ® UepUpjug; for 4, 7, k distinct

For 4,7,k not distinct the conditions are w,uyjucy = UerUpjuq for a,b,c not dis-
tinct, and ugiupUck = —UekrUpjUq for a,b,c distinct. For ¢, 7, k distinct the conditions
are Ugilp;Ucky = —UckUpjlq; fOr a,b, c not distinct, and UgiUpjlck = UckUpjUqi for a,b,c
distinct. Thus we have the relations between the coordinates of O}, and we are done. [J

We can now formulate our first Schur-Weyl twisting result, as follows:

THEOREM 7.31. The twisted quantum groups introduced before,

Un Uz, Uy

On o o
appear as twists of the basic quantum groups, namely

Un Uy Uy

On O% o%

wia the Schur-Weyl twisting procedure described above.

ProoF. This follows indeed from Proposition 7.30 above. U
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Summarizing, we have now a conceptual approach to the twisting of the basic unitary
quantum groups.

In order for our twisting theory to be complete, let us discuss as well the computation
of the quantum isometry groups of the twisted spheres. We have here:

THEOREM 7.32. The quantum isometry groups of the twisted spheres,

QgN—-1 QN—-1 N-1
S¢ ——Sc. —Scy

GN—1 GN—1 N-1
S —= S, —5r}
are the above twisted orthogonal and unitary groups.

PROOF. The proof in the classical twisted cases is similar to the proof in the classical
untwisted cases, by adding signs. Indeed, for the twisted real sphere Sg ~! we have:

O(z2) = Z Zp @ Ukitiy;
K

+ g 2621 @ (UkiUyj — Uty
k<l

We deduce that with [[a, b]] = ab + ba we have the following formula:

O([lzi,2]) = Dz ® [uws, wng]]

+ ZZkZz ® ([ugs, urj] — [wi, ugj))
k<l

Now assuming i # j, we have [[z;, 2,]] = 0, and we therefore obtain:
[[ui, u]] =0, VEk

[k, wij] = [w, us] . Yk <l
By using now the standard trick, namely applying the antipode and then relabelling,
the latter relation gives:
[ti; ] = 0
Thus, we obtain the result. The proof for g(]cv ~! is similar, by using the above-
mentioned categorical trick, in order to deduce from the relations ab = +ba the remaining

relations ab* = +£b*a. Finally, the proof in the half-classical twisted cases is similar to the
proof in the half-classical untwisted cases, by adding signs where needed. U
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As a conclusion, we have a quite interesting notion of easy quantum group, basically
coming from the Brauer philosophy for Oy, Uy, and notably covering Oy, Uy, along with
some theory and examples, and with a twisting extension as well.

We will be back to this later on, in chapters 11-12 below, with a negative result this
time, stating that the easy quantum reflection groups are invariant under twisting.

7Te. Exercises

Here is a first instructive exercise, of rather algebraic and abstract nature, in relation
with the notion of easiness that we developed in the above:

EXERCISE 7.33. Prove that any closed subgroup G C Uy, has an “easy envelope”
GcGcUy
which is the smallest easy quantum group containing G.

Obviously, this is somehing of Tannakian nature. The problem is that of finding the
precise Tannakian formulation of the exercise, and then solving it.

In relation with the product operations, we have:
EXERCISE 7.34. Prove that iof H, K are easy then we have inclusions as follows,
< H K >C <TJ_,\I?> Cc {H,K}
where the middle object is an easy envelope, as constructed above.

As before, this is something of Tannakian nature. As a comment here, this improves
the results that we have so far, and refines the questions which remain to be solved.
Indeed, it is not clear that either of the above inclusions must be an isomorphism.

Here is a third exercise regarding easiness, which is a key one:

EXERCISE 7.35. Prove that the usual symmetric group, reqarded as group of permuta-
tion matrices,

Sy C Opn

is easy, with the corresponding category of partitions being P itself.

This is something quite fundamental, that we will discuss in detail later on. However,
the proof is not that difficult, and can be certainly be worked out.

Along the same lines, and making now the link with the twisting, we have:
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EXERCISE 7.36. Prove that the hyperoctahedral group, which is by definition the sym-
metry group of the N-hypercube, when regarded as group of orthogonal matrices,

Hy C ON
15 easy, with the corresponding category of partitions being Peyen.

As before with Sy, this is something that we will discuss in detail later on. We will
discuss as well later free analogues of these results, involving NC, NCpen.

Here is now a combinatorial exercise regarding signatures and twisting:

EXERCISE 7.37. Find a general formula connecting the linear maps
Tﬂ' 9 TTI'
inwvolving the Mobius function of the partitions.

To be more precise, we have already seen in the above a number of formulae for
the maps T}, expressed as linear combinations of maps T,. The problem is that of
understanding how the correspondence between the maps 7, and the maps 7, works, and
since all this is about partitions, the answer can only be a Md&bius type formula.

Here is now an exercise regarding the quantum isometry groups:

EXERCISE 7.38. Work out the missing details in the proof of Theorem 7.32, by taking
the untwisted computations, and adding signs where needed.

Obviously, this is something self-explanatory, which can only work, with a bit of
patience, and care for the details.

Finally, here is an instructive exercise, whose complete solution might take however
some time, regarding all the quantum groups that we constructed so far:

EXERCISE 7.39. Work out what happens at N = 2, in connection with all the easy
quantum groups introduced so far, and with their twists as well.

To be more precise, we have met many examples of easy quantum groups Gy, and the
problem is that of understanding, for each of these quantum groups, if Gy is something
well-known. Generally speaking, the answer here is yes, but all this is worth to be worked
out in detail. After this, the question regarding the twists makes sense as well.



CHAPTER 8

Probabilistic aspects

8a. Free probability

We discuss here the computation of the various integrals over the compact quantum
groups, with respect to the Haar measure. In order to formulate our results in a conceptual
form, we use the modern measure theory language, namely probability theory:

DEFINITION 8.1. Let X be a probability space.

(1) The real functions f € L>(X) are called random variables.
(2) The moments of such a variable are the numbers My(f) = E(f*).
(3) The law of such a variable is the measure giwen by My(f) = [, #¥dps(z).

Here the fact that p; exists indeed is not trivial. By linearity, we would like to have
a real probability measure making hold the following formula, for any P € R[X]:

E(P(f)) = / P(x)djis ()

By using a continuity argument, it is enough to have this for the characteristic func-
tions x; of the measurable sets I C R. Thus, we would like to have uy such that:

P(fel)=ps)
But this latter formula can serve as a definition for ur, and so we are done.
Next in line, we need to talk about independence. Once again with the idea of doing
things a bit abstractly, the definition here is as follows:
DEFINITION 8.2. Two variables f,g € L*(X) are called independent when
E(f*9') = E(f*) - E(g)
happens, for any k,l € N.

Once again, this definition hides some non-trivial things. Indeed, by linearity, we
would like to have a formula as follows, valid for any polynomials P, @ € R[X]:

E(P(f)Q(9)) = E(P(f)) - E(Q(9))

177
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By continuity, it is enough to have this for characteristic functions of type xr, xs, with
I,J C R. Thus, we are led to the usual definition of independence, namely:

P(fel,gelJ)=P(fel) -P(geJ)
Thus, our definition makes sense.
Here is now our first result, providing tools for the study of the independence:

THEOREM 8.3. Assume that f,g € L>(X) are independent.

(1) We have pyyg = fif * j1g, where x is the convolution of measures.
(2) We have Fyy, = F¢F,, where Fy(z) = E(e™7) is the Fourier transform.

Proor. This is something very standard, the idea being as follows:

(1) We have the following computation, using the independence of f, ¢:
Mi(f+9) = E((f+9)")

- ¥ (4)Bra

l

=) <];) Mi(f)My-i(9)

!
On the other hand, by using the Fubini theorem, we have as well:

/R (g * g (z) = / (@) iy @) )

_ gl: (’;) /R (o) /R yldpiy ()
.S (];)Ml(f)Mkz(g)

l
Thus the measures psi4 and py * 1y have the same moments, and so coincide.

(2) We have indeed the following computation, using (1) and Fubini:
Frig(z) = / emydﬂfﬂi(y)
R

= / e dp g (y)dpy(2)
RxR

- 4eimyduf(y)46i$zdﬂg(z>
= Fi(x)Fy(z)

Thus, we are led to the conclusion in the statement. U
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Let us discuss now the normal distributions. We have here:

DEFINITION 8.4. The normal law of parameter 1 is the following measure:
1
g = \/ﬂ
More generally, the normal law of parameter t > 0 is the following measure:
1 —x2/2t
g = \/ﬁe 12y
These are also called Gaussian distributions, with “g” standing for Gauss.

e 2y

As a first remark, the above laws have indeed mass 1, as they should. This follows
indeed from the Gauss formula, which gives, with = = y/v/2t:

/ e_y2/2tdy = 2nt
R

Generally speaking, the normal laws appear as bit everywhere, in real life. The reasons
behind this phenomenon come from the Central Limit Theorem (CLT), that we will
explain in a moment, after developing the needed general theory. We first have:

PrROPOSITION 8.5. We have the following formula, for any t > 0:
th(SL‘) = eitx2/2
In particular, the normal laws satisfy gs * g = gs1¢, for any s,t > 0.

PRrROOF. The Fourier transform formula can be established as follows:

1 - T
Fy(z) = \/%/Re y?/2t+ Ydy

_ L / o~ VT i)t 2 g
V27t Jr

1 / 727t 2/2
= — [ e 7"z
VT R

As for the last assertion, this follows from the linearization result from Theorem 8.3
(2) above, because log Fy, is linear in ¢. O

We are now ready to state and prove the CLT, as follows:

THEOREM 8.6 (CLT). Given random variables fi, fa, f3,... € L>°(X) which are i.i.d.,
centered, and with variance t > 0, we have, with n — 0o, in moments,

1 n
%Zlfi’vgt

where g; is the Gaussian law of parameter t, having as density ﬁe‘yyztdy.
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PROOF. We have the following formula for F(z) = E(e™®f), in terms of moments:

Fya) = ZZ M. (f) ok

k!
k=0

Thus, the Fourier transform of the variable in the statement is:

o - (o]

ta?

= {1 -— 4 O(nZ)r

2n

~ 6—t12/2

But this latter function being the Fourier transform of g;, we obtain the result. O

Let us record as well the complex CLT. This is as follows:

THEOREM 8.7 (Complex CLT). Given variables fi1, fa, f3,... € L>(X) whose real and
imaginary parts are i.i.d., centered, and with variance t > 0, we have, with n — o0,

1 n
%;fiNGt

where Gy is the complex Gaussian law of parameter t, appearing as the law of \%(a +ib),
where a,b are real and independent, each following the law g;.

PRroOF. This is clear from Theorem 8.6 above, by taking real and imaginary parts of
all the variables involved. U

We will be back to more classical probability results later on. In the noncommutative
setting now, the starting definition is as follows:
DEFINITION 8.8. Let A be a C*-algebra, given with a trace tr.

(1) The elements a € A are called random variables.
(2) The moments of such a variable are the numbers M (a) = tr(a¥).
(3) The law of such a variable is the functional p : P — tr(P(a)).

k

Here k = ce e o ... is as usual a colored integer, and the powers a" are defined by

multiplicativity and the usual formulae, namely:
=1, a°=a , a"=a
As for the polynomial P, this is a noncommuting *-polynomial in one variable:

PeC<X,X*>
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Observe that the law is uniquely determined by the moments, because:
P(X) =) MX" = u(P) = A\eMy(a)
k k
Generally speaking, the above definition is something quite abstract, but there is no
other way of doing things, at least at this level of generality. We have indeed:
THEOREM 8.9. Given a C*-algebra with a faithful trace (A,tr), any normal variable,
aa* = a*a

has a usual law, namely a complex probability measure p € P(C) satisfying:

tr(a®) = / Fdu(z)
C
This law 1s unique, and is supported by the spectrum o(a) C C. In the non-normal case,
aa* # a*a, such a usual law does not exist.
PRrROOF. This is something that we already know from chapter 6 above:

(1) This comes from the Gelfand theorem, which gives < a >= C(o(a)), and then
the Riesz theorem, which shows that the functional f(a) — ¢r(f(a)) must come from a
probability measure p on the spectrum o(a), as follows:

/fdu

(2) This comes from a direct computation, once again explained in detail in chapter 6
above, which shows that we have tr(aa*aa*) > tr(aaa*a*) for aa* # a*a. O

Summarizing, we have a beginning of a theory, generalizing that of the compact prob-
ability spaces (X, u). Let us discuss now the independence, and its noncommutative
versions. As a starting point here, we have the following notion:

DEFINITION 8.10. Two subalgebras B,C C A are called independent when the follow-
ing condition is satisfied, for any b € B and ¢ € C':

tr(bc) = tr(b)tr(c)
Equivalently, the following condition must be satisfied, for any b € B and c € C':
tr(b) =tr(c) =0 = tr(bc) =0
Also, two variables b,c € A are called independent when the algebras that they generate,
B=<b> , (C=<c¢>

are independent inside A, in the above sense.
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Observe that the above two conditions are indeed equivalent. In one sense this is clear,
and in the other sense, with o’ = a — tr(a), this follows from:

tr(be) = tr[(t) +tr(b))(c +tr(c))]
= tr(t/d) +t(t")tr(c) + tr(b)tr(c') + tr(b)tr(c)
= tr(b'd) +tr(b)tr(c)
= tr(b)tr(c)

The other remark is that the above notion generalizes indeed the usual notion of
independence, from the classical case, the result here being as follows:

THEOREM 8.11. Given two compact measured spaces Y, Z, the algebras
cY)ycC(YxZ) , CZ) cClYxZ)
are independent in the above sense, and a converse of this fact holds too.
PrROOF. We have two assertions here, the idea being as follows:

(1) First of all, given two arbitrary compact spaces Y, Z, we have embeddings of
algebras as in the statement, defined by the following formulae:

f=1,2) = fW) , g9— 12— g(z)

In the measured space case now, the Fubini theorems tells us that:

[ 1) - /Y 1) / 9(2)

Thus, the algebras C'(Y'),C(Z) are independent in the sense of Definition 8.3.

(2) Conversely now, assume that B,C' C A are independent, with A being commuta-
tive. Let us write our algebras as follows, with X, Y, Z being certain compact spaces:

A=C(X) , B=CY) , C=0C2)
In this picture, the inclusions B, C' C A must come from quotient maps, as follows:
p:Z—=X , q:Z—=Y

Regarding now the independence condition from Definition 8.3, in the above picture,
this tells us that the folowing equality must happen:

| fonstae) = [ 1) [ glata)

Thus we are in a Fubini type situation, and we obtain from this Y x Z C X. Thus,
the independence of B, C' C A appears as in (1) above. O

It is possible to develop some theory here, but this is ultimately not very interesting.
As a much more interesting notion now, we have the freeness:
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DEFINITION 8.12. Two subalgebras B,C C A are called free when the following con-
dition s satisfied, for any b; € B and ¢; € C':

tr(b;)) =tr(c;) =0 = tr(bicibaca...) =0
Also, two variables b,c € A are called free when the algebras that they generate,
B=<b> , (C=<c¢>
are free inside A, in the above sense.

In short, freeness appears by definition as a kind of “free analogue” of independence,
taking into account the fact that the variables do not necessarily commute. We will see
in a moment examples, theory, applications, and other reasons for studying freeness.

As a first observation, of theoretical nature, there is actually a certain lack of symmetry
between Definition 8.10 and Definition 8.12, because in contrast to the former, the latter
does not include an explicit formula for the quantities of the following type:

tT(blCleCQ .. )

However, this is not an issue, and is simply due to the fact that the formula in the
free case is something more complicated, the result being as follows:

PROPOSITION 8.13. Assuming that B, C' C A are free, the restriction of tr to < B,C >
can be computed in terms of the restrictions of tr to B,C. To be more precise,

tT(blcleCQ .. ) = P({t?‘(bzlbm .. )}17 {tT(Cj1€j2 .. )}j>

where P s certain polynomial in several variables, depending on the length of the word

bicibacs . .., and having as variables the traces of products of type
bi1 big . > Cj1Cjy v v+
with the indices being chosen increasing, i1 < is < ... and j1 < jo < ...

Proor. This is something quite theoretical, so let us begin with an example. Our
claim is that if b, ¢ are free then, exactly as in the case where we have independence:

tr(bc) = tr(b)tr(c)

Indeed, let us go back to the computation performed after Definition 8.10, which was
as follows, with the convention a’ = a — tr(a):

tr(bc) = tr[(b' +tr())(cd +tr(c))]
= tr(b'd) +t(b)tr(c) + tr(b)tr(c) + tr(b)tr(c)
= tr(t'd) + tr(b)tr(c)
= tr(b)ir(c)
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Our claim is that this computation perfectly works under the sole freeness assumption.
Indeed, the only non-trivial equality is the last one, which follows from:

tr(t)=tr(d)=0 = tr(t/d) =0

In general now, the situation is of course more complicated, but the same trick applies.
To be more precise, we can start our computation as follows:

tr(bicibaca...) = tr[(b) + tr(br))(c) + tr(c1))(by + tr(ba))(cy + tr(ca)) ... .. ]
= tr(bicbyc, . . .) + other terms
= other terms
Observe that we have used here the freeness condition, in the following form:
tr(b;) =tr(c;) =0 = tr(bjcibycy...) =0

Now regarding the “other terms”, those which are left, each of them will consist of a
product of traces of type tr(b;) and tr(c;), and then a trace of a product still remaining
to be computed, which is of the following form, with 5; € B and ~; € C"

tr(BimpBaya.--)

To be more precise, the variables [3; € B appear as ordered products of those b; € B
not getting into individual traces tr(b;), and the variables 7; € C appear as ordered
products of those ¢; € C not getting into individual traces tr(c;). Now since the length
of each such alternating product S17v1027: ... is smaller than the length of the original
alternating product bicibscs . . ., we are led into of recurrence, and this gives the result. [J

Let us discuss now some models for independence and freeness. We first have the
following result, which clarifies the analogy between independence and freeness:
THEOREM 8.14. Given two algebras (B,tr) and (C,tr), the following hold:

(1) B,C are independent inside their tensor product B® C, endowed with its canon-
ical tensor product trace, given on basic tensors by tr(b® c) = tr(b)tr(c).

(2) B,C are free inside their free product B x C, endowed with its canonical free
product trace, given by the formulae in Proposition 8.13.

PROOF. Both the assertions are clear from definitions, as follows:

(1) This is clear with either of the definitions of the independence, from Definition
8.10 above, because we have by construction of the trace:

tr(be) =tr[(b® 1)(1 @ ¢)] = tr(b® ¢) = tr(b)tr(c)

Observe that there is a relation here with Theorem 8.11 as well, due to the following
formula for compact spaces, with ® being a topological tensor product:

CY x Z) = C(Y) ® O(Z)
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To be more precise, the present statement generalizes the first assertion in Theorem
8.11, and the second assertion tells us that this generalization is more or less the same
thing as the original statement. All this comes of course from basic measure theory.

(2) This is clear from definitions, the only point being that of showing that the notion of
freeness, or the recurrence formulae in Proposition 8.13, can be used in order to construct
a canonical free product trace, on the free product of the two algebras involved:

tr: Bx(C — C

But this can be checked for instance by using a GNS construction. Indeed, consider
the GNS constructions for the algebras (B, tr) and (C,tr):

B — B(I*(B)) , C— B(*0))

By taking the free product of these representations, we obtain a representation as
follows, with the % symbol on the right being a free product of pointed Hilbert spaces:

B C — B(I*(B) x I*(0))

Now by composing with the linear form 7" —< T¢, & >, where £ = 1 = 1¢ is the
common distinguished vector of [?(B) and [?(C'), we obtain a linear form, as follows:

tr: Bx(C — C

It is routine then to check that ¢r is indeed a trace, and this is the “canonical free
product trace” from the statement. Then, an elementary computation shows that B, C'
are indeed free inside B *x C', with respect to this trace, and this finishes the proof. O

As an concrete application of the above results, we have:
THEOREM 8.15. We have a free convolution operation H for the distributions
p:C< X, X*>=C
which is well-defined by the following formula, with b, c taken to be free:
o B e =y
This restricts to an operation, still denoted H, on the real probability measures.
PrRoOOF. We have several verifications to be performed here, as follows:

(1) We first have to check that given two variables b,c¢ which live respectively in
certain C*-algebras B,C, we can recover inside some (C*-algebra A, with exactly the
same distributions pp, 1te, as to be able to sum them and then talk about py4.. But this
comes from Theorem 8.14, because we can set A = B x (', as explained there.
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(2) The other verification which is needed is that of the fact that if b, ¢ are free, then
the distribution uy,. depends only on the distributions py, p.. But for this purpose, we
can use the general formula from Proposition 8.13, namely:

tr(byerbacs ...) = P({tr(bilbiz b {tr(ee, . .)}j>

Here P is certain polynomial, depending on the length of byc1bacs . . ., having as vari-
ables the traces of products b;,b;, ... and cj,¢;, ..., with 43 < iy <...and j; < js <...

Now by plugging in arbitrary powers of b, c as variables b;, ¢;, we obtain a family of
formulae of the following type, with () being certain polyomials:

(e ) = P({tr (")}, {tr()h)

Thus the moments of b+ ¢ depend only on the moments of b, ¢, with of course colored
exponents in all this, according to our moment conventions, and this gives the result.

(3) Finally, in what regards the last assertion, regarding the real measures, this is clear
from the fact that if b, ¢ are self-adjoint, then so is their sum b + c. O

8b. Limiting theorems

We would like to have a linearization result for H, in the spirit of the known result for
x. We will do this slowly, in several steps. As a first observation, both the independence
and the freeness are nicely modelled inside group algebras, as follows:

THEOREM 8.16. We have the following results, valid for group algebras:
(1) C*(I"),C*(A) are independent inside C*(I" x A).
(2) C*(I"),C*(A) are free inside C*(I" x A).

PROOF. In order to prove these results, we have two possible methods:

(1) We can use here the general results in Theorem 8.14 above, along with the following
two isomorphisms, which are both standard:

CH(T x A) = C*(A) ® C*(T)
C*(I % A) = C*(A) * C*(T)

(2) We can prove this directly as well, by using the fact that each group algebra is
spanned by the corresponding group elements. Indeed, it is enough to check the indepen-
dence and freeness formulae on group elements, which is in turn trivial. O

Regarding now the linearization problem for H, the situation here is quite tricky. We
need good models for the pairs of free random variables (b, ¢), and the problem is that the
models that we have, with free products of groups, or with more general free products,
will basically lead us into the combinatorics from Proposition 8.13 and its proof, that
cannot be solved with bare hands, and that we want to avoid.
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In short, we must be tricky, at least in what concerns the beginning of our computation.
The idea will be that of temporarily lifting the self-adjointness assumption on our variables
b, c, and looking instead for arbitrary random variables (3,7, not necessarily self-adjoint,
modelling in integer moments our given laws p, v € P(R), as follows:

tr(B*) = My(p), Yk € N
tr(7*) = My(v), Vk € N

To be more precise here, assuming that ,~ are indeed not self-adjoint, the above
formulae are not the general formulae for 3, v, simply because these latter formulae involve
colored integers k = oeeo... as exponents. Thus, in the context of the above formulae,
1, v are not the distributions of 3,~, but just some “pieces” of these distributions.

Now with this idea in mind, due to Voiculescu and quite tricky, the solution to the law
modelling problem comes in a quite straightforward way, involving the good old Hilbert
space H = [*(N) and the good old shift operator S € B(H), as follows:

THEOREM 8.17. Consider the shift operator on the space H = [*(N), given by:
S (ei> = €i+1
The variables of the following type, with f € C[X] being a polynomial,
S*+ f(5)
model then in moments, up to finite order, all the distributions p : C[X]| — C.

