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FREE QUANTUM GROUPS AND RELATED TOPICS
TEO BANICA

ABSTRACT. The unitary group Uy has a free analogue U;\;, and the closed subgroups
G C U]J\r, can be thought of as being the “compact quantum Lie groups”. We review
here the general theory of such quantum groups. We discuss as well a number of more
advanced topics, selected for their beauty, and potential importance.
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2 TEO BANICA

INTRODUCTION

One important discovery, going back to the beginning of the 20th century, is that at
the subatomic level the “coordinates” of the various moving objects do not necessarily
commute. In fact, at this level, our ambient space R? gets replaced with something not
commutative, and infinite dimensional - typically a space of infinite matrices.

Understanding why is it so, and working out all the details, remains an open problem,
belonging of course to physics. However, mathematically speaking, the problem makes
sense as well. To be more precise, the challenge is that of developing a theory of “non-
commutative geometry”, as nice and beautiful as the classical geometry. With a bit of
luck, such a theory could be exactly what the physicists are looking for.

The quantum groups belong to this circle of ideas. They are meant to play the role of
“symmetry groups” in this hypothetical noncommutative geometry theory.

There is no simple way of introducing the quantum groups. Indeed, these objects are of
“quantum” nature, in the sense that, as for the elementary particles, their coordinates do
not necessarily commute. This is not much of an issue in the long run, after getting used
to the “think quantum” philosophy, but in order to get started, some sort of algebraic
geometry formalism is definitely needed. We will use here the operator algebra one:

(1) A C*-algebra is a complex algebra A, given with an involution a — a*, and with a
Banach space norm |[|.||, related by the formula ||aa*|| = ||a||?.

(2) Given a compact space X, the algebra C'(X) of continuous functions f: X — C is
such an algebra, with involution f*(z) = f(x), and norm || f|| = sup,cx |f(z)].

(3) This latter algebra is commutative, fg = gf, and one can prove, using complex
analysis, that any commutative C*-algebra is of this form, A = C(X).

(4) In view of this, we agree to write any C*-algebra A, not necessarily commutative,
as A = C(X), with X being a “compact quantum space”.

This was for the basic theory, that we will use all the time. Further results include the
basic fact that the algebra B(H) of bounded linear operators T': H — H on a Hilbert
space H is a C*-algebra, with its usual norm and involution, and the more advanced
fact that any C*-algebra can be realized as a subalgebra A C B(H). In the case of the
commutative algebras, these embeddings appear as C'(X) C B(L*(X)).

Summarizing, we know what a compact quantum space is. All that is left now is to
understand when such spaces have a group-theoretical structure.

In order to deal with this latter question, let us look first at the classical case. It is
well-known, and non-trivial, that the compact Lie groups appear as closed subgroups of
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the unitary groups, G C Uy. Thus, our first objective will be that of understanding the
commutative C*-algebras of type C(G), with G C Uy being a closed subgroup:

(1) Given such a closed subgroup G C U, the first observation is that the corresponding
algebra C(G) is generated by the coordinate functions u;;(g) = gi;:

C(G) =< U >
Indeed, these coordinate functions separate the points of GG, so by the Stone-Weierstrasss

theorem, they generate the whole algebra of continuous functions f : G — C.

(2) Regarding now the group structure on G C Uy, this comes from the usual group
operations on the unitary matrices, namely:

UV)ij =Y UVi
k

(1n)ij = b
Ui =Uj;
(3) Thus, at the dual level, the group structure comes from maps as follows:

A(ugj) = Zulk & U
k

e(uij) = bi
S(uig) = uj;
(4) With a bit more work, one can show that the algebras of type C'(G), with G C Uy

being a closed subgroup, are exactly the commutative C*-algebras A =< u;; > generated
by the entries of a unitary matrix, having maps A, ¢, .S as above.

Summarizing, we have a nice description of the algebras of type C(G), with G being a
compact Lie group. Getting back now to our quantum space philosophy, we can say that
we have a nice description of the “compact quantum Lie groups” which are classical.

In order to define now the compact quantum Lie groups, in general, all that is left is
to take the above, and remove the assumption that A = C(G) is commutative. We are
led in this way into the notion of Woronowicz algebra. Such an algebra is a C*-algebra
A =< u;j > generated by the entries of a unitary matrix u = (u;;), having maps A, e, S
given by the same formulae as those for the compact Lie groups, (3) above.

These maps, called comultiplication, counit and antipode, automatically satisfy the
following conditions, called coassociativity, counitality and coinversality:

(A ®id)A = (id @ A)A
(ld®@e)A = (e ®@id)A =1id
m(id ® S)A =m(S @ id)A = ()1
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We recognize here the usual group theory axioms, written in dual form. In addition,
we have S? = id, corresponding to the group theory formula (¢=*)~! = g.

Given such an algebra, we write A = C(G), and call G a compact quantum group.
This compact quantum group is by definition of “matrix” or “Lie” type. Inspired by
Pontrjagin duality, we can write as well A = C*(I"), and call I" a discrete quantum group.
This discrete quantum group is by definition “finitely generated”.

As a conclusion, we have axiomatized both the compact and discrete quantum groups,
under the mild assumption that we are in the Lie/finitely generated case.

As a basic, central example of a compact quantum group, we have the free analogue
Uy of the unitary group Uy. This quantum group appears as follows:

C(Uy)=C" ((Uij)i,sz...,N‘u* =yt ut = a’1>

To be more precise, on the right we have a certain universal algebra, constructed with
generators and relations. Our claim is that if we call this algebra C(Uy,), then Uy is a
compact quantum group, which can be thought of as being a “free analogue” of Ul.

Our first task is that of explaining the construction of the universal algebra on the
right, which definitely needs some discussion. The details here are as follows:

(1) Consider a square matrix v = (u;;). Assuming that the entries u;; live in some
complex algebra having an involution *, we can form the adjoint matrix, u* = (u};). With
this convention, u* = u~! is a shorthand for the condition uu* = u*u = 1.

(2) For the usual matrices U € My(C) the transpose of a unitary matrix is unitary too.
However, this implication fails for the abstract matrices u = (u;;) that we are interested
in, and this is why we have to impose the condition u’ = 4! as well.

(3) We can consider the universal complex x-algebra generated by N? abstract variables
(Wij)ij=1...n, subject to the 4N? relations coming from the equalities uu* = u*u = u'u =
wu' = 1, making our unitarity conditions v* = v~!, u’ = 4! hold.

(4) Finally, in order to have a C*-algebra, we can consider the abstract biggest C*-
norm on our *-algebra, and complete with respect to this norm. We obtain in this way
the universal C*-algebra that we are interested in.

Now observe that, by universality of the algebra that we constructed, we have mor-
phisms A, ¢, S as above. Thus C(Uy;) is a Woronowicz algebra, and the underlying com-
pact quantum space U, is a compact quantum group, called “free unitary group”.

All this might seem a bit mysterious, but will be explained in great detail, in this book.
We will first review the operator algebra theory, then the Woronowicz algebra formalism,
and then we will talk about Uy, and other compact quantum groups.
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The compact quantum Lie groups, as defined before, appear exactly as the closed
quantum subgroups G C Uy;. The main examples are as follows:

(1) The compact Lie groups, G C Uy.

(2) The duals G = T of the finitely generated groups I' =< g1, ...,gn >.
(3) Deformations of the compact Lie groups, with parameter ¢ = —1.

(4) Liberations, half-liberations, quantum permutation groups, and more.

We will present here the main tools for dealing with such quantum groups, and we will
discuss as well a number of more advanced topics. The general idea will be that that
such quantum groups do not have a Lie algebra, or much differential geometric structure,
but one can study them via representation theory, with a mix of algebraic geometry and
probability techniques. Also, we will mostly focus on the examples, with the idea in mind
that, as in the case of the finite groups, or discrete groups, or compact Lie groups, there
is a hierarchy between our objects, with some being more important that some other.

This point of view is particularly needed in connection with physics and applications.
There might be many quantum groups, and other mathematical objects, but whether we
want it or not, it is not up to us to decide what is useful, and what is not.

There are about 20 compact quantum groups which are of particular importance, at
least at the starting level. Among them, we have 8 quantum groups which are really
central, in connection with everything, forming a nice cubic diagram, as follows:

Ky

—'—OJF/

Uy

Un

Here on the right we have Oy, Uy and their free analogues Of, Uy, with Of C Uy
being constructed by imposing the relations u;; = uj; to the standard coordinates.

HY
Hy

On the bottom left we have the “discrete versions” of Oy, Uy, namely the hyperocta-
hedral group Hy = Zy ! Sy, and the full complex reflection group Ky = T ! Sy.

Finally, on top left we have the quantum groups H};, = Zy . Sf; and K, = T 1. S¥,
constructed by using the quantum permutation group Sy;, which is something quite tricky,
and the free analogue 1, of the wreath product operation 1.
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We will discuss in detail the construction and main properties of these quantum groups,
and of some other quantum groups of same type, and of potential importance as well.

Regarding the possible applications of this, the problem is open. The closed subgroups
G C Uy, are potentially related to many things, and can normally be of help in connection
with a number of questions in quantum physics. This remains to be confirmed.

This book is organized in four parts, as follows:

(1) Sections 1-4 are an introduction to the closed subgroups G' C Uy, with the main
examples (O, Ox, Ox, Un, Uk, Uy) explained in detail.

(2) Sections 5-8 contain basic theory, with the main examples, their bistochastic versions
(By, Bf, Cn, Cy) and their twists (O, Ok, Uy, Ux) worked out.

(3) Sections 9-12 are concerned with quantum permutations (Sy, Sy), quantum reflec-
tions (Hy, Hy, Hf, Ky, K%, K), and other related quantum groups.

(4) Sections 13-16 deal with more specialized topics, namely toral subgroups, amenabil-
ity and growth, homogeneous spaces and modelling questions.
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1. Quantum spaces

In order to introduce the quantum groups, we will use the space/algebra correspon-
dence coming from operator algebra theory. Here by “operator” we mean bounded linear
operator 1" : H — H on a Hilbert space, and as a starting point, we have:

Definition 1.1. A Hilbert space is a complex vector space H given with a scalar product
< x,y >, satisfying the following conditions:

(1) < z,y > is linear in x, and antilinear in y.

(2) <z,y>=<vy,x >, for any z,y.

(3) <z,x >>0, for any z # 0.

(4) H is complete with respect to the norm ||z|| = /< x, 2 >.

Here the fact that ||.|| is indeed a norm comes from the Cauchy-Schwarz inequality,
which states that if (1,2,3) above are satisfied, then we have:

| <y > [ <[] [lyll

Indeed, this inequality comes from the fact that the following degree 2 polynomial, with
t € R and w € T, being positive, its discriminant must be negative:

f(#) = llz + twyl?

In finite dimensions, any algebraic basis { f1, ..., fx} can be turned into an orthonormal
basis {e1,...,ex}, by using the Gram-Schmidt procedure. Thus, we have H ~ CV, with
this latter space being endowed with its usual scalar product:

<wy>=) il

The same happens in infinite dimensions, once again by Gram-Schmidt, coupled if
needed with the Zorn lemma, in case our space is really very big. In other words, any
Hilbert space has an orthonormal basis {e;}ic7, and we have H ~ [*(I).

Of particular interest is the “separable” case, where [ is countable. According to the
above, there is up to isomorphism only one Hilbert space here, namely H = [*(N).

All this is, however, quite tricky, and can be a bit misleading. Consider for instance
the space H = L?|0,1] of square-summable functions f : [0,1] — C, with:

< f.g >=/0 f(@)g(x)da

This space is of course separable, because we can use the basis f, = 2" with n € N,
orthogonalized by Gram-Schmidt. However, the orthogonalization procedure is something
non-trivial, and so the isomorphism H =~ [*(N) that we obtain is something non-trivial as
well. Doing some computations here is actually a very good exercise.
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Let us get now into the study of operators. We first have:

Proposition 1.2. Let H be a Hilbert space, with orthonormal basis {e;};c;. The algebra
L(H) of linear operators T : H — H embeds then into the matriz algebra M;(C), with T
corresponding to the matriz M;; =< Te;,e; >. In particular:

(1) In the finite dimensional case, where dim(H) = N < oo, we obtain in this way a
usual matriz algebra, L(H) ~ My(C).

(2) In the separable infinite dimensional case, where I ~ N, we obtain in this way a
subalgebra of the infinite matrices, L(H) C My (C).

Proof. The correspondence T — M in the statement is indeed linear, and its kernel is
{0}. As for the last two assertions, these are clear as well. U

The above result is something quite theoretical, because for basic spaces like L?[0, 1],
which do not have a simple orthonormal basis, the embedding £(H) C M (C) that we
obtain is not very useful. Thus, while the operators T': H — H are basically some infinite
matrices, it is better to think of these operators as being objects on their own.

In what follows we will be interested in the operators T : H — H which are bounded.
Regarding such operators, we have the following result:

Theorem 1.3. Given a Hilbert space H, the linear operators T' : H — H which are
bounded, in the sense that ||T|| = sup, < |[Tx|| is finite, form a complex algebra with
unit, denoted B(H). This algebra has the following properties:

(1) B(H) is complete with respect to ||.||, and so we have a Banach algebra.
(2) B(H) has an involution T — T*, given by < Tx,y >=< x,T*y >.

In addition, the norm and the involution are related by the formula ||TT*|| = ||T||*.

Proof. The fact that we have indeed an algebra follows from:
1S+ T < [IS]] + 17|
[IXT]| = |A]- ||
ST < S]] - 17|
(1) Assuming that {7,,} C B(H) is Cauchy, the sequence {T,z} is Cauchy for any
x € H, so we can define the limit 7' = lim,,_,, T}, by setting:
Tx = lim T,z

n—o0

It is routine to check that this formula defines indeed a bounded operator T' € B(H),
and that we have T,, — T" in norm, and this gives the result.

(2) Here the existence of T* comes from the fact that ¢(z) =< Tz,y > being a linear
map H — C, we must have a formula as follows, for a certain vector Ty € H:

o(x) =<z,Ty >
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Moreover, since this vector is unique, 7™ is unique too, and we have as well:
(S+T) =85"+T*
(AT)* = \T™
(ST)  =T*S"
() =T
Observe also that we have indeed T* € B(H), because:

|T|| = sup sup <Tx,y >
[lzl|=1 [Jyl|=1

= sup sup <z, Ty >
lyll=1 [lz]|=1

= [|77]]
Regarding now the last assertion, we have:
|77 < |T|] - (|77 = ||T|?
Also, we have the following estimate:

TP = ||81H11_)1| <Tzx,Tx > |

= sup | <z, T Tx > |
[]]=1

< [l

By replacing in this formula 7' — T* we obtain ||T||* < ||TT*|]. Thus, we have proved
both the needed inequalities, and we are done. U

Observe that, in view of Proposition 1.2, we embeddings of x-algebras, as follows:
B(H) C L(H) Cc M;(C)

In this picture the adjoint operation 7" — T™ constructed above takes a very simple
form, namely (M*);; = Mj; at the level of the associated matrices.

We will be interested here in the algebras of operators, rather than in the operators
themselves. The axioms here, coming from Theorem 1.3, are as follows:
Definition 1.4. A unital C*-algebra is a complex algebra with unit A, having:

(1) A norm a — ||a||, making it a Banach algebra (the Cauchy sequences converge).
(2) An involution a — a*, which satisfies ||aa*|| = ||al|?, for any a € A.
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We know from Theorem 1.3 that the full operator algebra B(H) is a C*-algebra, for any
Hilbert space H. More generally, any closed x-subalgebra A C B(H) is a C*-algebra. The
celebrated Gelfand-Naimark-Segal (GNS) theorem states that any C*-algebra appears in
fact in this way. This is something non-trivial, and we will be back to it later on.

For the moment, we will be interested in developing the theory of C*-algebras, without
reference to operators, or Hilbert spaces. Our first task will be that of understanding the
structure of the commutative C*-algebras. As a first observation, we have:

Proposition 1.5. If X is an abstract compact space, the algebra C(X) of continuous
functions f: X — C 1s a C*-algebra, with structure as follows:

(1) The norm is the usual sup norm, ||f|| = sup,cx |f(2)].

(2) The involution is the usual involution, f*(x) = f(x).

This algebra is commutative, in the sense that fg = gf, for any f,g € C(X).

Proof. Almost everything here is trivial. Observe also that we have indeed:
I = sup|f(z)f(z)l
zeX

= igglf(fc)\?

= [IfI]
Finally, we have fg = gf, since f(x)g(x) = g(z)f(x) for any z € X. O

Our claim now is that any commutative C*-algebra appears in this way. This is a
non-trivial result, which requires a number of preliminaries. Let us begin with:

Definition 1.6. The spectrum of an element a € A is the set
ola)={reCla—x¢g A"}
where A™1 C A is the set of invertible elements.

As a basic example, the spectrum of a usual matrix M € My(C) is the collection of its
eigenvalues. Also, the spectrum of a continuous function f € C(X) is its image. In the
case of the trivial algebra A = C, the spectrum of an element is the element itself.

As a first, basic result regarding spectra, we have:

Proposition 1.7. We have the following formula, valid for any a,b € A:
o(ab) U {0} = o(ba) U {0}

Moreover, there are examples where o(ab) # o(ba).
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Proof. We first prove that we have the following implication:
1 ¢o(ab) = 1¢ o(ba)
Assume indeed that 1 — ab is invertible, with inverse ¢ = (1 — ab)~'. We have then
abc = cab = ¢ — 1, and by using these identities, we obtain:
(1+bca)(1 —ba) = 1+ beca — ba — bcaba
= 14 bca — ba — beca + ba
=1
A similar computation shows that we have as well (1 — ba)(1 + bca) = 1. We conclude

that 1 — ba is invertible, with inverse 1 + bca, which proves our claim. By multiplying by
scalars, we deduce from this that we have, for any A € C — {0}, as desired:

A ¢ o(ab) = X\ ¢ o(ba)

Regarding now the last claim, let us first recall that for usual matrices a,b € My(C)
we have 0 € o(ab) <= 0 € o(ba), because ab is invertible if any only if ba is.

However, this latter fact fails for general operators on Hilbert spaces. As a basic
example, we can take a, b to be the shift S(e;) = e;1; on the space [*(N), and its adjoint.

Indeed, we have S*S = 1, and SS* being the projection onto eg, it is not invertible. [

Given an element a € A, and a rational function f = P/ having poles outside o(a),
we can construct the element f(a) = P(a)Q(a)™!. For simplicity, we write:

_ Pla)
f(CL) - Q((l)

With this convention, we have the following result:

Theorem 1.8. We have the “rational functional calculus” formula

o(f(a)) = f(o(a))
valid for any rational function f € C(X) having poles outside o(a).

Proof. In order to prove this result, we can proceed in two steps, as follows:

(1) Assume first that we are in the polynomial case, f € C[X]. We pick A € C, and we
write f(X) = A=c¢(X —ry)... (X —1,). We have then, as desired:
A ¢ o(f(a)) fla)—reA™
cla—ry)...(a—ry) €A™
a—T1,...,a—1y € AL
T1y.eoyTn & o(a)

A ¢ flo(a))

111t
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(2) Assume now that we are in the general case, f € C(X). We pick A € C, we write
f=P/Q, and we set F' = P — \Q. By using (1), we obtain:

Aea(f(a)) F(a) ¢ A
0€o(F(a))
0€ F(o(a))
du € o(a), F(u) =0
A€ f(o(a))

Thus, we have obtained the formula in the statement. O

1ty

Given an element a € A, its spectral radius p(a) is the radius of the smallest disk
centered at 0 containing o(a). We have the following key result:

Theorem 1.9. Let A be a C*-algebra.

(1) The spectrum of a norm one element is in the unit disk.

(2) The spectrum of a unitary element (a* = a™') is on the unit circle.

(3) The spectrum of a self-adjoint element (a = a*) consists of real numbers.
(4) The spectral radius of a normal element (aa* = a*a) is equal to its norm.

Proof. We use the various results established above.

(1) This comes from the following formula, valid when ||a|| < 1:

=1l+a+ad>+...

1—a
(2) Assuming a* = a~!, we have the following norm computations:
lall = V/laa*]] = V1 =1
la™ || = [la*[] = lla]| = 1
If we denote by D the unit disk, we obtain from this, by using (1):
lla||] =1 = o(a) C D
la™'||=1 = o(a')C D
On the other hand, by using the rational function f(z) = 27!, we have:
ola’yc D = o(a)c D!
Now by putting everything together we obtain, as desired:
olayc DND ' =T

(3) This follows by using (2), and the rational function f(z) = (z 4 it)/(z — it), with
t € R. Indeed, for t >> 0 the element f(a) is well-defined, and we have:

a+ it *_a—it_ a+ it -1
a— 1t a+it \a—it
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Thus f(a) is a unitary, and by (2) its spectrum is contained in T. We conclude that we
have f(o(a)) = o(f(a)) C T, and so o(a) C f~'(T) = R, as desired.