ProOOF. We have already met the shift S in chapter 1 above, as the simplest example
of an isometry which is not a unitary, $*5 = 1, 55* = 1, with this coming from:

i-1 (1>0
S*(ez) _ €i—1 (Z > )
0 (1=0)
Consider now a variable as in the statement, namely:
T=S"+4+ay+aS+aS*+...+a,S"

We have then tr(T) = ag, then ¢r(T?) will involve ay, then tr(7T?) will involve ag, and
so on. Thus, we are led to a certain recurrence, that we will not attempt to solve now,
with bare hands, but which definitely gives the conclusion in the statement. U

Before getting further, with taking free products of such models, let us work out a
very basic example, which is something fundamental, that we will need in what follows:

PROPOSITION 8.18. In the context of the above correspondence, the variable
T=8+5"

follows the Wigner semicircle law on [—2,2].
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PROOF. This is something that we already know from chapter 6, the idea being that
the combinatorics of (S + 5*)* leads us into paths on N, and to the Catalan numbers. [

Getting back now to our linearization program for H, the next step is that of taking
a free product of the model found in Theorem 8.17 with itself. We have here:

PROPOSITION 8.19. We can define the algebra of creation operators
S, v —=>r®U
on the free Fock space associated to a real Hilbert space H, given by
FH)=CQeH®H” o ...

and at the level of examples, we have:

(1) With H = C we recover the shift algebra A =< S > on H = [*(N).
(2) With H = C?, we obtain the algebra A =< S1,Sy > on H = *(NxN).

PROOF. We can talk indeed about the algebra A(H) of creation operators on the free
Fock space F'(H) associated to a real Hilbert space H, with the remark that, in terms of
the abstract semigroup notions from chapter 6 above, we have:

F(CF) = (N*)
As for the assertions (1,2) in the statement, these are both clear. U

With the above notions in hand, we have the following key freeness result:

PROPOSITION 8.20. Given a real Hilbert space H, and two orthogonal vectors x,y € H,
r Ly
the corresponding creation operators S, and Sy are free with respect to
tr(T) =< TQ,Q >
called trace associated to the vacuum vector.

PRrROOF. In standard tensor notation for the elements of the free Fock space F(H),
the formula of a creation operator associated to a vector x € H is as follows:

S ® .. QYy) =T @YD ... DY
As for the formula of the adjoint of this creation operator, this is as follows:
SE @ ... Qyn) =< 2,41 > O D ... ® Yn
We obtain from this the following formula, valid for any two vectors x,y € H:
S8y =<,y >1id

With these formulae in hand, the result follows by doing some elementary computa-
tions, in the spirit of those done before for the group algebras. O
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With this technology in hand, let us go back to our linearization program for H. We
have the following key result, further building on Proposition 8.20:

THEOREM 8.21. Given two polynomials f,g € C[X], consider the variables
R+ f(R) , S"+g(9)

where R, S are two creation operators, or shifts, associated to a pair of orthogonal norm
1 vectors. These variables are then free, and their sum has the same law as

T+ (f + 9)(T)
with T being the usual shift on I*(N).

ProOF. We have two assertions here, the idea being as follows:

(1) The freeness assertion comes from the general freeness result from Proposition
8.20, via the various identifications coming from the previous results.

(2) Regarding now the second assertion, the idea is that this comes from a 45° rotation
trick. Let us write indeed the two variables in the statement as follows:

X:R*+a0+a1R+a2R2—|—...

Y = S*+by+ b5 +a5%+ ...
Now let us perform the following 45° base change, on the real span of the vectors
r,s € H producing our two shifts R, S:

r+s r—s

R

The new shifts, associated to these vectors t,u € H, are then given by:
R+ S R-S

T:W 5 UIW

By using now these new shifts, which are free as well according to Proposition 8.20,
we obtain the following equality of distributions:

X+Y = R*+S*+ZakR’“+ka"’
k
T+ U\ T-U\"
- (5 o ()
zk: V2 V2

T\" T\"
g (B) o (5)
2 \a) v
~ T*+Zaka+kak
k
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To be more precise, here in the last two lines we have used the freeness property of
T,U in order to cut U from the computation, as it cannot bring anything, and then we
did a basic rescaling at the end. Thus, we are led to the conclusion in the statement. [J

We can now solve the linearization problem. Following [90], we have:
THEOREM 8.22. Given a real probability measure p, define its R-transform as follows:
du(t 1
Gu(g) = L = G, (Ru(g) + _) =<
rRE—T §
The free convolution operation is then linearized by this R-transform.

Proor. This can be done by using the above results, in several steps, as follows:

(1) According to Theorem 8.21, the operation g — f from Theorem 8.10 above lin-
earizes the free convolution operation H. We are therefore left with a computation inside
C*(N). To be more precise, consider a variable as in Theorem 8.21 above:

X =S+ f(X)

In order to establish the result, we must prove that the R-transform of X, constructed
according to the procedure in the statement, is the function f itself.

(2) In order to do so, fix |z| < 1 in the complex plane, and let us set:
w, = 50 + Z Zkék
k=1

The shift and its adjoint act then as follows, on this vector:
Sw, =z Hw, —6) , S*w, = zw,
It follows that the adjoint of our operator X acts as follows on this vector:
Xw, = (S+ (S

= 2z Nw, — &) + f(2)w,

= (7 f(2))ws — 271
Now observe that this formula can be written as follows:

2710 = (271 + f(2) — XH)w,

The point now is that when |z| is small, the operator appearing on the right is invert-
ible. Thus, we can rewrite this formula as follows:

(7' 4 f(2) — X*) 7 = 2w,
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Now by applying the trace, we are led to the following formula:
tr [(z_l + f(2) — X*)_l] = <(z_1 + f(2) — X*)_150,50>
= < zw,, 0y >
= z

(3) Let us apply now the complex function procedure in the statement to the real
probability measure y modelled by X. The Cauchy transform G, is given by:

Gu(§) = tr((€-X)
= tr((€- X))
= (=X

Now observe that, with the choice £ = 27! + f(2) for our complex variable, the trace
formula found in (2) above tells us precisely that we have:

Gu(z7"+ f(2) =2
Thus, we have R,(2) = f(z), which finishes the proof, as explained in step (1). O

With the above linearization technology in hand, we can now establish the following
free analogue of the CLT, also due to Voiculescu [90]:

THEOREM 8.23 (Free CLT). Given self-adjoint variables x1, xs, x3, ... which are f.i.d.,
centered, with variance t > 0, we have, with n — 00, in moments,

1 n
= Z Ti ~ Nt
Vi
where 7y, is the Wigner semicircle law of parameter t, having density:
1
Ve = ﬂ\/4t2 — x2dx
T

Proor. We follow the same idea as in the proof of the CLT:

(1) At t = 1, the R-transform of the variable in the statement on the left can be
computed by using the linearization property from Theorem 8.22, and is given by:

Rl =i, (52 ) = ¢

(2) Regarding now the right term, also at t = 1, our claim is that the R-transform of
the Wigner semicircle law 7, is given by the following formula:

R’h (5) = 6

But this follows via some calculus, or directly from the following formula, coming from
Proposition 8.18, and from the technical details of the R-transform:

S—l-S*N")/l
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Thus, the laws in the statement have the same R-transforms, and so they are equal.

(4) Summarizing, we have proved the free CLT at ¢ = 1. The passage to the general
case, t > 0, is routine, by some standard dilation computations. U

Similarly, in the complex case, we have the following result:

THEOREM 8.24 (Free complex CLT). Given variables x1,xs,x3, ..., whose real and
imaginary parts are f.i.d., centered, and with variance t > 0, we have, with n — 00,

%Zl’ert

where T, is the Voiculescu circular law of parameter t, appearing as the law of == (a+zb)
where a,b are self-adjoint and free, each following the law ;.

Proor. This is clear from Theorem 8.23, by taking real and imaginary parts. U

There are of course many other things that can be said about g, v:, G¢, [y, but for the
moment, this is all we need. We will be back later to these laws, with more details.

8c. Laws of characters

Now back to our quantum group questions, let us start with the following result, which
provides us with motivations for the study of the main character:

THEOREM 8.25. Given a Woronowicz algebra (A,w), the law of the main character

N
X = Z Ui
i=1

with respect to the Haar integration has the following properties:

(1) The moments of x are the numbers M, = dim(Fiz(u®*)).
(2) My counts as well the lenght p loops at 1, on the Cayley graph of A.
(3) law(x) is the Kesten measure of the assocmted discrete quantum group.
(4) When u ~ u the law of x is a usual measure, supported on [—N, NJ.
(5) The algebra A is amenable precisely when N € supp(law(Re(x))).

(6) Any morphism f : (A, u) — (B,v) must increase the numbers Mj,.

(7) Such a morphism f is an isomorphism when law(x.) = law(x,).

PROOF. These are things that we already know, the idea being as follows:

(1) This comes from the Peter-Weyl theory, which tells us the number of fixed points
of v = u®* can be recovered by integrating the character y, = x*.

(2) This is something true, and well-known, for A = C*(T"), with ' =< ¢y, ..., g9n >
being a discrete group. In general, the proof is quite similar.
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(3) This is actually the definition of the Kesten measure, in the case A = C*(I"), with
['=<gi,...,gn > being a discrete group. In general, this follows from (2).

(4) The equivalence u ~ u translates into x, = X, and this gives the first assertion.
As for the support claim, this follows from wu* =1 = ||uy|| < 1, for any 1.

(5) This is the Kesten amenability criterion, which can be established as in the classical
case, A = C*(I'), with I =< ¢y, ..., gy > being a discrete group.

(6) This is something elementary, which follows from (1) above, and from the fact that
the morphisms of Woronowicz algebras increase the spaces of fixed points.

(7) This follows by using (6), and the Peter-Weyl theory, the idea being that if f is
not injective, then it must strictly increase one of the spaces Fiz(u®*). U

As a conclusion, computing p = law(x) is the main question to be solved, from a
massive number of mathematical viewpoints. In addition to all this, in view of the above,
the measure p = law(x) is expected to have an interesting physical meaning, in the
context of the statistical mechanical models whose symmetries are encoded by G.

In what follows we will be interested in computing such laws, for the main examples
of quantum groups that we have. In the easy quantum group case, we have:

THEOREM 8.26. For an easy quantum group G = (Gy), coming from a category of
partitions D = (D(k,l)), the asymptotic moments of the main character are given by

im [\ = |D(k)|

N—oo Gn

where D(k) = D(0, k), with the limiting sequence on the left consisting of certain integers,
and being stationary at least starting from the k-th term.

PRroOF. This follows indeed from the general formula from Theorem 8.25 (1), by using
the linear independence result from chapter 5 above. U

Our next purpose will be that of understanding what happens for the basic classes of
easy quantum groups. In the orthogonal case, we have:

THEOREM 8.27. In the N — oo limit, the law of the main character x., is as follows:

(1) For Oy we obtain a Gaussian law, namely:
1

g1 = o

(2) For Of; we obtain a Wigner semicircle law, namely:
1
"= 2—\/4 — 22dx
T

PROOF. These are results that we both know, from chapter 5 above. U

e~ 2y
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In the unitary case now, we have:

THEOREM 8.28. In the N — oo limit, the law of the main character x, is as follows:
(1) For Uy we obtain the complex Gaussian law Gy .
(2) For Uy we obtain the Voiculescu circular law T'y.

PROOF. These are once again results that we know, from chapter 6 above. U

Summarizing, we have seen so far that for Oy, O}, Uy, Uy, the asymptotic laws of
the main characters are the laws ¢1, v, G1,['1 coming from the various CLT.

This is certainly nice, but there is still one conceptual problem, coming from:

PROPOSITION 8.29. The above convergences law(x.) — g1,7,G1,11 are as follows:

(1) They are non-stationary in the classical case.
(2) They are stationary in the free case, starting from N = 2.

PRrooF. This is something quite subtle, which can be proved as follows:

(1) Here we can use an amenability argument, based on the Kesten criterion. Indeed,
On, Uy being coamenable, the upper bound of the support of the law of Re(x,) is precisely
N, and we obtain from this that the law of y,, itself depends on N € N.

(2) Here the result follows from the computations in section 4 above, performed when
working out the representation theory of OF, Uy, which show that the linear maps T}
associated to the noncrossing pairings are linearly independent, at any N > 2. U

In short, we are not over with our study, which seems to open more questions than it
solves. Fortunately, the solution to this latest question is quite simple. The idea indeed
will be that of improving our g1,v1, G1,['1 results above with g¢;, v, Gy, I'y results, which
will require N — oo in both the classical and free cases, in order to hold at any t.

8d. Truncated characters
In practice, the definition that we will need is as follows:

DEFINITION 8.30. Given a Woronowicz algebra (A, w), the variable
[tN]

Xt = Z Ui
i=1

is called truncation of the main character, with parameter t € (0, 1].

Our purpose in what follows will be that of proving that for Oy, O%, Un, Uy, the
asymptotic laws of the truncated characters x; with ¢t € (0,1] are the laws g;, v, Gy, 't
This is something quite technical, motivated by the findings in Proposition 8.29 above,
and also by a number of more advanced considerations, to become clear later on.



8D. TRUNCATED CHARACTERS 195
In order to start now, the basic result from Theorem 8.25 is not useful in the general
t € (0,1] setting, and we must use instead general integration methods [52], [96]:

THEOREM 8.31. For an easy quantum group G C Uy, coming from a category of
partitions D = (D(k, 1)), we have the Weingarten integration formula

/uflljl.. ug; = Z 07(4)05 (7)) Win (m, 0)
G m,oeD(k)

for any colored integer k = ey ...e, and any multi-indices i, j, where D(k) = D(0, k), §
are usual Kronecker symbols, and

Win = Gy
with Gy (7, 0) = NI™V°l where |.| is the number of blocks.

PROOF. We already know from chapter 3 above that any closed subgroup G C Uy, is
subject to an abstract Weingarten formula, coming from Peter-Weyl theory, via elemen-
tary linear algebra. With the notations there, the Kronecker symbols are given by:

0e, (1) = <&rey ®...R€;, >
= 0x(i1,... 1)
The Gram matrix being as well the correct one, we obtain the result. See [20]. O
We can apply the above formula to truncated characters, and we obtain:

PROPOSITION 8.32. The moments of truncated characters are given by the formula

/(un 4+ ...+ uss)k = TT(WkNGkS>
a
and with N — oo this quantity equals (s/N)*|D(k)].
PRrOOF. The first assertion follows from the following computation:

/G(un 4+ ...+ uss)k = Z Z /ulll1 . ulklk

i1=1 =1

= Z WkNWUZ 25

moeD(k =1 =1
= Z WkN (m,0)Gys(o, )
moeD(k)
= Tr(WinGhs)
The point now is that we have the following trivial estimates:

= N*¥ (m=o0)
Gl ) {g N (n £ 0)
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Thus with N — oo we have the following estimate:
Gin ~ N*1

But this gives the folowing estimate, for our moment:

/G(u11 o ug)t = TT(G,:}VG;%)

~ Tr((N*1)~'Gis)
= N'Tr(Gp)
= N75"D(k)|
Thus, we have obtained the formula in the statement. See [20]. O

In order to process the above formula, we will need some more free probability theory.
Following [80], given a random variable a, we write:

log Fu(§) = Y _ kn(a)¢"

Ro(§) =D rn(a)¢"

We call the coefficients k,(a), k,(a) cumulants, respectively free caumulants of a. With
this notion in hand, we can define then more general quantities k,(a), k.(a), depending
on partitions m € P(k), by multiplicativity over the blocks. We have then:

THEOREM 8.33. We have the classical and free moment-cumulant formulae

My(a) = > kila)

weP(k)

My(a) = Z Kr(a)

TeNC(k)
where kr(a), kr(a) are the generalized cumulants and free cumulants of a.

Proor. This is standard, by using the formulae of F,, R,, or by doing some direct
combinatorics, based on the Mobius inversion formula. See [80]. O

We can now improve our results about characters, as follows:

THEOREM 8.34. With N — oo, the laws of truncated characters are as follows:

(1) For Oy we obtain the Gaussian law g;.

(2) For O we obtain the Wigner semicircle law ;.

(3) For Uy we obtain the complex Gaussian law Gy.

(4) For Uy we obtain the Voiculescu circular law Ty.
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Proor. With s = [tN] and N — oo, the formula in Proposition 8.32 above gives:
- k x

g 2
By using now the formulae in Theorem 8.33, this gives the results. Indeed:
(1) This is clear.
(2) This is clear as well.
(3) This follows by complexification.
(4) This follows by free complexification.
For details on all this, we refer to [20]. O
As an interesting consequence, related to [38], let us formulate as well:

THEOREM 8.35. The asymptotic laws of truncated characters for the liberation oper-
ations

ON — OX[

Un — UJ—\TF
are in Bercovici-Pata bijection, in the sense that the classical cumulants in the classical
case equal the free cumulants in the free case.

Proor. This follows indeed from the computations in the proof of Theorem 8.34. [J

This result will be of great use for the liberation of more complicated compact Lie
groups, because it provides us with a criterion for checking if our guesses are right.

Let us discuss now the other easy quantum groups that we have. Regarding the half-
liberations O}, Uy the situation is a bit complicated, and will be discussed more in detail
later on, but we have the following result that we can formulate here, at ¢t = 1:

PROPOSITION 8.36. The asymptotic laws of the main characters are as follows:
(1) For Oy we obtain a symmetrized Rayleigh variable.
(2) For U} we obtain a complexification of this variable.

PROOF. The idea is to use a projective version trick. Indeed, assuming that G = (Gy)
is easy, coming from a category of pairings D, we have:

dim [ (o) = #D((00)")
—>JprGy
In our case, where Gy = O}, Uy, we can therefore use Theorem 8.34 above at ¢ = 1,

and we are led to the conclusions in the statement. See [25], [26], [87]. O
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The above result is of course something quite modest. We will be back to the quantum
groups Oy, Uy, in chapter 16 below, with some better techniques for dealing with them,
and more specifically with explicit modelling results using 2 x 2 matrices.

Next in our lineup, we have the bistochastic quantum groups. We have here:
PROPOSITION 8.37. For the bistochastic quantum groups
By, B}, Cy,CY
the asymptotic laws of truncated characters appear as modified versions of
9t Ve, G, Tt
and the operations Oy — OF; and Uy — Uy, are compatible with the Bercovici-Pata
bijection.

PROOF. This follows indeed by using the same methods as for Oy, OF;, Uy, Uy, with
the verification of the Bercovici-Pata bijection being elementary, and with the computa-
tion of the corresponding laws being routine as well. See [35], [26], [87]. O

Regarding now the twists, we have here the following general result:
PROPOSITION 8.38. The integration over G is given by the Weingarten type formula

/G_j uiljl .. ‘uikjk = Z Sw(i)gg(j)WkNOT,O')
N )

m,oeD(k

where Wy is the Weingarten matriz of Gy .

Proor. This follows exactly as in the untwisted case, the idea being that the signs
will cancel. Let us recall indeed from the general twisting theory from chapter 7 that the
twisted vectors &, associated to the partitions m € Py,en(k) are as follows:

gﬂzzg(T) Z €i1®“‘®eik

T>m i:ker(d)=1

Thus, the Gram matrix of these vectors is given by:

<& &y > = Z e(r)? {(il,...,ik)‘keri:T}‘
= Z H(il,...,ik)‘keri:TH

T>mVo

— N|7r\/<7|
Thus the Gram matrix is the same as in the untwisted case, and so the Weingarten
matrix is the same as well as in the untwisted case, and this gives the result. U

As a consequence of the above result, we have another general result, as follows:
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THEOREM 8.39. The Schur-Weyl twisting operation G <+ Gy leaves invariant:

(1) The law of the main character.
(2) The coamenability property.
(3) The asymptotic laws of truncated characters.

PRrooF. This basically follows from Proposition 8.38, as follows:

(1) This is clear from the integration formula.

(2) This follows from (1), and from the Kesten criterion.

(3) This follows once again from the integration formula. O
To summarize, we have results for all the easy quantum groups introduced so far, and

in each case we obtain Gaussian laws, and their versions.

8e. Exercises

There are many interesting theoretical questions regarding the laws of the main char-
acter, and as a first exercise here, we have:

EXERCISE 8.40. Prove that any morphism of Woronowicz algebras
[ (Au) = (B,v)

increases the moments of the main character, and that such a morphism is an isomorphism
precisely when all these moments, and so the character laws, are the same.

This is something that we already discussed in the above, when introducing the main
characters, but very briefly, with the comment that all this basically comes from Peter-
Weyl. The problem is that of working out carefully all the details.

As a second exercise, which is a must-do, we have:

EXERCISE 8.41. Consider the symmetric group Sy, regarded as symmetry group of the
N coordinate axes of R, and so as group of orthogonal matrices:

Sy C Opn

Compute the main character for this group, then the law of this main character, and work
out the N — oo asymptotics.

As a comment here, since the permutation matrices have 0 — 1 entries, the law of
the main character is supported by N. Thus, with a bit of luck, the asymptotic spectral
measure can only be the most basic measure in discrete probability.

In relation now with the Weingarten formula, we have:

EXERCISE 8.42. Work out the formulae of the Gram and Weingarten matrices for all
the easy quantum groups introduced so far, up to the size 5 X 5.
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There are many computations here, and all of them are very instructive.

In connection now with the half-liberations, we have:

EXERCISE 8.43. Work out explicitely the asymptotic laws of the main characters for
the half-classical quantum groups Oy, Uy .

This is something that we briefly discussed in the above, by indicating what the final
result should be like, involving Rayleigh variables, along with a strategy for the proof.
The problem is that of working out all this, with full details.

Along the same lines, in connection with the bistochastic groups, we have:

EXERCISE 8.44. Work out explicitely the asymptotic laws of the main characters for
the bistochastic quantum groups By, By, Cx, Cy:.

As with the previous exercise, this is something that we briefly discussed in the above,
and the problem now is that of working out all the details.
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CHAPTER 9

Quantum permutations

9a. Magic matrices

The quantum groups that we considered so far, namely Oy, Uy and their liberations
and twists, are of “continuous” nature. In order to have as well “discrete” examples, the
idea will be that of looking at the corresponding quantum reflection groups. Let us start
with a functional analytic description of the usual symmetric group:

ProPoOsITION 9.1. Consider the symmetric group Sy .

(1) The standard coordinates v;; € C(Sn), coming from the embedding Sy C On
given by the permutation matrices, are given by:

Vij = X (U‘U(j> = Z)
(2) The matriz v = (v;;) is magic, in the sense that its entries are orthogonal pro-
jections, summing up to 1 on each row and each column.

(3) The algebra C(Sy) is isomorphic to the universal commutative C*-algebra gen-
erated by the entries of a N x N magic matriz.

PROOF. These results are all elementary, as follows:

(1) We recall that the canonical embedding Sy C Oy, coming from the standard
permutation matrices, is given by o(e;) = e,(;). Thus, we have o = Zj €o(j)j> and it
follows that the standard coordinates on Sy C Oy are given by:

0ij(0) = dia(j)
(2) Any characteristic function y € {0,1} being a projection in the operator algebra

sense (x? = x* = x), we have indeed a matrix of projections. As for the sum 1 condition
on rows and columns, this is clear from the formula of the elements v;;.

(3) Consider the universal algebra in the statement, namely:
A=Clomm <(wij)i,j:1,...,N‘w = magic)

We have a quotient map A — C(Sy), given by w;; — v;;. On the other hand, by
using the Gelfand theorem we can write A = C(X), with X being a compact space, and
by using the coordinates w;; we have X C Oy, and then X C Sy. Thus we have as well
a quotient map C(Sn) — A given by v;; — w;;, and this gives (3). See Wang [94]. O

203
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With the above result in hand, we can now formulate, following [94]:

THEOREM 9.2. The following is a Woronowicz algebra, with magic meaning formed
of projections, which sum up to 1 on each row and each column,

C(SJJ\F/) =C" ((uij)i,jzl,...7N)U = magic)
and the underlying compact quantum group S;(, 15 called quantum permutation group.

PROOF. The algebra C'(Sy) is indeed well-defined, because the magic condition forces
[luij|| < 1, for any C*-norm. Our claim now is that, by using the universal property of
this algebra, we can define maps A, ¢, S. Consider indeed the following matrix:

Uiy = E Wik, @ Uy
K

As a first observation, we have U;; = U;; In fact the entries U;; are orthogonal
projections, because we have as well:

2
Uz‘j = E Uik Uiy & U Ul

Kl
= E Uik Q U
k
U

In order to prove now that the matrix U = (U;;) is magic, it remains to verify that
the sums on the rows and columns are 1. For the rows, this can be checked as follows:

Z Uj = Zuzk ® Uj
J

For the columns the computation is similar, as follows:

Z Uy = Z Uik & U
i ik
k

= 1®1

Thus the matrix U = (U;;) is magic indeed, and so we can define a comultiplication
map by setting A(u;;) = U;;. By using a similar reasoning, we can define as well a counit
map by (u;;) = d;;, and an antipode map by S(u;;) = uj;. Thus the Woronowicz algebra
axioms from chapter 2 are satisfied, and this finishes the proof. O
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The terminology in the above result comes from the comparison with Proposition
9.1 (3), which tells us that we have an inclusion Sy C Sy, and that this inclusion is a
liberation, in the sense that the classical version of S, obtained at the algebra level by
dividing by the commutator ideal, is the usual symmetric group Sy.

The terminology is further motivated by the following result, also from [94]:

PROPOSITION 9.3. The quantum permutation group Sy, acts on X = {1,..., N}, the
corresponding coaction map ® : C(X) — C(X) ® C(S};) being given by:

O(6:) =Y 05 @y
j

In fact, Sy is the biggest compact quantum group acting on X, by leaving the counting
measure invariant, in the sense that

(tr @ id)® = tr(.)1
Vi.

where tr is the standard trace, given by tr(5;) = +,

PrRoOOF. Our claim is that given a compact matrix quantum group G, the formula
D(0;) =>, ; 0; ® u;; defines a morphism of algebras, which is a coaction map, leaving the

trace invariant, precisely when the matrix u = (u;;) is a magic corepresentation of C'(G).
Indeed, let us first determine when ® is multiplicative. We have:

(I)((Sl)q)<5k) = Z 6j5l X Uj Ui = Z 5]' (059 UjiUjk
gt J

On the other hand, we have as well the following formula:

P(6:6k) = 05 P(0;) = 0y Z 0j @ g
j

Thus, the multiplicativity of ® is equivalent to the following conditions:
Uji Ul = 5ikujz' N
Regarding now the unitality of ®, we have the following formula:

(1) = Y e()
= 25J®Uﬂ

“xee(re)
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Thus @ is unital when the following conditions are satisfied:
Z Uj; = 1 s \4)

Finally, the fact that ® is a x-morphism translates into:

ui]’ = u;‘j s Vz,j

Summing up, in order for ®(J;) = Zj d; ® uj; to be a morphism of C*-algebras, the
elements u;; must be projections, summing up to 1 on each row of u. Regarding now the
preservation of the trace condition, observe that we have:

(tr @ id)®(5;) = % Z uj;

Thus the trace is preserved precisely when the elements w;; sum up to 1 on each of
the columns of u. We conclude from this that ®(6;) = > ;0j @ uy; is a morphism of C-
algebras preserving the trace precisely when u is magic, and since the coaction conditions
on ® are equivalent to the fact that v must be a corepresentation, this finishes the proof
of our claim. But this claim proves all the assertions in the statement. O

As a perhaps quite surprising result now, also from [94], we have:
THEOREM 9.4. We have an embedding of compact quantum groups
Sy C Sj\_]

given at the algebra level, C(Sy) — C(Sy), by the formula
Uij — X (0‘0(]‘) = z)

and this embedding is an isomorphism at N < 3, but not at N > 4, where S5, is non-
classical, infinite compact quantum group.

PROOF. The fact that we have indeed an embedding as above is clear from Proposition
9.1 and Theorem 9.2. Note that this follows as well from Proposition 9.3. Regarding now
the second assertion, we can prove this in four steps, as follows:

Case N = 2. The result here is trivial, the 2 x 2 magic matrices being by definition
as follows, with p being a projection:

0-(2, '7)
I—p p

Indeed, this shows that the entries of a 2 X 2 magic matrix must pairwise commute,
and so the algebra C'(S;) follows to be commutative, which gives the result.
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Case N = 3. This is more tricky, and we present here a simple, recent proof, from
[72]. By using the same abstract argument as in the N = 2 case, and by permuting rows
and columns, it is enough to check that w1, ugs commute. But this follows from:

Ul = UppUsge(Urg + Uz + Uis)
U1 U22UTT T UL U22U13
= Up Uiy + upr (1 — w9y — usz)ugs

= U11U22U11

Indeed, by applying the involution to this formula, we obtain from this that we have
as well ugoty; = uprugurr. Thus we get uiiuss = ugouqy, as desired.

Case N =4. In order to prove our various claims about S, consider the following
matrix, with p, ¢ being projections, on some infinite dimensional Hilbert space:

P 1—»p 0 0
P 0 0
0 0 q 1—¢q
0 1—gq q
This matrix is magic, and if we choose p,q as for the algebra < p,q > to be not

commutative, and infinite dimensional, we conclude that C'(S;) is not commutative and
infinite dimensional as well, and in particular is not isomorphic to C'(Sy).

Case N > 5. Here we can use the standard embedding S} C S}, obtained at the level
of the corresponding magic matrices in the following way:

u — u 0
0 In—4

Indeed, with this embedding in hand, the fact that S; is a non-classical, infinite
compact quantum group implies that Sj; with N > 5 has these two properties as well. [

9b. Representations

In order to study now Sy, we can use our various methods developed in chapters 2-4
above. Let us begin with some basic algebraic results, as follows:

PROPOSITION 9.5. The quantum groups Sy have the following properties:
(1) We have S§ %S5, C S{ia for any W
(2) In particular, we have an embedding Do, C Sy .
(3) Sy C S are distinguished by their spinned diagonal tori.
(4) The half-classical version Sk = Sy N O% collapses to Sy
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PROOF. These results are all elementary, the proofs being as follows:

(1) If we denote by wu,v the fundamental corepresentations of C(Sy),C(S};), the
fundamental corepresentation of C'(Sy % S;;) is by definition:

=)

But this matrix is magic, because both u,v are magic. Thus by universality of
C(S¥ 1) We obtain a quotient map as follows, as desired:

C(Sya) = C(Sx *Sy)

(2) This result, which refines our N = 4 trick from the proof of Theorem 9.4, follows
from (1) with N = M = 2. Indeed, we have the following computation:

S;“%Sj = S9%5,
= ZoixZs
L% Lo
— Ty * Ly
= Da

(3) As a first observation here, the quantum groups Sy C S; are not distinguished by
their diagonal torus, which is {1} for both of them. However, according to the general

results of Woronowicz in [99], the group dual De C S; that we found in (2) must be a
subgroup of the diagonal torus of the following compact quantum group, with the standard
unitary representations being spinned by a certain unitary F' € Uy:

(S, FuF*)

Now since this group dual l/); is not classical, it cannot be a subgroup of the diagonal
torus of (Sy, FuF™). Thus, the diagonal torus spinned by F' distinguishes S; C S} .

4) Consider the following compact quantum group, with the intersection operation
g g
being taken inside Uy, whose coordinates satisfy abc = cba:

St =SEN0%

In order to prove that we have Sy, = Sy, it is enough to prove that S% is classical.
And here, we can use the fact that for a magic matrix, the entries in each row sum up to
1. Indeed, by making ¢ vary over a full row of u, we obtain abc = cba = ab =ba. U

Summarizing, we have some advances on the quantum permutations, including a more
conceptual explanation for our main observation so far, namely S} # 5.

At the representation theory level now, we have the following result, from [21]:
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THEOREM 9.6. For the quantum groups Sy, Sy, the intertwining spaces for the tensor
powers of the fundamental corepresentation u = (u;;) are given by

Hom(u®* u®") = span (T7r m € D(k, l))

with D = P,NC. In other words, Sy, Sy are easy, coming from the categories P, NC'.

PrROOF. We use the Tannakian duality results from chapter 4 above:

(1) S%. According to Theorem 9.2, the algebra C(S};) appears as follows:

C(Sy) = C(O;{,)/<u = magic>
Consider the one-block partition ;€ P(2,1). The linear map associated to it is:
Tu(ei @ e5) = dije
We have T}, = (6;51)i jk, and we obtain the following formula:

(T ign = D (T)iim (W™ i jp = i

lm

On the hand, we have as well the following formula:

(WT)ige = Y wa(T)ugn = dyuiy
l

Thus, the relation defining S5, C O3 reformulates as follows:
T, € Hom(u®*,u) <= wjjug = djuij, Vi, j, k
The condition on the right being equivalent to the magic condition, we obtain:
O(S%) = C(0%) / <TM e Hom(u®, u)>
By using now the general theory from chapter 7, we conclude that the quantum group
S is indeed easy, with the corresponding category of partitions being:
D=<pu>

But this latter category is NC', as one can see by “chopping” the noncrossing partitions
into p-shaped components. Thus, we are led to the conclusion in the statement.

(2) Sy. Here the first part of the proof is similar, leading to the following formula:
C(Sy) = C’(ON)/<TH € Hom(u®2,u)>

But this shows that Sy is easy, the corresponding category of partitions being:
D = <u P>
= <NC,P, >
= P
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Alternatively, this latter formula follows directly for the result for S3; proved above,
via Sy =S¥ N Oy, and the functoriality results explained in chapter 7. O

As a technical comment, there might seem to be a bit of a clash between the above
results for Sy, S% at N = 2,3, where we have Sy = S¥. However, there is no clash,
because the implementation of the partitions is not faithful.

In order to discuss the representations of S}, we will need precisely linear independence
results for the vectors &, associated to the partitions 7 € NC. This is something which
is more technical than the previous results for pairings. Let us start with:

PROPOSITION 9.7. We have a bijection NC(k) ~ NCy(2k), constructed as follows:

(1) The application NC(k) — NCo(2k) is the “fattening” one, obtained by doubling
all the legs, and doubling all the strings as well.

(2) Its inverse NCy(2k) — NC(k) is the “shrinking” application, obtained by col-
lapsing pairs of consecutive neighbors.

PROOF. The fact that the two operations in the statement are indeed inverse to each
other is clear, by computing the corresponding two compositions, with the remark that
the construction of the fattening operation requires the partitions to be noncrossing. [J

Next in line, we have the following key result:
THEOREM 9.8. Consider the Temperley-Lieb algebra of index N > 4, defined as
TLy(k) = span(NCy(k, k))

with product given by the rule () = N, when concatenating.
(1) We have a representation i : TLy(k) — B((CN)®*), given by m — T.

(2) Tr(Ty) = NWors(<m) where 1 —< 7 > is the closing operation.
(3) The linear form T =Troi:TLyx(k) — C is a faithful positive trace.
(4) The representation i : TLx(k) — B((CN)®*) is faithful.

In particular, the vectors {&x|m € NC(k)} C (CN)®* are linearly independent.
Proor. All this is quite standard, but advanced, the idea being as follows:
(1) This is clear from the categorical properties of 7 — 5.

(2) This follows indeed from the following computation:
i i
ITr(T;) = 57r . .
@) = 2o (i)
11... 2

— #{il,...,ike{1,...,N}‘ker(?1"'2,k) ZW}
11 ... 7

Nloops(<7r>)
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(3) The traciality of 7 is clear. Regarding now the faithfulness, this is something
well-known, and we refer here to Jones’ paper [67].

(4) This follows from (3) above, via a standard positivity argument. As for the last
assertion, this follows from (4), by fattening the partitions. O

We can now work out the representation theory of Sy, as follows:

THEOREM 9.9. The quantum groups Sy, with N > 4 have the following properties:

(1) The moments of the main character are the Catalan numbers:
/s . XlC =Cy
(2) The fusion rules for representations are as follows, exactly as for SOs:
T QT = Tlk—1] + Vk—t)+1 + -+« + Tkpi
(3) The dimensions of the irreducible representations are given by
¢ — gk
q—1
where q,q~1 are the roots of X* — (N —2)X +1 = 0.

dim(ry) =

PRrOOF. The proof, from [2], based on Theorem 9.8, goes as follows:

(1) We have indeed the following computation, coming from the SU, computations
from section 5, and from Theorem 9.6, Proposition 9.7 and Theorem 9.8:

/ X" = dim(Fiz(u®*))
SN

= [NC(k)]

= |[NCy(2k)]

=
(2) This is standard, by using the formula in (1), and the known theory of SOs. Let

A = span(xx|k € N) be the algebra of characters of SO3. We can define a morphism as
follows, where f is the character of the fundamental representation of Sy:

U:A—C(SY)

xi— f—1
The elements f = W(xx) verify then the following formulae:

Tefi = fie—iy + flo—g1 + -+ frm
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We prove now by recurrence that each fy is the character of an irreducible corepre-
sentation ry, of C(S};), non-equivalent to rg,...,r,_1. At k=0, 1 this is clear, so assume
that the result holds at £k — 1. By integrating characters we have, exactly as for SOj3:

Th—2,Tk—1 C Th—1 ® T
Thus there exists a certain corepresentation rj such that:
Th—1 @ T1 = Tg—2 + Tk—1 + Tk

Once again by integrating characters, we conclude that ry is irreducible, and non-
equivalent to 7q,...,7,_1, as for SO3, which proves our claim. Finally, since any irre-
ducible representation of Sy must appear in some tensor power of u, and we have a
formula for decomposing each u®* into sums of representations 7;, we conclude that these
representations r; are all the irreducible representations of Sy .

(3) From the Clebsch-Gordan rules we have, in particular:
TETL = Th—1 + Tk + Thy1
We are therefore led to a recurrence, and the initial data being dim(ry) = 1 and
dim(r) = N —1=¢q+ 1+ ¢!, we are led to the following formula:
dim(re) =¢" +¢" " +.. 4+ ¢+

In more compact form, this gives the formula in the statement. Il

9¢c. Twisted extension

The above result is quite surprising, and raises a massive number of questions. We
would like to better understand the relation with SOz, and more generally see what
happens at values N = n? with n > 2, and also compute the law of y, and so on.

As a first topic to be discussed, one way of understanding the relation with SO3 comes
from noncommutative geometry considerations. We recall that, according to the general
theory from chapter 1, each finite dimensional C*-algebra A can be written as A = C(F),
with I’ being a “finite quantum space”. To be more precise, we have:

DEFINITION 9.10. A finite quantum space F' is the abstract dual of a finite dimensional
C*-algebra A, according to the following formula:

C(F) = A

The number of elements of such a space is by definition the number |F| = dim A. By
decomposing the algebra A, we have a formula of the following type:

C(F)=M,(C)®...& M, (C)

Withny = ... =ng = 1 we obtain in this way the space F' = {1,... k}. Also, when k =1
the equation is C(F) = M, (C), and the solution will be denoted F = M,,.
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In order to talk about the quantum symmetry group S}, we must use universal coac-
tions. As in Proposition 9.3, we must endow our space F' with its counting measure:

DEFINITION 9.11. We endow each finite quantum space F with its counting measure,
corresponding as the algebraic level to the integration functional

tr: C(F) — B(I*(F)) = C
obtained by applying the reqular representation, and then the normalized matrix trace.

To be more precise, consider the algebra A = C(F'), which is by definition finite
dimensional. We can make act A on itself, by left multiplication:

mn:A—=L(A) , a— (b— ab)

The target of 7 being a matrix algebra, £(A) ~ My(C) with N = dim A, we can
further compose with the normalized matrix trace, and we obtain t¢r:

tT:NTTOTF

As basic examples, for both F' = {1,..., N} and F' = My we obtain the usual trace.
In general, with C'(F) = M,,(C) & ... & M,, (C), the weights of ¢r are:

2
1

Let us study the quantum group actions G ~ F. We denote by pu,n the multiplication
and unit map of the algebra C'(F). Following [2], [94], we first have:

C;, =

PROPOSITION 9.12. Consider a linear map ® : C(F) — C(F) ® C(G), written as
Oe;) =Y e; Dy
J
with {e;} being a linear space basis of C(F), orthonormal with respect to tr.

(1) @ is a linear space coaction <= wu is a corepresentation.
(2) @ is multiplicative <= pu € Hom(u®? u).

(3) @ is unital <= n € Hom(1,u).

(4) © leaves invariant tr <= n € Hom(1,u*).

(5) If these conditions hold, ® is involutive <= w is unitary.

PRroOF. This is a bit similar to the proof of Proposition 9.3 above, as follows:
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(1) There are two axioms to be processed here. First, we have:

((d@A)D = (PRidD = Y e ®Auy) Z@ek@)u;ﬂ

J

— Zq@Auﬂ Ze]®u]k®ukz

J ik

= A(uyi) Zu]k ® Up;

As for the axiom involving the counit, here we have as well, as desired:
(Zd (%9 8)@ =id <= Zs(uji)ej =€
<~ 5(11,]‘1‘) = 5ji
(2) We have the following formula:

Ole;) = > e;@uy

J
ij
= u(e; ®1)
By using this formula, we obtain the following identity:
O(ee) = uleep,®1)
= u(p®id)(e; ®e, @ 1)
On the other hand, we have as well the following identity, as desired:
D(e;)P(er) = Z ejer @ UjiUig
jl
= (p®id) Z e; @ e @ ujuy
j
= (p®id) (Z eji Qe @ ujiulk> (6; ®ep®1)
ikl
= (p®id)u®(e; ® e ® 1)

(3) The formula ®(e;) = u(e; ® 1) found above gives by linearity ®(1) = u(l ® 1),
which shows that ® is unital precisely when u(1 ® 1) =1 ® 1, as desired.
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(4) This follows from the following computation, by applying the involution:
(tr @id)®(e;) = tr(e)l <= > tr(ej)u; = tr(e;)l

J
— Zu;;l-:h

(5) Assuming that (1-4) are satisfied, and that & is involutive, we have:

(W) = ) ufun
I
= Ztr(e;-el)u;fiulk
i

= (tr ®1id) Z eier @ wi

gl

= (tr ®id)(®(e:)"®(er))
(tr @ id) P (e} ey)
= tr(ejeg)l
= Qi
Thus u*u = 1, and since we know from (1) that u is a corepresentation, it follows that
u is unitary. The proof of the converse is standard too, by using similar tricks. O

Following now [2], [94], we have the following result, extending the basic theory of S},
to the present finite noncommutative space setting:

THEOREM 9.13. Given a finite quantum space F', there is a universal compact quantum
group S} acting on F, leaving the counting measure invariant. We have

C(S}) = C’(U;)/<,u € Hom(u®?* u),n € Fm(u)>

where N = |F| and where p,n are the multiplication and unit maps of C(F). For F =
{1,..., N} we have S} = Sy%. Also, for the space F = My we have S} = SOj.

PROOF. This result is from [2], the idea being as follows:

(1) This follows from Proposition 9.12 above, by using the standard fact that the
complex conjugate of a corepresentation is a corepresentation too.

(2) Regarding now the main example, for F' = {1,..., N} we obtain indeed the quan-
tum permutation group Sy, due to the abstract result in Proposition 9.3 above.
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(3) In order to do now the computation for F' = My, we use some standard facts about
SU,, SO3. We have an action by conjugation SUs ~ My(C), and this action produces,
via the canonical quotient map SUs — SOj3, an action SO3 ~ My(C).

On the other hand, it is routine to check, by using arguments like those in the proof of
Theorem 9.4 at N = 2,3, that any action G ~ Ms(C) must come from a classical group.
We conclude that the action SO3 ~ M;(C) is universal, as claimed. O

Regarding now the representation theory of these generalized quantum permutation
groups Sj, the result here, from [2], is very similar to the one for Sy, as follows:

THEOREM 9.14. The quantum groups S; have the following properties:

(1) The associated Tannakian categories are T Ly, with N = |F)|.
(2) The main character follows the Marchenko-Pastur law m, when N > 4.
(3) The fusion rules for S} with |F| > 4 are the same as for SOj.

PROOF. Once again this result is from [2], the idea being as follows:

(1) Our first claim is that the fundamental representation is equivalent to its adjoint,
u ~ u. Indeed, let us go back to the coaction formula from Proposition 9.12:

(I)(GZ) = Z €; X Ui
J
We can pick our orthogonal basis {e;} to be the stadard multimatrix basis of C'(F'),

so that we have e = e;-, for a certain involution ¢ — ¢* on the index set. With this
convention made, by conjugating the above formula of ®(e;), we obtain:

O(er) = Z ejr @ Uy,
J
Now by interchanging ¢ <> ¢* and j <+ j*, this latter formula reads:

(I)(62> = Z €; (059 U;*i*
J

We therefore conclude, by comparing with the original formula, that we have:

*

But this shows that we have an equivalence u ~ u, as claimed. Now with this result
in hand, the proof goes as for the proof for Sy. To be more precise, the result follows
from the fact that the multiplication and unit of any complex algebra, and in particular
of C(F), can be modelled by the following two diagrams:

m=|U|] , u=n

Indeed, this is certainly true algebrically, and this is something well-known. As in
what regards the s-structure, things here are fine too, because our choice for the trace
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leads to the following formula, which must be satisfied as well:
upt =N -id
But the above diagrams m,u generate the Temperley-Lieb algebra T'Ly, as stated.

(2) The proof here is exactly as for S, by using moments. To be more precise,
according to (1) these moments are the Catalan numbers, which are the moments of .

(3) Once again same proof as for S¥, by using the fact that the moments of x are the
Catalan numbers, which naturally leads to the Clebsch-Gordan rules. U

It is quite clear now that our present formalism, and the above results, provide alto-
gether a good and conceptual explanation for our SOs result regarding Sy. To be more
precise, we can merge and reformulate the above results in the following way:

THEOREM 9.15. The quantun groups S3. have the following properties:
1) For F ={1,...,N} we have S} = Sy.

2) For the space F = My we have S§ = PO} = PU},.

3) In particular, for the space F' = My we have S} = SOj.

4) The fusion rules for S} with |F| > 4 are independent of F.

(5) Thus, the fusion rules for S} with |F| > 4 are the same as for SOj.

(
(
(
(

Proor. This is basically a compact form of what has been said above, with a new
result added, and with some technicalities left aside:

(1) This is something that we know from Theorem 9.13.

(2) This is new, the idea being as follows. First of all, we know from section 4
above that the inclusion POY; C PU}; is an isomorphism, with this coming from the free
complexification formula O = Uy, but we will actually reprove this result. Consider
indeed the standard vector space action Uy, ~ CV, and then its adjoint action PU; ~
Mpy(C). By universality of Sy, , we have inclusions as follows:

PO} C PUS C Sy,

On the other hand, the main character of Of; with N > 2 being semicircular, the
main character of PO} must be Marchenko-Pastur. Thus the inclusion PO} C S} has
the property that it keeps fixed the law of main character, and by Peter-Weyl theory we
conclude that this inclusion must be an isomorphism, as desired.

(3) This is something that we know from Theorem 9.13, and that can be deduced as
well from (2), by using the formula PO5 = SOjs, which is something elementary.

(4) This is something that we know from Theorem 9.14.
(5) This follows from (3,4), as already pointed out in Theorem 9.14. O
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All this is certainly quite conceptual, but perhaps a bit too abstract. At N = 4 we
can formulate a more concrete result on the subject, by using the following construction:

DEFINITION 9.16. C(SO3 ") is the universal C*-algebra generated by the entries of a
3 x 3 orthogonal matriz a = (a;;), with the following relations:
(1) Skew-commutation: a;jay = Eaga;;, with sign + if i # k,j # 1, and — otherwise.
(2) Twisted determinant condition: X,ecs,010(1)020(2)030(3) = 1.
Observe the similarity with the twisting constructions from chapter 7. However, SO;
being not easy, we are not exactly in the Schur-Weyl twisting framework from there.