(4) We have p(a) < ||a|| from (1). Conversely, given p > p(a), we have:

Z" >
dz = nfkfld k: n—1
[ n )

k=0

By applying the norm and taking n-th roots we obtain:

p= lim [la"]|""
n—oo
In the case a = a* we have ||a”|| = ||a||" for any exponent of the form n = 2%, and by
taking n-th roots we get p > ||a||. This gives the missing inequality, namely:
pla) = [lal]
In the general case, aa* = a*a, we have a"(a")* = (aa*)". We obtain from this p(a)? =
p(aa*), and since aa* is self-adjoint, we get p(aa*) = ||a||?, and we are done. O

Summarizing, we have so far a collection of useful results regarding the spectra of the
elements in C*-algebras, which are quite similar to the results regarding the eigenvalues
of the usual matrices. We will heavily use these results, in what follows.

We are now in position of proving a key result, from [84], namely:

Theorem 1.10 (Gelfand). Any commutative C*-algebra is the form C(X), with its “spec-
trum” X = Spec(A) appearing as the space of characters x : A — C.

Proof. Given a commutative C*-algebra A, we can define indeed X to be the set of
characters x : A — C, with the topology making continuous all the evaluation maps
ev, : x — x(a). Then X is a compact space, and a — ev, is a morphism of algebras:

ev:A— C(X)

(1) We first prove that ev is involutive. We use the following formula, which is similar
to the z = Re(z) + iIm(z) formula for the usual complex numbers:
a+a* . i(a—a*)

Thus it is enough to prove the equality ev,« = ev’ for self-adjoint elements a. But this
is the same as proving that a = a* implies that ev, is a real function, which is in turn
true, because ev,(x) = x(a) is an element of o(a), contained in R.

(2) Since A is commutative, each element is normal, so ev is isometric:

leva|| = pla) = lall
(3) It remains to prove that ev is surjective. But this follows from the Stone-Weierstrass
theorem, because ev(A) is a closed subalgebra of C(X), which separates the points. O
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As a first consequence of the Gelfand theorem, we can extend Theorem 1.8 above to
the case of the normal elements (aa* = a*a), in the following way:

Theorem 1.11. Assume that a € A is normal, and let f € C(o(a)).
(1) We can define f(a) € A, with f — f(a) being a morphism of C*-algebras.

(2) We have the “continuous functional calculus” formula o(f(a)) = f(o(a)).

Proof. Since a is normal, the C*-algebra < a > that is generates is commutative, so if we
denote by X the space formed by the characters x :< a >— C, we have:

<a>=C(X)
Now since the map X — o(a) given by evaluation at a is bijective, we obtain:
< a>=CC(o(a))
Thus, we are dealing with usual functions, and this gives all the assertions. U
We can develop as well the theory of positive elements, as follows:

Theorem 1.12. For a normal element a € A, the following are equivalent:

(1) a is positive, in the sense that o(a) C [0,00).
(2) a = b2, for some b € A satisfying b = b*.
(3) a = cc*, for some c € A.

Proof. This is something very standard, as follows:

(1) = (2) This follows from Theorem 1.11, because we can use the function f(z) =
vz, which is well-defined on o(a) C [0, 00), and so set b = +/a.

(2) = (3) This is trivial, because we can set ¢ = b.
(2) = (1) Observe that this is clear too, because we have:
o(a) = o(b’)
= o(b)’
C [0,00)

(3) = (1) We proceed by contradiction. By multiplying ¢ by a suitable element of
< cc* >, we are led to the existence of an element d # 0 satisfying:

—dd" >0
By writing now d = x + iy with x = 2%,y = y* we have:
dd* +d*d = 2(2* +y*) > 0

Thus d*d > 0. But this contradicts the elementary fact that o(dd*),o(d*d) must
coincide outside {0}, coming from Proposition 1.7 above. O
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The Gelfand theorem has as well some important philosophical consequences. Indeed,
in view of this theorem, we can formulate the following definition:

Definition 1.13. Given an arbitrary C*-algebra A, we write A = C(X), and call X a
compact quantum space. Equivalently, the category of the compact quantum spaces is the
category of the C*-algebras, with the arrows reversed.

When A is commutative, the space X considered above exists indeed, as a Gelfand
spectrum, X = Spec(A). In general, X is something rather abstract, and our philosophy
here will be that of studying of course A, but formulating our results in terms of X. For
instance whenever we have a morphism ® : A — B, we will write A = C(X), B = C(Y),
and rather speak of the corresponding morphism ¢ : ¥ — X. And so on.

We will see later on, after developing some more theory, that this formalism has its
limitations, and needs a fix. For the moment, however, let us explore the possibilities
that it opens up. Inspired by the Connes philosophy [59], we have the following definition,
which is something quite recent, coming from the work in [4], [32], [86]:

Definition 1.14. We have compact quantum spaces, constructed as follows,

x; = xf,fo = 1)
C(ngrl) =C* (xl, . ,xN‘ lexf = foxl = 1)

called respectively the free real sphere, and the free complex sphere.

c(syhy =c (xl,...,xN

Here the C* symbols on the right stand for “universal C*-algebra generated by”. The
fact that such universal C*-algebras exist indeed follows by considering the corresponding
universal x-algebras, and then completing with respect to the biggest C*-norm. Observe
that this biggest C*-norm exists indeed, because the quadratic conditions give:

I

a7 = [z ]|

< 1Y @il
%

=1

Given a compact quantum space X, its classical version is the compact space X qss
obtained by dividing C'(X) by its commutator ideal, and using the Gelfand theorem:

C(Xclass) = C(X)/I ; I'=< [a’ b] >

Observe that we have an embedding of compact quantum spaces X, C X. In this
situation, we also say that X appears as a “liberation” of X.

As a first result regarding the above free spheres, we have:
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Proposition 1.15. We have embeddings of compact quantum spaces, as follows,

N—-1 N—-1
S 5N

Sp Tt ——— 5!
and the spaces on the right appear as liberations of the spaces of the left.

Proof. The first assertion is clear. For the second one, we must establish the following
isomorphisms, where C* stands for “universal commutative C*-algebra”:

comm
T =], E ri = 1>
i
N—1 * * 3
CSe ) =Crim (xl,...,:rN‘ E T = E riw; = 1)
i i

But these isomorphisms are both clear, by using the Gelfand theorem. U

C(ngl) = C:omm (%1, - TN

We can enlarge our class of basic manifolds by introducing tori, as follows:

Definition 1.16. Given a closed subspace S C ngrl, the subspace T' C S given by

1s called associated torus. In the real case, S C Sg;l, we also call T' cube.

As a basic example here, for S = SY~! the corresponding submanifold T C S appears
by imposing the relations |x;| = \/—IN to the coordinates, so we obtain a torus:

1
S:Sg_l = T = {ZEECN‘|.’L'Z| :\/_N}

As for the case of the real sphere, S = Slg ~1 here the submanifold 7 C S appears by
imposing the relations x; = j:\/LN to the coordinates, so we obtain a cube:

1
S=8""1 — T:{xeRin:i—
VN

Observe that we have a relation here with group theory, because the complex torus
computed above is the group TV, and the cube is the finite group Z%'.

In general now, in order to compute T', we can use the following simple fact:
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Proposition 1.17. When S C S(]C\{jrl is an algebraic manifold, in the sense that
O(S) = C(Sg;l)/<fi(x1, L TN) = o>
for certain noncommutative polynomaials f; € C < x1,...,xyx >, we have

with the poynomials g; being given by gi(us, ..., uy) = fi(v'Nuy, ...,V Nuy).
Proof. According to our definition of the torus T' C S, the following variables must be
unitaries, in the quotient algebra C'(S) — C(T'):

Z;

VN

Now if we assume that these elements are unitaries, the quadratic conditions ), z;z} =
> rix; =1 are automatic. Thus, we obtain the space in the statement. U

U; =

Summarizing, we are led to the question of computing certain algebras generated by
unitaries. In order to deal with this latter problem, let us start with:

Proposition 1.18. Let T" be a discrete group, and consider the complexr group algebra
CI[I'], with involution given by the fact that all group elements are unitaries:

g=9g" , Vger

The mazimal C*-seminorm on C[I'] is then a C*-norm, and the closure of C[I'| with
respect to this norm is a C*-algebra, denoted C*(I).

Proof. In order to prove the result, we must find a *-algebra embedding C[I'] C B(H),
with H being a Hilbert space. For this purpose, consider the space H = [*(I'), having
{h}nrer as orthonormal basis. Our claim is that we have an embedding, as follows:

m:CllTC B(H) , =(g)(h) =gh

Indeed, since m(g) maps the basis {h}ner into itself, this operator is well-defined,
bounded, and is an isometry. It is also clear from the formula 7w(g)(h) = gh that g — 7(g)
is a morphism of algebras, and since this morphism maps the unitaries g € I' into isome-
tries, this is a morphism of x-algebras. Finally, the faithfulness of 7 is clear. U

In the abelian group case, we have the following result:
Theorem 1.19. Given an abelian discrete group I', we have an isomorphism
C*(T') ~ C(G)
where G =T is its Pontrjagin dual, formed by the characters x : I' — T.
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Proof. Since T is abelian, the corresponding group algebra A = C*(T") is commutative.
Thus, we can apply the Gelfand theorem, and we obtain A = C(X), with X = Spec(A).
But the spectrum X = Spec(A), consisting of the characters x : C*(I') — C, can be

identified with the Pontrjagin dual G = I, and this gives the result. U
The above result suggests the following definition:
Definition 1.20. Given a discrete group I', the compact quantum space G given by
C(G)=Cc*(I)
is called abstract dual of I', and is denoted G = T.

This notion should be taken in the general sense of Definition 1.13. The same warning
as there applies, because there is a functoriality problem here, which needs a fix. To be
more precise, in the context of Proposition 1.18, we can see that the closure C7,,(I") of
the group algebra C[I'] in the regular representation is a C*-algebra as well. We have a
quotient map C*(T") * 4(I'), and if this map is not an isomorphism, which is something
that can happen, we are in trouble. We will be back to this, later on.

By getting back now to the spheres, we have the following result:

Theorem 1.21. The tori of the basic spheres are all group duals, as follows,

o~

TV Fn
2y z;

where Fy is the free group on N generators, and * is a group-theoretical free product.

Proof. By using the presentation result in Proposition 1.17 above, we obtain that the
diagram formed by the algebras C(T) is as follows:

C*(23)

C*(Z5")

According to Definition 1.20, and together with the Fourier transform identifications
from Theorem 1.19, and with our convention Fyy = Z*Y, this gives the result. U
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As a conclusion to these considerations, the Gelfand theorem alone produces out of
nothing, or at least out of some basic common sense, some potentially interesting math-
ematics. We will be back later on to all this, on several occasions.

Let us review now the other fundamental result regarding the C*-algebras, namely the
representation theorem of Gelfand, Naimark and Segal. We first have:

Proposition 1.22. Let A be a commutative C*-algebra, write A = C(X), with X being
a compact space, and let p be a positive measure on X. We have then an embedding

AC B(H)

where H = L*(X), with f € A corresponding to the operator g — fg.

Proof. Given f € C(X), consider the following operator, on the space H = L?(X):
Ts(9) = fg

Observe that T is indeed well-defined, and bounded as well, because:

fglla = \//le(x)|2|9($)|2du($)

< N fllssllgll2
The application f — T} being linear, involutive, continuous, and injective as well, we
obtain in this way a C*-algebra embedding A C B(H), as claimed. O

In general, the idea will be that of extending this construction. We will need:

Definition 1.23. Consider a linear map ¢ : A — C.
(1) ¢ is called positive when a >0 = ¢(a) > 0.
(2) ¢ is called faithful and positive when a >0 = @(a) > 0.

In the commutative case, A = C(X), the positive linear forms appear as follows, with
1 being positive, and strictly positive if we want ¢ to be faithful and positive:

o(f) = /X f (@) dpz)

In general, the positive linear forms can be thought of as being integration functionals
with respect to some underlying “positive measures”. We can use them as follows:

Proposition 1.24. Let ¢ : A — C be a positive linear form.

(1) < a,b>= ¢(ab*) defines a generalized scalar product on A.
(2) By separating and completing we obtain a Hilbert space H .
(3) m(a) : b — ab defines a representation m: A — B(H).

(4) If  is faithful in the above sense, then m is faithful.
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Proof. Almost everything here is straightforward, as follows:
(1) This is clear from definitions, and from Theorem 1.12.
(2)

(3) All the verifications here are standard algebraic computations.

4)

(4) This follows indeed from a # 0 = w(aa*) # 0 = w(a) # 0. O

In order to establish the GNS theorem, it remains to prove that any C*-algebra has a
faithful and positive linear form ¢ : A — C. This is something more technical:

This is a standard procedure, which works for any scalar product.

Proposition 1.25. Let A be a C*-algebra.

(1) Any positive linear form ¢ : A — C is continuous.

(2) A linear form ¢ is positive iff there is a norm one h € Ay such that ||p|| = ¢(h).
(3) For any a € A there exists a positive norm one form o such that p(aa*) = ||al|*.
(4) If A is separable there is a faithful positive form ¢ : A — C.

Proof. The proof here, which is quite technical, inspired from the existence proof of the
probability measures on abstract compact spaces, goes as follows:

(1) This follows from Proposition 1.24, via the following inequality:
[pla)] < m(a)lle(1)
< lafle(1)
(2) In one sense we can take h = 1. Conversely, let a € Ay, ||a|| < 1. We have:
[o(h) = (@)l < lel| - [|h —all
< o(h)1
= ¢(h)
Thus we have Re(p(a)) > 0, and it remains to prove that the following holds:
a=a" = p(a) eR
By using 1 — h > 0 we can apply the above to a =1 — h and we obtain:
Re(p(1—=h)) =0

We conclude that Re(p(1)) > Re(p(h)) = ||¢||, and so ¢(1) = ||¢||.
Summing up, we can assume h = 1. Now observe that for any self-adjoint element a,
and any t € R we have the following inequality:
(L +ita)2 < Il |11+ ital?
= (1|1 + t%a?|]
< e()*(1+*[|al]?)
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On the other hand with ¢(a) = x + iy we have:
lo(1+ita)] = |p(1) — ty + itz
> (p(1) - ty)?
We therefore obtain that for any t € R we have:
P(L* (1 + [al]*) = (p(1) - ty)
Thus we have y = 0, and this finishes the proof of our remaining claim.

(3) Consider the linear subspace of A spanned by the element aa*. We can define here
a linear form by the following formula:

p(Aaa”) = Allalf?

This linear form has norm one, and by Hahn-Banach we get a norm one extension to
the whole A. The positivity of ¢ follows from (2).

(4) Let (a,) be a dense sequence inside A. For any n we can construct as in (3) a
positive form satisfying ¢, (a,a’) = ||a,||?, and then define ¢ in the following way:

=3
n=1

Let a € A be a nonzero element. Pick a, close to a and consider the pair (H,)
associated to the pair (A, ¢,), as in Proposition 1.24. We have then:

pn(aa”) = |[[x(a)1]]
> |[m(an)1]] = [la — an|]
= anll = [la — an]]
> 0
Thus ¢, (aa*) > 0. It follows that we have p(aa*) > 0, and we are done. O

With these ingredients in hand, we can now state and prove:

Theorem 1.26 (GNS theorem). Let A be a C*-algebra.

(1) A appears as a closed x-subalgebra A C B(H), for some Hilbert space H.
(2) When A is separable (usually the case), H can be chosen to be separable.
(3) When A is finite dimensional, H can be chosen to be finite dimensional.

Proof. This result, from [85], follows indeed by combining the construction from Propo-
sition 1.24 above with the existence result from Proposition 1.25. U

Generally speaking, the GNS theorem is something very powerful and concrete, which
perfectly complements the Gelfand theorem, and the resulting compact quantum space
formalism. We can go back to good old Hilbert spaces, whenever we get lost.
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As a first application, let us get back to the bad functoriality properties of the Gelfand
correspondence. We can fix these issues by using the GNS theorem, as follows:

Definition 1.27. The category of compact quantum measured spaces (X, u) is the cate-
gory of the C*-algebras with faithful traces (A, tr), with the arrows reversed. In the case
where we have a C*-algebra A with a non-faithful trace tr, we can still talk about the
corresponding space (X, i), by performing the GNS construction.

Observe that this definition fixes the functoriality problem with Gelfand duality, at
least for the group algebras. Indeed, in the context of the comments following Definition
1.20, consider an arbitrary intermediate C*-algebra, as follows:

()= A—C ()

red

If we perform the GNS construction with respect to the canonical trace, we obtain
the reduced algebra C* ,(I'). Thus, all these algebras A correspond to a unique compact
quantum measured space in the above sense, which is the abstract group dual . Let us
record a statement about this finding, as follows:

Proposition 1.28. The category of group duals T isa well-defined subcategory of the
category of compact quantum measured spaces, with each I' corresponding to the full group
algebra C*(T"), or the reduced group algebra C% ,(I'), or any algebra in between.

Proof. This is indeed more of an empty statement, coming from the above discussion. [l

With this in hand, it is tempting to go even further, namely forgetting about the C*-
algebras, and trying to axiomatize instead the operator algebras of type L>°(X). Such
an axiomatization is possible, and the resulting class of operator algebras consists of a
certain special type of C*-algebras, called “finite von Neumann algebras”. However, and
here comes our point, doing so would be bad, and would lead to a weak theory, because
many spaces such as the compact groups, or the compact homogeneous spaces, do not
come with a measure by definition, but rather by theorem.

In short, our “fix” is not a very good fix, and if we want a really strong theory, we must
invent something else. In order to do so, our idea will be that of restricting the attention
to certain special classes of quantum algebraic manifolds, as follows:

Definition 1.29. A real algebraic submanifold X C Sg;l 15 a closed quantum subspace
defined, at the level of the corresponding C*-algebra, by a formula of type

C(X) = OS2 [ (... on) = 0)

for certain noncommutative polynomials f; € C < zy,...,xy >. We denote by C(X) the
x-subalgebra of C'(X) generated by the coordinate functions xi,...,TN.
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Observe that any family of noncommutative polynomials f; € C < zy,...,zy > pro-
duces such a manifold X, simply by defining an algebra C'(X) as above. Observe also that
the use of the free complex sphere is essential in all this, because the quadratic condition
Yo wiwl =, wfr; = 1 guarantees the fact that the universal C*-norm is bounded.

We have already met such manifolds, in the context of the free spheres, free tori, and
more generally in Proposition 1.17 above. Here is a list of examples:

Proposition 1.30. The following are algebraic submanifolds X C Sg;l:

(1) The spheres S§ ' C S, Sﬁ{;l C ngrl.
(2) Any compact Lie group, G C U,,, when N = n?.
(3) The duals T of finitely generated groups, I' =< gq,...,gn >.

Proof. These facts are all well-known, the proof being as follows:
(1) This is true by definition of our various spheres.

(2) Given a closed subgroup G C U, we have indeed an embedding G C Sév —1 with
N = n? given in double indices by z;; = uljz , that we can further compose with the
standard embedding S(ZCV “lc Sg ;1. As for the fact that we obtain indeed a real algebraic
manifold, this is well-known, coming either from Lie theory or from Tannakian duality.

We will be back to this fact later on, in a more general context.

(3) This follows from the fact that the variables z; = \%V satisfy the quadratic relations
Yo xiwl =) wfx; =1, with the algebricity claim of the manifold being clear. O

At the level of the general theory, we have the following version of the Gelfand theorem,
which is something very useful, and that we will use many times in what follows:

Theorem 1.31. When X C Sé\{jrl is an algebraic manifold, given by

C(X) = C(SE [ {fiwr.-...en) =0)
for certain noncommutative polynomials f; € C < x1,..., x5 >, we have

Xclass = {.T € Sgil fi(mla o wa) = O}

and X appears as a liberation of X -

Proof. This is something that already met, in the context of the free spheres. In general,
the proof is similar, by using the Gelfand theorem. Indeed, if we denote by X/, . the
manifold constructed in the statement, then we have a quotient map of C*-algebras as

follows, mapping standard coordinates to standard coordinates:

C(Xclass) — C( ! )

class
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Conversely now, from X C Sg ;1 we obtain X uss C Sév ~1 and since the relations
defining X/, .. are satisfied by X .ss, we obtain an inclusion of subspaces Xugss C X[jpss-
Thus, at the level of algebras of continuous functions, we have a quotient map of C*-

algebras as follows, mapping standard coordinates to standard coordinates:
C( ! ) — O(Xclass)

class

Thus, we have constructed a pair of inverse morphisms, and we are done. Il

With these results in hand, we are now ready for formulating our second “fix” for the
functoriality issues of the Gelfand correspondence, as follows:

Definition 1.32. The category of the real algebraic submanifolds X C S(]C\fjrl 15 the cate-
gory of the universal C*-algebras of type

C(x) = C(SXN) [ (S, . aw) = 0)

with f; € C < xq,...,xNn > being noncommutative polynomials, with the arrows X — Y
being the x-algebra morphisms between x-algebras of coordinates
C(Y)— C(X)

mapping standard coordinates to standard coordinates.