Our first task would be to prove that C(SO3') is a Woronowicz algebra. This is of
course possible, by doing some computations, but we will not need to do these computa-
tions, because the result follows from the following theorem, from [12]:

THEOREM 9.17. We have an isomorphism of compact quantum groups
Sy =850;*
given by the Fourier transform over the Klein group K = Zy X Zs.

PROOF. Consider indeed the matrix at = diag(1, a), corresponding to the action of
SOz* on C*, and apply to it the Fourier transform over the Klein group K = Zy x Zy:

11 1 1 1 0 0 0 11 1 1
1 1 -1 -1 1 0 ay; a1 a3 1 -1 -1 1
4 1 -1 1 -1 0 21 929 A23 1 -1 1 -1
1 1 -1 -1 0 as1 Q32 ass 1 1 -1 -1
It is routine to check that this matrix is magic, and vice versa, i.e. that the Fourier

transform over K converts the relations in Definition 9.16 into the magic relations in
Definition 9.1. Thus, we obtain the identification from the statement. Il

u =

Yet another extension of Theorem 9.9, which is however quite technical, comes by
looking at the general case N = n?, with n > 2. It is possible indeed to complement
Theorem 9.15 above with a general twisting result of the following type:

G (E;) = GH(F)

To be more precise, this formula is valid indeed, for any finite group F' and any 2-
cocycle o on it. In the case F' = Z? with Fourier cocycle on it, this leads to the conclusion
that PO, appears as a cocycle twist of S7,. See [18].

In relation with this, we have:

PROPOSITION 9.18. The Gram matrices of NCq(2k), NC(k) are related by the formula

Gopn(m,0) = nF (AL G2 AL (7, 0)

where m — 7' is the shrinking operation, and Ay, is the diagonal of Gy,,.
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PROOF. In the context of Proposition 9.7, it is elementary to see that we have:
|TVo|=k+27'Vd|—|r|—|o
We therefore have the following formula, valid for any n € N:
nlmvel — pk+2lr'vo'|=|x'|—|o’|
Thus, we obtain the formula in the statement. Il

We have the following interesting probabilistic fact, from [18] as well:

THEOREM 9.19. The following families of variables have the same joint law,
(1) {ui;} € COF),
(2) {Xij = 3 ZapPiagn} € C(S2),

where w = (u;;) and p = (piajp) are the corresponding fundamental corepresentations.

PRrOOF. This result can be obtained via twisting methods. An alternative approach is
by using the Weingarten formula for our two quantum groups, and the shrinking operation
m — n’. Indeed, we obtain the following moment formulae:

/ u?f = Z Wopn(, 0)
On

m,0€NC2(2k)

ko _ ' |+|o’ |-k o

/+ X = E pm el Win2 (7', 0")
Sn2 W,UGN02(2]€)

According to Proposition 9.18 the summands coincide, and so the moments are equal,
as desired. The proof in general, dealing with joint moments, is similar. O

The above result is quite interesting, because it makes a connection between free
hyperspherical and free hypergeometric laws. We refer here to [18], [23].

9d. Poisson laws

Let us go back now to our main result so far, namely Theorem 9.9, and further build
on that, with probabilistic results. Following [11], we have the following result:

THEOREM 9.20. The spectral measure of the main character of SY; with N > 4 is the
Marchenko-Pastur law of parameter 1, having the following density:

1
™ = 2—\/4x—1 — ldz
T

Also, S is coamenable, and S with N > 5 is not coamenable.
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PROOF. Here the first assertion follows from the following formula, which can be
established by doing some calculus, and more specifically by setting x = 4 sin® ¢:

1 4
o V1 —dx—12bde = €,
0

As for the second assertion, this follows from this, which shows that the spectrum of
the main character is [0, 4], and from the Kesten criterion. U

Our next purpose will be that of understanding, probabilistically speaking, the liber-
ation operation Sy — Sy. In what regards Sy, we have the following basic result:

THEOREM 9.21. Consider the symmetric group Sy, regarded as a compact group of
matrices, Sy C Oy, via the standard permutation matrices.

(1) The main character x € C(Sy), defined as usual as x = >, u;, counts the
number of fized points, x(o) = #{i|lo(i) =i}.

(2) The probability for a permutation o € Sy to be a derangement, meaning to have
no fized points at all, becomes, with N — oo, equal to 1/e.

(3) The law of the main character x € C(Sy) becomes, with N — 0o, a Poisson law
of parameter 1, with respect to the counting measure.

Proor. This is something very classical, and beautiful, as follows:

(1) We have indeed the following computation:
X(0) =) wil0) =Y oy = # {ilo(i) = i}
(2) This is best viewed by using the inclusion-exclusion principle. Let us set:

Giewin _ {0 c SN‘g(il) =iy,...,0(iy) = ik}

By using the inclusion-exclusion principle, we have:

1
1 ; ij 11...iN
= = (|SN| S SIS =+ (DY D[S |>
) i i<j 1< . <in

For any i; < ... < iy, we have |SY | = (N — k)!, and we obtain:

S R (S 1
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Since on the right we have the expansion of %, we conclude that we have:

1
lim P(y =0) = —
Jim P(x=0) = 2
(3) This follows by generalizing the computation in (2). To be more precise, a similar

application of the inclusion-exclusion principle gives the following formula:

. 1
A POc=#) = 7
Thus, we obtain in the limit a Poisson law, as stated. O

In order to talk about free analogues of this, we will need some theory:

THEOREM 9.22. The following Poisson type limits converge, for anyt > 0,

t t . \"
p; = lim ((1 — —> 0o + —51)
n—00 n n
Hn
t t
Ty = lim ((1 — —) (50 + —51>
n—o0 n n

the limiting measures being the Poisson law py, and the Marchenko-Pastur law m,

1 Ry,
Pr=ra 2
k=0
4t — (x —1—1t)?
Wt:max(l—t,0)50+\/ (@ ) dx

2rx
whose moments are given by the following formula

My (py) = Z ¢l
weD(k)
with D = P, NC. The Marchenko-Pastur measure m; is also called free Poisson law.
PRrROOF. This is something standard, which follows by using either log F, R and calcu-
lus, or classical and free cumulants. The point indeed is that the limiting measures must

be those having classical and free cumulants ¢,¢,¢, ... But this gives all the assertions, the
density computations being standard. See [75], [80], [91], [98]. O

We can now formulate a conceptual result about Sy — Sy, as follows:

THEOREM 9.23. The law of the main character x, s as follows:

(1) For Sy with N — oo we obtain a Poisson law p;.
(2) For S}, with N > 4 we obtain a free Poisson law .

In addition, these laws are related by the Bercovici-Pata correspondence.
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PRroor. This follows indeed from the computations that we have, from Theorem 9.20
and Theorem 9.21, by using the various theoretical results from Theorem 9.22. U

As in the continuous case, our purpose now will be that of extending this result to the
truncated characters. In order to discuss the classical case, we first have:

PROPOSITION 9.24. Consider the symmetric group Sy, together with its standard ma-
triz coordinates u;; = x(0 € Sylo(j) =1). We have the formula

/ Wiyj U 5, = w if keri = kerj
Sn I 0 otherwise

where ker i denotes as usual the partition of {1,. .., k} whose blocks collect the equal indices
of i, and where |.| denotes the number of blocks.

PROOF. According to the definition of u,;, the integrals in the statement are given by:

1 . . . .
/SN Uiy + - - Wiy, = ﬁ# {O' € SN‘U(jl) =11, ,U<]k) - Zk}

The existence of o € Sy as above requires i,, = 1,, <= Jjm = Jn. Lhus, the integral
vanishes when keri # ker j. As for the case keri = ker j, if we denote by b € {1,...,k}
the number of blocks of this partition, we have N — b points to be sent bijectively to N —b

points, and so (N — b)! solutions, and the integral is (N];!b)!, as claimed. U

We can now compute the laws of truncated characters, and we obtain:

PROPOSITION 9.25. For the symmetric group Sy C Oy, regarded as a compact group
of matrices, Sy C Oy, via the standard permutation matrices, the truncated character

[tN]
Xt = Zuzz
i=1

counts the number of fixed points among {1,...,[tN]}, and its law with respect to the
counting measure becomes, with N — 0o, a Poisson law of parameter t.

ProoOF. With S being the Stirling numbers, we have:

[tV]
Eo_ E
/ Xt = / Wiyiy - - - Uipiy,
SN SN

iy ip=1

[tN]! (N —[=]Y)
- E:wm—mm' NI

TEPy

DN (N — b))

_E:wm—w' NI R

b=1
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In particular with N — oo we obtain the following formula:

k
lim / Xk = Sk; btb
N—oo Sy ¢ bz:;

But this is a Poisson(¢) moment, and so we are done. O
We can now finish our computations, and generalize Theorem 9.23, as follows:

THEOREM 9.26. The laws of truncated characters x; = thzj\? uy; are as follows:

(1) For Sy with N — oo we obtain a Poisson law p;.
(2) For S}, with N — oo we obtain a free Poisson law .

In addition, these laws are related by the Bercovici-Pata correspondence.
Proor. This follows from the above results:
(1) This is something that we already know, from Proposition 9.25.

(2) This is something that we know so far only at ¢ = 1, from Theorem 9.23. In order
to deal with the general ¢ € (0, 1] case, we can use the same method as for the orthogonal
and unitary quantum groups, from chapter 8, and we obtain the following moments:

we ¥
rTeNC (k)

But these numbers being the moments of the free Poisson law of parameter t, as
explained in Theorem 9.22 above, we obtain the result. See [21]. O

Summarizing, the liberation operation Sy — S}, has many common features with the
liberation operations Ox — Oy and Uy — Uy, studied in chapter 8 above.
9e. Exercises

There has been a lot of material in this chapter, with this second part of the present
book being at a more advanced level than the first part, and most of our exercises here
will be about better understanding what has been said above. Let us start with:

EXERCISE 9.27. Prove that we have S3 = S5 by looking at the coaction
P:C* = C’C(S)
written in terms of the Fourier basis of C3.

To be more precise, the question here is that of changing the basis of C?, by using the
Fourier transform over the group Zs, then reformulating the magic condition at N = 3 in
terms of this new basis, and then deducing that the coefficients must commute.

Here is another exercise, which is more advanced:
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EXERCISE 9.28. Prove that the discrete quantum group
r—gr
1s not amenable, in the discrete quantum group sense.

This requires of course some good knowledge of the notion of amenability. As a hint
here, try finding a quantum subgroup G C Sy whose dual is not amenable.

Here is now an exercise at N € N arbitrary:

EXERCISE 9.29. Consider a discrete group generated by elements of finite order, writ-
ten as a quotient group, as follows:

Zn, * ... %Ly, =T
Prove that we have an embedding T c S¥%, where N = Ny + ...+ Nj.

This should be normallAy not very difficult. What is difficult, however, is to prove that
any group dual subgroup I' C S}, appears as above. We will be back to this.

In relation with the advanced algebra part, we have:
EXERCISE 9.30. Prove that we have the following equality:
S]T/[Q = S03
This is something that was already discussed in the above, but quite briefly. The
problem now is that of working out all the details.
Finally, in relation with the probability considerations, we have:

EXERCISE 9.31. Check out all the details for Theorem 9.22, regarding the Poisson and
free Poisson limiting theorems.

There is quite some work to be done here, but everything is quite routine. As an
alternative approach, we will discuss later in this book a generalization of this, regarding
the compound Poisson and compound free Poisson limits, so the problem is to go there,
and to work out in detail the particular case of the Poisson and free Poisson limits.



CHAPTER 10

Quantum reflections

10a. Finite graphs

Many interesting examples of quantum permutation groups appear as particular cases
of the following general construction from [3], involving finite graphs:

PROPOSITION 10.1. Given a finite graph X, with adjacency matriz d € My(0,1), the
following construction produces a quantum permutation group,

O(GH(X)) = C(SF) / <du - ud>
whose classical version G(X) is the usual automorphism group of X .

PrRoOOF. The fact that we have a quantum group comes from the fact that du = ud
reformulates as d € End(u), which makes it clear that we are dividing by a Hopf ideal.
Regarding the second assertion, we must establish here the following equality:

C(G(X)) = C(Sy) / <du - ud>

For this purpose, recall that () = d,(;);- By using this formula, we have:

(du)ij(0) = Y diuri(o)
k

= Zdikéa(j)k
k

dig j)
On the other hand, we have as well the following formula:

(ud)ij(o) = Y up(o)dy
k
= > owyic;

= o)y
Thus the condition du = ud reformulates as d;; = dy()0(;), and we are led to the usual
notion of an action of a permutation group on X, as claimed. U

Let us work out some basic examples. We have the following result:

225
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THEOREM 10.2. The construction X — G (X) has the following properties:

(1) For the N-point graph, having no edges at all, we obtain Sy.

(2) For the N-simplez, having edges everywhere, we obtain as well S5.
(3) We have GH(X) = GT(X°), where X is the complementary graph.
(4) For a disconnected union, we have Gt(X)*GH(Y) C GT(X UY).
(5) For the square, we obtain a non-classical, proper subgroup of Sj .

PRroOOF. All these results are elementary, the proofs being as follows:
(1) This follows from definitions, because here we have d = 0.

(2) Here d = I is the all-one matrix, and the magic condition gives ul = Iu = NI. We
conclude that du = ud is automatic in this case, and so GT(X) = Sj,.

(3) The adjacency matrices of X, X¢ being related by the formula dy + dx. = 1. We
can use here the above formula ul = Iu = NI, and we conclude that dxu = udyx is
equivalent to dxcu = udxe. Thus, we obtain, as claimed, GT(X) = GT(X°).

(4) The adjacency matrix of a disconnected union is given by dx y = diag(dx,dy).
Now let w = diag(u,v) be the fundamental corepresentation of G*(X)*G*(Y). Then
dxu = udx and dyv = vdy imply, as desired, dx yw = wdx,y.

(5) We know from (3) that we have G*(O) = G*(] |). We know as well from (4) that
we have Zo % Zy C GT(] |). It follows that G*(0) is non-classical. Finally, the inclusion
GT(O) c Sy is indeed proper, because S; C S; does not act on the square. O

In order to further advance, and to explicitely compute various quantum automor-
phism groups, we can use the spectral decomposition of d, as follows:

PROPOSITION 10.3. A closed subgroup G C S5 acts on a graph X precisely when
Pu=uP, , VAER
where d =, X - Py is the spectral decomposition of the adjacency matriz of X.

PROOF. Since d € My(0,1) is a symmetric matrix, we can consider indeed its spectral
decomposition, d = >, A - Py. We have then the following formula:

< d >= span {P)\‘/\ € R}
But this shows that we have the following equivalence:
d € End(u) <= P, € End(u),VA € R
Thus, we are led to the conclusion in the statement. Il

In order to exploit this, we will often combine it with the following standard fact:
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PROPOSITION 10.4. Consider a closed subgroup G C Sj;, with associated coaction map
d:CYN - CVeC(@)

For a linear subspace V.C CN, the following are equivalent:

(1) The magic matriz u = (u;;) commutes with Py .
(2) V is invariant, in the sense that (V) C V ® C(G).

PROOF. Let P = Py. For any i € {1,..., N} we have the following formula:

d(Ple;)) = @ (Z Pki€k>
= Z Pm-ej & Ujk
= Z e; ® (uP)ji

On the other hand the linear map (P ® id)® is given by a similar formula:

(P@id)( () = 3 Pler)
= Z ijej & U
= Z € © (Pu)ji

Thus uP = Pu is equivalent to P = (P ® id)®, and the conclusion follows. O

We have as well the following useful complementary result, from [3]:

PROPOSITION 10.5. Let p € My(C) be a matriz, and consider its “color” decomposi-
tion, obtained by setting (p.)ij = 1 if pi; = ¢ and (p.);j = 0 otherwise:

p:ZC'pC

ceC

Then uw = (u;;) commutes with p if and only if it commutes with all matrices p..
PRrooF. Consider the multiplication and counit maps of the algebra C":
M26i®€j — €;€;

C:ei—>ei®ei
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Since M, C' intertwine u, u®?, their iterations M®) C*) intertwine u, u®*, and so:
o0 sk
= > ne
ceC

€ End(u)

Let S = {c € C|p. # 0}, and f(c) = ¢. By Stone-Weierstrass we have S =< f >, and
so for any e € S the Dirac mass at e is a linear combination of powers of f:

5, = Zk:/\kf’“
Rty

cesS
- X (X )a
ceS k
The corresponding linear combination of matrices p® is given by:

Too = ()

ceS
- (z A> b
ceS k

The Dirac masses being linearly independent, in the first formula all coefficients in the
right term are 0, except for the coefficient of §., which is 1. Thus the right term in the
second formula is p., and it follows that we have p. € End(u), as claimed. i

The above results can be combined, and we are led into a “color-spectral” decompo-
sition method for d, which can lead to a number of nontrivial results. See [3].

As a basic application of this, we can further study G*(0), as follows:

PRrROPOSITION 10.6. The quantum automorphism group of the N-cycle is as follows:

(1) At N # 4 we have GT(X) = Dy.
(2) At N =4 we have Dy C GT(X) C S, with proper inclusions.

Proor. We already know that the results hold at N < 4, so let us assume N > 5.
Given a N-th root of unity, w" = 1, consider the following vector:

¢ = (w')
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This is an eigenvector of d, with eigenvalue w 4+ w™N=1. With w = e2™/N | it follows
that 1, f, f2,..., fN~! are eigenvectors of d. More precisely, the invariant subspaces of d
are as follows, with the last subspace having dimension 1 or 2, depending on N

ClL,CfeCfN L, CcfroCfV2 ...
Consider now the associated coaction ® : C¥N — CV @ C(G), and write:
d(f)=f@a+ V@b
By taking the square of this equality we obtain:
O(f)=f®d+ "0 +1® (ab+ ba)
It follows that ab = —ba, and that ®(f?) is given by the following formula:
(A= od+ N 2eb’
By multiplying this with ®(f) we obtain:
(A =ed+ "o+ N ea®+ f®bd®

Now since N > 5 implies that 1, N — 1 are different from 3, N — 3, we must have
ab? = ba®? = 0. By using this and ab = —ba, we obtain by recurrence on k that:

O(f) = ffod + N bk
In particular at k = N — 1 we obtain:
(NN = NN 4 fe N
On the other hand we have f* = f¥=1 so by applying * to ®(f) we get:
(NN = N o+ fob
Thus a* = o™~ ! and b* = bV 1. Together with ab® = 0 this gives:
(ab)(ab)* = abb*a*
— N1
—  (ab?)pV 2N
= 0

From positivity we get from this ab = 0, and together with ab = —ba, this shows that
a,b commute. On the other hand C(G) is generated by the coefficients of ®, which are
powers of a, b, and so C'(G) must be commutative, and we obtain the result. O

Summarizing, this was a bad attempt in understanding G*(O), which appears to be
“exceptional” among the quantum symmetry groups of the N-cycles.
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An alternative approach to G*(O) comes by regarding the square as the N = 2
particular case of the N-hypercube [y. Indeed, the usual symmetry group of [y is the
hyperoctahedral group Hpy, so we should have a formula of the following type:

GO) = H)
In order to clarify this, let us start with the following simple fact:

PROPOSITION 10.7. We have an embedding as follows, g; being the generators of ZY,

i]\\[ C SNil y Xr; = gi
2 R,+ /N
whose image 1is the geometric hypercube:
1
Oy =<z € RNz, ::I:—,Vi}
=1 L

ProoOF. This is something that we already know, from section 1 above. Consider
indeed the following standard group algebra generators:

g € CH(ZY) = C(ZY)

These generators satisfy satisfy then g; = g7, g2 = 1, and when rescaling by 1/v/ N,
we obtain the relations defining Uy. O

We can now study the quantum symmetry groups G*(Oy), and we are led to the
quite surprising conclusion, from [16], that these are the twisted orthogonal groups Oy:

THEOREM 10.8. With ZY =< g1,...,gn > we have a coaction map
©:CH(ZY) = CHZY) @ C(ON) , gi— Y g5 Duyi

J

—

which makes Oy the quantum isometry group of the hypercube Oy = ZY , as follows:
(1) With Oy viewed as an algebraic manifold, Oy C S§ + C S[{RX;I.
(2) With Oy viewed as a graph, with 2~ vertices and 2V "IN edges.
(3) With Oy viewed as a metric space, with metric coming from RY

PROOF. Observe first that Oy is indeed an algebraic manifold, so (1) as formulated
above makes sense, in the general framework of section 2. The cube Uy is also a graph, as
indicated, and so (2) makes sense as well, in the framework of Proposition 10.1. Finally,
(3) makes sense as well, because we can define the quantum isometry group of a finite
metric space exactly as for graphs, but with d being this time the distance matrix.

(1) In order for G C O} to act affinely on Oy, the variables G; = >~ 9j ® uj; must

satisfy the same relations as the generators g; € Z2'. The self-adjointness being automatic,
the relations to be checked are therefore:

GZQ == 1 5 GZGJ - GJGl
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We have the following computation:

G? = Z Ikt & Uikl
kl

= 1+ Z 991 @ (Wiguy + wyu)
k<l

As for the commutators, these are given by:

Gi, Gj] = nggl @ (Wirlji — Wil + Ul — Wjily)
k<l

From the first relation we obtain ab = 0 for a # b on the same row of u, and by using
the antipode, the same happens for the columns. From the second relation we obtain:

Wik, W] = [wjp, wa] , Vk#I

Now by applying the antipode we obtain:
[t k] = i, g

By relabelling, this gives the following formula:

[Uik,ujl] = [uihujk] . JF
Thus for ¢ # j, k # | we must have:

Wik, wjt] = [wjp, uy] = 0

We are therefore led to G C Oy, as claimed.

(2) We can use here the fact that the cube Oy, when regarded as a graph, is the
Cayley graph of the group Z3. The eigenvectors and eigenvalues of (y are as follows:

_ i1j1+...+iNIN 1 JIN
Vi iy = E (=1 NINgt L gN
J1--JN

>‘i1---iN = (_1)“ +.o+ (_1)iN

With this picture in hand, and by using Proposition 10.3 and Proposition 10.4 above,
the result follows from the same computations as in the proof of (1). See [16].

(3) Our claim here is that we obtain the same symmetry group as in (2). Indeed,
observe that distance matrix of the cube has a color decomposition as follows:

d=dy+V2dy+V3ds+ ...+ VNdy
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Since the powers of d; can be computed by counting loops on the cube, we have
formulae as follows, with z;; € N being certain positive integers:

d% = Ty ly + x2dy
d‘i’ = 1'311]\[ -+ $32d2 + 513'33d3
d{v = ZENllN+ZL’N2d2+.TN3d3+...+JINNdN

But this shows that we have < d >=< d; >. Now since d; is the adjacency matrix of
Ow, viewed as graph, this proves our claim, and we obtain the result via (2). O

Now back to our questions regarding the square, we have G*(00) = O,, and this
formula appears as the N = 2 particular case of a general formula, namely G*(Oy) = Oy.
This is quite conceptual, but still not ok. The problem is that we have G(Oy) = Hy,
and so for our theory to be complete, we would need a formula of type H}; = Oy. And
this latter formula is obviously wrong, because for Oy the character computations lead
to Gaussian laws, who cannot appear as liberations of the character laws for Hy, that we

have not computed yet, but which can only be something Poisson-related.

10b. Reflection groups

Summarizing, the problem of conceptually understanding G(OJ) remains open. In order
to present now the correct, final solution, the idea will be that to look at the quantum
group G (| |) instead, which is equal to it, according to Proposition 10.2 (3). We first
have the following result, extending Proposition 10.2 (4) above:

PRoOPOSITION 10.9. For a disconnected union of graphs we have
GH(Xy) * ... xGH(Xy) C G (X U...UXy)
and this inclusion is in general not an isomorphism.