In other words, what we are doing here is that of proposing a definition for the mor-
phisms between the compact quantum spaces, in the particular case where these compact
quantum spaces are algebraic submanifolds of the free complex sphere Sé\f ;1. The point
is that this “fix” perfectly works for the group duals, as follows:

Theorem 1.33. The category of finitely generated groups I' =< gy,...,gn >, with the
morphisms being the group morphisms mapping generators to generators, embeds con-
travariantly via I' — T into the category of real algebraic submanifolds X C Sg :Ll.

Proof. We know from Proposition 1.30 that, given a group I' =< ¢1,...,gy >, we have

an embedding I’ C S(]c\f ! given by z; = jiﬁ. Now since a morphism C[I'] — C[A] mapping

coordinates to coordinates means a morphism of groups I' — A mapping generators to
generators, our notion of isomorphism is indeed the correct one, as claimed. O

We will see later on that Theorem 1.33 has various extensions to the quantum groups
and quantum homogeneous spaces that we will be interested in, which are all algebraic
submanifolds X C Sg ;1. We will also see that all these manifolds have Haar integration
functionals, which are traces, and so that for these manifolds, our functoriality fix from
Definition 1.32 coincides with the “von Neumann” fix from Definition 1.27.

So, this will be our formalism, and operator algebra knowledge required. We should
mention that our approach heavily relies on Woronowicz’s philosophy in [148]. Also, part
of the above has been folklore for a long time, with the details worked out in [16].
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2. QUANTUM GROUPS

We have seen so far that the Gelfand philosophy, based on the operator algebra formal-
ism, allows the construction of a number of interesting compact quantum spaces, such as
the free versions S]{{ ;1 and Sg jrl of the real and complex spheres. We have as well the

duals T’ of the discrete groups I', which can be thought of as being “quantum tori”.

In this section we keep building on this, by introducing the compact quantum groups.
The idea is very simple, coming from the usual formulae for unitary matrices:

(Uv)z’j - Z Uikvkj
k

(In)ij = b5
(U Y)y =Uj,
A bit of Gelfand duality thinking, to be explained in the proof of Proposition 2.2 below,
leads from this to the following definition, basically due to Woronowicz [148]:

Definition 2.1. A Woronowicz algebra is a C*-algebra A, given with a unitary matrix
u € My(A) whose coefficients generate A, such that:

(1) A(uij) = D) uir @ ug; defines a morphism of C*-algebras A — A ® A.

(2) e(usj) = 6;; defines a morphism of C*-algebras A — C.

(3) S(uij) = uj; defines a morphism of C*-algebras A — A°PP.
In this case, we write A = C(G), and call G a compact matriz quantum group.

In this definition A ® A is the universal C*-algebraic completion of the usual algebraic
tensor product of A with itself, and AP is the opposite C*-algebra, with multiplication
a-b = ba. The above morphisms A, ¢, S are called comultiplication, counit and antipode.
Observe that if these morphisms exist, they are unique. This is analogous to the fact that
a closed set of unitary matrices G C Uy is either a compact group, or not.

The motivating examples are as follows:

Proposition 2.2. Given a closed subgroup G C Uy, the algebra A = C(G), with the
matriz formed by the standard coordinates u;;(g) = g5, is a Woronowicz algebra, and:

(1) For this algebra, the morphisms A, e, S appear as functional analytic transposes of
the multiplication, unit and inverse maps m,u, of the group G.

(2) This Woronowicz algebra is commutative, and conversely, any Woronowicz algebra
which is commutative appears in this way.

Proof. Since we have G C Uy, the matrix u = (u;;) is unitary. Also, since the coordinate
functions u,; separate the points of GG, by the Stone-Weierstrass theorem we obtain that
the x-subalgebra A C C(G) generated by them is dense. Finally, the fact that we have
morphisms A, g, S as in Definition 2.1 follows from the proof of (1) below.
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(1) We use the previous formulae for unitary matrices. The fact that m’ satisfies the
condition in Definition 2.1 (1) follows from the following computation, with U,V € G:

m'(u)(URV) = (UV)y

= Z Uit Vij
%

= Y (un@uy)(UaV)
k

Regarding now the morphism u?, the verification of the condition in Definition 2.1 (2)
is trivial, coming from the following equalities:
u'(uy) = Lij = 0

Finally, the morphism ' verifies the condition in Definition 2.1 (3) as well, because we
have the following computation, valid for any U € G"

i*(uiy)(U) = (U Yy = Uy = ujy(U)

Je
(2) By using the Gelfand theorem, we can write A = C(G), with G being a certain
compact space. By using now the coordinates u;;, we obtain an embedding as follows:
G c Uy

Finally, by using the maps A, ¢, .5, it follows that the subspace G C Uy that we have
obtained is in fact a closed subgroup, and we are done. U

Let us go back now to the general setting of Definition 2.1. According to Proposition
2.2, and to the general C*-algebra philosophy, the morphisms A, e, S can be thought of
as coming from a multiplication, unit map and inverse map, as follows:

m:GxG—=G
u:{}—=G
1:G—= G
Here is a first result of this type, expressing in terms of A, e, S the fact that the

underlying maps m, u, ¢« should satisfy the usual group theory axioms:

Proposition 2.3. The comultiplication, counit and antipode have the following properties,
on the dense x-subalgebra A C A generated by the variables w;;:

(1) Coassociativity: (A ® id)A = (id ® A)A.

(2) Counitality: (id ® )A = (e ® id)A = id.

(3) Coinversality: m(id ® S)A =m(S ®@id)A = e(.)1.
In addition, the square of the antipode is the identity, S* = id.
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Proof. Observe first that the result holds in the case where A is commutative. Indeed, by
using Proposition 2.2 we can write:

A=mt | e=d" |, S=i

The above 3 conditions come then by transposition from the basic 3 group theory
conditions satisfied by m, u, i, which are as follows, with d(g) = (g, 9):

m(m X id) = m(id X m)
m(id x u) = m(u X id) = id
m(id x )0 = m(i x id)d = 1

Observe that S? = id is satisfied as well, coming from i?> = id, which is a consequence
of the group axioms. In general now, the proof goes as follows:

1 e have indeed the following computation:
(1) We h deed the foll g
A@id)A(uy) = > Alug) @ uy
!

= Zuzk @ Ukt & Uy
Kl

We have as well the following computation:

(id @ A)A(uy) = > gk ® Alugy)

= Zuzk @ Upr @ Uz
kl

(2) The proof here is quite similar. We first have:
(Zd ® €)A(UU> = Zulk ® e(ukj) = Uyj
k

On the other hand, we have as well the following computation:

(e ®@id)Aw;j) = Z (i) ® upj =
k

(3) By using the fact that the matrix u = (u;;) is unitary, we obtain:
m(id @ S)Auy;) = > S (uky)
k

2 *
k

= (uu")y
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Similarly, we have the following computation:

m(S @id)Auy) = > S(um)uk

= Z U Uk,
k
= (u"u)y
— 5
Finally, the formula S? = id holds as well on the generators, and we are done. U
Let us discuss now another class of basic examples, namely the group duals:

Proposition 2.4. Given a finitely generated discrete group I' =< g1,...,gn >, the group
algebra A = C*(I), together with the diagonal matriz formed by the standard generators,
u=diag(g1,...,9n), is a Woronowicz algebra, with A, e, S given by:

Alg)=9g®yg
e(g) =1
S(g)=g"

This Woronowicz algebra is cocommutative, in the sense that XA = A.

Proof. Since the involution on C*(T") is given by ¢g* = ¢g~! for any group element g € T,

all these group elements are unitaries. In particular the standard generators g¢q,...,gn
are unitaries, and so must be the diagonal matrix formed by them:
g1
U=
gnN
Also, since g1, ...,gn generate I', these elements generate the group algebra C*(I") as

well, in the algebraic sense. Let us verify now the axioms in Definition 2.1:
(1) Consider the following map, which is a unitary representation:
- (I)ecH(I)
g—9Xyg
This representation extends, as desired, into a morphism of algebras, as follows:

A:C*T) - Cc*(I)eCcH(I)
Alg)=g®yg
(2) The situation for € is similar, because this comes from the trivial representation:
I — {1}
g—1
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(3) Finally, the antipode S comes from the following unitary representation:
I — C*(I)

g—g "

Summarizing, we have shown that we have a Woronowicz algebra, with A e,.S being
as in the statement. Regarding now the last assertion, observe that we have:

Y¥A(g) = X(g®g)

= gy

= Aly)
Thus ¥A = A holds on the group elements g € I', and by linearity and continuity, this
formula must hold on the whole algebra C*(I"), as desired. O

We will see later on that any cocommutative Woronowicz algebra appears in fact as
above, up to a standard equivalence relation for such algebras. In the abelian group case
now, we have a more precise result, as follows:

Proposition 2.5. Assume that T as above is abelian, and let G = T be its Pontrjagin
dual, formed by the characters x : I' — T. The canonical isomorphism

() ~ C(G)

transforms then the comultiplication, counit and antipode of C*(T'), given by

Alg)=9g®g
e(g) =1
S(g)=g"

into the comultiplication, counit and antipode of C'(G), given by:
Ap(g,h) = w(gh)
e(p) = (1)
Se(g) = (g™
Thus, the identification G =T is a compact quantum group isomorphism.

Proof. Assume indeed that I' =< gy,..., gy > is abelian. Our claim is that with G = r
we have a group embedding G C Uy, constructed as follows:

x(g1)
X —
x(9n)

Indeed, this formula defines a unitary group representation, whose kernel is {1}.
Summarizing, we have two Woronowicz algebras to be compared, namely C(G), con-
structed as in Proposition 2.2, and C*(I"), constructed as in Proposition 2.4.
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We already know from section 1 above that the underlying C*-algebras are isomorphic.
Now since the morphisms A, e, S agree on the standard generators g1, ..., gy, they agree
everywhere, and we are led to the conclusions in the statement. O

As a conclusion to all this, we can supplement Definition 2.1 with:
Definition 2.6. Given a Woronowicz algebra A = C(G), we write as well
A=C*I)
and callT =G a finitely generated discrete quantum group.
Let us develop now some further general theory. We first have:

Proposition 2.7. Given a Woronowicz algebra (A, u), we have

u =u!

and so u = (u;;) is a biunitary, meaning unitary, with unitary transpose.

Proof. The idea is that u* = @~! comes from u* = u~!, by applying the antipode. Indeed,
by denoting (a,b) — a - b the multiplication of A°?, we have:

(uu*)ij = 5ij — Z ulku;k = 51']'
k
= > S(ug) - S(ujy) = 6
k
— > uj - wy =0y
k

*
- E ukjuki = 5@']’
k

= (u'a)j = 0y
Similarly, we have the following computation:

(Wu)iy =06y = Y iy =0y
k
= > S(up,) - S(uky) = by
k
- Z Ui U;k = 51’]’
= > wlug =0

- (ﬂut)ji = 61']'

Thus, we are led to the conclusion in the statement. U
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We have now the following theoretical result:

Proposition 2.8. Given a Woronowicz algebra A = C(G), we have an embedding

Gc Syt

gwen in double indices by x;; = 3—%, where w;; are the standard coordinates of G.

Proof. This is something that we already know for the classical groups, and for the group
duals as well, from section 1 above. In general, the proof is similar, coming from the fact
that the matrices u,u are both unitaries, that we know from Proposition 2.7. U

In view of the above result, we can take some inspiration from the Gelfand correspon-
dence “fix” presented in section 1, and formulate:

Definition 2.9. Given two Woronowicz algebras (A,u) and (B,v), we write
A~B

and indentify as well the corresponding compact and discrete quantum groups, when we
have an isomorphism of x-algebras

A~B
mapping standard coordinates to standard coordinates.
In view of the various results and comments from section 1, the functoriality problem

for the compact and discrete quantum groups is therefore fixed. Let us get now into a
more exciting question, namely the construction of examples. We first have:

Proposition 2.10. Given two compact quantum groups G, H, so is their product G X H,
constructed according to the following formula:

C(Gx H)=C(G)®C(H)

Equivalently, at the level of the associated discrete duals T'; A, we can set
C*"(T'x A) =C*(T') @ C*(A)

and we obtain the same equality of Woronowicz algebras as above.

Proof. Assume indeed that we have two Woronowicz algebras, (A,u) and (B,v). Our
claim is that the following construction produces a Woronowicz algebra:

C=A®B , w=diag(u,v)

Indeed, the matrix w is unitary, and its coefficients generate C. As for the existence
of the maps A, ¢, 5, this follows from the functoriality properties of ®, which is here, as
usual, the universal C*-algebraic completion of the algebraic tensor product.

With this claim in hand, the first assertion is clear. As for the second assertion, let us
recall that when G, H are classical and abelian, we have the following formula:

GxH=GCGxH
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Thus, our second assertion is simply a reformulation of the first assertion, with the x
symbol used there being justified by this well-known group theory formula. O

Here is now a more subtle construction, due to Wang [139]:

Proposition 2.11. Given two compact quantum groups G, H, so is their dual free product
G * H, constructed according to the following formula:

C(G*xH)=C(G)*C(H)
Equivalently, at the level of the associated discrete duals T'; A, we can set
C*(T'xA) =C*(I') « C*(A)
and we obtain the same equality of Woronowicz algebras as above.
Proof. The proof here is identical with the proof of Proposition 2.10, by replacing every-

where the tensor product ® with the free product %, with this latter product being by
definition the universal C*-algebraic completion of the algebraic free product. U

Here is another construction, which once again, has no classical counterpart:

Proposition 2.12. Given a compact quantum group G, so is its free complezification é,
constructed according to the following formula, where z = id € C(T):

C(G)cCc(MxC(G) , u=zu
Equivalently, at the level of the associated discrete dual I', we can set
C*(D) c C*zZ)«C*(T) , = zu
where z =1 € Z, and we obtain the same Woronowicz algebra as above.
Proof. This follows from Proposition 2.11. Indeed, we know from there that C(T) x C(G)

is a Woronowicz algebra, with matrix of coordinates w = diag(z,u). Now, let us try to
replace this matrix with the matrix @ = zu. This matrix is unitary, and we have:

A1) = (2 ® 2) Zuzk Q Up; = Z Uty @ Upj
k k

Similarly, in what regards the counit, we have the following formula:
€<I~Lij) =1- 51'3‘ = 51']'
Finally, recalling that S takes values in the opposite algebra, we have as well:

S@t‘j) = u;z "z = ﬂ;z
Summarizing, the conditions in Definition 2.1 are satisfied, except for the fact that the
entries of @ = zu do not generate the whole algebra C(T) x C(G). We conclude that if we

let C(G) C C(T) =« C(G) be the subalgebra generated by the entries of & = zu, as in the
statement, then the conditions in Definition 2.1 are satisfied, as desired. U
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Another standard operation is that of taking subgroups:

Proposition 2.13. Let G be compact quantum group, and let I C C(G) be a closed
x-ideal satisfying the following condition:
A(l)ycCG)@I+I1®C(G)
We have then a closed quantum subgroup H C G, constructed as follows:
CH)=0C(G)/I
At the dual level we obtain a quotient of discrete quantum groups, T — A

Proof. This follows indeed from the above conditions on I, which are designed precisely
as for A, e, 5 to factorize through the quotient. As for the last assertion, this is just a
reformulation, coming from the functoriality properties of the Pontrjagin duality. U

In order to discuss now the quotient operation, let us agree to call “corepresentation”
of a Woronowicz algebra A any unitary matrix v € M, (A) satisfying:

Alvy) = v @y, e(vy) =0y , Svy) = v},
k
We will study in detail such corepresentations in section 3 below. For the moment, we

just need their definition, in order to formulate the following result:

Proposition 2.14. Let G be a compact quantum group, and v = (v;;) be a corepresenta-
tion of C(G). We have then a quotient quantum group G — H, given by:

C(H) =< v >
At the dual level we obtain a discrete quantum subgroup, AcCT.

Proof. Here the first assertion follows from definitions, and the second assertion is just a
reformulation, coming from the functoriality properties of the Pontrjagin duality. O

Finally, here is one more construction, which will be of importance in what follows:

Theorem 2.15. Given a compact quantum group G, with fundamental corepresentation
denoted u = (u;;), the N* x N? matriz given in double index notation by

Via,jb = UijUgp
15 a corepresentation in the above sense, and we have the following results:

(1) The corresponding quotient G — PG is a compact quantum group.

(2) Via the standard embedding G C Sgi_l, this is the projective version.
(3) In the classical group case, G C Uy, we have PG = G/(GNTN).
(4)

4) In the group dual case, with I' =< g; >, we have PI' =< g,;gj_1 >.
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Proof. The fact that v is indeed a corepresentation is routine, and follows as well from
the general properties of such corepresentations, to be discussed in section 3 below.

(1) This follows from Proposition 2.14 above.

(2) Observe first that, since the matrix v = (vj,;5) is biunitary, we have indeed an

embedding G C S(]C\f i’l as in the statement, given in double index notation by ;4 j, = %
Now with this formula in hand, the assertion is clear from definitions.

(3) This follows from the elementary fact that, via Gelfand duality, w is the matrix
of coefficients of the adjoint representation of G, whose kernel is the subgroup G'NT¥,
where TV C Uy denotes the subgroup formed by the diagonal matrices.

(4) This is something trivial, which follows from definitions. d

At the level of the really “new” examples now, we have basic liberation constructions,
going back to the pioneering work of Wang [139], [140], and to the subsequent papers [1],
[2] as well as several more recent constructions. We first have, following Wang [139]:

Theorem 2.16. The following universal algebras are Woronowicz algebras,
C(O;\F/) = " ((Uz‘j)i,jzl,...,N‘U:ﬂ,Ut u_1>

CUy) = C* ((uij)i,jzl,...,N‘U* =u tul = a*)

so the underlying compact quantum spaces O%, Uy are compact quantum groups.

Proof. This follows from the elementary fact that if a matrix u = (u;;) is orthogonal or
biunitary, then so must be the following matrices:

A § € _ S S
k

Consider indeed the matrix U = u®. We have then:

* * *
(UU )ij = E uilujm X Uik Uy, ke
klm

= Z uilu;m X (Slm
Ilm
i
In the other sense the computation is similar, as follows:

* * *
U U)y = E :uklukm @ Up Uy
kim

*
= E Otm @ Up; U

Im

5



QUANTUM GROUPS 35

The verification of the unitarity of U is similar. We first have:

oYy = Z Uiy Ujm @ U Uk

klm
- Z u:lujm ® 5lm
im
= 5y
In the other sense the computation is similar, as follows:

U'l)y; = Zukluzm@)uhu;j

klm

*
= E Ot @ Uity ;
lm

Regarding now the matrix u® = 1y, this is clearly biunitary. Regarding the matrix u®,

there is nothing to prove here either, because its unitarity its clear too.
Thus, we can indeed define morphisms A, €, .S as in Definition 2.1, by using the universal
properties of C(OF), C(Uy), and this gives the result. O

Let us study now the above quantum groups, with the techniques that we have. As a
first observation, we have embeddings of compact quantum groups, as follows:

Un

Uy

Ox o

The basic properties of Of, Uy can be summarized as follows:

Theorem 2.17. The quantum groups Oy, Uy have the following properties:

(1) The closed subgroups G C Uy are exactly the N x N compact quantum groups. As
for the closed subgroups G C OF;, these are those satisfying u = 1.

(2) We have liberation embeddings On C OF; and Uy C U}, obtained by dividing the
algebras C(O%), C(UX) by their respective commutator ideals.

(3) We have as well embeddings Ly C Oj(, and ﬁN - U;, where Ly is the free product
of N copies of Zs, and where Fy is the free group on N generators.

Proof. All these assertions are elementary, as follows:

(1) This is clear from definitions, and from Proposition 2.7.
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(2) This follows from the Gelfand theorem, which shows that we have presentation
results for C(Oy), C'(Un) as follows, similar to those in Theorem 2.16:

COn) = Clym ((Uij)z‘,jzlv--wN‘“ = u,u' = u_1>
ClUn) = Chm <(Uij)z’,j=1,~--,N‘“* =uhu = 771)

(3) This follows from (1) and from Proposition 2.4 above, with the remark that with
u = diag(gy, ..., gn), the condition u = @ is equivalent to g? = 1, for any i. O

The last assertion in Theorem 2.17 suggests the following construction:

Proposition 2.18. Given a closed subgroup G C Uy, consider its “diagonal torus”, which
is the closed subgroup T' C G constructed as follows:

(1) = (@) {usy = 0|¥i # )

This torus is then a group dual, T = K, where A =< g1, ...,gn > is the discrete group
generated by the elements g; = wu;;, which are unitaries inside C(T)).

Proof. Since u is unitary, its diagonal entries g; = u;; are unitaries inside C(T). Moreover,
from A(u;;) =), ui ® ug; we obtain, when passing inside the quotient:
A(gi) = 9: @ gi
It follows that we have C(T") = C*(A), modulo identifying as usual the C*-completions
of the various group algebras, and so that we have T'= A, as claimed. O

With this notion in hand, Theorem 2.17 (3) tells us that the diagonal tori of O, Uy
are the group duals L N, F ~. There is an obvious relation here with the noncommutative
geometry considerations from section 1 above, that we will analyse later on. Here is now
a more subtle result on O3, Uy, having no classical counterpart:

Proposition 2.19. Consider the quantum groups O3, Uy, with the corresponding funda-
mental corepresentations denoted v,u, and let z = id € C(T).