PRrOOF. The proof of the first assertion is nearly identical to the proof of Proposition
10.2 (4) above. Indeed, the adjacency matrix of the disconnected union is given by:

XmLI...LIXk - diag(qu e 7ka)

w = diag(uy, ..., ug)

We have then dx,u; = u;dx,, and this implies dw = wd, which gives the result. As for
the last assertion, this is something that we already know, from Proposition 10.6 (2). O

In the case where the graphs Xi,..., X are identical, which is the one that we are
truly interested in, we can further build on this. We recall from [40] that we have:
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PROPOSITION 10.10. Given closed subgroups G C Uy, H C S;f, with fundamental
corepresentations u, v, the following construction produces a closed subgroup of Uy, :

C(G 1 H) = (C(G)* « C(H))/ < [\, v] = 0 >

ij
In the case where G, H are classical, the classical version of G . H is the usual wreath
product G H. Also, when G is a quantum permutation group, so is G 1, H.

ProOF. Consider indeed the matrix wjq j, = ug?)vab, over the quotient algebra in the

statement. It is routine to check that w is unitary, and in the case G C S5, our claim
is that this matrix is magic. Indeed, the entries are projections, because they appear as
products of commuting projections, and the row sums are as follows:

L (a)
Wia,jb = ul‘j Vab
jb jb
_ E : § : (a)
= Vab Uy
b J

=1

As for the column sums, these are as follows:

L (a)
Wia,jb = ui]’ Vab
ia ia
_ § : § : (a)
= Vap Uy
a 7

=1

With these observations in hand, it is routine to check that G, H is indeed a quantum
group, with fundamental corepresentation w, by constructing maps A, e, S as in section
1, and in the case G C S}, we obtain in this way a closed subgroup of Sy, . Finally, the
assertion regarding the classical version is standard as well. See [40]. i

We refer to [11], [40], [86] for more details regarding the above construction. Now
with this notion in hand, following [11], we have the following result:
THEOREM 10.11. Given a connected graph X, and k € N, we have the formulae
G(kX) =G(X) Sk
GT(kX)=G" (X)L S
where kX = X U...U X 1is the k-fold disjoint union of X with itself.

PRrROOF. The first formula is something well-known, which follows as well from the
second formula, by taking the classical version. Regarding now the second formula, it is
elementary to check that we have an inclusion as follows, for any finite graph X:

GH(X) 1 S € G (kX)
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Indeed, we want to construct an action G*(X) . S ~ kX, and this amounts in
proving that we have [w,d] = 0. But, the matrices w, d are given by:

_ ,,(a) _
Wia,jb = uij Vap dia,jb — 5ijdab

With these formulae in hand, we have the following computation:

(dw)ia b = Zdikwka,jb
i

= Z dz’ku](;') Uab
k

= (du(“) )ijvab

On the other hand, we have as well the following computation:

(wd)jqp = sz‘a,kbdkj
k

= > uvady
k

= (u”d);va
Thus we have [w, d] = 0, and from this we obtain:
GH(X) . S C GH(kX)

Regarding now the reverse inclusion, which requires X to be connected, this follows
by doing some matrix analysis, by using the commutation with u. To be more precise, let
us denote by w the fundamental corepresentation of G*(kX), and set:

UE?) = Z Wia,jb 5  Vab = Z Vab
b i
It is then routine to check, by using the fact that X is indeed connected, that we have

here magic unitaries, as in the definition of the free wreath products. Thus we obtain the
reverse inclusion, that we were looking for, namely:

GH(kX) C GT(X)1 Sf

To be more precise, the key ingredient is the fact that when X is connected, the
x-algebra generated by dx contains a matrix having nonzero entries. See [11]. O

We are led in this way to the following result, from [16]:

THEOREM 10.12. Consider the graph consisting of N segments.

(1) Its symmetry group is the hyperoctahedral group Hy = Zo ! Sy.
(2) Its quantum symmetry group is the quantum group Hy = Zy . Sy
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PROOF. This comes from the above results, as follows:

(1) This is clear from definitions, with the remark that the relation with the formula
Hy = G(Oy) comes by viewing the N segments as being the [—1, 1] segments on each
of the N coordinate axes of RY. Indeed, a symmetry of the N-cube is the same as a
symmetry of the N segments, and so, as desired:

(2) This follows from Theorem 10.11 above, applied to the segment graph. Observe
also that (2) implies (1), by taking the classical version. O

Now back to the square, we have GT(0J) = H,, and our claim is that this is the
“good” and final formula. In order to prove this, we must work out the easiness theory
for Hy, H;, and prove that Hy — H} is an easy quantum group liberation.

We first have the following result:

PROPOSITION 10.13. The algebra C(Hy;) can be presented in two ways, as follows:

(1) As the universal algebra generated by the entries of a 2N X 2N magic unitary
having the following “sudoku” pattern, with a,b being square matrices:

()

(2) As the universal algebra generated by the entries of a N x N orthogonal matrix
which is “cubic”, in the sense that, for any j # k:

Uij Uik = UjiUki = 0
As for C(Hy), this has similar presentations, among the commutative algebras.

PROOF. Here the first assertion follows from Theorem 10.12, via Proposition 10.10,
and the last assertion is clear as well, because C(Hy) is the abelianization of C(H};).
Thus, we are left with proving that the algebras A, A, coming from (1,2) coincide.

We construct first the arrow A, — A,. The elements a;;, b;; being self-adjoint, their
differences are self-adjoint as well. Thus a — b is a matrix of self-adjoint elements. We
have the following formula for the products on the columns of a — b:

(@—=0b)ikla —b)jr = airajx — aixbjr — biajr + bibjk
)0 for ¢ # j
" Nap + by fori= Ji

In the ¢« = j case the elements a;, + b;, sum up to 1, so the columns of a — b are
orthogonal. A similar computation works for rows, so a — b is orthogonal.
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Now by using the ¢ # j computation, along with its row analogue, we conclude that
a — b is cubic. Thus we can define a morphism A. — A, by the following formula:

p(uij) = aij — b
We construct now the inverse morphism. Consider the following elements:

2
CT Ty
2 |
5 =
1] T 2

These are projections, and the following matrix is a sudoku unitary:
= ( () (ﬁz‘j))
<(B¢j) (cij)
Thus we can define a morphism A, — A. by the following formulae:
ud; + ugj
Ylay) = JTJ

U(bij) = ]Tj

We check now the fact that 1, ¢ are indeed inverse morphisms:

Vp(uig) = Y(ai; — bij)
uf Fuyuf = uy
2 2

As for the other composition, we have the following computation:

2 4 y
ov(ay) = w(u)

2
_ (ag = by)* + (ai; — byy)
2
A similar computation gives ¢t(b;;) = b;;, which completes the proof. U

We can now work out the easiness property of Hy, Hy, with respect to the cubic
representations, and we are led to the following result, which is fully satisfactory:
THEOREM 10.14. The quantum groups Hy, Hy; are both easy, as follows:
(1) Hy corresponds to the cateqory P.yen.
(2) Hy corresponds to the category NCeyen.

PROOF. These assertions follow indeed from the fact that the cubic relations are
implemented by the one-block partition in P(2,2), which generates NCoyep. See [16]. O



10C. COMPLEX REFLECTIONS 237

10c. Complex reflections

There is a similarity here with the easiness results for permutations and quantum
permutations, obtained in chapter 9. In fact, the basic algebraic results regarding Sy, St
and Hy, Hy; appear as the s = 1,2 particular cases of the following result:

THEOREM 10.15. The complex reflection groups Hy, = Zs1Sn and their free analogues
HY =71 Sy, defined for any s € N, have the following properties:
(1) They have N -dimensional coordinates u = (u;;), which are subject to the relations
WU = Ui, Pij = Uigly; = magic, and ug; = pg;.
(2) They are easy, the corresponding categories P* C P,NC® C NC' being given by
the fact that we have # o —#e = 0(s), as a weighted sum, in each block.

Proor. We already know that the results hold at s = 1,2, and the proof in general
is similar. With respect to the above proof at s = 2, the situation is as follows:

(1) Observe first that the result holds at s = 1, where we obtain the magic condition,
and at s = 2 as well, where we obtain something equivalent to the cubic condition. In
general, this follows from a Zg-analogue of Proposition 10.13. See [37].

(2) Once again, the result holds at s = 1, trivially, and at s = 2 as well, where our
condition is equivalent to # o +#e = 0(2), in each block. In general, this follows as in
the proof of Theorem 10.14, by using the one-block partition in P(s,s). See [9]. O

The above proof is of course quite brief, but we will not be really interested here in
the case s > 3, which is quite technical.

In fact, the above result, dealing with the general case s € N, is here for providing an
introduction to the case s = oo, where we have:

THEOREM 10.16. The pure complex reflection groups Ky = T (1 Sy and their free
analogues K3 = T 1. S%; have the following properties:

(1) They have N-dimensional coordinates u = (u;;), which are subject to the relations
uijug; = ujuig and pi; = ujjug; = magic.

(2) They are easy, the corresponding categories Peyen C P, NCepen C NC' being given
by the fact that we have #o = #e, as a weighted equality, in each block.

PROOF. The assertions here appear as an s = 0o extension of (1,2) in Theorem 10.15
above, and their proof can be obtained along the same lines, as follows:

(1) This follows indeed by working out a T-analogue of the computations in the proof
of Proposition 10.13 above. We refer here to [37].

(2) Once again, this appears as a s = 0o extension of the results that we already have,
and for details here, we refer once again to [9]. O
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The above results at s = 2, 0o are quite interesting for us, because we can now focus
on the quantum reflection groups Hy, Hy, Ky, K3, with the idea in mind of completing
the orthogonal and unitary quantum group picture from chapter 7 above.

Before doing this, we have two more quantum groups to be introduced and studied,
namely the half-liberations Hy, K. We have here the following result:

THEOREM 10.17. We have quantum groups Hy, K3, which are both easy, as follows,
(1) Hy = Hy, N Oy, corresponding to the category P

(2) K3 = K NU%, corresponding to the category Pr,.,.,

with the symbol x standing for the fact that the corresponding partitions, when relabelled
clockwise o @ o e ..., must contain the same number of o, e, in each block.

Proor. This is standard, from the results that we already have, regarding the various
quantum groups involved, because the interesection operations at the quantum group level
correspond to generation operations, at the category of partitions level. O

We can now complete the “continuous” picture from chapter 7 above, as follows:

THEOREM 10.18. The basic orthogonal and unitary quantum groups are related to the
basic real and complex quantum reflection groups as follows,

U Uz U Ky K Ky

On Oy o% Hy H, HY;
the connecting operations U <> K being given by K = U N K}, and U = {K,Oxy}.

PROOF. According to the general results in section 7 above, in terms of categories of
partitions, the operations introduced in the statement reformulate as follows:

DK:<DU7NCeven> 5 DU:DKQPQ

On the other hand, by putting together the various easiness results that we have, the
categories of partitions for the quantum groups in the statement are as follows:

P2 P; NC2 Peven ~ P:ven ~ Nceven

P2 PQ* NC2 peven pe*ven Nceven

It is elementary to check that these categories are related by the above intersection
and generation operations, and we conclude that the correspondence holds indeed. U
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Our purpose now will be that of showing that a twisted analogue of the above result
holds. It is convenient to include in our discussion two more quantum groups, coming
from [25], [82] and denoted HJ[\?O}, K][\C;O], which are constructed as follows:

THEOREM 10.19. We have intermediate liberations H][\C;O], K][ﬁo] as follows, constructed
by using the relations afy = 0, for any a # ¢ on the same row or column of u,

Ky K% K

Ky

Hy H H

Hy,
with the convention a = a, a*, and so on. These quantum groups are easy, the correspond-
ing categories P&, C Poyen and PES, C Peven being generated by n = ker(j;).

Proor. This is routine, by using the fact that the relations a8y = 0 in the statement
are equivalent to the following condition, with |k| = 3:

n € End(u®")
For further details on these quantum groups, we refer to [25], [82]. O
In order to discuss the twisting, we will need the following technical result:

ProOPOSITION 10.20. We have the following equalities,

Pe*ven = {ﬂ—epeven 5<7_):1,V7'§7T, ’T‘ :2}
PR = {w € Peven|0 € Pl Vo C w}
Pe[iln = {ﬂ-epeven 5(7):1,VT§7T}

where € : Poen, — {E1} is the signature of even permutations.
PRrooOF. This is routine combinatorics, from [5], [82], the idea being as follows:

(1) Given 7 € P.ye,, we have 7 < 7,|7| = 2 precisely when 7 = 7 is the partition
obtained from 7 by merging all the legs of a certain subpartition 5 C 7, and by merging
as well all the other blocks. Now observe that 7 does not depend on 7, but only on
3, and that the number of switches required for making 7 noncrossing is ¢ = N, — N,
modulo 2, where N,/N, is the number of black/white legs of #, when labelling the legs
of 7 counterclockwise o @ o e ... Thus e(7”) = 1 holds precisely when 3 € 7 has the same
number of black and white legs, and this gives the result.

(2) This simply follows from the equality P =< n > coming from Theorem 10.19,

by computing < 1 >, and for the complete proof here we refer to [82].
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(3) We use here the fact, also from [82], that the relations g;g;9; = g;¢:g; are trivially
satisfied for real reflections. This leads to the following conclusion:

Pe[gg;(k;,l):{ker (Z.l ?’f)
Jio- i

In other words, the partitions in P, are those describing the relations between free

variables, subject to the conditions g? = 1. We conclude that PRI appears from NC.,,.,,

Giy - - - Gip, = Gj, - - - gj, inside Z;N}

by “inflating blocks”, in the sense that each 7w € P can be transformed into a partition
7' € NCepen by deleting pairs of consecutive legs, belonging to the same block.

Now since this inflation operation leaves invariant modulo 2 the number ¢ € N of
switches in the definition of the signature, it leaves invariant the signature e = (—1)¢
itself, and we obtain in this way the inclusion “C” in the statement.

Conversely, given m € P,,., satisfying ¢(7) = 1, V7 < 7, our claim is that:

p<ocCmlpl=2 = e(p)=1

Indeed, let us denote by «, 3 the two blocks of p, and by + the remaining blocks of
7, merged altogether. We know that the partitions 7 = (a A7, 8), 2 = (6 A 7, «),
73 = (a, B,7) are all even. On the other hand, putting these partitions in noncrossing
form requires respectively s+t, s +1t, s+ s+t switches, where ¢ is the number of switches
needed for putting p = («, ) in noncrossing form. Thus ¢ is even, and we are done.

With the above claim in hand, we conclude, by using the second equality in the

statement, that we have 0 € P} . Thus 7 € Pe[f,ﬁ}n, which ends the proof of “O7”. O

even’

With the above result in hand, we can now prove:

THEOREM 10.21. We have the following results:

(1) The quantum groups from Theorem 10.19 are equal to their own twists.
(2) With input coming from this, a twisted version of Theorem 10.18 holds.
PRrOOF. This result, established in [5], basically comes from the results that we have.

(1) In the real case, the verifications are as follows:

— HJJ{,. We know from section 7 above that for m € NCeye,, we have T. = T,, and since
we are in the situation D C NCyyen, the definitions of G, G coincide.

- H][\(;O]. Here we can use the same argument as in (1), based this time on the description
of P2, involving the signature found in Proposition 10.20.

— Hy. We have HY = H][f;o] N Oy, so HY C H][\?o] is the subgroup obtained via the
defining relations for O%. But all the abc = —cba relations defining Hy are automatic,
of type 0 = 0, and it follows that HY C H ][\?O lis the subgroup obtained via the relations
abc = cba, for any a,b, ¢ € {u;;}. Thus we have Hj = H][\‘;O] NOx = H}, as claimed.
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— Hy. We have Hy = H} N Oy, and by functoriality, Hy = ]:Iji, NOy = Hy N On.
But this latter intersection is easily seen to be equal to Hy, as claimed.

In the complex case the proof is similar, and we refer here to [5].

(2) This can be proved by proceeding as in the proof of Theorem 10.18 above, with of
course some care when formulating the result. Once again, we refer here to [5]. U

10d. Bessel laws

Let us go back to H};, K3, or rather to the whole series Hy", with s € {1,2,...,00}
and work out the fusion rules, and probabilistic aspects. We first have:

PROPOSITION 10.22. The algebra C(H3") has a family of N-dimensional corepresen-
tations {ug|k € Z}, satisfying the following conditions:
(1) we = (ufy) for any k> 0.
(2) ur = upys for any k € Z.
(3) up = u_y for any k € Z.
PROOF. Our claim is that all the above holds, with uw; = (u};). Indeed, all these
results follow from the definition of H'. See [37]. O
Next, we have the following result, also from [37]:

THEOREM 10.23. With the convention u;, ;, = u; ® ... u;,, for any iy,...,14 € Z,
we have the following equality of linear spaces,

p € NCi(in. ik jr i) }

where the set on the right consists of elements of NC(k,l) having the property that in
each block, the sum of © indices equals the sum of j indices, modulo s.

Hom(u;, i, uj,...5,) = span {Tp

PROOF. This result is from [37], the idea of the proof being as follows:

(1) Our first claim is that, in order to prove D, we may restrict attention to the case
k = 0. This follows indeed from the Frobenius duality isomorphism.

(2) Our second claim is that, in order to prove D in the case k = 0, we may restrict
attention to the one-block partitions. Indeed, this follows once again from a standard
trick. Consider the following disjoint union:

NC, = G L NCo(0,41 .. dx)

k=017...7%

This is a set of labeled partitions, having property that each p € N is noncrossing,
and that for p € NCy, any block of p is in NCy. But it is well-known that under these
assumptions, the global algebraic properties of NCy can be checked on blocks.
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(3) Proof of D. According to the above considerations, we just have to prove that the
vector associated to the one-block partition in NC(I) is fixed by u;,. ;, when:

sljr+ ...+ i

Consider the standard generators e,, € My (C), acting on the basis vectors by eq(e.) =
dpc€q. The corepresentation u;, j; is given by the following formula:

R § § J1 Ji
u]l-"]l - ualbl e ualbl ® €aiby ®...® ealbl

ai...a; by...by

As for the vector associated to the one-block partition, this is § =), e?l. By using
now several times the relations in Proposition 10.22, we obtain, as claimed:

wpa(1®&) = DD uly. u,®en®.. @,

ai..a; b
j1+-.-+J l
= Dy e
ab
= 1®¢

(4) Proof of C. The spaces on the right in the statement form a Tannakian category
in the sense of [100], so they correspond to a certain Woronowicz algebra A.

This algebra is by definition the maximal model for the Tannakian category. In other
words, it comes with a family of corepresentations {v;}, such that:

pE N05<i1---ikaj1---jl)}

On the other hand, the inclusion D that we just proved shows that C(H3") is a model
for the category. Thus we have a quotient map A — C(Hy"), mapping v; — u;.

But this latter map can be shown to be an isomorphism, by suitably adapting the
proof from the s = 1 case, for the quantum permutation group Sj;. See [9], [37]. O

Hom(vi, _iy, Uj1...jl) = span {Tp

Following [37], we have the following result:

THEOREM 10.24. Let F' =< Zs > be the monoid formed by the words over Zs, with
involution (i1 ...1x)" = (—ig) ... (—11), and with fusion product given by:

The irreducible representations of Hy' can then be labeled r, with x € F, such that

Ty & Ty = g Tow T Tow

T=02,Yy=zZWw

and 7, = rz, and such that r; = u; — d;01 for any i € Z,.
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PRrROOF. This basically follows from Theorem 10.23, the idea being as follows:

(1) Consider the monoid A = {a,|r € F'}, with multiplication a,a, = a,,. We endow
NA with fusion rules as in the statement, namely:

a; @ Ay = E Ay + Ay
T=VZ2,Yy=Zw

(2) The fusion rules on ZA can be then uniquely described by conversion formulae as
follows, with C' being positive integers, and D being integers:

E E J1---J1
all ®alk Cll lkajlmjl

L Ji-di

J1---J1
Ay . ipy = E : E :Dzl zkah '®ajl

L Ji-q
(3) Now observe that there is a unique morphism of rings ® : ZA — R, such that
®(a;) = r; for any 7. Indeed, consider the following elements of R:

. E E J1---J1 )
rllmlk Dzl zkrjl : ® le
I ji-di

In case we have a morphism as claimed, we must have ®(a,) = 7, for any z € F.
Thus our morphism is uniquely determined on A, so it is uniquely determined on ZA.

(4) Our claim is that ® commutes with the linear forms © — #(1 € z). Indeed, by
linearity we just have to check the following equality:

#(1€a¢1®...®aik):#(167@»1@...@7’%)

Now remember that the elements r; are defined as r; = u; — d;01. So, consider the
elements ¢; = a; + d;01. Since the operations r; — u; and a; — ¢; are of the same nature,
by linearity the above formula is equivalent to:

#lee, ®..0¢)=#1€u,®...0u;)
Now by using Theorem 10.23, what we have to prove is:
#1l e, ®...0¢,)=#NCs(iy...10)
In order to prove this formula, consider the product on the left:
P = (a;, + 6;,01) ® (ai, + dipol) ® ... ® (@i, + 6i0l)

But this quantity can be computed by using the fusion rules on A, and the combina-
torics leads to the conclusion that we have #(1 € P) = #NCs(i; .. . i), as claimed.

(5) Our claim now is that ® is injective. Indeed, this follows from the result in the
previous step, by using a standard positivity argument.
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(6) Our claim is that we have ®(A) C R;... This is the same as saying that r, € Ry,
for any x € F, and we will prove it by recurrence. Assume that the assertion is true for
all the words of length < k, and consider a length k& word, x =4, ...4;. We have:

Uiy @ iy iy = Oz F Qi yi ig..ip T Oiytin,00is. ik

By applying ® to this decomposition, we obtain:

ril ® Tig...ik =Tz + T’i1+i2,i3...ik + 67:14*@'2,(]'7(,1'3...7;]c

We have the following computation, which is valid for y = i1 + 9, 73.. .17, as well as
for y = i3...14; in the case 7; + 15 = 0:

#(ry €1y @1iy,) = F#(Lrg @1, @71y 4,)
= #(17ag®a’i1 ®a/221k)
= #(ay €a; ® aiz---ik)
=1

Moreover, we know from the previous step that we have 7,1, is. i, 7 Tig..i, SO We
conclude that the following formula defines an element of R™:

Q= Ti, @ iy i — Tivtinsis...ip — Oir+is,0Tis...ix

On the other hand, we have o = r,, so we conclude that we have r, € R*. Finally,
the irreducibility of r, follows from #(1 € r, ® 7)) = 1.

(7) Summarizing, we have constructed an injective ring morphism ¢ : ZA — R,
having the property ®(A) C R;... The remaining fact to be proved, namely that we have
®(A) = R;,r, is something of abstract nature, which is clear. Thus, we are done. Il

Regarding the probabilistic aspects, we will need some general theory. We have the
following definition, extending the Poisson limit theory from chapter 9 above:

DEFINITION 10.25. Associated to any compactly supported positive measure p on R
are the probability measures

pp = lim ((1 - %) do + %p)*n

c 1 Hn
T, = Jim, ((1— ") 50*5/))

where ¢ = mass(p), called compound Poisson and compound free Poisson laws.

In what follows we will be interested in the case where p is discrete, as is for instance
the case for p = ¢; with t > 0, which produces the Poisson and free Poisson laws. The
following result allows one to detect compound Poisson/free Poisson laws:
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PROPOSITION 10.26. For p =3, ¢;0,, with ¢; > 0 and z; € R, we have

F,,(y) = exp <Z ci(eV® — 1))

R (y) =Y

prih
where F, R denote respectively the Fourier transform, and Voiculescu’s R-transform.