(1) We have a morphism C(Uy) — C(T) * C(O%,), given by u = 2v.
(2) In other words, we have a quantum group embedding OF, C Uy;.
(3) This embedding is an isomorphism at the level of the diagonal tori.

Proof. The first two assertions follow from Proposition 2.12 above, or simply from the
fact that w = zv is biunitary. As for the third assertion, the idea here is that we have a
similar model for the free group Fly, which is well-known to be faithful, Fy C Z*x Ly. O

We will be back to the above morphism later on, with a proof of its faithfulness, after
performing a suitable GNS construction, with respect to the Haar functionals.
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Let us construct now some more examples of compact quantum groups. As a basic
construction here, coming however from the work in [27], [38], [41], [49], which is quite
advanced, we can introduce some intermediate liberations, as follows:

Proposition 2.20. We have intermediate quantum groups as follows,

Uy U Uy

Oy Oy o)
with * standing for the fact that w;;, uj; must satisfy the relations abc = cba.

Proof. This is elementary, by using the fact that if the entries of u = (u;;) half-commute,
then so do the entries of the following matrices:

uiAj = Z Uik Q Uy Ufj =0ij Ufj = U’;z
k
Thus, we have indeed morphisms A ¢, .S, as in Definition 2.1. See [38], [41]. d

In the same spirit, we have as well intermediate spheres as follows, with the symbol *
standing for the fact that z;, ] must satisfy the relations abc = cba:

N-1 N—-1 N—-1
S(C S(C,* S(C,—i-

Syl gy
At the level of the diagonal tori, we have the following result:

Theorem 2.21. The tori of the basic spheres and quantum groups are as follows,

7N 70N 7+N
Z Z Z
7N 70N 7+N
Z2 ZZ ZQ

with o standing for the half-classical product operation for groups.

Proof. The idea here is as follows:

(1) The result on the left is well-known.
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(2) The result on the right follows from Theorem 2.17 (3).
(3) The middle result follows as well, by imposing the relations abc = cba. d

Let us discuss now the relation with the noncommutative spheres. Having the things
started here is a bit tricky, and as a main source of inspiration, we have:

Proposition 2.22. Given an algebraic manifold X C S(]CV_I, the formula

a(x)={ve UN)U(X) = x}
defines a compact group of unitary matrices (a.k.a. isometries), called affine isometry
group of X. For the spheres S]fgf_l, S(va_l we obtain in this way the groups Oy, Uy.

Proof. The fact that G(X) as defined above is indeed a group is clear, its compactness is
clear as well, and finally the last assertion is clear as well. In fact, all this works for any
closed subset X C C¥, but we are not interested here in such general spaces. O

We have the following quantum analogue of the above construction:

Proposition 2.23. Given an algebraic manifold X C S(]C\fjrl, the category of the closed

subgroups G C U}, acting affinely on X, in the sense that the formula
(I)(QTZ) = ZIL’]’ ® Ugjs
J

defines a morphism of C*-algebras as follows,
d:CX)— CX)®C(G)
has a universal object, denoted G (X), and called affine quantum isometry group of X.

Proof. Observe first that in the case where the above morphism & exists, this morphism
is automatically a coaction, in the sense that it satisfies the following conditions:

(P ®id)® = (id ® A)P
(id®e)® =id

In order to prove now the result, assume that X C S(g

+

C(X) = OS2 [ {falwr, . an) = 0)

Consider now the following variables:

Xi= Y ®uy € O(X) 0 CU)

J

1 comes as follows:

Our claim is that G = GT(X) in the statement appears as follows:

@) = C(U§)/<fa(X1, L XN) = 0>
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In order to prove this claim, we have to clarify how the relations f,(Xi,...,Xy) =0

are interpreted inside C(Uy;), and then show that G is indeed a quantum group.

So, pick one of the defining polynomials, f = f,, and write it as follows:

f(xl,...,xN):Z Z Ar T T

v,
With X; = > ;T ® uj; as above, we have the following formula:

f(Xl,...,XN):Z Z )\r Z xjf""rng®ujfi§"'uj§Ti§T

o ool
Tyl J1---d5,

Since the variables on the right span a certain finite dimensional space, the relations

f(X1,...,Xn) =0 correspond to certain relations between the variables u;;.

Thus, we have indeed a closed subspace G C Uy, coming with a universal map:

o C(X) = O(X) @ C(G)

In order to show now that GG is a quantum group, consider the following elements:

A § € _ S, S _ %
k

Consider the following associated elements, with v € {A, e, S}:

X]:ij@)u}i

J

From the relations f(Xi,..., Xy) = 0 we deduce that we have:
(XY, ., X)) =(idev)f(X1,...,Xn) =0

Thus, for any v € {A,¢,S}, we can map u;; — ug;. It follows that G is indeed a

quantum group, and we are done.
We can formulate a quantum isometry group result, from [4], as follows:

Theorem 2.24. The quantum isometry groups of the basic spheres are

Uy U Uy

Ox o, o,

modulo identifying, as usual, the various C*-algebraic completions.

g
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Proof. Let us first construct an action Uy, ~ Sg jrl. We must prove here that the variables
X;i=> ;%5 ® uj; satisfy the defining relations for S(]C\f jrl, namely:

g xzxfzg rix; =1
i i

But this follows from the biunitarity of u. We have indeed:

XZX@ = ,Ijl'k & sz'ukl-
% ijk

= D mrel
J
= 1®1
In the other sense the computation is similar, as follows:

E XX, = E TiTp & UG Up;
i

ijk

= D muel
J

— 11

Regarding now OF ~ S% ', here we must check the extra relations X; = X7, and these

are clear from w;, = u!,. Finally, regarding the remaining actions, the verifications are
clear as well, because if the coordinates wu;, and x, are subject to commutation relations
of type ab = ba, or of type abc = cba, then so are the variables X; = Zj Tj @ Uji.

We must prove now that all these actions are universal:

Sﬂg jrl, Sg 11. The universality of Uy, ~ S(]C\f ;1 is trivial by definition. As for the univer-

sality of Oﬁ N S]fg;l, this comes from the fact that X; = X7, with X, = Zj T; @ uj; as

above, gives u;, = u},. Thus G ~ Sﬂg jrl implies G C OF, as desired.
SH1 SYTE We use here a trick from [43]. Assuming first that we have an action
G S]fg’ ~! consider the following variables:
Wkl ij = UkiUly
Pij = ZTiZj

In terms of these variables, which can be thought of as being projective coordinates,
the corresponding projective coaction map is given by:

P (pij) = Zpkl & Wi, ij
Kl
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We have the following formulae:

P(pi;) = Zpkl ® (Wit,ij + Wik ) + Zpk:k & Wik,ij

k<l k
P(pj) = Zpkl ® (Wkrji + Wik ji) + Zpkk Q) Wik ji
k<l k

By comparing these two formulae, and then by using the linear independence of the
variables py; = xrx; with £ < [, we conclude that we must have:

Wil ij + Wik,ij = Wkl ji T Wik, ji

Following now a well-known trick from [43], let us apply the antipode to this formula.
For this purpose, observe first that we have:

S(wkl,ij) = S(Ukz‘ulj> = S(ulj)s(uki) = UjiUik = Wi 1k
Thus by applying the antipode we obtain:
Wi 1k + Wikl = Wij ik + Wij ki
By relabelling the indices, we obtain from this:
W5 + Wkl ji = Wikgj T Wik ji
Now by comparing with the original relation, we obtain:
Wik,ij = Wkl ji
But, recalling that we have wy; ;; = ugwy;, this formula reads:
U Uy = Upj UL

We therefore conclude we have G C Oy, as claimed. The proof of the universality of
the action Uy S(]Cv’l is similar.

Sﬁ;l, Sg;l. Assume that we have an action G ~ Sg;l. From ®(z,) = >, z; ® u;, we
obtain then that, with p,, = 2,2, we have:
(I)(pab) - qu &® uiau;b
ij
By multiplying these two formulae, we obtain:

P(pavped) = Zpijpkl ® Uig Uy UkcUiy
ijkl

O(paapes) = Y Pubkj @ Uialljgiell}y
ikl
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The left terms being equal, and the first terms on the right being equal too, we deduce
that, with [a, b, ¢| = abc — cba, we must have the following equality:

sz‘jpkl ® Wia [Wjp, Uke, Ujg) = 0
ijkl
Since the variables p;jpu = 2Zj2x2 depend only on [{i, k}|,[{j,{}| € {1,2}, and this
dependence produces the only relations between them, we are led to 4 equations:

(1) wia[wy, Ua, ujp) = 0, Va, b.
(2) Wialtfy, Ukas Ui + Wia[U g, Uka, ujy] = 0, Va, Vb # d.

(3) g

(4) uia([u;fb? Ukc, uzkd]_'_[u;d’ Uke, ufb])+uic<[u;ba Uka, u?d]_'_[u;d’ Uka, u;b]) = 07 Va 7é Gy Vb 7£ d.

From (1,2) we conclude that (2) holds with no restriction on the indices. By multiplying
now this formula to the left by «} , and then summing over i, we obtain:

a?

s Ukes Ujp) + Wie[ Wy, Una, upp) = 0, Va # ¢, V.

[u;b’ Uka,s u;d] + [u;da Uka, uzkb] =0
By applying now the antipode, then the involution, and finally by suitably relabelling
all the indices, we successively obtain from this formula:
[t U U] + (Wbt U, tgs] = 0
= [u:llv Uak UZ}] + [uZlv Uak u(*ig] =0
= [ufda Uka,s u;b] + [u;da Ukas Ufb} =0
Now by comparing with the original relation, above, we conclude that we have:
[u;ba Uka,s u?d] - [u;da Ukas ufb] =0
Thus we have reached to the formulae defining Uy, and we are done.
Finally, in what regards the universality of Oy ~ Sﬁf -1, this follows from the univer-
sality of Uy m Sg;l and of O% ~ S]fgjrl, and from U} N O% = Ok. g
As a conclusion to all this, we have now a simple and reliable definition for the compact
quantum groups, in the Lie case, namely G C Uj;, covering all the compact Lie groups,
G C Uy, covering as well all the duals I" of the finitely generated groups, Fy — I', and
allowing the construction of several interesting examples, such as O, Uy

In respect to the noncommutative geometry questions raised in section 1 above, we
have some advances. In order to further advance, we would need representation theory
results, in the spirit of [144], for our quantum isometry groups.
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3. REPRESENTATION THEORY

In order to reach to some more advanced insight into the structure of the compact
quantum groups, we can use representation theory. We follow Woronowicz’s paper [148],
with a few simplifications coming from our S? = id formalism. We first have:

Definition 3.1. A corepresentation of a Woronowicz algebra (A,u) is a unitary matric
v € M,(A) over the dense x-algebra of smooth elements A =< u;; >, satisfying:

Avy) =) v @ vy
k
e(vij) = 0y
S(vig) = v}

That is, v must satisfy the same conditions as u.

As basic examples here, we have the trivial corepresentation, having dimension 1, as
well as the fundamental corepresentation, and its adjoint:

1=01) , u=(uy) , u=(u})

]
In the classical case, we recover in this way the usual representations of G:

Proposition 3.2. Given a closed subgroup G C Uy, the corepresentations of the associ-
ated Woronowicz algebra C(G) are in one-to-one correspondence, given by

v11(g) ... vin(9)
m(g9) = : :
Uni(g) - Unn(9)

with the finite dimensional unitary smooth representations of G.

Proof. We recall from section 2 that any closed subgroup G' C Uy is a Lie group. Thus,
the corepresentations that we are interested in are certain matrices v € M, (C*(G)).
With this observation in hand, the fact that we have a correspondence v <+ 7 as in the
statement is clear, by using the computations from section 2, performed when proving
that any closed subgroup G' C Uy is indeed a compact quantum group. Il

In general now, we have the following operations on the corepresentations:

Proposition 3.3. The corepresentations are subject to the following operations:
(1) Making sums, v+ w = diag(v, w).
(2) Making tensor products, (v ® W)iq jb = VijWap-
(3) Taking conjugates, (v);; = vj;.
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Proof. Observe that the result holds in the commutative case, where we obtain the usual

operations on the representations of the corresponding group. In general now:

(1) Everything here is clear, as already mentioned in section 2 above, when using such

corepresentations in order to construct quantum group quotients.

(2) First of all, the matrix v ® w is unitary. Indeed, we have:

%
E (0 ® W)ia (v @ W)ke sy = E Vi WapWep U
b
= (5acg VijUr;

- 6ik5ac

In the other sense, the computation is similar, as follows:

* —
E :(U ® w)jb,ia(v ® w)jb,kc - E :wbavjlvjkwbc
b
= zk E wbawbc

= 5ik5ac

The comultiplicativity condition follows from the following computation:

AV @W)ias) = Y Viklae ® Vijtap
ke

= Z(v ® W)ig ke ® (VO W)ke b
kc

The proof of the counitality condition is similar, as follows:
e((v ® w)ia,jb) = 6ij0ab = diajb
As for the condition involving the antipode, this can be checked as follows:

S((U ® w)ia,jb) = w;avjz - (U ® w)jb iaQ

(3) In order to check that © is unitary, we can use the antipode, exactly as we did in

section 2 above, for u. As for the comultiplicativity axioms, these are all clear.

We have as well the following supplementary operation:
Proposition 3.4. Given a corepresentation v € M, (A), its spinned version
w = UvU”

is a corepresentation as well, for any unitary matriz U € U,.

g
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Proof. The matrix w is unitary, and its comultiplicativity properties can be checked by
doing some computations. Here is however another proof of this fact, using a useful trick.
In the context of Definition 3.1, if we write v € M, (C) ® A, the axioms read:

(Id@ A =vi2v13 , ([d®Re)v=1 (d®S)v="0"

Here we use standard tensor calculus conventions. Now when spinning by a unitary the
matrix that we obtain, with these conventions, is w = U,vUy, and we have:

(ld@ A)w = UyvpuizUs
= UyvUy - Uyoi3U7
= Wi2Wis
The proof of the counitality condition is similar, as follows:
(d@eyw=U-1-U=1
Finally, the last condition, involving the antipode, can be checked as follows:
(id @ S)w = Upv*U; = w*
Thus, with usual notations, w = UvU* is a corepresentation, as claimed. U
As a philosophical comment, the above proof might suggest that the more abstract our
notations and formalism, the easier our problems will become. This is wrong. Bases and

indices are a blessing: they can be understood by undergraduate students, computers,
fellow scientists, engineers, and of course also by yourself, when you're tired or so.

In addition, in the quantum group context, we will see later on, starting from section 4
below, that bases and indices can be turned into something very beautiful and powerful,
allowing us to do some serious theory, well beyond the level of abstractions.

Back to work now, in the group dual case, we have the following result:

Proposition 3.5. Assume A = C*(I"), with I' =< g1, ...,gn > being a discrete group.
(1) Any group element h € I is a 1-dimensional corepresentation of A, and the oper-
ations on corepresentations are the usual ones on group elements.
(2) Any diagonal matriz of type v = diag(hy, ..., hy,), with n € N arbitrary, and with
hi,...,h, € T, is a corepresentation of A.
(3) More generally, any matriz of type w = Udiag(hy, ..., h,)U* with hy,... h, € T
and with U € U,, is a corepresentation of A.

Proof. These assertions are all elementary, as follows:

(1) The first assertion is clear from definitions and from the comultiplication, counit
and antipode formulae for the discrete group algebras, namely:

ARy =hoh , eh)=1 , S(h)=h"
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The assertion on the operations is clear too, because we have:
(9) @ (h)=(gn) , (9)=(97"
(2) This follows from (1) by performing sums, as in Proposition 3.3 above.

(3) This follows from (2) and from the fact that we can conjugate any corepresentation
by a unitary matrix, as explained in Proposition 3.4 above. U

Observe that the class of corepresentations in (3) is stable under all the operations
from APropositions 3.3 and 3.4. When I' is abelian we can apply Proposition 3.2 with
G =T, and after performing a number of identifications, we conclude that these are all
the corepresentations of C*(I'). We will see later that this holds in fact for any I'.

Let us go back now to the general case. Our next definition is:

Definition 3.6. Given two corepresentations v € M,(A),w € M,,(A), we set
Hom(v,w) = {T € men(C)’Tv = wT}

and we use the following conventions:
(1) We use the notations Fixz(v) = Hom(1,v), and End(v) = Hom(v,v).
(2) We write v ~ w when Hom(v,w) contains an invertible element.
(3) We say that v is irreducible, and write v € Irr(G), when End(v) = C1.

In the classical case A = C(G) we obtain the usual notions concerning the representa-
tions. Observe also that in the group dual case we have:

g~h < g=h

Finally, observe that v ~ w means that v, w are conjugated by an invertible matrix.
Here are a few basic results, regarding the above Hom spaces:

Proposition 3.7. We have the following results:
(1) T € Hom(u,v),S € Hom(v,w) = ST € Hom(u,w).
(2) S € Hom(p,q),T € Hom(v,w) — S®T € Hom(p @ v,q @ w).
(3) T € Hom(v,w) = T* € Hom(w,v).

In other words, the Hom spaces form a tensor x-category.
Proof. The proofs are all elementary, as follows:
(1) By using our assumptions T'u = v1" and Sv = Ws we obtain, as desired:
STy = SvT = wST

(2) Assume indeed that we have Sp = ¢S and Tv = wT. With tensor product notations,
as in the proof of Proposition 3.4 above, we have:

(S®T)(p@v) = S1Topr1gvas = (Sp)13(T)a3
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We have as well the following computation:
(q@w)(S®T) = qawas STz = (¢5)13(wT)2s
The quantities on the right being equal, this gives the result.
(3) By conjugating, and then using the unitarity of v, w, we obtain, as desired:
Tv=uwlT = v'T"=T"w"

= T w =vT"w"w

= Trw=0uT"
Finally, the last assertion follows from definitions, and from the obvious fact that, in

addition to (1,2,3) above, the Hom spaces are linear spaces, and contain the units. In
short, this is just a theoretical remark, that will be used only later on. U

As a main consequence of the above result, the spaces End(v) C M,(C) are unital
subalgebras stable under the involution %, and so are C*-algebras. In order to exploit this
fact, we will need a basic result, complementing the operator algebra theory presented in
section 1 above, namely:

Theorem 3.8. Let B C M, (C) be a C*-algebra.

(1) We can write 1 = py + ... + px, with p; € B central minimal projections.
(2) Each of the linear spaces B; = p; Bp; is a non-unital x-subalgebra of B.

(3) We have a non-unital x-algebra sum decomposition B = B; ® ... ® By.

(4) We have unital x-algebra isomorphisms B; ~ M,,(C), where r; = rank(p;).
(5) Thus, we have a C*-algebra isomorphism B ~ M, (C) & ... & M, (C).

In addition, the final conclusion holds for any finite dimensional C*-algebra.

Proof. This is something well-known, with the proof of the various assertions in the state-
ment being something elementary, and routine:

(1) This is more of a definition.

(2) This is elementary, coming from p? = p; = p;.

(3) The verification of the direct sum conditions is indeed elementary.

(4) This follows from the fact that each p; was assumed to be central and minimal.
(5) This follows by putting everything together.

As for the last assertion, this follows from (5) by using the GNS representation theorem,
which provides us with an embedding B C M,,(C), for some n € N. O

Following Woronowicz’s paper [148], we can now formulate a first Peter-Weyl theorem,
and to be more precise a first such theorem from a 4-series, as follows:
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Theorem 3.9 (PW1). Let v € M,(A) be a corepresentation, consider the C*-algebra
B = End(v), and write its unit as 1 = p; + ...+ px, as above. We have then

V=v1+ ...+ v
with each v; being an irreducible corepresentation, obtained by restricting v to Im(p;).
Proof. This can be deduced from Theorem 3.8 above, as follows:
(1) We first associate to our corepresentation v € M, (A) the corresponding coaction
map ¢ : C" — A ® C", given by ®(e;) = > ;vi; ® ¢;. We say that a linear subspace
V C C” is invariant if (V') C A® V. In this case, we can consider the restriction map

Qy V= A®V, which is a coaction too, coming from a subcorepresentation w C v.

(2) Consider now a projection p € End(v). From pv = vp we obtain that the linear
space V' = I'm(p) is invariant under v, and so this space must come from a subcorepre-
sentation w C v. It is routine to check that the operation p — w maps subprojections to
subcorepresentations, and minimal projections to irreducible corepresentations.

(3) With these preliminaries in hand, let us decompose the algebra End(v) as in The-
orem 3.8 above. Consider now the vector spaces V; = Im(p;). If we denote by v; C v
the subcorepresentations coming from these vector spaces, then we obtain in this way a
decomposition v = vy 4+ ... 4+ v, as in the statement. U

In order to formulate our second Peter-Weyl type theorem, we will need:

Definition 3.10. We denote by u®*, with k = o e @ o ... being a colored integer, the
various tensor products between u,u, indexed according to the rules

u =1, u®=u , ¥ =u
and multiplicativity, u®* = u®* @ u®', and call them Peter-Weyl corepresentations.