PROOF. Let p, be the measure appearing in Definition 10.25, under the convolution
signs. In the classical case, we have the following computation:

c 1< v
Fu.(y) = <1—ﬁ>+ﬁzci€y’
i=1

c 1< , "
— F n — (1__) - Z‘z:L/zZ'
) ( > )

=1

—  Fp,(y) =exp (Z cie™ — 1))

i=1

In the free case now, we use a similar method. The Cauchy transform of p,, is:

c\ 1 1 z C;
Gl = (1= ) e+ 25

Consider now the R-transform of the measure 2", which is given by:

Rp,??" (y) = nR,U«n (y)
The above formula of G, shows that the equation for R = R, @n is as follows:

c 1 1 C;
(1_ﬁ> y—l—i—R/n—i_ﬁZy_l—l—R/n—zi:y

=1

S

c 1 1 C;
— 1——)— l i —1
( n 1+yR/n+nzl+yR/n—yzi

i=1
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Now multiplying by n, rearranging the terms, and letting n — oo, we get:
c+ yR . i Ci
1+yR/n — 1+ yR/n —yz;

s

Ci
— Rﬂ_ =
c+yRa,(y) ; pm—
® CiZ;
— Rﬂ_ =
() z; Iy
This finishes the proof in the free case, and we are done. O

We also have the following result, providing an alternative to Definition 10.25:

THEOREM 10.27. For p =Y ._, ¢;0,, with ¢; >0 and z; € R, we have

Pp/ T, = law (Z ziai>
i—1

where the variables o are Poisson/free Poisson(c;), independent/free.

PROOF. Let a be the sum of Poisson/free Poisson variables in the statement. We will
show that the Fourier/R-transform of « is given by the formulae in Proposition 10.26.
Indeed, by using some well-known Fourier transform formulae, we have:

Fo (y) =exp(ci(e¥ — 1)) = F.a,(y) = exp(c;(e¥* — 1))

=:thw%Zunﬂ

i=1
Also, by using some well-known R-transform formulae, we have:

C; Cizi
Ra- = — Rz-a- -
) = ) = T
z CiZ;
— ROL =
(v) ; Ty
Thus we have indeed the same formulae as those in Proposition 10.26. Il

We can go back now to quantum reflection groups, and we have:

THEOREM 10.28. The asymptotic laws of truncated characters are as follows, where
es with s € {1,2,...,00} is the uniform measure on the s-th roots of unity:

(1) For Hj, we obtain the compound Poisson law b} = pe, .
(2) For H3" we obtain the compound free Poisson law [ = m.,.

These measures are in Bercovici-Pata bijection.



10E. EXERCISES 247

PRrROOF. This follows from easiness, and from the Weingarten formula. To be more
precise, at ¢ = 1 this follows by counting the partitions, and at ¢ € (0, 1] general, this
follows in the usual way, for instance by using cumulants. See [9]. U

The above measures are called Bessel and free Bessel laws. This is because at s = 2
we have b7 = e "> 77 fi(t/2)d), with fi being the Bessel function of the first kind:

) i kI+2p
t) = I
A0 2 R

The Bessel and free Bessel laws have particularly interesting properties at the param-
eter values s = 2,00. So, let us record the precise statement here:
THEOREM 10.29. The asymptotic laws of truncated characters are as follows:

(1) For Hx we obtain the real Bessel law by = pye,.

(2) For Ky we obtain the complex Bessel law By = pye_, .

(3) For Hy, we obtain the free real Bessel law By = m.,.

(4) For Kj; we obtain the free complex Bessel law By = .. .

Proor. This follows indeed from Theorem 10.28 above, at s = 2, co. U

In addition to what has been said above, there are as well some interesting results
about the Bessel and free Bessel laws involving the multiplicative convolution x, and the
multiplicative free convolution K. For details, we refer here to [9].

10e. Exercises

As before with the quantum permutations, there has been a lot of material in this
section, and most of our exercises will be about what has been said above. To start with,
in relation with the quantum automorphisms of the finite graphs, we have:

EXERCISE 10.30. Extract, from the computation of the quantum symmetry group of
the N-cycle with N > 4, a simple proof for the equality Si = Ss.

To be more precise, that computation shows at N = 3 that we have S;” = S5, and the
problem is that of writing down a short proof for this latter equality.

In relation now with the quantum reflection groups, we first have:

EXERCISE 10.31. Work out all the details regarding the easiness property of Hy, Hy,
mwvolving the categories Poyen, NCepen.

This is something that was already discussed in the above, but just briefly. The idea
is to proceed a bit in the same way as we did for Sy, S7;, in chapter 9.

Along the same lines, we have the following exercise:
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EXERCISE 10.32. Work out all the details regarding the easiness property of Hy,, Hy',
involving the categories P°, NC”.

As before with Hy, H};, the idea here is that of proceeding a bit in the same way as
we did for Sy, Sy, in chapter 9.

Here is another instructive exercise regarding the quantum reflection groups:

EXERCISE 10.33. Work out the structure of the complex reflection groups Hy,, Hy' at
N =2, and at various values of the parameter s.

To be more precise, the problem here is that of studying the groups and quantum
groups H5, Hy" at various values of the parameter s, with the various methods developed
so far, and see if we have here previously known groups and quantum groups.

In relation now with the fusion rules, we have:

EXERCISE 10.34. Deduce the Clebsch-Gordan rules for the irreducible representations
of St, from the general result regarding HY", taken at s = 1.

This might seem quite trivial, but in practice, there is some work to be done here.

Finally, in relation with probability, we have:

EXERCISE 10.35. Prove that at s = 2 the Bessel law is given by

bp=e Y fi(t/2)0

k=—00
with fr being the Bessel function of the first kind, namely:
O ¢lkl+2p

O = 2 T

p=0

As mentioned above, there are many other interesting things that can be said about
the Bessel and free Bessel laws, and as a final and supplementary exercise, we recommend
exploring the subject, say by reading the related literature.



CHAPTER 11

Classification results

11a. Uniform groups

We discuss in this chapter and in the next one various classification questions for the
closed subgroups G C Uy, in the easy case, and beyond. There has been a lot of work on
the subject, and our objective here will be quite modest, namely presenting a few basic
such classification results, along with some discussion.

We have already met a number of easy quantum groups, as follows:

THEOREM 11.1. We have the following examples of easy quantum groups:

(1) Orthogonal quantum groups: On, O, O%.

(2) Unitary quantum groups: Uy, Ux, UL

(3) Bistochastic versions: By, By, Cn, C5r.

(4) Quantum permutation groups: Sy, Sy

(5) Hyperoctahedral quantum groups: Hy, Hy, H};.
(6) Quantum reflection groups: Ky, Ky, Ky.

ProoOF. This is something that we already know, the partitions being as follows:

(1) For Oy we obtain the category of pairings P,. For O} we obtain the category
of noncrossing pairings NC5. For O3 we obtain the category P; of pairings having the
property that when labelling the legs clockwise oc @ o e ... each string connects o — e.

(2) For Uy we obtain the category P, of pairings which are matching, in the sense
that the horizontal strings connect o — o or @ — @, and the vertical strings connect o — e.
For Uf\; we obtain the category NCy = NCy NPy, For U} we obtain Py = Py N Ps.

(3) For By, C'y we obtain the categories Pjo, P12 of singletons and pairings, and match-
ing singletons and pairings. For B}, C'\; we obtain the categories NC1a, N'Cy2 of singletons
and noncrossing pairings, and matching singletons and noncrossing pairings.

(4) For Sy we obtain the category of all partitions P, and for S}, we obtain the
category of all noncrossing partitions NC'.

(5) For Hy we obtain the category P.,, or partitions having even blocks. For H]J(, we
obtain the category NCepe, = NC N Py, of noncrossing partitions having even blocks.

249
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For H} we obtain the category P .. C Pe,, of partitions having the property that when

labelling the legs clockwise c @ o @ ... in each block we have #o = #e.

(6) For K we obtain the category Peye, of partitions having the property that we
have #o0 = #e, as a weighted equality, in each block. For K7}, we obtain the category
NCeven = Peven N NC. For K3 we obtain the category P, = Peyen N P O

even'

In the above list the examples (4,5,6) appear as the s = 1,2, 00 particular cases of
the quantum groups Hy, Hyf, Hy", so we have as extra examples these latter quantum
groups at 3 < s < oo. Further examples can be constructed via free complexification, or
via operations of type Gy — Z, x Gy, or Gy — Z,G N, with r € {2,3,...,00}.

There are as well “exotic” intermediate liberation procedures, involving relations which
are more complicated than the half-commutation ones abc = cba, which can produce new
examples, in the unitary and reflection group cases. We will be back to this.

All this makes the classification question particularly difficult. So, our first task in
what follows will be that of cutting a bit from complexity, by adding some extra axioms,
chosen as “natural” as possible. A first such axiom, very natural, is as follows:

PROPOSITION 11.2. For an easy quantum group G = (Gy), coming from a category
of partitions D C P, the following conditions are equivalent:

1) Gy_1 = Gy NUR_,, via the embedding Uy, _, C Ui given by v — diag(u,1).
N-1 N-1 N

2) Gy_1 = Gy NUY_,, via the N possible diagonal embeddings Uy,_, C Uy:.
N-1 N-1 N

(3) D is stable under the operation which consists in removing blocks.

If these conditions are satisfied, we say that G = (Gy) is “uniform”.

PROOF. We use here the general easiness theory from chapter 7 above.
(1) <= (2) This is something standard, coming from the inclusion Sy C Gy, which
makes everything Sy-invariant. The result follows as well from the proof of (1) <= (3)

below, which can be converted into a proof of (2) <= (3), in the obvious way.

(1) <= (3) Given a subgroup K C Uj;_,, with fundamental corepresentation u,
consider the N x N matrix v = diag(u, 1). Our claim is that for any 7 € P(k) we have:

& € Fiz(v®) < & € Fiz(v®),V¥a' € P(K),n' C =
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In order to prove this, we must study the condition on the left. We have:
&x € Fiz(v®F)
<~ (’U®kfn)z’1...ik = (&r)iy.iy, Vi

— Z ®k )i Ak,J1- jk(é-”)jlmjk = (éw)ilmik?\v/i
< 25 jl,...,jk Uzljlu'vikjk:57r<i17'-~7ik>;v'i

Now let us recall that our corepresentation has the special form v = diag(u,1). We
conclude from this that for any index a € {1,...,k}, we must have:

With this observation in hand, if we denote by 4’, j the multi-indices obtained from

i,j obtained by erasing all the above i, = j, = N values, and by k' < k the common
length of these new multi-indices, our condition becomes:

25 ]17---7jk ( /)Z/j/:5ﬂ(’i1,...,ik),V’i

Here the index j is by definition obtained from j’ by filling with N values. In order
to finish now, we have two cases, depending on i, as follows:

Case 1. Assume that the index set {a|i, = N} corresponds to a certain subpartition
7' C w. In this case, the N values will not matter, and our formula becomes:

25 R 8 [T P M C A )

Case 2. Assume now the opposite, namely that the set {a|i, = N} does not correspond
to a subpartition #/ C 7. In this case the indices mix, and our formula reads:

0=0
Thus, we are led to & € Fix(v®*), for any subpartition 7/ C 7, as claimed.
Now with this claim in hand, the result follows from Tannakian duality. U

At the level of the basic examples, from Theorem 11.1 above, the classical and free
quantum groups are uniform, while the half-liberations are not. Indeed, this can be seen
either with categories of partitions, or with intersections, the point in the half-classical
case being that the relations abc = cba, when applied to the coefficients of a matrix of
type v = diag(u, 1), collapse with ¢ = 1 to the usual commutation relations ab = ba.

For classification purposes the uniformity axiom is something very natural and useful,
substantially cutting from complexity, and we have the following result, from [35]:
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THEOREM 11.3. The classical and free uniform orthogonal easy quantum groups, with
inclusions between them, are as follows:

H}, o
e e
St B
e 7
SN By

Moreover, this is an intersection/easy generation diagram, in the sense that for any of its

square subdiagrams P C Q, R C S we have P=Q NR and {Q,R} = S.

Proor. We know that the quantum groups in the statement are indeed easy and
uniform, the corresponding categories of partitions being as follows:

NCeven NC,
e
NC NClQ :
Peven Py
Yy e

P

P12

Since this latter diagram is an intersection and generation diagram, we conclude that
we have an intersection and easy generation diagram of quantum groups, as stated.

Regarding now the classification, consider an easy quantum group Sy C Gy C Oy.
This most come from a category P, C D C P, and if we assume G = (Gy) to be uniform,
then D is uniquely determined by the subset L C N consisting of the sizes of the blocks
of the partitions in D. Our claim is that the admissible sets are as follows:

(1) L = {2}, producing Ox.

(2) L ={1,2}, producing By.

(3) L =1{2,4,6,...}, producing Hy.
(4) L =1{1,2,3,...}, producing Sy.

In one sense, this follows from our easiness results for Oy, By, Hy, Sy. In the other
sense now, assume that L C N is such that the set P consisting of partitions whose sizes
of the blocks belong to L is a category of partitions. We know from the axioms of the
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categories of partitions that the semicircle N must be in the category, so we have 2 € L.
We claim that the following conditions must be satisfied as well:

klel k>0 = k—lcl

kel k>2 = 2k—2€L

Indeed, we will prove that both conditions follow from the axioms of the categories of
partitions. Let us denote by b € P(0, k) the one-block partition:

oo JM T
E7Y12 ..k

For k > [, we can write bx_; in the following way:

m ... . .. T
12 Ll Lk
MY w o ou | \

In other words, we have the following formula:
b1 = (0] ® |** )by

Since all the terms of this composition are in P, we have b,_; € Py, and this proves
our first claim. As for the second claim, this can be proved in a similar way, by capping
two adjacent k-blocks with a 2-block, in the middle.

With these conditions in hand, we can conclude in the following way:
Case 1. Assume 1 € L. By using the first condition with [ = 1 we get:
kel = k—-1€lL

This condition shows that we must have L = {1,2,...,m}, for a certain number
m € {1,2,...,00}. On the other hand, by using the second condition we get:

melL — 2m-—-2¢lL
= 2m—2<m
= me{1,2,00}

The case m = 1 being excluded by the condition 2 € L, we reach to one of the two
sets producing the groups Sy, By.

Case 2. Assume 1 ¢ L. By using the first condition with | = 2 we get:
kel = k—-2¢clL



254 11. CLASSIFICATION RESULTS

This condition shows that we must have L = {2,4,...,2p}, for a certain number
p € {1,2,...,00}. On the other hand, by using the second condition we get:

2pelL = 4p—-2¢€lL
— 4p—-2<72p
== pe{LOO}

Thus L must be one of the two sets producing Oy, Hy, and we are done.

In the free case, S, C Gy C Oy, the situation is quite similar, the admissible sets
being once again the above ones, producing this time Oy, By, Hy, S5 See [35]. O

As already mentioned, when removing the uniformity axiom things become more com-
plicated, and the classification result here, from [35], [82], is as follows:

THEOREM 11.4. The classical and free orthogonal easy quantum groups are

Hy, Oy
! !
S By
7 A
Sy By
A : A
Hy On
7 A
Sy - By
A 4
SN BN

with S = Sy X Zs, By = Bn X Za, and with Sy, By being their liberations, where By
stands for the two possible such liberations, By C By’

PROOF. The idea here is that of jointly classifying the “classical” categories of par-
titions P, C D C P, and the “free” ones NCy C D C NC. At the classical level this
leads to 2 more groups, namely S}, Bjy. See [35]. At the free level we obtain 3 more
quantum groups, S, By, BX', with the inclusion By C By being best thought of as
coming from an inclusion Bjy, C BY};, which happens to be an isomorphism. See [35]. O

11b. Twistability

Now back to the easy uniform case, the classification here remains a quite technical
topic. The problem comes from the following negative result:
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PRrROPOSITION 11.5. The cubic diagram from Theorem 11.3, and its unitary analogue,

Ky Uy
S
S% c
Ky ——— Uy
e
Sy Cn

cannot be merged, without degeneration, into a 4-dimensional cubic diagram.

PRrOOF. All this is a bit philosophical, with the problem coming from the “taking the
bistochastic version” operation, and more specifically, from the following equalities:

HNﬂON:KNﬂCN:SN

Indeed, these equalities do hold, and so the 3D cube obtained by merging the classical
faces of the orthogonal and unitary cubes is something degenerate, as follows:

Ky Un
Sn / Cn /
Hy On
Sn / By /
Thus, the 4D cube, having this 3D cube as one of its faces, is degenerate too. U

Summarizing, when positioning ourselves at U, we have 4 natural directions to be
followed, namely taking the classical, discrete, real and bistochastic versions. And the
problem is that, while the first three operations are “good”, the fourth one is “bad”.

In order to fix this problem, in a useful and efficient way, the natural choice is that
of slashing the bistochastic quantum groups By, B}, C, C};, which are rather secondary
objects anyway, as well the quantum permutation groups Sy, S¥.

In order to formulate now our second general axiom, doing the job, consider the cube
Ty = Z¥ , regarded as diagonal torus of Oy. We have then:
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PROPOSITION 11.6. For an easy quantum group G = (Gy), coming from a category
of partitions D C P, the following conditions are equivalent:

(1) Ty C Gy.
(2) Hy C Gy.
(3) D C P.yen-

If these conditions are satisfied, we say that Gy is “twistable”.

PrROOF. We use the general easiness theory from chapter 7 above.

(1) <= (2) Here it is enough to check that the easy envelope T} of the cube equals
the hyperoctahedral group Hy. But this follows from:

T]/V =< TN,SN >'= H;V = Hy

(2) <= (3) This follows by functoriality, from the fact that Hy comes from the
category of partitions P,,.,, that we know from chapter 10 above. U

The teminology in the above result comes from the fact that, assuming D C P.,ep,
we can indeed twist Gy, into a certain quizzy quantum group Gx. We refer to chapter
7 above to full details regarding the construction Gy — Gx. In what follows we will not
need this twisting procedure, and we will just use Proposition 11.6 as it is, as a statement
providing us with a simple and natural condition to be imposed on G. In practice now,
imposing this second axiom leads to something nice, namely:

THEOREM 11.7. The basic quantum unitary and quantum reflection groups, from
Proposition 11.1 above, which are uniform and twistable, are as follows,

H+/KN of; /
e

and this 1s an intersection and easy generation diagram.

Uy
Uy

PROOF. The first assertion comes from discussion after Proposition 11.2, telling us
that the uniformity condition eliminates Oy, Uy, Hy, K. Also, the twistability condition
eliminates By, B, Cy, Cy; and Sy, S%. Thus, we are left with the 8 quantum groups in
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the statement, which are indeed easy, coming from the following categories:

NCeven NC,
e /
NCeyen NC,
Peven P
/ /

Peven P2

Since this latter diagram is an intersection and generation diagram, we conclude that
we have an intersection and easy generation diagram of quantum groups, as stated. [J

As explained above, we will not really need in what follows the twists of the twistable
quantum groups that we consider, our plan being that of using the twistability condition
as a natural condition to be imposed on our quantum groups, for classification purposes.
However, let us record as well the following result, in relation with the twists:

THEOREM 11.8. The Schur-Weyl twists of the basic twistable quantum groups are

/K|N v
eV

and this is an intersection and quizzy generation diagram.

Uy
Uy

Hy
Hy

PrOOF. Here the formulae of the twists are something that we already know, coming
from the computations in chapter 7 above, and the last assertion is clear as well, coming
from the definition of the various quantum groups involved. O

11c. Orientability

In the general case now, where we have an arbitrary uniform and twistable easy
quantum group, this quantum group appears by definition as follows:

HNCGNCU]J\;
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Thus, we can imagine our quantum group Gy as sitting inside the standard cube,
from Theorem 11.7 above:

K}
/! /!
Oy

Ky

S /
On

The point now is that, by using the operations N and { , }, we can in principle “project”

G on the faces and edges of the cube, and then use some kind of 3D orientation coming
from this, in order to deduce some structure and classification results.

Uy
Uy

HY
Hy

In order to do this, let us start with the following definition:
DEFINITION 11.9. Associated to any twistable easy quantum group
Hy C Gy C U;

are its classical, discrete and real versions, given by the following formulae,

¢ =GyNUy
G4 =GyNKY
=Gy NOL

as well as its free, smooth and unitary versions, given by the following formulae,
Gy ={Gn, H}}
v ={Gn.On}
v ={Gn, Kn}

where N and {,} are respectively the intersection and easy generation operations.

In this definition the classical, real and unitary versions are something quite standard.
Regarding the discrete and smooth versions, here we have no abstract justification for our
terminology, due to the fact that easy quantum groups do not have known differential
geometry. However, in the classical case, where Gy C Uy, our constructions produce
indeed discrete and smooth versions, and this is where our terminology comes from.
Finally, regarding the free version, this comes once again from the known examples.
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To be more precise, regarding the free version, the various results that we have show
that the liberation operation Gy — G, usually appears via the formula:

GE = {GNVS]J\F/}

This formula expresses the fact that the category of partitions of G is obtained from
the one of Gy by removing the crossings. But in the twistable setting, where we have by
definition Hy C Gy, this is the same as setting:

G; = {GN ) H ]—i\; }
All this is of course a bit theoretical, and this is why we use the symbol f for free
versions in the above sense, and keep + for well-known, studied liberations.

In relation now with our questions, and our 3D plan, we can now formulate:

PROPOSITION 11.10. Given an intermediate quantum group Hy C Gy C Uy, we have
a diagram of closed subgroups of Uy, obtained by inserting

G K, U5
- / e
P HY )¢
thiv Gy Gy >
4
Gy Ky Uy
va HN ON

in the obvious way, with each G5, belonging to the main diagonal of each face.

PrRoOOF. The fact that we have indeed the diagram of inclusions on the left is clear
from the constructions of the quantum groups involved, from Definition 11.9. Regarding
the insertion procedure, consider any of the faces of the cube, denoted as follows:

PcQ RcCS

Our claim is that the corresponding quantum group G = G%; can be inserted on the
corresponding main diagonal P C S, as follows:

Q G//

/

S
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We have to check here a total of 6 x 2 = 12 inclusions. But, according to Definition
11.9, these inclusions that must be checked are as follows:

(1) Hy C G5 C Uy, where G§, = Gy N Uy.
(2) Hy C G4 C K3, where G4 = Gy N K},
(3) Hy C G C OF;, where G, = Gy N O%,.
(4) H; ¢ GL, c U3, where G4, = {Gy, H¥}.
(5) On C G% C Uy, where G = {Gn,On}.
(6) Ky C G% C Uy, where G% = {Gn, Kn}.

All these statements being trivial from the definition of N and {,}, and from our
assumption Hy C Gy C Uy, our insertion procedure works indeed, and we are done. [

In order now to complete the diagram, we have to project as well Gy on the edges
of the cube. For this purpose we can basically assume, by replacing G with each of its
6 projections on the faces, that G actually lies on one of the six faces. The technical
result that we will need here is as follows:

PROPOSITION 11.11. Given an intersection and easy generation diagram P C QQ, R C
S and an intermediate easy quantum group P C G C S, as follows,

Q S
/
G

/!

P R
we can extend this diagram into a diagram as follows:
Q {G.Q} S
GNQ G {G, R}
P GNR R

In addition, G “slices the square”, in the sense that this is an intersection and easy

generation diagram, precisely when G = {GNQ,GN R} and G = {G,Q} N {G, R}.
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PRrooF. This is indeed clear from definitions, because the intersection and easy gen-
eration conditions are automatic for the upper left and lower right squares, and so are
half of the intersection and easy generation conditions for the lower left and upper right
squares. Thus, we are left with two conditions only, which are those in the statement. [J

Now back to 3 dimensions, and to the cube, we have the following result:
PROPOSITION 11.12. Assuming that Hy C G C Uy satisfies the conditions
N=GN o, Gy =Gy GV =Gf
Gu=Gy , Gl=ci ., Gy=3G%

the diagram in Proposition 11.10 can be completed, via the construction in Proposition
11.11, into a diagram dividing the cube along the 3 coordinates azes, into 8 small cubes.

PrROOF. We have to prove that the 12 projections on the edges are well-defined, with
the problem coming from the fact that each of these projections can be defined in 2
possible ways, depending on the face that we choose first.