Here are a few examples of such corepresentations, namely those coming from the
colored integers of length 2, to be often used in what follows:

WP =u@u , u¥*=u®u
W =u@u , uWW*=uRu
There are some particular cases of interest, where simplifications appear:
Proposition 3.11. The Peter-Weyl corepresentations u®* are as follows:
(1) In the real case, u = u, we can assume k € N.
(2) In the classical case, we can assume, up to equivalence, k € N x N.

Proof. These assertions are both elementary, as follows:

(1) Here we have indeed u®* = u®*|| where |k| € N is the length. Thus the Peter-Weyl
corepresentations are indexed by N as claimed.
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(2) In the classical case, our claim is that we have equivalences v ® w ~ w ® v, imple-
mented by the flip operator ¥(a ® b) = b ® a. Indeed, we have:

VR W = V13Wa3 = WaozV13 = Ewlgvggz = E(w X U)E

In particular we have an equivalence u ® 4 ~ 4 ® u. We conclude that the Peter-Weyl
corepresentations are the corepresentations of type u®* ® u®', with k,l € N. Il

Here is the second Peter-Weyl theorem, also from [148], complementing Theorem 3.9:

Theorem 3.12 (PW2). Each irreducible corepresentation of A appears as:

v C u®k

That s, v appears inside a certain Peter-Weyl corepresentation.

Proof. Given an arbitrary corepresentation v € M, (A), consider its space of coefficients,
C(v) = span(v;;). It is routine to check that the construction v — C(v) is functorial, in
the sense that it maps subcorepresentations into subspaces.

By definition of the Peter-Weyl corepresentations, we have:

A=Y Cu®)

keN«N

Now given a corepresentation v € M, (A), the corresponding coefficient space is a finite
dimensional subspace C'(v) C A, and so we must have, for certain ki, ..., k,:

Cv) c Clu® @ ... ¢ u®k)
We deduce from this that we have an inclusion of corepresentations, as follows:
v CuP .. @ ut
Together with Theorem 3.9, this leads to the conclusion in the statement. U

In order to further advance, with some finer results, we need to integrate over G. In
the classical case the existence of such an integration is well-known, as follows:

Proposition 3.13. Any commutative Woronowicz algebra, A = C(G) with G C Uy, has
a unique faithful positive unital linear form | o - A — C satisfying

/G f(ey)ds = /G F(yz)ds = /G f(@)da

called Haar integration. This Haar integration functional can be constructed by starting
with any faithful positive unital form ¢ € A*, and taking the Cesaro limit

where the convolution operation for linear forms is given by ¢ x 1 = (¢ @ ) A.
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Proof. This is the existence theorem for the Haar measure of G, in functional analytic
formulation. Observe first that the invariance conditions in the statement read:

dzy) =d(yx) =dz , Vyed

Thus, we are looking indeed for the integration with respect to the Haar measure on G.
Now recall that this Haar measure exists, is unique, and can be constructed by starting
with any probability measure i, and performing the following Cesaro limit:

1 n
dx = lim — Z dp** ()
k=1

n—oo M

In functional analysis terms, this corresponds precisely to the second assertion. U
In general now, let us start with a definition, as follows:

Definition 3.14. Given an arbitrary Woronowicz algebra A = C(G), any positive unital
tracial state fG : A — C subject to the invariance conditions

(/G®z'd>A:(z'd®/G>A:/G(.)1

15 called Haar integration over G.

As a first observation, in the commutative case, this notion agrees with the one in
Proposition 3.13. To be more precise, Proposition 3.13 tells us that any commutative
Woronowicz algebra has a Haar integration in the above sense, which is unique, and
which can be constructed by performing the Cesaro limiting procedure there. Let us
discuss now the group dual case. We have here the following result:

Proposition 3.15. Given a discrete group I' =< ¢1,...,gn >, the Woronowicz algebra
A = C*(I') has a Haar functional, given on the standard generators g € T by:

/\g:(sg,l
T

This functional is faithful on the image on C*(T') in the reqular representation. Also, in
the abelian case, we obtain in this way the counit of C(I).

Proof. Consider indeed the left regular representation 7 : C*(TI') — B(I*(T")), given by
7(g)(h) = gh, that we met in section 1. By composing with the functional T —< 71,1 >,
the functional ff that we obtain is given by the following formula:

[g =<gl,1 >=d4,
i

But this gives all the assertions in the statement, namely the existence, traciality, left
and right invariance properties, and faithfulness on the reduced algebra. As for the last
assertion, this is clear from the Pontrjagin duality isomorphism. U
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In order to discuss now the general case, let us define the convolution operation for
linear forms by ¢ * 1) = (¢ ® 1))A. We have then the following result, from [148]:

Proposition 3.16. Given an arbitrary unital linear form ¢ € A*, the limit

1 n
= li _E *k
/q,a nggon 7 a)

exists, and for a coefficient of a corepresentation a = (T ® id)v, we have

/PGZT(P)

where P is the orthogonal projection onto the 1-eigenspace of (id ® p)v.

Proof. By linearity, it is enough to prove the first assertion for elements of the following
type, where v is one of the Peter-Weyl corepresentations, and 7 is a linear form:

= (T ®id)v

Thus we are led into the second assertion, and more precisely we can have the whole
result proved if we can establish the following formula, with a = (7 ® id)v:

Jim 3@ =)
In order to prove this latter formula, observe that we have:
p™(a) = (1@ p™*)v = 7((id ® p™*)v)
Consider now the following scalar matrix:
M = (id ® p)v
In terms of this matrix, we have the following formula:

((ld ® SO*k 'LO'lkJ,-l Z doi1 - - - 1k1k+1 = (Mk)ioik+1

010k

Thus for any £ € N we have the following formula:
(id @ p*)v = M*

It follows that our Cesaro limit is given by:

n

1
1 = lim — M*
nzﬂ;onzv J 22 MY

.
= T(JE&%ZM)

k=1
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Now since v is unitary we have ||v|]| = 1, and we conclude that we have ||[M|| < 1.
Thus, by standard calculus, the above Cesaro limit on the right exists, and equals the
orthogonal projection onto the 1-eigenspace of M:

N R
fin 2 ME= P
k=1
Thus our initial Cesaro limit converges as well, to 7(P), as desired. U

When ¢ is chosen faithful, we have the following finer result, also from [148]:

Proposition 3.17. Given a faithful unital linear form o € A*, the limit

1 n
a=lim — Y ¢*(a)

exists, and is independent of @, given on coefficients of corepresentations by

(m@/)q):p

where P is the orthogonal projection onto Fix(v) = {£ € C*"|v§ = &},

Proof. In view of Proposition 3.16, it remains to prove that when ¢ is faithful, the 1-
eigenspace of M = (id ® ¢)v equals Fiz(v).

“D” This is clear, and for any ¢, because we have v =§ — ME = €.

“C” Here we must prove that, when ¢ is faithful, we have M¢ = ¢ — v = €. For
this purpose, we use a standard trick. Assume that we have M¢ = £, and set:

(o) (e o)

We must prove that we have a = 0. Since v is biunitary, we have:

[

i j
= Zvijvjkéjgk Uzy&]fz - N zk&fk‘i‘ 12&51

ijk

= Z &1 - z%g ~ 2 vt D lal

ik

= H£H2—<v€€> —< €, &>+ €]
= 2(J|¢]]? = Re(< v, € >))
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By using now our assumption M¢ = &, we obtain from this:

pla) = 20(][¢]]* — Re(< v€,€ >))
= 2([¢]]* = Re(< M¢,€ >))

= 2(/1EI1° — [I1€1P)
= 0
Now since ¢ is faithful, this gives a = 0, and so v€ = £, as claimed. O

We can now formulate the general Haar measure result, due to Woronowicz [148]:

Theorem 3.18. Any Woronowicz algebra has a unique Haar integration, which can be
constructed by starting with any faithful positive unital state ¢ € A*, and setting

1 n
= lim — Y %

where ¢ x 1) = (¢ @ Y)A. Moreover, for any corepresentation v we have

(m/G)v:p

where P is the orthogonal projection onto Fix(v) = {£ € C*|v€ = &}

Proof. Let us first go back to the general context of Proposition 3.16 above. Since convolv-
ing one more time with ¢ will not change the Cesaro limit appearing there, the functional
/ o € A* constructed there has the following invariance property:

[sooe[-]

In the case where ¢ is assumed to be faithful, as in Proposition 3.17 above, our claim
is that we have the following formula, valid this time for any ¢ € A*:

/@*wzw*/wzwm/@

It is enough to prove this formula on a coefficient of a corepresentation, a = (7 ® id)v.
In order to do so, consider the following matrices:

P= (id@/p)v , Q= (id®yY)

In terms of these matrices, we have:

</o *Ib) a= <T ® [D®¢) (v12013) = T(PQ)
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Similarly, we have the following computation:

<¢*/P>a: (T®w®/) (v12013) = T(QP)

Finally, regarding the term on the right, this is given by:
v [ a=vr(p)
©
Thus, our claim is equivalent to the following equality:
PQ = QP = ¢(1)P
But this latter equality follows from the fact, coming from Proposition 3.17 above, that

P=(id® fg})v equals the orthogonal projection onto Fixz(v). Thus, we have proved our
claim. Now observe that our formula can be written as:

¢<L®id)A:¢(id®L)A:¢L<.>1

This formula being true for any ¢ € A*, we can simply delete 1, and we conclude that
the invariance formula in Definition 3.14 holds indeed, with fG = f@.

Finally, assuming that we have two invariant integrals [, [/, we have:

</c®/el)A: (/GI®/G)A=/G(')1=/G/(.)1

Thus we have [, = [/, and this finishes the proof. See [148]. O
As an illustration, for the basic product operations, we have:

Proposition 3.19. We have the following results:
(1) For a product G x H, we have [, = [,® [,
(2) For a dual free product G % H, we have [, ;= [o* [};-
(3) For a quotient G — H, we have [, = (fG)\C(H)'
(4) For a projective version G — PG, we have [, = (fG)‘C(PG).
Proof. These formulae all follow from the invariance property, as follows:

(1) Here the tensor product form [, c® /, 5 satisfies the left and right invariance properties
of the Haar functional | o g0 and so by uniqueness, it is equal to it.

(2) Here the situation is similar, with the free product of linear forms being defined
with some inspiration from the discrete group case, where ff g=10g1.

(3) Here the restriction (fG)‘C(H)
invariance properties, so once again we can conclude by uniqueness.

satisfies by definition the required left and right

(4) Here we simply have a particular case of (3) above. O
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In practice, the last assertion in Theorem 3.18 is the most useful one. By applying it
to the Peter-Weyl corepresentations, we obtain the following alternative statement:

Theorem 3.20. The Haar integration of a Woronowicz algebra is given, on the coeffi-
cients of the Peter-Weyl corepresentations, by the Weingarten formula

/ w o = 3 8.6, ()Walr,0)

G T,0€Dy

valid for any colored integer k = ey ...ex and any multi-indices 1, j, where:
(1) Dy, is a linear basis of Fix(u®*).

(2) 60.(1) =< m,€;, ®...®e€; >.
(3) Wy = G, with Gy(m,0) =< m,0 >.

Proof. We know from Theorem 3.18 that the integrals in the statement form altogether
the orthogonal projection P onto the following space:

Fiz(u®*) = span(Dy)

Consider now the following linear map:

By a standard linear algebra computation, it follows that we have P = W E, where W
is the inverse on span(Dy) of the restriction of E. But this restriction is the linear map
given by Gy, and so W is the linear map given by Wy, and this gives the result. U

Let us go back now to algebra, and establish two more Peter-Weyl theorems. We will
need the following result, which is very useful, and is of independent interest:

Theorem 3.21. We have a Frobenius type isomorphism
Hom(v,w) ~ Fiz(t ® w)
valid for any two corepresentations v, w.
Proof. According to the definitions, we have the following equivalence:

T e€ Hm(v,w) <= Tv=wT
— Z Tojvjs = Z Wab T
j b

On the other hand, we have as well the following equivalence:
TeFizit@w) <— @w)T=T

*
< E vikwabTbk = Tai
kb
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With these formulae in hand, we must prove that we have:
Z Tojvj; = Z wap Ty = sz}gwabTbk = Tui
J b kb

(1) In one sense, the computation is as follows, using the unitarity of v*:

* *
> vhwaTw = Y vi > waTh
kb K b
*
Y T
k J
—,t
= E (U’U )ijTa'

J
= Tai

(2) In the other sense we have, once again by using the unitarity of v*:
Z Tajvjz- = Z Vji Z U;kwabTbk
J J kb
= Z(Utl_f)ikwabTbk
kb
= Z wabTbi
b

Thus, we are led to the conclusion in the statement. Il

With these ingredients, namely first two Peter-Weyl theorems, Haar measure and Frobe-
nius duality, we can establish a third Peter-Weyl theorem, from [148], as follows:

Theorem 3.22 (PW3). The dense subalgebra A C A decomposes as a direct sum
A= P Mamw(C)
velrr(A)

with this being an isomorphism of x-coalgebras, and with the summands being pairwise
orthogonal with respect to the scalar product given by

<a,b >:/ab*
G

where fG is the Haar integration over G.

Proof. By combining the previous Peter-Weyl results, from Theorem 3.9 and Theorem
3.12 above, we deduce that we have a linear space decomposition as follows:

A= Z C(v) = Z Maim()(C)
) )

velrr(A velrr(A
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Thus, in order to conclude, it is enough to prove that for any two irreducible corepre-
sentations v, w € Irr(A), the corresponding spaces of coefficients are orthogonal:

vobw = Cv) L C(w)
But this follows from Theorem 3.18, via Theorem 3.21. Let us set indeed:

*
Pia b = / VijWey,
G

Then P is the orthogonal projection onto the following vector space:
Fiz(v®w) ~ Hom(v,w) = {0}
Thus we have P = 0, and this gives the result. O

We can obtain further results by using characters, which are defined as follows:

Proposition 3.23. The characters of the corepresentations, given by
Xv = Zvii

behave as follows, in respect to the various operations:

Xvtw = Xvo T Xw 5 Xvew = XoXw > Xo = XZ

In addition, given two equivalent corepresentations, v ~ w, we have Xy, = Xw-

Proof. The three formulae in the statement are all clear from definitions. Regarding now
the last assertion, assuming that we have v = T~'wT, we obtain:

Yo =Tr() =Tr(T'wT) = Tr(w) = Yu
We conclude that v ~ w implies x, = X, as claimed. U
We have the following result, also from [148], completing the Peter-Weyl theory:

Theorem 3.24 (PW4). The characters of irreducible corepresentations belong to the
algebra

Acenirat = {0 € A[ZA(0) = Aa)}
of “smooth central functions” on G, and form an orthonormal basis of it.
Proof. As a first remark, the linear space A.cniror defined above is indeed an algebra.
In the classical case, we obtain the usual algebra of smooth central functions. Also, in

the group dual case, where we have YA = A, we obtain the whole convolution algebra.
Regarding now the proof, in general, this goes as follows:

(1) The algebra Acenira contains indeed all the characters, because we have:

YA(xw) = Zvﬁ ® vy = A(xw)

]



58 TEO BANICA

(2) Conversely, consider an element a € A, written as follows:
= Y
velrr(A)
The condition a € Acenire is then equivalent to the following conditions:

ay € Acentral 7VU € ITT(A)

But each condition a, € Aenirey means that a, must be a scalar multiple of the corre-
sponding character x,, and so the characters form a basis of A.cnira, as stated.

(3) The fact that we have an orthogonal basis follows from Theorem 3.22.

(4) Finally, regarding the norm 1 assertion, consider the following integrals:

*
Pik:,jl:/vijvkl
a

We know from Theorem 3.18 that these integrals form the orthogonal projection onto
the following vector space, computed via Theorem 3.21:

Fiz(v® v) ~ End(v) = C1

By using this fact, we obtain the following formula:
1
Xo Xy = / VU5 = —=1

Thus the characters have indeed norm 1, and we are done. Il

As a first application of the Peter-Weyl theory, and more specifically of the last result
from the series, Theorem 3.24, we can clarify a question left open in section 2 above,
regarding the cocommutative case. Once again following [148], we have:

Theorem 3.25. For a Woronowicz algebra A, the following are equivalent:

(1) A is cocommutative, SA = A.
(2) The irreducible corepresentations of A are all 1-dimensional.
(3) A=C*(I), for some group I' =< gq,...,gn >, up to equivalence.

Proof. This follows from the Peter-Weyl theory, as follows:

(1) = (2) The assumption XA = A tells us that the inclusion Acpirar C A is an iso-
morphism, and by using Theorem 3.24 we conclude that any irreducible corepresentation
of A must be equal to its character, and so must be 1-dimensional.

(2) = (3) This follows once again from Peter-Weyl, because if we denote by I' the
group formed by the 1-dimensional corepresentations, then we have A = C[I'], and so
A = C*(T") up to the standard equivalence relation for Woronowicz algebras.

(3) = (1) This is something trivial, that we already know from section 2. O
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At the level of the examples coming from operations, we have, following [139]:

Proposition 3.26. We have the following results:

(1) The irreducible corepresentations of C(G x H) are the tensor products of the form
v ® w, with v,w being irreducible corepresentations of C(G),C(H).

(2) The irreducible corepresentations of C(G % H) appear as alternating tensor prod-
ucts of irreducible corepresentations of C(G) and of C(H).

(3) The irreducible corepresentations of C(H) C C(G) are the irreducible corepresen-
tations of C(G) whose coefficients belong to C'(H).

(4) The irreducible corepresentations of C(PG) C C(G) are the irreducible corepre-
sentations of C(G) which appear by decomposing the tensor powers of u ® .

Proof. This is routine, the idea being as follows:

(1) Here we can integrate characters, by using Proposition 3.19 (1), and we conclude
that if v, w are irreducible corepresentations of C(G), C'(H), then v ® w is an irreducible
corepresentation of C'(G x H). Now since the coefficients of these latter corepresentations
span C(G x H), by Peter-Weyl these are all the irreducible corepresentations.

(2) Here we can use a similar method. By using Proposition 3.19 (2) we conclude
that if vy, vg, ... are irreducible corepresentations of C'(G) and wy,wy, ... are irreducible
corepresentations of C'(H), then v; ® wy ® vy ® we ® ... is an irreducible corepresentation
of C(G % H), and then we can conclude by using the Peter-Weyl theory.

(3) This is clear from definitions, and from the Peter-Weyl theory.

(4) This is a particular case of the result (3) above. 0

Finally, let us discuss the notion of amenability. The basic result here is as follows:
Theorem 3.27. Let Ay be the enveloping C*-algebra of A, and let A,.q be the quotient

of A by the null ideal of the Haar integration. The following are then equivalent:

(1) The Haar functional of Asyy is faithful.

(2) The projection map Afyy — Areq 15 an isomorphism.

(3) The counit map € : A — C factorizes through A,q.

(4) We have N € o(Re(xy)), the spectrum being taken inside Ayeq.

If this is the case, we say that the underlying discrete quantum group I' is amenable.

Proof. This is well-known in the group dual case, A = C*(T"), with T" being a usual discrete
group. In general, the result follows by adapting the group dual case proof:

(1) = (2) This follows from the fact that the GNS construction for the algebra Ay,
with respect to the Haar functional produces the algebra A, .q.

(2) == (3) This is trivial, because we have quotient maps Ay — A — A,eq, and so
our assumption Ag,; = A,eq implies that we have A = A,.q.
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(3) = (4) This implication is clear too, because we have:

(Re(xa)) = %(Zdumzsw;))

i=1
1
= 5(N + N)
= N
Thus the element N — Re(y,,) is not invertible in A,.4, as claimed.

(4) = (1) In terms of the corepresentation v = u + u, whose dimension is 2N and
whose character is 2Re(x.,), our assumption N € o(Re(x,)) reads:

dimv € o(xw)

By functional calculus the same must hold for w = v + 1, and then once again by
functional calculus, the same must hold for any tensor power of w:
wy, = w"
Now choose for each k € N a state ¢, € A}, having the following property:
ep(wy) = dim wy,

By Peter-Weyl we must have g, (r) = dimr for any r < wy, and since any irreducible
corepresentation appears in this way, the sequence ¢, converges to a counit map:

5:Ared—>C

In order to finish, we can use the right regular corepresentation. Indeed, as explained
in [114], we can define such a corepresentation by the following formula:

W(a®z)=A(a)(l® )
This corepresentation is unitary, so we can define a morphism as follows:

A" Aved = Avea @ Apun

a— Wae)W*

Now by composing with € ® id, we obtain a morphism as follows:

(e @id)A": Aveq — Apun

Uij — Uij

Thus, we have our inverse map for the projection Az, — Ayeq, as desired. O

All the above was of course quite short, but we will be back to this, with full details,
and with a systematic study of the notion of amenability, in section 14 below.
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4. TANNAKIAN DUALITY

In order to have more insight into the structure of the compact quantum groups, in gen-
eral and for the concrete examples too, and to effectively compute their representations,
we can use algebraic geometry methods, and more precisely Tannakian duality.

Tannakian duality rests on the basic principle in any kind of mathematics, algebra,
geometry or analysis, “linearize”. In the present setting, where we do not have a Lie
algebra, this will be in fact our only possible linearization method. Let us start with:

Theorem 4.1. Given a Woronowicz algebra (A,w), the Hom spaces for its corepresenta-
tions form a tensor x-category, in the sense that:

(1) T € Hom(u,v),S € Hom(v,w) = ST € Hom(u,w).
(2) S € Hom(p,q), T € Hom(v,w) = S®T € Hom(p ® v,q @ w).
(3) T € Hom(v,w) = T* € Hom(w,v).
Proof. This is something that we already know, from section 3 above. O

Generally speaking, Tannakian duality amounts in recovering (A, u) from the tensor
category constructed in Theorem 4.1. In what follows we will present a “soft form” of
this duality, coming from [106], [149], which uses the following smaller category:

Definition 4.2. The Tannakian category associated to a Woronowicz algebra (A, u) is
the collection C' = (C(k,1)) of vector spaces

C(k,1) = Hom(u®", u®")
where u®* with k = o e @ o ... colored integer are the Peter-Weyl corepresentations.

We know from Theorem 4.1 above that C' is a tensor *-category. To be more precise,
if we denote by H = CV the Hilbert space where u € My(A) coacts, then C is a tensor
x-subcategory of the tensor *-category formed by the following linear spaces:

E(k,1) = L(H®*, H™)

Here the tensor powers H®* with k = o @ @ o ... colored integer are those where the
corepresentations u®* act, defined by the following formulae, and multiplicativity:

H®=C |, H®*®=H , H*=H~H

Our purpose in what follows will be that of reconstructing (A, u) in terms of the category
C = (C(k,1)). We will see afterwards that this method has many applications.

As a first, elementary result on the subject, we have:

Proposition 4.3. Given a morphism 7 : (A,u) — (B, v) we have inclusions
Hom(u®*, u®) € Hom(v®*,v®")

for any k,l, and if these inclusions are all equalities, w is an isomorphism.
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Proof. The fact that we have indeed inclusions as in the statement is clear from definitions.
As for the last assertion, this follows from the Peter-Weyl theory. U

The Tannakian duality result that we want to prove states, in a simplified form, that
in what concerns the last conclusion in the above statement, the assumption that we
have a morphism 7 : (A, u) — (B, v) is not needed. In other words, if we know that the
Tannakian categories of A, B are different, then A, B themselves must be different.

In order to get started now, our first goal will be that of gaining some familiarity with
the notion of Tannakian category. As a starting point here, we have:

Proposition 4.4. An abstract matriz uw € My(A) is biunitary if and only if
Re Hom(l,u®u) , Re Hom(l,u® u)
R e Hom(u®u,1) , R*'€ Hom(u®u,1)

where R : C — CN @ CV is the linear operator given by:

R(l) = Zei & e;

Proof. With R being as in the statement, we have the following computation:
weu)(R1)®1) = Y e® e ® ugug,
ijk
= Z e; @ ep @ (uu*)g

ik

We conclude from this that we have the following equivalence:
Re Hom(l,u®u) <= wu* =1
Consider now the adjoint operator R* : CV @ C¥ — C, which is given by:
R*(e; ® €j) = ;5

We have then the following computation:

(R @id)(u@u)(e;®e @ 1) = uyuy = (u'n)y

We conclude from this that we have the following equivalence:
R*e€ Hom(u® u,1) <= v'u=1

Similarly, or simply by replacing v in the above two conclusions with its conjugate u,
which is a corepresentation too, we have as well the following two equivalences:

Re Hom(l,u®u) < uu' =1
R* € Hom(u®u,1) <= u'u=1
Thus, we are led to the biunitarity conditions, and we are done. U
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As a consequence of this computation, we have the following result:

Proposition 4.5. The Tannakian category C' = (C(k,l)) associated to a Woronowicz
algebra (A, u) must contain the operators

Ril—>Z€¢®6¢

R*(e; ®ej) = i
in the sense that we must have:
Re C(D,0ce) , ReC(D e0)
R* € C(oe,)) , R" € (C(e0,0)
In fact, C' must contain the whole tensor category < R, R* > generated by R, R*.

Proof. The first assertion is clear from the above result. As for the second assertion, this
is clear from definitions, because C' = (C(k,[)) is indeed a tensor category. O

Let us formulate now the following key definition:

Definition 4.6. Let H be a finite dimensional Hilbert space. A tensor category over H
is a collection C = (C(k,1)) of subspaces

C(k,1) C L(H®" H?)

satisfying the following conditions:

(1) S,T € C implies ST € C.

(2) If S,T € C are composable, then ST € C.

(3) T € C implies T* € C.

(4) Each C(k,k) contains the identity operator.

(5) C(0,0e) and C((, e0) contain the operator R:1 — Y .e; ® e;.

In relation with the quantum groups, this formalism generalizes the Tannakian category
formalism from Definition 4.2 above, because we have the following result:

Proposition 4.7. Let (A, u) be a Woronowicz algebra, with fundamental corepresentation
u € My(A). The associated Tannakian category C = (C(k,l)), given by

C(k,1) = Hom(u®* u®")
is then a tensor category over the Hilbert space H = CV.
Proof. The fact that the above axioms (1-5) are indeed satisfied is clear, as follows:
(1) This follows from Theorem 4.1.
(2) Once again, this follows from Theorem 4.1.

(3) This once again follows from Theorem 4.1.
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(4) This is clear from definitions.

(5) This follows from Proposition 4.5 above. O

Our main purpose in what follows will be that of proving that the converse of the above
statement holds. In other words, we would like to prove that any tensor category in the
sense of Definition 4.6 must appear as a Tannakian category. We first have:

Proposition 4.8. Given a tensor category C = (C(k,l)), the following algebra, with u
being the fundamental corepresentation of C(UY,), is a Woronowicz algebra:

Ac = CUL)/ (T € Hom(u®™ ,u)|vk,1,¥T € C(k,1))
In the case where C' comes from a Woronowicz algebra (A, v), we have a quotient map:
Ac — A
Moreover, this map is an isomorphism in the discrete group algebra case.

Proof. Given colored integers k,l and an arbitrary linear operator T € L(H®* H®),
consider the following *-ideal of the algebra C(Uy):

I= <T € Hom(u®k,u®l)>

Our claim is that I is a Hopf ideal. Indeed, let us set:
U = Z Wik ® Ukj
k

It is elementary to check that we have the following implication, which proves our claim:
T € Hom(u®", u®) = T € Hom(U®*, U®")

With this claim in hand, Ac appears from C(Uy;) by dividing by a collection of Hopf
ideals, and is therefore a Woronowicz algebra. Since the relations defining Ao are satisfied
in A, we have a quotient map as in the statement:

Ac—>A

Regarding now the last assertion, assume that we are in the case A = C*(I"), with
I' =< ¢1,...,9n > being a finitely generated discrete group. If we denote by R the
complete collection of relations between the generators, then we have:

['=Fy/R

By using now the basic functoriality properties of the group algebra construction, we

deduce from this that we have:
o ()

Thus the quotient map Ac — A is indeed an isomorphism, as claimed. O
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With the above construction in hand, the theorem that we want to prove states that
the operations A — A¢ and C' — Cy are inverse to each other. We first have:

Proposition 4.9. Consider the following conditions:
(1) C = Ca,, for any Tannakian category C'.
(2) A= Ac,, for any Woronowicz algebra (A, u).
We have then (1) = (2). Also, C' C C}y,, is automatic.
Proof. Given a Woronowicz algebra (A, u), let us set C' = C4. By using (1) we have then:
Ca=Ca,
On the other hand, by Proposition 4.8 above we have an arrow:
Ac, = A

Thus, we are in the general situation from Proposition 4.3 above, with a surjective arrow
of Woronowicz algebras, which becomes an isomorphism at the level of the associated
Tannakian categories. We conclude that Proposition 4.3 can be applied, and this gives
the isomorphism of the associated Woronowicz algebras, Ac, = A, as desired.

Finally, the fact that we have an inclusion C' C C}y,, is clear from definitions. O

Summarizing, we would like to prove that we have C'y, C C, for any Tannakian category
C'. Let us begin with some abstract constructions. Following [106], we have:

Proposition 4.10. Given a tensor category C' = C((k,l)) over a Hilbert space H,

B = P ci)yc P BH H) =B | P H™

k|11 <s ||, |1 <s |k|<s
is a finite dimensional C*-subalgebra. Also,

Ec =@ C(k,1) c @ BH™ H*)C B (@ H®’“)

k.l k.l k

is a closed x-subalgebra.
Proof. This is clear indeed from the categorical axioms from Definition 4.6. U

Now back to our reconstruction question, given a tensor category C = (C(k,1)), we
want to prove that we have C' = C}y,,, which is the same as proving that we have:

Ec = Ec,,
Equivalently, we want to prove that we have isomorphisms as follows, for any s € N:
(s) _ m(s)
ES = ECAC

The problem, however, is that these isomorphims are not easy to establish directly. In
order to solve this question, we will use a standard commutant trick, as follows:
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Theorem 4.11. For any C*-algebra B C M, (C) we have the formula
B — B//
where prime denotes the commutant, A’ = {T € M, (C)|Tx = 2T,Vx € A}.

Proof. This is a particular case of von Neumann’s bicommutant theorem [138], which
follows as well from the explicit description of B given in section 3 above. To be more
precise, let us decompose B as there, as a direct sum of matrix algebras:

B=M,(C)&...® M, (C)

The center of each matrix algebra being reduced to the scalars, the commutant of this
algebra is then as follows, with each copy of C corresponding to a matrix block:

B=Co...C

By taking once again the commutant we obtain B itself, and we are done. U

Now back to our questions, we recall that we want to prove that we have C = Cy,,, for
any Tannakian category C'. By using the bicommutant theorem, we have:

Proposition 4.12. Given a Tannakian category C', the following are equivalent:

(1) C = Cha,..
(2) Ec = Eo,_..

(3) Eg) = Egjc, for any s € N.
(4) Eéf)l = E((;j;, for any s € N.
In addition, the inclusions C, C, C, D are automatically satisfied.
Proof. This follows from the above results, as follows:
(1) <= (2) This is clear from definitions.
(2) <= (3) This is clear from definitions as well.

(3) <= (4) This comes from the bicommutant theorem. As for the last assertion,
we have indeed €' C Cy, from Proposition 4.9, and so Ec C E¢, . We therefore obtain

Y ¢ B

A

e and by taking the commutants, this gives Eg) D Eg) , as desired. O

Ac

Summarizing, in order to finish, given a tensor category C' = (C(k, 1)), we would like
to prove that we have inclusions as follows, for any s € N:

B c B

Let us first study the commutant on the right. As a first observation, we have:
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Proposition 4.13. Given a Woronowicz algebra (A, u), we have

E(Csj = End @ u®*

Ikl<s
as subalgebras of the algebra B (Galklés H®k).

Proof. The category C4 is by definition given by:
Ca(k, 1) = Hom(u®* u®")

Thus, according to the various identifications in Proposition 4.10 above, the correspond-

ing algebra Egj appears as follows:

ES = P Hom@®™ u®)c P BH™ H*)=B| P H*

k], |l<s k], |l<s |k|<s

On the other hand, the algebra of intertwiners of P <, u®* is given by:

End @u®k = @ Hom/(u®*, u®") @ B(H®* H*Y =B @H@)k

|k|<s |k, <s [kl <s k|<s
Thus we have indeed the same algebra, and we are done. O

In practice now, we have to compute the commutant of the above algebra. For this
purpose, we can use the following general result:

Proposition 4.14. Given a corepresentation v € M, (A), we have a representation
T+ A — M, (C)

@ = (e(vig))i
whose 1mage 1s given by:
Im(m,) = End(v)’
Proof. The first assertion is clear, with the multiplicativity claim coming from:
(M ))i; = (p @ ¢)A(vy)
= > p(ow)d(vgy)
k

— Z(?TU<90))ik(7Tv(w))kj

k

= (m(@)m(?ﬂ))m
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Let us first prove the inclusion C. Given ¢ € A* and T € End(v), we have:
[mo(9), T] =0 = Z@(Uik)Tkj = ZEk‘P(Ukj)aViyj
k k

= ¥ (Z Uik:Tk:j> = (Z Tik”kzj) Vi, j
K k

= ((WT)ij) = e((T)i;), Vi, j
But this latter formula is true, because T € End(v) means that we have:
vl =Tv

As for the converse inclusion D, the proof is quite similar. Indeed, by using the bicom-
mutant theorem, this is the same as proving that we have:

Im(m,)" C End(v)
But, by using the above equivalences, we have the following computation:
T € Im(m,) <= [m(p),T] =0,V

= o((vT)y) = e((Tv)i), Ve, 4,7

— VvVI'=Tv
Thus, we have obtained the desired inclusion, and we are done. O
By combining now the above results, we obtain:

Theorem 4.15. Given a Woronowicz algebra (A, u), we have

ES = Im(z,)
as subalgebras of B <@|k|§5 H®k>, where the corepresentation v is the sum
@
|k|<s
and where m, : A* — M, (C) is given by o — (p(vij))ij-
Proof. This follows indeed from Proposition 4.13 and Proposition 4.14. U

We recall that we want to prove that we have Eéf ' ¢ Eéfj/c, for any s € N. For this
purpose, we must first refine Theorem 4.15, in the case A = Ac. In order to do so, we
will use an explicit model for Ac. In order to construct such a model, let < u;; > be the
free *-algebra over dim(H)? variables, with comultiplication and counit as follows:

Aluyy) = Z Uik & U
k

e(uij) = 04
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Following [106], we can model this *-bialgebra, in the following way:

Proposition 4.16. Consider the following pair of dual vector spaces,

F =P B (H*)
F* =B (H®)

and let fij, fi; € F™* be the standard generators of B(H)*, B(H)*.
(1) F* is a x-algebra, with multiplication ® and involution fi; <> f;.
(2) F* is a x-bialgebra, with A(fi;) = >, fir ® fr; and e(fij) = 6i;.
(3) We have a *-bialgebra isomorphism < w;; >~ F*, given by u;; — fi;.

Proof. Since I is spanned by the various tensor products between the variables fi;, f7%,
we have a vector space isomorphism as follows, given by w;; — fij, uj; — [

< u; >~ FF
The corresponding *-bialgebra structure induced on £ is the one in the statement. [
Now back to our algebra Aq, we have the following modelling result for it:
Proposition 4.17. The smooth part of the algebra Ac is given by
Ac ~ F*/J

where J C F* s the ideal coming from the following relations,

Z ﬂ1.-.iz7p1~~~Pkfp1j1 ®...® fpkjk

P1y--;Pk
= E : Tq1~~-f11,]'1--~jkfi1q1 ®...0 fimz ;o Vi,
q1,---,91

one for each pair of colored integers k,l, and each T € C(k,1).

Proof. Our first claim is that Ag appears as enveloping C*-algebra of the following uni-
versal *-algebra, where u = (u;;) is regarded as a formal corepresentation:

Ac = <(uij)i7j:17,,,,N T € Hom(u®, u®), ¥k, I,vT € C(k, l)>

Indeed, this follows from Proposition 4.4 above, because according to the result there,
the relations defining C(Uy;) are included into those that we impose.

With this claim in hand, the conclusion is that we have a formula as follows, where
is the ideal coming from the relations 7' € Hom/(u®* u®), with T € C(k,1):

AC =< U; > /[
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Now if we denote by J C F* the image of the ideal I via the x-algebra isomorphism
< u;; >~ F* from Proposition 4.16, we obtain an identification as follows:

ACZF*/J

In order to compute J, let us go back to I. With standard multi-index notations,
and by assuming that k,[ € N are usual integers, for simplifying, a relation of type
T € Hom(u®*, u®") inside < u;; > is equivalent to the following conditions:

E , ﬂynihplmpkumh - Upggy

P1y--5Pk
= E : T¢11~--tIzJ1-~jkui1q1"'uim s Vi
q1,---,9q1

Now by recalling that the isomorphism of *-algebras < w;; >— F* is given by u;; — fij,
and that the multiplication operation of F* corresponds to the tensor product operation
®, we conclude that J C F™* is the ideal from the statement. U

With the above result in hand, let us go back to Theorem 4.15. We have:
Proposition 4.18. The linear space Ay, is given by the formula
A = {a e F’Tak — T \VT € C(k,l)}
and the representation
T Ag — B @ H®*

|k|<s

appears diagonally, by truncating:
ot a — (ag) gk
Proof. We know from Proposition 4.17 that we have:
Ao~ F*/J
But this gives a quotient map F* — A¢, and so an inclusion as follows:
AL C F
To be more precise, we have the following formula:
Ar, = {a c F)f(a) —0,vf e J}
Now since J =< fr >, where fr are the relations in Proposition 4.17, we obtain:

A = {a e F(fT(a) —0,VT € c}
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Given T € C(k,1), for an arbitrary element a = (ay), we have:
fr(a) =0

TQl---lejl---jk (al)i1---i17Q1---fIl ) VZ, J

(Tak)zlllvjljk = (alT)lel,jljk 9 \V//L;j
<— Ta=aT
Thus, the dual space A7, is given by the formula in the statement.

It remains to compute the representation m,, which appears as follows:

T Ap = B @ H®*
Ikl<s
With a = (a), we have the following computation:
Wv(a)il...z‘k,jl...jk = a(vil...ik,jl...jk>
= (fin ®. ® fiz)(a)
= (ak)il...ik,jl...jk

Thus, our representation 7, appears diagonally, by truncating, as claimed.

In order to further advance, consider the following vector spaces:
Fo=@BH™) . F=@BH™)
|kl<s |k|<s
We denote by a — a, the truncation operation F' — F;. We have:
Proposition 4.19. The following hold:
(1) EY c F,.
(2) E, C F.
(3) Ap = EG.
(4) Im(my) = (E¢)s-
Proof. These results basically follow from what we have, as follows:

(1) We have an inclusion as follows, as a diagonal subalgebra:

F.CcB @H@’k

k| <s

The commutant of this algebra is given by:

Fl = {b € Flb=(by), by € C,Vk}
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On the other hand, we know from the identity axiom for C' that this algebra is contained
inside Eéf ).
F/ C EY
Thus, our result follows from the bicommutant theorem, as follows:

(s) (s)'
F.CE; = F,DE[]

(2) This follows from (1), by taking inductive limits.
(3) With the present notations, the formula of A}, from Proposition 4.18 reads:
c=FnNE;
Now since by (2) we have E{, C F, we obtain from this A}, = Ef..
(4) This follows from (3), and from the formula of 7, in Proposition 4.18. O
Following [106], we can now state and prove our main result, as follows:
Theorem 4.20. The Tannakian duality constructions
C— Ac
A— Cy

are inverse to each other, modulo identifying full and reduced versions.

Proof. According to Proposition 4.9, Proposition 4.12, Theorem 5.15 and Proposition
4.19, we have to prove that, for any Tannakian category C', and any s € N:

ES (B,

By taking duals, this is the same as proving that we have:

{f € F7|fien), = 0} - {f S f|E<Cs>’ = 0}
For this purpose, we use the following formula, coming from Proposition 4.19:
b=
We know that we have:
Ac=F/J

We conclude that the ideal J is given by:
J= {feF*’f‘E,C :0}
Our claim is that we have the following formula, for any s € N:

JOF = {feF; e :o}




QUANTUM GROUPS 73

Indeed, let us denote by X, the spaces on the right. The categorical axioms for C' show
that these spaces are increasing, that their union X = U, X} is an ideal, and that:

Xs=XNF;
We must prove that we have J = X, and this can be done as follows:
“C” This follows from the following fact, for any 7' € C(k, ) with |k[, |I| < s:
(fT)HT}/ =0 = (fT)|EéS)/ =0

= freX;

)

“D” This follows from our description of J, because from Eg C E¢ we obtain:

fper =0 = fig, =0
Summarizing, we have proved our claim. On the other hand, we have:
JNF = {feF* fie zo}mF;
- {feF; fies :o}
= {rer|fim. =0}

Thus, our claim is exactly the inclusion that we wanted to prove, and we are done. [J

As a first application, let us record the following theoretical fact, from [16]:

Theorem 4.21. Each closed subgroup G C U}, appears as an algebraic manifold of the
free complex sphere,

Gc sy
the embedding being given by:
Ui
QCZ‘J' = J

VN
Proof. This follows from Theorem 4.20, by using the following inclusions:
G cUfc syt
Indeed, both these inclusions are algebraic, and this gives the result. O
As a second application of the above results, let us study now in detail the quantum
groups O, Uy. In order to get started, let us get back to the operators R, R*, discussed
in the beginning of this section. We know that these two operators must be present in

any Tannakian category, and in what concerns Uy, which is the biggest N x N compact
quantum group, a converse of this fact holds, by contravariant functoriality, as follows:
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Proposition 4.22. The tensor category < R, R* > generated by the operators
R:1— Z e X e

R(e; @ ej) = 0y
produces via Tannakian duality the algebra C(Uy,).