The verification goes as follows:
(1) Regarding the 3 edges emanating from Hy, the result here follows from:
GU=G%=GyNKy
v =Gy=GnNOx
G¥ =GN =Gy N HY
These formulae are indeed all trivial, of type:
(GNQ)INR=(GNR)NQ=GNP
(2) Regarding the 3 edges landing into Uy, the result here follows from:
G =GN = {Gn, 03}
Gy =GY ={Gn, Ky}
v =Gy ={Gn, Un}
These formulae are once again trivial, of type:
{{G. @} B} = {{G, Rk}, Q} = {G, 5}

(3) Finally, regarding the remaining 6 edges, not emanating from Hy or landing into
Uy, here the result follows from our assumptions in the statement. U

We are not done yet, because nothing guarantees that we obtain in this way an inter-
section and easy generation diagram.

Thus, we must add more axioms, as follows:
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THEOREM 11.13. Assume that Hy C Gy C Uy satisfies the following conditions,

where by “intermediate” we mean in each case “parallel to its neighbors”:

(1) The 6 compatibility conditions in Proposition 11.12 above,

(2) G%, Gy, GY, slice the classical/intermediate/free faces,

(3) G4, G, GS slice the discrete/intermediate/smooth faces,

(4) G, Gn, G slice the real/intermediate/unitary faces,
Then Gy “slices the cube”, in the sense that the diagram obtained in Proposition 11.12
above is an intersection and easy generation diagram.

PRroOOF. This follows indeed from Proposition 11.11 and Proposition 11.12 above. [J
Summarizing, we are done now with our geometric program, and we have a whole
collection of natural geometric conditions that can be imposed to G .
11d. Ground zero

It is quite clear that GGy can be reconstructed from its edge projections, so in order to
do the classification, we first need a “coordinate system”. Common sense would suggest to
use the one emanating from Hy, or perhaps the one landing into Uy;. However, technically
speaking, best is to use the coordinate system based at Oy, highlighted below:

Uy

Ky

/ /

Ky Un

/7 7

HN=ON

This choice comes from the fact that the classification result for Oy C OF;, explained
below, is something very simple. And this is not the case with the results for Hy C Hy
and for Uy C U, from [74], [82] which are quite complicated, with uncountably many
solutions, in the general non-uniform case. As for the result for Ky C K}, this is not
available yet, but it is known that there are uncountably many solutions here as well.

So, here is now the key result, from [37], dealing with the vertical direction:
THEOREM 11.14. There is only one proper intermediate easy quantum group
ON C GN C O]J\r[

namely the quantum group Oy, which is not uniform.



11D. GROUND ZERO 263

PrROOF. We must compute here the categories of pairings NCy C D C P,, and this
can be done via some standard combinatorics, in three steps, as follows:

(1) Let m € P, — NCy, having s > 4 strings. Our claim is that:

— If m € P, — Py, there exists a semicircle capping ' € P, — Py
—If m € Py — NC%, there exists a semicircle capping n’ € Py — NCs.

Indeed, both these assertions can be easily proved, by drawing pictures.
(2) Consider now a partition m € Py(k,l) — NCq(k,1). Our claim is that:

~If w € Py(k,1) — P;(k,1) then < 7 >= P,
“If € Py(k,1) — NCy(k,1) then < 7 >= P}

This can be indeed proved by recurrence on the number of strings, s = (k +1)/2, by
using (1), which provides us with a descent procedure s — s — 1, at any s > 4.

(3) Finally, assume that we are given an easy quantum group Oy C G C Oy, coming
from certain sets of pairings D(k,l) C Pa(k,l). We have three cases:

—If D ¢ Py, we obtain G = Oy.
It DC P, D¢ NC,, we obtain G = Oj,.
~If D C NCjy, we obtain G = OF,.

Thus, we have proved the uniquess result. As for the non-uniformity of the unique
solution, O}, this is something that we already know, from Theorem 11.7 above. O

The above result is something quite remarkable, and it is actually believed that the
result could still hold, without the easiness assumption. We refer here to [17].

As already mentioned, the related inclusions Hy C Hy; and Uy C Uy, studied in [74]
and [82], are far from being maximal, having uncountably many intermediate objects,
and the same is known to hold for Ky C K};. There are many interesting open questions
here. It is conjectured for instance that there should be a contravariant duality Hy <> Uy,
mapping the family and series from [82] to the series and family from [87].

Here is now another basic result that we will need, in order to perform our classification
work here, dealing this time with the “discrete vs. continuous” direction:
THEOREM 11.15. There are no proper intermediate easy groups
Hy ¢ Gy C Oy

except for Hy, Oy themselves.
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PrROOF. We must prove that there are no proper intermediate categories as follows:
P, C D C Poen

But this can done via some combinatorics, in the spirit of the proof of Theorem 11.3,
and with the result itself coming from Theorem 11.4. For full details here, see [35]. O

As a comment here, the inclusion H}; C O} is maximal as well, as explained once again
n [35]. As for the complex versions of these results, regarding the inclusions Ky C Uy
and K C U}, here the classification, in the non-uniform case, is available from [87].
Summarizing, we have here once again something very basic and fundamental, providing
some evidence for a kind of general “discrete vs. continuous” dichotomy.

Finally, here is a third and last result that we will need, for our classification work
here, regarding the missing direction, namely the “real vs. complex” one:

THEOREM 11.16. The proper intermediate easy groups
On C Gy C Un
are the groups Z,On with r € {2,3,...,00}, which are not uniform.
PRrooOF. This is standard and well-known, from [87], the proof being as follows:

(1) Our first claim is that the group TOx C Ul is easy, the corresponding category of
partitions being the subcategory P, C P, consisting of the pairings having the property
that when flatenning, we have the global formula #o = #e.

(2) Indeed, if we denote the standard corepresentation by u = zv, with z € T and
with v = o, then in order to have Hom(u®* u®") # (), the z variabes must cancel, and in
the case where they cancel, we obtain the same Hom-space as for Oy.

Now since the cancelling property for the z variables corresponds precisely to the
fact that k,l must have the same numbers of o symbols minus e symbols, the associated
Tannakian category must come from the category of pairings P, C P, as claimed.

(3) Our second claim is that, more generally, the group Z,Ox C Uy is easy, with the
corresponding category P; C P, consisting of the pairings having the property that when
flatenning, we have the global formula #o = # e (r).

(4) Indeed, this is something that we already know at r = 1, 00, where the group in
question is Oy, TOx. The proof in general is similar, by writing u = zv as above.

(5) Let us prove now the converse, stating that the above groups Oy C Z,Ox C Uy
are the only intermediate easy groups Oy C G C Uy. According to our conventions for
the easy quantum groups, which apply of course to the classical case, we must compute
the following intermediate categories of pairings:

P,CDCP
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(6) So, assume that we have such a category, D # P, and pick an element 7 € D — Py,
assumed to be flat. We can modify 7, by performing the following operations:

— First, we can compose with the basic crossing, in order to assume that 7 is a partition
of type N...... N, consisting of consecutive semicircles. Our assumption © ¢ P, means
that at least one semicircle is colored black, or white.

— Second, we can use the basic mixed-colored semicircles, and cap with them all the
mixed-colored semicircles. Thus, we can assume that 7 is a nonzero partition of type
N...... N, consisting of consecutive black or white semicircles.

— Third, we can rotate, as to assume that 7 is a partition consisting of an upper row
of white semicircles, U...... U, and a lower row of white semicircles, N...... N. Our
assumption m ¢ P, means that this latter partition is nonzero.

(7) For a,b € N consider the partition consisting of an upper row of a white semicircles,
and a lower row of b white semicircles, and set:

C:{m a,beN}mD

According to the above we have m €< C >. The point now is that we have:

— There exists r € NU {oo} such that C equals the following set:

C, = {ﬂ'ab a= b(r)}

This is indeed standard, by using the categorical axioms.

— We have the following formula, with P; being as above:
<C >=PF;
This is standard as well, by doing some diagrammatic work.

(8) With these results in hand, the conclusion now follows. Indeed, with » € NU {oco}
being as above, we know from the beginning of the proof that any m € D satisfies:

T € <C>
= <C >
= P
Thus we have an inclusion D C Pj. Conversely, we have as well:
Py, = <C >
= <C>
C <D>
= D
Thus we have D = Pj, and this finishes the proof. See [87]. O
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Once again, there are many comments that can be made here, with the whole subject
in the easy case being generally covered by the classification results in [87]. As for the

non-easy case, there are many interesting things here as well, as for instance the results
in [17], stating that POy C PUy, and TOy C Uy as well, are maximal.

We can now formulate a classification result, as follows:

THEOREM 11.17 (Ground zero). There are exactly eight closed subgroups Gx C Uy
having the following properties,

(1) Easiness,

(2) Uniformity,

(3) Twistability,
(4) Slicing property,

namely the quantum groups Oy,Uy, Hy, Kx and Ok, Uy, Hy, K.

Proor. We already know, from Theorem 11.7 above, that the 8 quantum groups in
the statement have indeed the properties (1-4), and form a cube, as follows:

+
KN
N

/
/
On
Conversely now, assuming that an easy quantum group G = (Gy) has the above
properties (2-4), the twistability property, (3), tells us that we have:

Un
Uy

/
d

HY
Hy

HNCGNCU]J\;
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Thus G sits inside the cube, and the above discussion applies. To be more precise,
let us project G' on the faces of the cube, as in Proposition 11.10 above:

Gy K Uy
o e /
- Hy O}
Gﬁl\f GN G}gv .............. >
A
G?V HN ON

In order to compute these projections, and eventually prove that Gy is one of the
vertices of the cube, we can use use the coordinate system based at O:

/KN7Q7

Uy
Uy

Now by using Theorem 11.14, Theorem 11.15 and Theorem 11.16, along with the
uniformity condition, (2), we conclude that the edge projections of Gy must be among
the vertices of the cube. Moreover, by using the slicing axiom, (4), we deduce from this
that Gy itself must be a vertex of the cube. Thus, we have exactly 8 solutions to our
problem, namely the vertices of the cube, as claimed. U

All this is quite philosophical. Bluntly put, by piling up a number of very natural
axioms, namely those of Woronowicz from [99], then our assumption S? = id, and then
the easiness, uniformity, twistability, and slicing properties, we have managed to destroy
everything, or almost. The casualities include lots of interesting finite and compact Lie
groups, the duals of all finitely generated discrete groups, plus of course lots of interesting
quantum groups, which appear not to be strong enough to survive our axioms.

We should mention that the above result is in tune with free probability, and with
noncommutative geometry, where the most important quantum groups which appear are
precisely the above 8 ones. In what regards free probability, this comes from the various
character computations performed in chapters 8 and 10 above, which give:



268 11. CLASSIFICATION RESULTS

THEOREM 11.18. The asymptotic character laws for the 8 main quantum groups are

SBt—Ft

e

By Ve

B, Gy

e

b ——————a

which are exactly the 8 main limiting laws in classical and free probability,

FCCPLT —— FCCLT
FRCPLT/ FCLT/

CCPLT CCLT
RC’PLT/ C’LT/

with R, C standing for real and complex, C'P standing for compound Poisson, and F
standing for free.

PRrooF. This is something that we already know, explained in chapters 8 and 10, and
which comes from easiness. Consider indeed our 8 main quantum groups:

/‘ O/
%

Ky Ux
N UN

HY
Hy
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Accoring to our various Brauer type results, all these quantum groups are easy, the
corresponding categories of partitions being as follows:

NCeien NC,y
e e
NCeyen Ny
Peven Po
e /

Peven P2

But this shows, via the Weingarten computations from chapters 8 and 10 above, that
the laws of asymptotic characters for our quantum groups are:

B, — I,

e

Bt Vi

B, Gy

e

b ———a

Regarding now the last assertion, consider the main central limiting theorems in clas-
sical and free probability, which are as follows, with R, C standing for real and complex,
CP standing for compound Poisson, and F' standing for free:

FCCPLT —— FCCLT
FRCPLT/ FCLT/

CCPLT CCLT
RC’PLT/ C’LT/

Once again as explained in chapters 8 and 10 above, the limiting characters come from
the categories of partitions given above, and so are the laws given above. U
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The above result is of course something quite formal, only explaining the relation
between quantum groups and probability at the combinatorial level. It is possible to go
beyond this, with more specialized results, and we refer here to the literature.

In what regards now noncommutative geometry, the idea is that our 8 main quan-
tum groups correspond to the 4 possible “abstract noncommutative geometries”, in the
strongest possible sense, which are the real/complex, classical/free ones.

In order to explain this, consider the following diagram, consisting of main quantum
spheres, and of the corresponding tori:

TS
/ /7
3

ey
Ty Spt
/ e
Ty St

These 444 spheres and tori add to the 444 unitary and reflection groups that we have,
which form as well a cubic diagram, as follows:

Ky
/ /!
Oy

Ky
S /
On
Thus, we have a total of 16 basic geometric objects. But these objects can be arranged,
in an obvious way, into 4 quadruplets of type (S,T,U, K), consisting a sphere S, a torus

Uy
Un

Hy
Hy
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T, a unitary group U, and a reflection group K, with relations between them, as follows:

S T

U K

To be more precise, we obtain in this way the quadruplets (S, 7T, U, K') corresponding
to the real/complex, classical/free geometries. As mentioned above, it is possible to do
some axiomatization and classification work here, with the conclusion that, under strong
combinatorial axioms, including easiness, these 4 geometries are the only ones.

Summarizing, our Ground Zero classification theorem for the compact quantum groups
is compatible with both probability theory, and noncommutative geometry.

11e. Exercises

There has been a lot of theory in this chapter, often explained quite briefly, and our
exercises here will be mostly about details on all this. First, we have:

EXERCISE 11.19. Prove that the orthogonal easy groups are

Hy Ox
Sy By
S By

where Sy = Sy X Zs and By, = By X Zs.

In the uniform case the classification was explained in the above, leading to the 4
corners of the square, as the unique solutions. The problem is that of understanding
what happens to this classification when lifting the uniformity assumption.

In relation with the free case now, we have:
EXERCISE 11.20. Find two distinct easy liberations
BY c By

of the group By, = By X Zs.
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The problem here is that of reformulating the question in terms of categories of par-
titions, and then producing 2 distinct categories of partitions which do the job.

As a continuation of the previous two exercises, we have:

EXERCISE 11.21. Prove that the orthogonal easy free quantum groups are

Hy Oy
BL,J’
Sy T
By
Sn By
where Sy = SY% X Zs, and where BY C BY" are easy liberations of By = By X Zs.

As before, in the uniform case the classification was explained in the above, leading to
the 4 corners of the square, as the unique solutions. The problem is that of understanding
what happens to this classification when lifting the uniformity assumption.



CHAPTER 12

The standard cube

12a. Face results

We discuss here a number of more specialized classification results, for the twistable
easy quantum groups, and for more general intermediate quantum groups as follows:

HNCGCUJJ\;

The general idea will be as before, namely that of viewing our quantum group as
sitting inside the standard cube, discussed in chapter 11:

H+/KN o) /
T

We will be interested in several questions, as follows:

Uy
Un

(1) Face results, in the easy case. The problem here is that of classifying the easy
quantum groups lying on each of the 6 faces of the cube. Thus, we would like to solve the
following intermediate easy quantum group problems:

Hy Cc G CUx
Hy C G COF,
Hy Cc G C Ky
HYy CcGcUy
Ky CcGcCUy
Uv CGCUy

(2) Edge results, in the easy case. This is a question which is easier, amounting in
solving 12 intermediate easy quantum group problems, one for each edge of the cube.

273
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(3) Face and edge results, in the general non-easy case. Here the problems are quite
difficult, but we will discuss some strategies, in order to deal with them.

Let us first discuss the classification in the easy case, for the lower and upper faces of
the cube. Following [87], in the uniform case, the result here is as follows:

THEOREM 12.1. The classical and free uniform twistable easy quantum groups are

+ ++ +
KN KN UN

7 !
vy /
-

Hy Oy
A : A
Ky Un
- /
HY
4

HN ON

where Hy = 7,1 Sy, HY = Zg . S§; with s = 4,6,8..., and where K = ;(E

PrROOF. The idea here is that of jointly classifying the “classical” categories of parti-
tions Py C D C P.yen, and the “free” ones NCy C D C NC,yepn, under the assumption
that the category is stable under the operation which consists in removing blocks:

(1) In the classical case, the new solutions appear on the edge Hy C Ky, and are
the complex reflection groups H, = Zs! Sy with s = 4,6,8..., the cases s = 2,00
corresponding respectively to Hy, Ky.

(2) In the free case we obtain as new solutions the standard liberattions of these
groups, namely the quantum groups Hy' = Z, 1. Sf; with s = 4,6,8..., and we have as
well an extra solution, appearing on the edge K}, C Uy, which is the free complexification

/I—(E of the quantum group K3, which is easy, and bigger than K7,.
We refer to [87] for the full proof and discussion of these facts. O
The above result can be generalized, by lifting both the uniformity and twistablility

assumptions, and the result here, which is more technical, is explained in [87].

We will be back to this at the end of the present chapter, with an extension of the
above result, and with some classification results as well for the twists.

Another key result is the one from [82], dealing with the front face of the standard
cube, the orthogonal one. We first have the folowing result:
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PROPOSITION 12.2. The easy quantum groups Hyx C G C OF, are as follows,

Hy Ox
HN ON
Hy O

with the dotted arrows indicating that we have intermediate quantum groups there.

Proor. This is a key result in the classification of easy quantum groups, whose proof
is quite technical, the idea being as follows:

(1) We have a first dichotomy concerning the quantum groups in the statement, namely
Hy C G C Oy, which must fall into one of the following two classes:

On C G COF
HNCGCHR_;

This dichotomy comes indeed from the early classification results for the easy quantum
groups, from [20], [35], [36], whose proofs are quite elementary.

(2) In addition to this, these early classification results solve as well the first problem,
namely Oy C G C Of;, with G = O} being the unique non-trivial solution.

(3) We have then a second dichotomy, concerning the quantum groups which are left,
namely Hy C G C Hj;, which must fall into one of the following two classes:

Hy C G c HY
HY ¢ G c H:

This comes indeed from various papers, and more specifically from the final classifi-
cation paper of Raum and Weber [82], where the quantum groups Sy C G C Hy with

G¢gH ][\?o I were classified, and shown to contain H][\(;O]. For full details, we refer to [82]. [

Summarizing, in order to deal with the front face of the main cube, we are left with
classifying the following intermediate easy quantum groups:

Hy c G c H
HY ¢ G c Hf;

Regarding the second case, namely H ][\?O lcac H7;, the result here, from [82], which
is quite technical, but has a simple formulation, is as follows:
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PrROPOSITION 12.3. Let H][f;] C Hy; be the easy quantum group coming from:

1 ... r ... 1
W”:ker(l T 1)
We have then inclusions of quantum groups as follows,
Hy=HU>HI>SHY 5 . > H

and we obtain in this way all the intermediate easy quantum groups
HY ¢ G c Hf;
satisfying the assumption G # H ][\‘;O I

PROOF. Once again, this is something technical, and we refer here to [82]. U

It remains to discuss the easy quantum groups Hy C G C H ][\O,O ], with the endpoints

G=Hy,H ][30 J'included. Once again, we follow here [82]. First, we have:
DEFINITION 12.4. A discrete group generated by real reflections, g? = 1,
'=<g1,...,9n >
is called uniform if each o € Sy produces a group automorphism, g; — gs(i).-
Consider now a uniform reflection group, as follows:
ZN T -7y

We can associate to it a family of subsets D(k,l) C P(k,l), which form a category of
partitions, as follows:
i

Dk, 1) = {77 c P(k,l)‘ ker (
J
Observe that we have inclusions of categories as follows, coming respectively from
n € D, and from the quotient map I' — Z2':
PP D C Poyen

even

)SW = 9i1-~-9ik:911-~-9jz}

Conversely, consider a category of partitions as follows:

P> cDc P,

even

We can associate to it a uniform reflection group Zs¥ — T' — ZY | as follows:

I = <g1,...gN Giy - Gip, = Gjr - -- G5, V1, 7, k., | ker (j) = D(k:,l)>

As explained in [82], the correspondences I' = D and D — I' constructed above are
bijective, and inverse to each other, at N = oo.

We have in fact the following result, from [82]:
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PrRoOPOSITION 12.5. We have correspondences between.:
(1) Uniform reflection groups Z5° — ' — Z.
(2) Categories of partitions Pl cDc P.oen-
(3) Easy quantum groups G = (Gy), with H][\(;o] D Gy D Hy.

Proor. This is something quite technical, which follows along the lines of the above
discussion. As an illustration, if we denote by Z3" the quotient of Z3" by the relations
of type abc = cba between the generators, we have the following correspondences:

Zy zgN zsN

Hy H?, H

More generally, for any s € {2,4, ..., 00}, the quantum groups H]((;) CH J[f,} constructed
in [20] come from the quotients of ZY < Z3N by the relations (ab)® = 1. See [82]. [

We can now formulate a final classification result, as follows:

THEOREM 12.6. The easy quantum groups Hy C G C OF; are as follows,

Hy O

Hy On

[o0]

with the family Hy covering Hy, Hy ", and with the series H][f}] covering Hy.

Proor. This follows indeed from Proposition 12.2, Proposition 12.3 and Proposition
12.5 above. For further details, we refer to the paper of Raum and Weber [82]. O

All the above is quite technical, and can be extended as well, as to cover all the
orthogonal easy quantum groups, Sy C G C Oy. For full details here, we refer to [82].
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12b. Edge results

Another interesting result, dealing this time with the unitary edge of the standard
cube, is the one from [74]. To be more precise, the problem here is that of classifying the
intermediate easy quantum groups as follows:

Uy CGcCUy
A first construction of such quantum groups is as follows:
PROPOSITION 12.7. Associated to any r € N is the easy quantum group
Uy cUY c U
coming from the category PQ(T) of matching pairings having the property that
#o=H#e(r)
holds between the legs of each string. These quantum groups have the following properties:

1) At r =1 we obtain the usual unitary group, U](\}) =Uy.
2) At r = 2 we obtain the half-classical unitary group, Uz(v2) =Uy.
3

(

(2)

(3) For any r|s we have an embedding U](\}“) C U](\f).

(4) In general, we have an embedding U](\;“) CUN X Zy.
(5)
(

We have as well a cyclic matriz model C(Ug)) C M. (C(Uy)).

5
6) In this latter model, fo) appears as the restriction of tr, ® fUz’“v'

PRrOOF. This is something quite compact, summarizing various findings from [15],
[74]. Here are a few brief explanations on all this:
(1) This is clear from 732(1) = P,, and from a well-known result of Brauer [48].

(2) This is because 772(2) is generated by the partitions with implement the relations
abc = cba between the variables {u;;, uj;}, used in [44] for constructing Uy,

(3) This simply follows from 732(8) - PQ(T), by functoriality.

(4) This is the original definition of U ](\7,"), from [15]. We refer to [15] for the exact
formula of the embedding, and to [74] for the compatibility with the Tannakian definition.

(5) This is also from [15], more specifically it is an alternative definition for U ](\;).
(6) Once again, this is something from [15], and we will be back to it. O

Let us discuss now the second known construction of unitary quantum groups, from
[74]. This construction uses an additive semigroup D C N, but as pointed out there,
using instead the complementary set C' = N — D leads to several simplifications.

So, let us call “cosemigroup” any subset C' C N which is complementary to an additive
semigroup, x,y ¢ C = x +y ¢ C. The construction from [74] is then:
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PROPOSITION 12.8. Associated to any cosemigroup C' C N is the easy quantum group
Uy CUS C Uy

coming from the category PS C PQ(OO) of pairings having the property
#o—HeeC
between each two legs colored o, e of two strings which cross. We have:

(1) For C =0 we obtain the quantum group U;.
2) For C' = {0} we obtain the quantum group Uy.
3) For C'={0,1} we obtain the quantum group UX'.
)
)

5) For C C C" we have an inclusion US C U§.

(
(
4) For C' =N we obtain the quantum group U,
N
(
(6) Each quantum group U§ contains each quantum group U ](\}").