Proof. By Proposition 4.5 the intertwining relations coming from R, R*, and so from any
element of the tensor category < R, R* >, hold automatically, so the quotient operation
in Proposition 4.8 is trivial, and we obtain the algebra C(Uy,) itself, as stated. O

As a conclusion, in order to compute the Tannakian category of Uy, we must simply
solve a linear algebra question, namely computing the category < R, R* >.

Regarding now O}, the result here is similar, as follows:

Proposition 4.23. The tensor category < R, R* > generated by the operators
R:1— Z e X e

R*<€i X ej) = 51']‘
with identifying the colors, o = e, produces via Tannakian duality the algebra C(OY).

Proof. By Proposition 4.5 the intertwining relations coming from R, R*, and so from any
element of the tensor category < R, R* >, hold automatically, so the quotient operation
in Proposition 4.8 is trivial, and we obtain the algebra C(OF;) itself, as stated. O

Our goal now will be that of reaching to a better understanding of R, R*. In order to
do so, we use a diagrammatic formalism, as follows:

Definition 4.24. Let k,l be two colored integers, having lengths |k|, |l| € N.

(1) Py(k,l) is the set of pairings between an upper row of |k| points, and a lower row
of |l| points, with these two rows of points colored by k1.

(2) Pa(k,l) C Pa(k,l) is the set of matching pairings, whose horizontal strings connect
o —o or e— e, and whose vertical strings connect o — e.

(3) NCy(k,l) C Py(k,l) is the set of pairings which are noncrossing, in the sense that
we can draw the pairing as for the strings to be noncrossing.

(4) NCa(k,l) C Po(k,l) is the subset of noncrossing matching pairings, obtained as
an intersection, NCa(k,1) = NCy(k,1) N Pa(k,1).

The relation with the Tannakian categories of linear maps comes from the fact that we
can associate linear maps to the pairings, as in [38], as follows:
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Definition 4.25. Associated to any pairing m € Py(k,l) and any N € N is the linear map
T, : (CM)®F — (CM)®!
given by the following formula, with {e1, ... ,ex} being the standard basis of CV,

Tﬂ’(eil®"'®eik):26ﬂ’(z~1 Z.k)eﬁ@...@ejl

Jr o

and with the Kronecker symbols 6, € {0,1} depending on whether the indices fit or not.

To be more precise here, in the definition of the Kronecker symbols, we agree to put
the two multi-indices on the two rows of points of the pairing, in the obvious way. The
Kronecker symbols are then defined by §, = 1 when all the strings of 7 join equal indices,
and by 0, = 0 otherwise. Observe that all this is independent of the coloring.

Here are a few basic examples of such linear maps:

Proposition 4.26. The correspondence ™ — T has the following properties:
(1) TH = R.
(2) T, = R

(3) T u 13 id.

(4) T

Proof. We can assume if we want that all the upper and lower legs of 7 are colored o.
With this assumption made, the proof goes as follows:

(1) We have N € Py((), 00), and so the corresponding operator is a certain linear map
Tr : C — CN @ CV. The formula of this map is as follows:

Th(1) = ) dnli jlei®e;
= Z(Sijei@ej
ij
= Zei®€i

We recognize here the formula of R(1), and so we have T = R, as claimed.

(2) Here we have U € P»(0o, (), and so the corresponding operator is a certain linear
form T : CN @ CY — C. The formula of this linear form is as follows:

Thie; ®ej) = (i j)
= 0y

Since this is the same as R*(e; ® e;), we have T, = R*, as claimed.
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(3) Consider indeed the “identity” pairing ||...|| € Pa(k, k), with k = oo ...00. The
corresponding linear map is then the identity, because we have:

Tiglea®...®ey) = Y Oy ( 1 k) € ® ... Qe

L Jioeee Jk
J1---Jk

= D GupGuanen ©-.. O ¢,
Ji--Jk

= €i1®‘-'®€ik

(4) In the case of the basic crossing X € P,(oo,00), the corresponding linear map
Ty : CYN ® CN — CY @ CV can be computed as follows:

Ty(e; ®e;) = Z5X (li: ‘?) er Qe
kil

= Z didjrer X e
Kl
= €5 X e;
Thus we obtain the flip operator ¥(a ® b) = b ® a, as claimed. O
We have the following key result, from [38]:
Proposition 4.27. The assignement m — T, is categorical, in the sense that we have

Tﬂ' ® Ta == 7—‘[7T0']

T,T, = Ny,
T =Ty
where ¢(m, o) are certain integers, coming from the erased components in the middle.
Proof. The formulae in the statement are all elementary, as follows:

(1) The concatenation axiom follows from the following computation:

(T, @T,)(€, Q.. Qe, ey, ®...Q ex,)

B i ki ...k
— 225”<j1 i)&(h ZS)ej1®...®ejq®eh®...®els

J1edg lyols

B oy ko R |

— Z 25[7“’1<j1 R A ls)eﬂ®...®ejq®ell®...®els
Ji--Jg i ds

ﬂwa](eil ®---®eip®€kl ®®€kr)
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(2) The composition axiom follows from the following computation:

TwTa(eil X...Q Gip)

B i Jio
= 25”<j1 jq> Z5ﬂ(k1 m)e’“@'“@e’“

J1--Jq k1.
o i

= 3 N (e e e
ki...kr Lo

= NC(”"’)T[g](eil ®...Qe€,)
(3) Finally, the involution axiom follows from the following computation:
Ti(ej, ®...®ej,)
= Z <Tre;; ®...Q¢€j,),6,Q...Q€, >e &...0¢€,

i1...0p

i1 ... 1
11...0p
= Tl ®...0¢;,)
Summarizing, our correspondence is indeed categorical. U

We can now formulate a first non-trivial result regarding Oy, Uy, which is a Brauer
type theorem for these quantum groups, as follows:

Theorem 4.28. For the quantum groups Ok, Uy we have

Hom(u®* u®) = span (T7r T E D(k,l))

with the sets on the right being respectively as follows,
D = NCy, NCy
and with the correspondence m — Ty being constructed as above.

Proof. We know from Proposition 4.22 that Uy, corresponds via Tannakian duality to
the category C' =< R, R* >. On the other hand, it follows from the above categorical
considerations that this latter category is given by the following formula:

C = span <T7r T e NCg)
To be more precise, consider the following collection of vector spaces:
C'" = span (T7r T E NCg)

According to the various formulae in Proposition 4.27, these vector spaces form a tensor
category. But since the two matching semicircles generate the whole collection of matching
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pairings, via the operations in Proposition 4.27, we obtain from this C' = C"’. As for the
result for OF;, this follows by adding to the picture the self-adjointness condition u = 1,
which corresponds, at the level of pairings, to removing the colors. Il

By using the same methods, namely the general Tannakian duality result established
above, we can recover as well the classical Brauer theorem [54], as follows:

Theorem 4.29. For the groups Oy, Uy we have
Hom(u®* u®") = span (T7r

© € D(k, l))
with D = Py, Py respectively, and with m — T, being constructed as above.

Proof. As already mentioned, this result is due to Brauer [54], and is closely related to
the Schur-Weyl duality [144]. There are several proofs of this result, one classical proof
being via classical Tannakian duality, for the usual closed subgroups G' C Uy.

In the present context, we can deduce this result from the one that we already have,
for O, Uy The idea is very simple, namely that of “adding crossings”, as follows:

(1) The group Uy C Uy is defined via the following relations:
[wij, up] =0
[, U] = 0
But these relations which tell us that the following operators must be in the associated
Tannakian category C"

T. , ==X
. , ==%
Thus the associated Tannakian category is C' = span(T,|r € D), with:

D =< NC3, %, ¥ >=P,
Thus, we are led to the conclusion in the statement.
(2) In order to deal now with Oy, we can simply use the following formula:
Oy =05 NUy

At the categorical level, this tells us that the associated Tannakian category is given
by C' = span(T,|r € D), with:

D =< NCy, Py >= P,
Thus, we are led to the conclusion in the statement. Il

The above material was just an introduction to the compact quantum groups and their
representation categories. For more, including various generalizations, we refer to [76],
[77], [78], [79], [89], [128], [130], [146], [147], [148], [149], [150].
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5. Free rotations

Let us begin with a summary of the Brauer type results established in the previous
section. The statement here, collecting what we have so far, is as follows:

Theorem 5.1. For the basic unitary quantum groups, namely

Uy U

On

Ox
the intertwiners between the Peter-Weyl representations are given by

Hom(u®* u®") = span (T7r TE D(k,l))

with the linear maps T, associated to the pairings m being given by

Tﬂ(6i1®"'®6ik): Zéw(l-l Zk)€j1®...®€jl

Ju oo

and with the corresponding sets of pairings D being as follows,

Py NC,

Py Ny

with calligraphic standing for matching, and with NC standing for noncrossing.

Proof. This is indeed a summary of the results that we have, established in the previous
section, and coming from Tannakian duality, via some combinatorics. U

In order to work out some concrete applications, we must understand if the above linear
maps 1), are linearly independent or not. Let us start with:

Proposition 5.2. To any partition 7 € P(k) let us associate the vector
fﬂ- = Z (57T(’L.1,...,7;k)62'1 ®®€Zk
i
with the Kronecker symbols being defined as usual, according to whether the indices fit or
not. The Gram matriz of these vectors is then given by

Gi(m,0) = NI™vel

where TV o € P(k) is obtained by superposing 7,c, and |.| is the number of blocks.
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Proof. According to the formula of the vectors &, we have:

<& > = ) Oalin,. . i)0e(in, ... k)

i1

— Z (57r\/a(i17 s ,ik)

i1
— N|7rV0|
Thus, we have obtained the formula in the statement. Il
As an illustration, at k = 2 we have P(2) = {||,M}, and the Gram matrix is:
N2 N

= (% )
At k = 3 now, we have P(3) = {|||,N],11,|M, M1}, and the Gram matrix is:

N3 N2 N2 N?2 N

N N2 N N N

Gs=|N*> N N> N N
N} N N N? N
N N N N N

In what follows we will compute the determinant of G, which will solve the linear
independence problem for the vectors &,. Let us start with:

Definition 5.3. Given two partitions w,0 € P(k), we write 1 < o if each block of 7 is
contained in a block of o.

Observe that this order is compatible with the previous convention for 7 V o, in the
sense that the V operation is the supremum operation with respect to <. At the level of
examples, at k = 2 we have P(2) = {||,M}, and the order relation is as follows:

<n
At k = 3 now, we have P(3) = {||[,N|,11,|M,T1}, and the order relation is:
IF<nlmn<m

Summarizing, this order is very intuitive, and simple to compute. By using now this
order, we can talk about the Mobius function of P(k), as follows:

Definition 5.4. The Mébius function of any lattice, and so of P(k), is given by

1 ifr=0
o) =< = o umT) ifm<o
0 if mrLo

with this construction being performed by recurrence.
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This is something standard in combinatorics. As an illustration here, let us go back to
the set of 2-point partitions, P(2) = {||,}. We have by definition:
udll 1) = p(m,m) =1

Next in line, we know that we have || < I, with no intermediate partition in between,
and so the above recurrence procedure gives:

pdll, 1) = —pd 1) = 1
Finally, we have M £ ||, and so the last value of the Mdbius function is:

p( 1) =0
Thus, as a conclusion, we have computed the Mobius matrix Ms(m, o) = u(m, o) of the
lattice P(2) = {||,M}, the formula of this matrix being as follows:

1 -1
w=o )

The computation for P(3) = {|||,M],M,|M, M1} is similar, and leads to the following
formula for the associated Mobius matrix:

1 -1 -1 -1 2

01 0 0 -1
Ms=|0 0o 1 0 -1
00 0 1 -1
00 0 0 1

Back to the general case now, the main interest in the Mébius function comes from the
Mobius inversion formula, which states that the following happens:

flo)=) g(m) = glo)= p(wo)f(r)

<o <o

In linear algebra terms, the statement and proof of this formula are as follows:
Theorem 5.5. The inverse of the adjacency matriz of P(k), given by
1 ifn<
Aymo) =3 20
0 frLo
is the Mébius matriz of P, given by My(mw, o) = p(m, o).

Proof. This is well-known, coming for instance from the fact that A, is upper triangular.
Indeed, when inverting, we are led into the recurrence from Definition 5.4. U

As an illustration, for P(2) = {||,M} the formula M, = A;"' appears as follows:

()-01)
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Also, for P(3) = {|||,n1],q, |, T} the formula M; = A3 reads:

-1

1 -1 -1 -1 2 11111
o 1 0 0 -1 01001
0o 0 1 0 —-1]=1001P0T1
o 0 0 1 -1 000171
o o0 0 0 1 00001

Now back to our Gram matrix considerations, we have the following key result, based
on this technology, which basically solves our determinant question:

Proposition 5.6. The Gram matrix is given by Gy = ApLy, where

Li(m.0) NIN=-1)...(N—|n|+1) ifo<nm
T,0) =
R 0 otherwise

and where Ay, = M, ' is the adjacency matriz of P(k).
Proof. We have the following computation, using Proposition 5.2:
Gp(m,0) = NIl
- #{zlzk e {1,...,N}‘keri27r\/a}

_ #{il,...,ike{1,...,N}‘kem:T}

T>1mNVo

= ) N(N-1)...(N—|r|+1)

T>1m\Vo

According now to the definition of Ay, Ly, this formula reads:

Gi(m,o0) = Z Ly(1,0)

T>T
= j{:l4k(ﬂ77)[%(T7U)
= (ApLy)(m,0)
Thus, we are led to the formula in the statement. Il

As an illustration for the above result, at k = 2 we have P(2) = {||,M}, and the above
decomposition Gy = Ay L appears as follows:

(v 3)=6) 5" 8
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At k = 3 now, we have P(3) = {|||,M|, M, |, M1}, and the Gram matrix is:

N3 N2 N2 N2 N
N2 N2 N N N
Gs=|N2 N N2 N N
N2 N N N? N
N N N N N
Regarding L, this can be computed by writing down the matrix Es(m,0) = dp<x|7|,

and then replacing each entry by the corresponding polynomial in N. We reach to the
conclusion that the product AsL3 is as follows, producing the above matrix Gj:

11111 N3 —3N? 42N 0 0 0 0
01001 N? - N N2 - N 0 0 0
AsL; =0 0 1 0 1 N2 - N 0 N?—-N 0 0
000T1°1 N2 - N 0 0 N2—-N 0
00001 N N N N N

In general, the formula G}, = Ay Ly appears a bit in the same way, with Ay being binary
and upper triangular, and with L, depending on N, and being lower triangular.

We are led in this way to the following formula, due to Lindstom [103]:

Theorem 5.7. The determinant of the Gram matriz Gy, is given by
N!
det(Gy) = —_
1 (N —[m])!

meP (k)

with the convention that in the case N < k we obtain 0.

Proof. 1f we order P(k) as usual, with respect to the number of blocks, and then lexico-
graphically, then A is upper triangular, and Ly is lower triangular. Thus, we have:

det(Gk) = det(Ak)det(Lk)

= H Lk <7T7 7T)
= [[¥WV-1)...(N = x|+ 1)
Thus, we are led to the formula in the statement. Il

Getting back now to quantum groups, or rather to the corresponding Tannakian cate-
gories, written as spans of diagrams, we have the following result:
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Theorem 5.8. The vectors associated to the partitions, namely
{gﬂ c ((CN)®k‘7r c P(k)}

are linearly independent for N > k.

Proof. Here the first assertion follows from Theorem 5.7, the Gram determinant computed
there being nonzero for N > k, and the second assertion follows from it. O

As a first application, we can study the laws of characters. First, we have:

Proposition 5.9. For the basic unitary quantum groups, namely

Un

Uy

On

O%

the moments of the main character, which are the numbers

Mk:/Xk
G

depending on a colored integer k, are smaller than the following numbers,

|Pa (k)] ——— [N Ca(k)]

| P (k)| ——— |NCa(k)|
and with equality happening in each case at N > k.

Proof. We have the following computation, based on Theorem 5.1, and on the character
formulae from Peter-Weyl theory, for each of our quantum groups:

/ = dim(Fizu®))
G

= dim <spcm <§7r
< |D(k)|

e D(k)))

Thus, we have the inequalities in the statement, coming from easiness and Peter-Weyl.
As for the last assertion, this follows from Theorem 5.8. O
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In order to advance now, we must do some combinatorics and probability, first by
counting the numbers in Proposition 5.9, and then by recovering the measures having
these numbers as moments. We will restrict the attention to the orthogonal case, which is
simpler, and leave the unitary case, which is more complicated, for later. Since there are
no pairings when k& is odd, we can assume that £ is even, and with the change £ — 2k,
the partition count in the orthogonal case is as follows:

Proposition 5.10. We have the following formulae for pairings,
IPy(2K)| = (2k)!
INCy(2k)| = Cy,

with the numbers involved, double factorials and Catalan numbers, being as follows:

26\ = (2k — 1)(2k — 3)(2k — 5) . ..

1 (2
Ck_k:+1<k>

Proof. We have two assertions here, the idea being as follows:

(1) We must count the pairings of {1,...,2k}. Now observe that such a pairing appears
by pairing 1 to a certain number, and there are 2k — 1 choices here, then pairing the next
number, 2 if free or 3 if 2 was taken, to another number, and there are 2k — 3 choices
here, and so on. Thus, we are led to the formula in the statement, namely:

|Py(2k)] = (2K — 1)(2k — 3)(2k — 5). ..

(2) We must count the noncrossing pairings of {1,...,2k}. Now observe that such a
pairing appears by pairing 1 to an odd number, 2a + 1, and then inserting a noncrossing
pairing of {2,...,2a}, and a noncrossing pairing of {2a + 2,...,2k}. We conclude from
this that we have the following recurrence for the numbers Cj, = |[NC5(2k)]:

Ch= > CuG
a+b=k—1
In terms of the generating series f(z) = >_,-,Cr2", this recurrence gives:

Zf2 _ Z CaCbZa+b+1

a,b>0

= Z Z C,Cy2"

E>1 a+b=k—1

k>1

= f-1
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Thus the generating series satisfies the following degree 2 equation:
zfP—f+1=0

Now by solving this equation, using the usual degree 2 formula, and choosing the
solution which is bounded at z = 0, we obtain:

1—+v1—-14z

) =—%

By using now the Taylor formula for \/z, we obtain the following formula:
12k ,
10-3 5040
k>0

Thus, we are led to the conclusion in the statement. U

Let us do now the second computation, which is probabilistic. We must find the real
probability measures having the above numbers as moments, and we have here:

Theorem 5.11. The standard Gaussian law, and standard Wigner semicircle law
1
g1 o

1
v = 2—\/4 — 22dx
T

have as 2k-th moments the numbers (2k)!! and Cy, and their odd moments vanish.

e 2y

Proof. There are several proofs here, the simplest being as follows:

(1) The moments of the normal law ¢; in the statement are given by:

M, = ke~ 2y

1
1 B PR
= E/R(xk D) (—e /2> dx
= \/%/(kz— 1)k 2" 2dy
T JR

1 )
= (k=1)x—= [ 2" %" /d

( ) \/%/Rx ‘ !
= (k—1)M;_

Thus by recurrence we have My, = (2k)!!, and we are done.
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(2) The moments of the Wigner law 7 in the statement are given by:

1 2
N, = — V4 — 22 2% dx

2 |,

1 ™
— 2_/ V4 — 4cos?t (2cost)* (2sint)dt
T Jo

22k+1 T
= / cos?* ¢ sin? tdt
0

e

92+ (k)21

k3"

3.5-7...(2k—1)

2-4-6...(2k+2)

e, (2h)
OkI2F1 (% + 1)

(2Kk)!

Kk + 1)

T

_ 22k‘+1 .

Here we have used an advanced calculus formula, but a routine computation based on
partial integration works as well. Thus we have N, = C}, and we are done. U

Now back to our orthogonal quantum groups, by using the above we can formulate a
concrete result regarding them, as follows:

Theorem 5.12. For the quantum groups Oy, O}, the main character
X = Z WUij
follows respectively the standard Gaussian, and the Wigner semicircle law

1 2 1
— %2 — V4 —22d
gl \/%e X Y 'Yl 27'[' xr xT

m the N — oo limit.