PROOF. Once again this is something very compact, coming from recent work in [74],
with our convention that the semigroup D C N which is used there is replaced here by
its complement C' =N — D. Here are a few explanations on all this:

(1) The assumption C' = () means that the condition # o —#e € C' can never be
applied. Thus, the strings cannot cross, we have 7?2@ = NC,, and so U]Q\), =Uy.

(2) As explained in [74], here we obtain indeed the quantum group Uy, constructed
by using the relations ab*c = cb*a, with a,b, ¢ € {u;;}.

(3) This is also explained in [74], with U being the quantum group from [15], which
is the biggest whose full projective version, in the sense there, is classical.

(4) Here the assumption C' = N simply tells us that the condition # o —#e € C' in

the statement is irrelevant. Thus, we have PY = P{™ and so UN = U{®.

(5) This is clear by functoriality, because C' C C’ implies P§ C PS".
(6) This is clear from definitions, and from Proposition 12.7 above. g
We have the following key result, from [74]:
THEOREM 12.9. The easy quantum groups Uy C G C Uy, are as follows,
Uy C {UY'} c {U§} c Uy
with the series covering Uy, and the family covering Uy

PRroOOF. This is something non-trivial, and we refer here to [74]. The general idea is

that U ](VOO) produces a dichotomy for the quantum groups in the statement, and this leads,
via combinatorial computations, to the series and the family. See [74]. U
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Observe that there is an obvious similarity here with the dichotomy for the liberations
of Hy, coming from [82], and explained in the above.

To be more precise, the above-mentioned classification results for the liberations of Hy
and the liberations of Uy have some obvious similarity between them. We have indeed a
family followed by a series, and a series followed by a family.

All this suggests the existence of a general “contravariant duality” between these
quantum groups, as follows:

Uy Ul U§ Ut
Hi bige HY, Hy

At the first glance, this might sound a bit strange. Indeed, we have some natural
and well-established correspondences Hy <> Uy and Hy <+ Uy, obtained in one sense
by taking the real reflection subgroup, H = U N H};, and in the other sense by setting
U =< H,Uy >. Thus, our proposal of duality seems to go the wrong way.

On the other hand, obvious as well is the fact that these correspondences Hy <> Uy
and Hy; +» Uy cannot be extended as to map the series to the series, and the family to
the family, because the series/families would have to be “inverted”, in order to do so.

Thus, we are led to the above contravariant duality conjecture. In practice, the idea
would be that of constructing the duality by a clever use of the interesection and generation
operations N and <, >, but it is not clear so far on how to do this.

Following [8], let us discuss now what happens inside the standard cube, first in the
easy case, and then in general. The idea here will be that of carefully looking at the
Ground Zero theorem from chapter 11 above, and removing the easiness axiom there.

This is something quite technical, and in order to do so, let us start with a study of
the easy case, with the goal of improving the Ground Zero theorem, by relaxing a bit the
orientability axiom there. Let us start with the following definition:
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DEFINITION 12.10. A twistable easy quantum group Hy C Gy C Uy is called “bi-
ortented” if the diagram

G% Gy
GY Gy
G GY
Hy T
as well as the diagram
Gy

4'— Gsf

are intersection and easy generation diagrams.

GSU

Observe that the first diagram is automatically an intersection diagram, and that the
second diagram is automatically an easy generation diagram.

The question of replacing the slicing axiom with the bi-orientability condition makes
sense. In fact, we can even talk about weaker axioms, as follows:
DEFINITION 12.11. An easy quantum group Hy C Gy C Uy is called “oriented” if
Gy = {G?\Cfla %7G§l\;}
Gy =GE NG NG
and “weakly oriented” if the following weaker conditions hold,
Gy = {Gg\hG?\h 71‘\7}
Gy =GL NG, NGY

where the various versions are those in chapter 11 above.
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In order to prove now the uniqueness of the main 8 easy quantum groups, in the bi-
orientable case, we can still proceed as in the proof of the Ground Zero theorem, but we
are no longer allowed to use the coordinate system there, based at Oy.

To be more precise, we must use the 2 coordinate systems highlighted below, both
taken in some weak sense, weaker than the slicing:

HE /—'»N 0+/ |
/KNJWUN

Skipping some details here, all this is viable, by using the known “edge results” sur-

veyed above, along with the key fact, coming also from the above edge results, that the
quantum group H ][\?O ! from [82] has no orthogonal counterpart.

Thus, we obtain in principle some improvements of the Ground Zero theorem, under
the bi-orientability assumption, and more generally under the orientability assumption.

As for the weak orientability assumption, the situation here is more tricky, because
we would need full “face results”, which are not available yet.

12c. Beyond easiness

Let us discuss now the general, non-easy case. In order to do so, we must find exten-
sions of the notions of uniformity, twistability and orientability.

Regarding the notion of uniformity, the definition here is straightforward, with only
some minor changes with respect to the easy quantum group case, as follows:

DEFINITION 12.12. A series G = (Gy) of closed subgroups Gy C Uy, is called:
(1) Weakly uniform, if for any N € N we have Gx_1 = Gy NUY,_ |, with respect to
the embedding Uy, | C Uy given by u — diag(u, 1).
(2) Uniform, if for any N € N we have Gy_y = Gy NUR_,, with respect to the N
possible embeddings Uy, _, C Uy, of type u — diag(u, 1).

In the easy quantum group case these two notions coincide, due to the presence of the
symmetric group Sy C Gy, which acts on everything, and allows one to pass from one
embedding Uy;_; C U}, to another.
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In general, these two notions do not coincide.

Regarding the examples, in the classical case we have substantially more examples
than in the easy case, obtained by using the determinant, and its powers:

ProPOSITION 12.13. The following compact groups are uniform,
(1) The complex reflection groups

H]S\}d = {g € Z SN‘(detg)d = 1}

for any values of the parameters s € {1,2,...,00} and d € N, d|s,
(2) The orthogonal group Oy, the special orthogonal group SOy, and the series

Ul = {g € Ux|(det g)* = 1}

of modified unitary groups, with s € {1,2,... 00},

and so are the bistochastic versions of these groups.
PROOF. Both these assertions are clear from definitions, the situation being as follows:

(1) These groups are well-known objects in finite group theory, and more precisely
form the series of complex reflection groups, and generalize the groups H3; from chapter
10 above, which appear at d = s. See [84].

(2) These groups are well-known as well, in compact Lie group theory, with U} being
equal to SUy, and with UR’ being by definition Uy itself. O

In the free case now, corresponding to the condition Si, C Gx C Uy, it is widely
believed that the only examples are the easy ones. A precise conjecture in this sense,
which is a bit more general, valid for any Gy C Uy, states that we should have:

< Gy, Sy >={GY, S}

Here G’y denotes as usual the easy envelope of Gy, and {,} is an easy generation
operation. This conjecture is probably something quite difficult.

Now back to our questions, we have definitely no new examples in the free case. So,
the basic examples will be those that we previously met, namely:

PROPOSITION 12.14. The following free quantum groups are uniform,
(1) Liberations H3 = Z, . S, of the complex reflection groups H3, = Z, 1 Sy,
(2) Liberations O, Uy of the continuous groups Oy, Uy,

and so are the bistochastic versions of these quantum groups.

PROOF. This is something that we basically know, with the uniformity check for H3"
being the same as for Sy, Hy;, K3, which appear at s = 1,2, cc. O
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We would need now a second axiom, such as the twistability condition Ty C Gy used
in chapter 11 above. However, if we carefully look at Proposition 12.14, a condition of
type Ay C G would be more appropriate.

In order to comment on this dillema, let us recall from chapter 11 that “taking the
bistochastic version” is a bad direction, geometrically speaking.

But the operations “taking the diagonal torus” and “taking the special version”, that
we are currently discussing, are bad too.

Thus, we have 3 bad directions, and so we end up with a cube formed by these bad 3
directions, as follows:

PRrROPOSITION 12.15. We have the following diagram of finite groups,

Sn Hy
/
SHy
{1}4'—73\/
{1} STN/

obtained from Hy by taking bistochastic, special and diagonal versions.

7
/

PRrOOF. This is clear from definitions, with the operations of taking bistochastic ver-
sions, special versions and diagonal subgroups corresponding respectively to going left,
backwards, and downwards, with respect to the coordinates in the statement. Il

Now back to our classification questions, the vertices of the above cube are all inter-
esting groups, and assuming that the quantum groups G C Uy that we want to classify
contain any of them is something quite natural.

Let us just select here three such conditions, as follows:

DEFINITION 12.16. A closed subgroup Gy C Uy, is called:
(1) Twistable, if Ty C Gy.
(2) Homogeneous, if Sy C Gy.
(3) Half-homogeneous, if Ay C Gy.

As before with the notion of uniformity, things simplify in the easy case. To be more
precise, any easy quantum group is automatically homogeneous, and half-homogeneous
as well. As for the notion of twistability, this coincides with the old one.
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Let us go ahead now, and formulate our third and last definition, regarding the ori-
entability axiom. Things are quite tricky here, and we must start as follows:

DEFINITION 12.17. Associated to any closed subgroup Gy C Uy are its classical,
discrete and real versions, given by

¢ =GnNUy
G4 =Gy NKY
N =GyNOY

as well as its free, smooth and unitary versions, given by
Gl =< Gy, HY >
Gy =< Gn,On >
GuN =< GN, Ky >
where <, > 1s the usual, non-easy topological generation operation.

Observe the difference, and notational clash, with some of the notions used in chapter
11 above. To be more precise, as explained in chapter 7 above, it is believed that we
should have {,} =<, >, but this is not clear at all, and the problem comes from this.

A second issue comes when composing the above operations, and more specifically
those involving the generation operation, once again due to the conjectural status of the
formula {,} =<,>. Due to this fact, instead of formulating a result here, we have to
formulate a second definition, complementary to Definition 12.7, as follows:

DEFINITION 12.18. Associated to any closed subgroup Gn C Uy are the mizes of its
classical, discrete and real versions, given by

Gﬁ\cfl - GN N KN
Gy =GnyNOy
G¥ =Gy N HY
as well as the mixes of its free, smooth and unitary versions, given by
Gl =< Gy, 0% >
GI' =< Gy, K >
1]{7 =< GN, Ux >
where <, > 1s the usual, non-easy topological generation operation.

Now back to our orientation questions, the slicing and bi-orientability conditions lead
us again into {,} vs. <,> troubles, and are therefore rather to be ignored. The ori-
entability conditions from Definition 12.11, however, have the following analogue:
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DEFINITION 12.19. A closed subgroup Gy C Uy, is called “oriented” if
Gy =< G¥¢, G5, GY% >

Gy =GE NG NG
and “weakly oriented” if the following conditions hold,

Gy =< G%,G%, Gy >

Gy =GLNGyNGY
where the various versions are those in Definition 12.17 and Definition 12.18.

With these notions, our claim is that some classification results are possible:

(1) In the classical case, we believe that the uniform, half-homogeneous, oriented
groups are those in Proposition 12.13, with some bistochastic versions excluded.

This is of course something quite heavy, well beyond easiness, with the potential tools
available for proving such things coming from advanced finite group theory and Lie algebra
theory. Our uniformity axiom could play a key role here, when combined with [84], in
order to exclude all the exceptional objects which might appear on the way.

(2) In the free case, under similar assumptions, we believe that the solutions should
be those in Proposition 12.14, once again with some bistochastic versions excluded.

This is something heavy, too, related to the above-mentioned well-known conjecture
< Gy, Sy >= {G, S5} Indeed, assuming that we would have such a formula, and
perhaps some more formulae of the same type as well, we can in principle work out our
way inside the cube, from the edge and face projections to Gy itself, and in this process
Gn would become easy. This would be the straightforward strategy here.

(3) In the group dual case, the orientability axiom simplifies, because the group duals
are discrete in our sense. We believe that the uniform, twistable, oriented group duals
should appear as combinations of certain abelian groups, which appear in the classical
case, with duals of varieties of real reflection groups, which appear in the real case.

This is probably the easiest question in the present series, and the most reasonable
one, to start with. However, there are no concrete results so far, in this direction.
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12d. Maximality questions

Let us go back now to the standard cube, and to edge problems, but without the
easiness assumption, this time. An interesting family of questions here is that of proving
that the easy solutions of various edge problems are in fact the only ones, even in the
non-easy case. We will see that these are several results and conjectures here.

We have the following result from [17], to start with:

THEOREM 12.20. The following inclusions are mazimal:
(1) TOy C Un.
(2) POy C PUy.
PROOF. In order to prove these results, consider as well the group TSOy.
Observe that we have TSOy = TOy if N is odd. If N is even the group TOy has two
connected components, with TSOy being the component containing the identity:.

Let us denote by sox,uy the Lie algebras of SOyn,Uy. It is well-known that uy
consists of the matrices M € My(C) satisfying M* = —M, and that:

soy = uy N My(R)
Also, it is easy to see that the Lie algebra of TSOy is soy @ iR.

Step 1. Our first claim is that if N > 2, the adjoint representation of SOy on the
space of real symmetric matrices of trace zero is irreducible.

Let indeed X € My(R) be symmetric with trace zero. We must prove that the
following space consists of all the real symmetric matrices of trace zero:

V = span {UXUt U e SON}

We first prove that V' contains all the diagonal matrices of trace zero. Since we may
diagonalize X by conjugating with an element of SOy, our space V' contains a nonzero
diagonal matrix of trace zero. Consider such a matrix:

D= dz’ag(dl, dg, ce ,dN)

We can conjugate this matrix by the following matrix:

0 —1 0
1 0 0 € SOpn
0 0 Iy_o

We conclude that our space V' contains as well the following matrix:
D/ = diag(dg, dl, dg, . ,dN)

More generally, we see that for any 1 < 7,7 < N the diagonal matrix obtained from
D by interchanging d; and d; lies in V. Now since Sy is generated by transpositions, it
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follows that V' contains any diagonal matrix obtained by permuting the entries of D. But
it is well-known that this representation of Sy on the diagonal matrices of trace zero is
irreducible, and hence V' contains all such diagonal matrices, as claimed.

In order to conclude now, assume that Y is an arbitrary real symmetric matrix of
trace zero. We can find then an element U € SOy such that UY U is a diagonal matrix
of trace zero. But we then have UYU? € V', and hence also Y € V, as desired.

Step 2. Our claim is that the inclusion TSOy C Uy is maximal in the category of
connected compact groups.

Let indeed G be a connected compact group satisfying TSOxy C G C Uy. Then G is
a Lie group. Let g denote its Lie algebra, which satisfies:

soy PR CgCuy

Let adg be the action of G on g obtained by differentiating the adjoint action of G on
itself. This action turns g into a G-module. Since SOy C G, g is also a SOy-module.

Now if G # TSOy, then since G is connected we must have soy @ iR # g. It follows
from the real vector space structure of the Lie algebras uy and soy that there exists a
nonzero symmetric real matrix of trace zero X such that:

1X €9
We know that the space of symmetric real matrices of trace zero is an irreducible

representation of SOy under the adjoint action. Thus g must contain all such X, and
hence g = uy. But since Uy is connected, it follows that G = Uy.

Step 3. Our claim is that the commutant of SOy in My (C) is as follows:

(1) SO = {(_‘)‘5 g) o, 5 € c}.
(2) It N > 3, 50% = {aly|a € C}.

Indeed, at N = 2 this is a direct computation.

At N > 3, an element in X € SO}, commutes with any diagonal matrix having exactly
N — 2 entries equal to 1 and two entries equal to —1. Hence X is a diagonal matrix.

Now since X commutes with any even permutation matrix and N > 3, it commutes
in particular with the permutation matrix associated with the cycle (i, j, k) for any 1 <
i < j < k, and hence all the entries of X are the same.

We conclude that X is a scalar matrix, as claimed.

Step 4. Our claim is that the set of matrices with nonzero trace is dense in SOy.

At N = 2 this is clear, since the set of elements in SO having a given trace is finite.
So assume N > 2, and let:
T € SOy ~ SORM)
Tr(T)=0
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Let £ C RY be a 2-dimensional subspace preserved by T, such that:
Tip € SO(E)

Let € > 0 and let S; € SO(E) with ||Tjp — S|| < €, and with Tr(Tjg) # Tr(S:), in
the N = 2 case. Now define 7. € SO(RY) = SOy by:

TElE =5 Te|Ei = T7|Ei
It is clear that we have:
T =T <||Tip — Sel| <

Also, we have:
Tr(T.) =Tr(S.) +Tr(Tigr) #0
Thus, we have proved our claim.

Step 5. Our claim is that TOy is the normalizer of TSOy in Uy, i.e. is the subgroup
of Uy consisting of the unitaries U for which, for all X € TSOy:

U 'XU € TSOy

It is clear that the group TOx normalizes TSSOy, so in order to prove the result, we
must show that if U € Uy normalizes TSOpy then U € TOy.
First note that U normalizes SOp. Indeed if X € SOp then:

U'XU € TSOy

Thus U"' XU = \Y for some A € T and Y € SOy.
If Tr(X) # 0, we have A\ € R and hence:

\Y =U'XU € SOy

The set of matrices having nonzero trace being dense in SOy, we conclude that
U='XU € SOy for all X € SOy. Thus, we have:

X eSOy = UXUHUXU =1y
— X'U'UX =UU
= U'U e SO)y

It follows that at N > 3 we have U'U = aly, with a € T, since U is unitary. Hence
we have U = o'/2(a~Y/2U) with:

a V2UeOy , UeTOy

If N =2, (U'U)" = U'U gives again that U'U = «aly, and we conclude as in the
previous case.

Step 6. Our claim is that the inclusion TOy C Uy is maximal in the category of
compact groups.
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Suppose indeed that TOy C G C Uy is a compact group such that G # Uy. It is a
well-known fact that the connected component of the identity in GG is a normal subgroup,
denoted (Gy. Since we have TSOy C Gy C Uy, we must have:

Gy =TSOy
But since Gy is normal in G, the group G normalizes TSOy, and hence G C TOy.

Step 7. Our claim is that the inclusion POy C PUy is maximal in the category of
compact groups.

This follows from the above result. Indeed, if POy C G C PUy is a proper interme-
diate subgroup, then its preimage under the quotient map Uy — PUy would be a proper
intermediate subgroup of TOyN C Uy, which is a contradiction. O

In connection now with the “edge question” of classifying the intermediate groups
On C G C Uy, the above result leads to a dichotomy, coming from:

PG € {POy, PUy}
Here are some basic examples of such intermediate groups:

ProrPoOsITION 12.21. We have compact groups Ony C G C Uy as follows:
(1) The following groups, depending on a parameter r € N U {oo},

Z. = Oy {wU‘w €7,.Uc ON}

whose projective versions equal POy, and the biggest of which is the group TOy,
which appears as affine lift of POy.
(2) The following groups, depending on a parameter d € 2N U {oc},

Ul = {U c UN‘ detU € Zd}
interpolating between U% and U = Uy, whose projective versions equal PUy.

Proor. All the assertions are elementary, and well-known. O

The above results suggest that the solutions of Oy C G C Uy should come from
On, Uy, by succesively applying the constructions G — Z,G and G — G N US.

These operations do not exactly commute, but normally we should be led in this way
to a 2-parameter series, unifying the two 1-parameter series from (1,2) above.

However, some other groups like Zy SOy work too, so all this is probably a bit more
complicated. We do not know the precise answer to this question.

We have as well the following result, also from [17]:
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THEOREM 12.22. The inclusion of compact quantum groups
Oy C O}kv
1s maximal in the category of compact quantum groups.
PROOF. The idea is that this follows from the result regarding POy C PUy, by taking

affine lifts, and using algebraic techniques. Consider indeed a sequence of surjective Hopf
x-algebra maps as follows, whose composition is the canonical surjection:

c(oy) - 4% coy)

This produces a diagram of Hopf algebra maps with pre-exact rows, as follows:

C C(PO}) C(0y) C(Z,) C
bl !

C PA A C(Z,) C
g g

C PC(Oy) C(Oy) C(Zs) C

Consider now the following composition, with the isomorphism on the left being some-
thing well-known, coming from [44], that we will explain in chapter 16 below:
C(PUx) =~ C(POY) 255 PA 5 PC(Oy) ~ C(POX)

This induces, at the group level, the embedding POy C PUy. Thus f| or g, is an
isomorphism. If f is an isomorphism we get a commutative diagram of Hopf algebra
morphisms with pre-exact rows, as follows:

C C(POy) C(Oy)

C(Z,) C

f

C C

C(POY) A C(Zs)

Then f is an isomorphism. Similarly if g is an isomorphism, then g is an isomorphism.
For further details on all this, we refer to [17]. O

Summarizing, we are reaching to the conclusion formulated in the beginning of this
chapter, namely that some of the easy solutions of the easy edge problems for the standard
cube stay unique, even when lifting the easiness assumption.
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In relation with these questions, we have as well the well-known question of proving
that the quantum group inclusion Sy C Sy is maximal, in the sense that there is no
intermediate quantum group, as follows:

Sy C GCSE

As evidence for this latter conjecture, the inclusions Sy C S and S5 C S can be
both shown to be maximal, by using advanced quantum algebra techniques. However,
there is no good idea so far in order to deal with the general case. We refer to [17] and
related papers for a discussion here.

Finally, let us discuss twisting results. Let us go back to the standard cube, namely:

Ky
4'7 o)
On

According to the general Schur-Weyl twisting method from chapter 7 above, all these

quantum groups can be twisted. In addition, the continuous twists were explicitely com-

puted in chapter 7 above, and the discrete objects were shown in chapter 10 above to be
equal to their own twists. Thus, we are led to the following conclusion:

Uy
Uy

HY
Hy

THEOREM 12.23. The Schur-Weyl twists of the main quantum groups are

/K|N v
/Jf/ N

and we will call this diagram “twisted standard cube”.

Un
o

Hy
Hy

PRroor. This follows indeed from the above discussion. O
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This construction raises the perspective of finding the twisted versions of the above
classification results. Following [6], in the uniform case, the result here is as follows:

THEOREM 12.24. The classical and free uniform twisted easy quantum groups are

+ ++ +
Ky —= Ky" — Uy

= :
Yy /
-

Hy Ox
A : A
Ky Uy
A /
HY
4 i
Hy On

where Hy = 7 1 Sn, HY = Zg 4 Sy with s = 4,6,8..., and where Ky, = ;(E

Proor. This follows indeed from Theorem 12.1 above, dealing with the untwisted
case, and from the above discussion, regarding the twists. O

We can merge the above result with the untwisted result, and we are led to the
following statement:

THEOREM 12.25. The uniform classical/twisted and free quantum groups are

/UN,UN
\

Ky K K Uy
Hy Hy

T T
Hy HY Ox
\ ON’ ON /

where Hy = 2,1 Sy, HY = 2,1, S5, with s € {2,4, ..., 00}, and K7+ = K3

Proor. This is a slight extension of Theorem 12.1, the idea being as follows:

(1) All the above quantum groups are quizzy, and the uniformity condition is clear
as well, for each of the quantum groups under consideration. Finally, all these quantum
groups are either classical /twisted or free.
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(2) In order to prove now the converse, in view of our Schur-Weyl twisting method,
which only needs a category of partitions as input, it is enough to deal with the ¢ = 1
case. So, consider a uniform category of partitions D C P.,.,. We must prove that in the
classical/free cases, the solutions are:

4//732 (\

Peven NCeyen <——NCpor, <——NCy
| |
Peven NCeven NCq

\P2<—//

To be more precise, in the classical case, where ¥ € D, we must prove that the only
solutions are the categories P, Po, P2 .. and that in the free case, where D C NCleyen,
we must prove that the only solutions are the categories NCy, NCo, NC_, .., NC?

even? even’

(3) We jointly investigate these two problems. Let B be the set of all possible labelled
blocks in D, having no upper legs. Observe that B is stable under the switching of colors
operation, o <> e. We have two possible situations, as follows:

Case 1. The set B consists of pairings only. Here the pairings in question can be
either a