Proof. This follows by putting together the results that we have, namely Proposition 5.9
applied with N > k, and then Proposition 5.10 and Theorem 5.11. U

In the case of Oy the above result cannot really be improved, the fixed N € N laws
being fairly complicated objects, related to Young tableaux and their combinatorics. In
the case of OF;, however, we will see that some miracles happen, and the convergence in
the above result is in fact stationary, starting from N = 2. Following [1], we have:
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Theorem 5.13. For the quantum group OF, the main character follows the standard
Wigner semicircle law, and this regardless of the value of N > 2:

1
X ~ 2—\/4 — x%dx
T

The irreducible representations of O are all self-adjoint, and can be labelled by positive
integers, with their fusion rules being the Clebsch-Gordan ones,

T QT =Tkt + Vk—t)+2 + - + Tkpi

as for the group SUs. The dimensions of these representations are given by

gL — gkl
q—q!
where q,q~ " are the solutions of X — NX +1 = 0.

dimr, =

Proof. There are several proofs for this fact, the simplest one being via purely algebraic
methods, based on the easiness property of Of; from Theorem 5.1 alone:

(1) In order to get started, let us first work out the first few values of the representations
rr that we want to construct, computed by recurrence, according to the Clebsch-Gordan
rules in the statement, which will be useful for various illustrations:

7"0:1

T =u
rg =u®? —1

rs = u® —2u
ry=u® —3u®? 4+ 1

rs = u®® — 4u® 4+ 3u

(2) We can see that what we want to do is to split the Peter-Weyl representations u®*
into irreducibles, because the above formulae can be written as well as follows:

U,®0:T0

u®t =1y
u®? =1y + 10
u® =13 + 2r,
u®4 :T4—|—37’2+27’0

u® =15 + 4rs + 51y
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(3) In order to get fully started now, our claim, which will basically prove the theorem,
is that we can define, by recurrence on k£ € N, a sequence ry, 71,79, ... of irreducible,
self-adjoint and distinct representations of O}, satisfying:

o = 1
n =u
T+ Tk—2 = Tg—1 Q71
(4) Indeed, at k = 0 this is clear, and at £ = 1 this is clear as well, with the irreducibility

of r1 = u coming from the embedding Oy C OF%. So assume now that 7o,...,75_1 as
above are constructed, and let us construct r,. We have, by recurrence:

Th—1+ Tk—3 = Tpk—2 QT
In particular we have an inclusion of representations, as follows:
Tp—1 C Tg—2 @1
Now since r;_s is irreducible, by Frobenius reciprocity we have:
Th—2 C Tp—1 ® T
Thus, there exists a certain representation r; such that:
Tk + T2 = Tip—1 QT

(5) As a first observation, this representation 7y is self-adjoint. Indeed, our recurrence
formula r, 4+ ry_o = rx_1 ® r1 for the representations rq, 71,72, ... shows that the charac-
ters of these representations are polynomials in x,. Now since Y, is self-adjoint, all the
characters that we can obtain via our recurrence are self-adjoint as well.

(6) It remains to prove that r is irreducible, and non-equivalent to rq,...,7r,_1. For
this purpose, observe that according to our recurrence formula, ry + ry_o = rp_1 ® r1, We
can now split ©u®*, as a sum of the following type, with positive coefficients:

k
u®® = ey + Ch_oTh_o + . ..

We conclude by Peter-Weyl that we have an inequality as follows, with equality precisely
when 7y is irreducible, and non-equivalent to the other summands 7r;:

Zc? < dim(End(u®*))
(7) Now let us use the easiness property of OF. This gives us an upper bound for the
number on the right, that we can add to our inequality, as follows:

Zcf < dim(End(u®*)) < Cy

The point now is that the coefficients ¢; come straight from the Clebsch-Gordan rules,
and their combinatorics shows that Y, ¢Z equals the Catalan number Cj, with the remark
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that this follows as well from the known theory of SU,. Thus, we have global equality in
the above estimate, and in particular we have equality at left, as desired.

(8) In order to finish the proof of our claim, it still remains to prove that r; is non-
equivalent to r,_1, 73, ... But these latter representations appear inside u®*~!, and the
result follows by using the embedding Oy C OF;, which shows that the even and odd
tensor powers of u cannot have common irreducible components.

(9) Summarizing, we have proved our claim, made in step (3) above.

(10) In order now to finish, since by the Peter-Weyl theory any irreducible representation
of O} must appear in some tensor power of u, and we have a formula for decomposing
each u®* into sums of representations r;, as explained above, we conclude that these
representations ry, are all the irreducible representations of OF;.

(11) In what regards now the law of the main character, we obtain here the Wigner law
71, as stated, due to the fact that the equality in (7) gives us the even moments of this
law, and that the observation in (8) tells us that the odd moments vanish.

(12) Finally, from the Clebsch-Gordan rules we have in particular:
TET1 = Tk—1 + Tk41
We obtain from this, by recurrence, with ¢> — Ng +1 = 0:
dimry, =¢"+ ¢+ ... +q¢ "2+ g
But this gives the dimension formula in the statement, and we are done. O

Let us discuss now the relation with SU,. This group is the most well-known group
in mathematics, and there is an enormous quantity of things known about it. For our
purposes, we need a functional analytic approach to it. This can be done as follows:

Theorem 5.14. The algebra of continuous functions on SUy appears as
C(SUz) = C* ((Uz’j)i,j=1,2
where F' is the following matrix,
0 1
(4 0)

Proof. This can be done in several steps, as follows:

uw=FuF ! = unitary)

called super-identity matriz.

(1) Let us first compute SUs. Consider an arbitrary 2 x 2 complex matrix:

v=(23)
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Assuming det U = 1, the unitarity condition U~! = U* reads:

(D=6 9

Thus we must have d = @, ¢ = —b, and we obtain the following formula:

SU, = {(_“b 2) \ laf? + [b]* = 1}

(2) With the above formula in hand, the fundamental corepresentation of SUs, is:

= (% o)

Now observe that we have the following equality:

(a_ b)(o 1>_(—b a_)_(o 1)(& B)

—b a)\-1 0) \—-a —-b) \-1 0)\-b a

Thus, with F' being as in the statement, we have uF' = F'u, and so:
u=FuF~!

We conclude that, if A is the universal algebra in the statement, we have:
A — C(SUy)

(3) Conversely now, let us compute the universal algebra A in the statement. For this
purpose, let us write its fundamental corepresentation as follows:

_f(a b
Y=o d
We have uF' = Fu, with these quantities being respectively given by:
a b 0 1 —-b a
= () (o) = (50Y)
_ 0 1\ (a" b cdr
Fu= <—1 0) (c* d*> - (—a* —b*)
Thus we must have d = a*, ¢ = —b*, and we obtain the following formula:

[ a b
u = _b* CL*

We also know that this matrix must be unitary, and we have:

« [ a b a* —b\ [ aa*+ bb* ba — ab
=1\ _p o b* a ) \a*b* —b*a* a*a+ b*b

«  [a® —=b a b\ [a'a+bb* a*b— ba*
L —b* a*)  \b*'a—ab* aa*+ b
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Thus, the unitarity equations for u are as follows:
aa* =a*a=1—-0bb"=1—-"0"D
ab = ba,a*b = ba*,ab* = a*b,a*b* = b*a”

It follows that a,b,a*,b* commute, so our algebra is commutative. Now since this
algebra is commutative, the involution * becomes the usual conjugation —, and so:

(4

But this tells us that we have A = C'(X) with X C SU,, and so we have a quotient
map C(SUz) — A, which is inverse to the map constructed in (2), as desired. O

Now with the above result in hand, we can see right away the relation with Oy, and
more specifically with OF . Indeed, this latter quantum group appears as follows:

C(03) =C" ((uz‘j)z‘,j=1,2

U=1u= unitary)

Thus, SU, appears from O5 by replacing the identity with the super-identity, or perhaps
vice versa, Oy appears from SU, by replacing the super-identity with the identity. In any
case, these two quantum groups are definitely related by some “twisting” operation, so
they should have similar representation theory. This is indeed the case:

Theorem 5.15. For the group SU,, the main character follows the standard Wigner
semacircle law:

1
X ~ 2—\/4 — x2dx
s

The irreducible representations of SUs are all self-adjoint, and can be labelled by positive
integers, with their fusion rules being the Clebsch-Gordan ones,

T QT = Tlk—1] + Tk—t)+2 + -« + Tkpi
as for the quantum group OF;. The dimensions of these representations are given by
dimr, =k+1
exactly as for the quantum group OF .

Proof. This result is as old as modern mathematics, with many proofs available, all being
instructive. One proof, which is straightforward but rather long, is by taking everything
that has been said so far about Oy, starting from the middle of section 4 above, setting
N = 2, and then twisting everything with the help of the super-identity matrix:

(4 o)
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What happens then is that a Brauer theorem for SU; holds, involving the set D = NCs
as before, but with the implementation of the partitions = — T} being twisted by F. In
particular, we obtain in this way, as before, inequalities as follows:

dim(End(u®*)) < Cy

But with such inequalities in hand, the proof of Theorem 5.13 applies virtually un-
changed, and gives the result, with of course ¢ = 1 in the dimension formula. O

Let us discuss now the unification of the OF; and SU, results. In view of Theorem
5.14, and of the comments made afterwards, the idea is clear, namely that of looking at
compact quantum groups appearing via relations of the following type:

u = FuF~! = unitary

In order to clarify what exact matrices F' € GLy(C) we can use, we must do some
computations. Following [1], [48], we first have the following result:

Proposition 5.16. Given a closed subgroup G C Uy, with irreducible fundamental corep-
resentation u = (u;j), this corepresentation is self-adjoint, u ~ u, precisely when

u=FuF*

for some unitary matriz F' € Uy, satisfying the following condition:
FF = +1

Moreover, when N is odd we must have FF = 1.

Proof. Since u is self-adjoint, u ~ @, we must have u = FuF~!, for a certain matrix
F € GLx(C). We obtain from this, by using our assumption that w is irreducible:

u=FuF' =— a=FuF"
= u:(FF’)u(FF)*l

= FF=cl
— F[F=c¢l
— ceR

Now by rescaling we can assume ¢ = +1, so we have proved so far that:

FF = +1
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In order to establish now the formula FF™* = 1, we can proceed as follows:

(id® Su=u" = (id®S)i=1u
— (id®S)(FuF')=Fu'F!
= o =FuF!
= u=(F*) " 'aF*
—  u=Fu(F)!
— a=F"FuF Y(F)!
— FF*=dl

We have FF* > 0, so d > 0. On the other hand, from FF = +1, FF* = d1 we get:
|det F|* = det(FF) = (£1)V
|det F|? = det(FF*) = d"

Since d > 0 we obtain from this d = 1, and so F'F* = 1 as claimed. We obtain as well
that when N is odd the sign must be 1, and so F'F' = 1, as claimed. Il

It is convenient to diagonalize the matrices F' that we found. Once again following
[48], up to an orthogonal base change, we can assume that our matrix is as follows, where
N =2p+ q and ¢ = £1, with the 1, block at right disappearing if ¢ = —1:

0 1
el 0(0)

L)
We are therefore led into the following definition, from [35]:

Definition 5.17. The “super-space” C¥ is the usual space CV, with its standard basis
{e1,...,en}, with a chosen sign ¢ = £1, and a chosen involution on the set of indices,

i — i
with I being the “super-identity” matriz, Fij; = ;5 for 1 < j and Fyj = €d;5 fori > j.

In what follows we will usually assume that F' is the explicit matrix appearing above.
Indeed, up to a permutation of the indices, we have a decomposition n = 2p+ ¢ such that
the involution is, in standard permutation notation:

(12)...2p—1,2p)(2p+1)...(q)
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Let us construct now some basic compact quantum groups, in our “super” setting.
Once again following [35], let us formulate:

Definition 5.18. Associated to the super-space CX are the following objects:
(1) The super-orthogonal group, given by:

Or = {U € Ux|U = FUF'}
(2) The super-orthogonal quantum group, given by:
C(Of) =C" ((Uij)i,jzl,...,n

As explained in [35], [36], it it possible to considerably extend this list, but for our
purposes here, this is what we need for the moment. We have indeed the following result,
from [35], making the connection with our unification problem for O%, and SUs,:

w=FuF™ = unitary>

Theorem 5.19. The basic orthogonal groups and quantum groups are as follows:
(1) At e = —1 we have O = Spy and Of = Spf;.
(2) Ate=—1 and N = 2 we have Op = O} = SU,.
(3) At e =1 we have Op = Oy and OFf = OF,.

Proof. These results are all elementary, as follows:

(1) At € = —1 this follows from definitions, because the symplectic group Spy C Uy is
by definition the following group:

Spx = {U e UN(U _ FUF—l}

(2) Still at € = —1, the equation U = FUF~! tells us that the symplectic matrices
U € Spy are exactly the unitaries U € Uy which are patterned as follows:

a b

U= <_az3 2)

Thus we have Spy = Us, and the formula Spy = Sp, is elementary as well, via an
analysis similar to the one in the proof of Theorem 5.14 above.

(3) At £ = 1 now, consider the root of unity p = e™/*

50
N

, and set:
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This matrix J is then unitary, and we have:

01\,
(0 )

Thus the following matrix is unitary as well, and satisfies K FK*® = 1:
JO
K= J®)
q
Thus in terms of the matrix V = KUK* we have:
U=FUF! =unitary <= V =V = unitary

We obtain in this way an isomorphism O} = O}, as in the statement, and by passing
to classical versions, we obtain as well Or = Oy, as desired. U

With the above formalism and results in hand, we can now formulate the unification
result for OF; and SU,, which in complete form is as follows:

Theorem 5.20. For the quantum group OF € {O%, Spk} with N > 2, the main character
follows the standard Wigner semicircle law,

1
X ~ 2—\/4 — x%dx
T

the wrreducible representations are all self-adjoint, and can be labelled by positive integers,
with their fusion rules being the Clebsch-Gordan ones,

T QT =Tkt + Vk—t)+2 + - + Tkpi

and the dimensions of these representations are given by

s

q—q!
where q,q~1 are the solutions of X> — NX +1=0. Also, we have Spj = SU,.

dimr, =

Proof. This is a straightforward unification of the results that we already have for O}
and SUs,, the technical details being all standard. See [1]. O

We will be back to O, and OF. later on, first in section 7 below, with a number of more
advanced algebraic considerations, in relation with super-structures and twists, and then
in section 8 below, with a number of advanced probabilistic computations.
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6. UNITARY GROUPS

We have seen in the previous section that the Brauer type results for Oy, O%, Uy, Uy
lead to concrete and interesting consequences regarding Oy, OF;. In this section we discuss
similar results for Uy, Uy,. The situation here is a bit more complicated than for Oy, Oy,
and we will only do a part of the work here, namely algebra and basic probability, with
the other part, advanced probability, being left for later, in section 8 below.

Let us start with a summary of what we know so far about Uy, Uy
Theorem 6.1. For the basic unitary quantum groups, namely
Un C Uy
the intertwiners between the Peter-Weyl representations are given by

Hom(u®* u®) = span (T7r 7 € D(k, l))

with the linear maps T associated to the pairings m being given by

T,r(eh@...@eik)zz(sﬂ(ji j’;)eh@...@ejl

and with the pairings D being as follows, with calligraphic standing for matching:
Py D NCQ

At the level of the moments of the main character, we have in both cases

[ < 1pw)

with D being the above sets of pairings, with equality happening at N > k.

Proof. This is indeed a summary of the results that we have, established in the previous
sections, and coming from Tannakian duality, via some combinatorics. To be more precise,
the Brauer type results are from section 4, the estimates for the moments follows from this
and from Peter-Weyl, as explained in section 5, and finally the last assertion, regarding
the equality at N > k, is something more subtle, explained in section 5 above. U

Let us first investigate the unitary group Uy. As it was the case for the orthogonal group
Oy, in section 5 above, the representation theory here is something quite complicated,
related to Young tableaux, and we will not get into this subject. However, once again in
analogy with Oy, there is one straightforward thing to be done, namely the computation
of the law of the main character, in the N — oo limit.

In order to do this, we will need a basic probability result, as follows:
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Theorem 6.2. The moments of the complex Gaussian law, given by

1
Gy ~ E(a + Zb)

with a,b being independent, each following the real Gaussian law g1, are given by
My, = [Pa(k)|

for any colored integer k =oceeo ...

Proof. This is something well-known, which can be done in several steps, as follows:

(1) We recall from section 5 above that the moments of the real Gaussian law ¢;, with
respect to integer exponents k € N are the following numbers:

my, = | Py(k)|
Numerically, we have the following formula, explained as well in section 5:

k!l (k even)
mp —
0 (kodd)

(2) We will show here that in what concerns the complex Gaussian law G, similar
results hold. Numerically, we will prove that we have the following formula, where a
colored integer k = c @@ o ... is called uniform when it contains the same number of o
and e, and where |k| € N is the length of such a colored integer:

M. — (|k]/2)! (K uniform)
7o (k not uniform)

Now since the matching partitions m € Py(k) are counted by exactly the same numbers,
and this for trivial reasons, we will obtain the formula in the statement, namely:

My = |Ps(k)|
(3) This was for the plan. In practice now, we must compute the moments, with respect
to colored integer exponents k = oeeo ..., of the variable in the statement:
1 4
c=—(a+1ib)

V2

As a first observation, in the case where such an exponent K = oceeo. .. is not uniform
in o, e, a rotation argument shows that the corresponding moment of ¢ vanishes. To be
more precise, the variable ¢ = wc can be shown to be complex Gaussian too, for any
w € C, and from Mj(c) = My(c') we obtain My (c) = 0, in this case.
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(4) In the uniform case now, where k = o e e 0. .. consists of p copies of o and p copies
of e, the corresponding moment can be computed as follows:

My — / (cc)?

_ 1 2 2\p

— i (p)/a2s/b2p—2s
2p — \s

_ 2lp S (p)(Qs)!!(Qp—Zs)!!

S

1 p! (2s)!  (2p — 2s)!
w = sl(p—s)! 2% 2075(p — s)!

7! Z 2s\ (2p — 2s
4 —\s p—Ss
(5) In order to finish now the computation, let us recall that we have the following
formula, coming from the generalized binomial formula, or from the Taylor formula:

= (E)
I+t = \k/)\4
By taking the square of this series, we obtain the following formula:
1 3 2k\ (2s) [—t\""*
L+t 4=\k/\s/\ 4
—t\” 25\ [2p — 2s
-2(7) 2 ()0)

P S

Now by looking at the coefficient of t* on both sides, we conclude that the sum on the
right equals 4. Thus, we can finish the moment computation in (4), as follows:

p!
Mpzﬁxélp:p!

(6) As a conclusion, if we denote by |k| the length of a colored integer k = ceeo. ..,
the moments of the variable ¢ in the statement are given by:

M. — (|k]/2)! (K uniform)
"o (k not uniform)
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On the other hand, the numbers |Py(k)| are given by exactly the same formula. Indeed,
in order to have matching pairings of k£, our exponent £ = o e @ o ... must be uniform,
consisting of p copies of o and p copies of e, with p = |k|/2. But then the matching
pairings of k correspond to the permutations of the e symbols, as to be matched with o
symbols, and so we have p! such matching pairings. Thus, we have the same formula as
for the moments of ¢, and we are led to the conclusion in the statement. U

We should mention that the above proof is just one proof among others, designed
for a reader having 0 background or almost in probability. There is a lot of interesting
mathematics behind the complex Gaussian variables, whose knowledge can avoid some of
the above computations, and we recommend here any good probability book.

By getting back now to the unitary group Uy, with the above results in hand we can
formulate our first concrete result about it, as follows:

Theorem 6.3. For the unitary group Uy, the main character
X = Z U
follows the standard complexr Gaussian law
x ~ Gi
in the N — oo limit.

Proof. This follows by putting together the results that we have, namely Theorem 6.1
applied with N > k, and then Theorem 6.2. O

As already mentioned above, as it was the case for the orthogonal group Oy, in section
5, the representation theory for Uy at fixed N € N is something quite complicated, related
to the combinatorics of Young tableaux, and we will not get into this subject here.

There is, however, one more interesting topic regarding Uy to be discussed, namely its
precise relation with Oy, and more specifically the passage Oy — Uy.

Contrary to the passage RY — CV, or to the passage Sy ' — S¥~!, which are both
elementary, the passage Oy — Uy cannot be understood directly. In order to understand
this passage we must pass through the corresponding Lie algebras, a follows:

Theorem 6.4. The passage On — Uy appears via Lie algebra complexification,
ON — 0N — U, — UN

with the Lie algebra uy being a complezification of the Lie algebra oy .
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Proof. This is something rather philosophical, and advanced as well, that we will not
really need here, the idea being as follows:

(1) The unitary and orthogonal groups Uy, Oy are both Lie groups, in the sense that
they are smooth manifolds, and the corresponding Lie algebras uy, oy, which are by
definition the respective tangent spaces at 1, can be computed by differentiating the
equations defining Uy, Oy, with the conclusion being as follows:

Uy = {A € MN((C)‘A* — —A}

on = {B e MN(R)(Bt — —B}

(2) This was for the correspondences Uy — uy and Oy — oy. In the other sense,
the correspondences uy — Uy and oy — Oy appear by exponentiation, the result here
stating that, around 1, the unitary matrices can be written as U = e”, with A € uy, and
the orthogonal matrices can be written as U = e, with B € oy.

(3) In view of all this, in order to understand the passage Oy — Uy it is enough to
understand the passage oy — uy. But, in view of the above explicit formulae for oy, uy,
this is basically an elementary linear algebra problem. Indeed, let us pick an arbitrary
matrix A € My(C), and write it as follows, with B, C' € My (R):

A=B+:iC
In terms of B, C, the equation A* = —A defining the Lie algebra uy reads:
B'=-B
C'=C

(4) As a first observation, we must have B € oy. Regarding now C, let us decompose
it as follows, with D being its diagonal, and C’ being the reminder:

C=D+C(C

The reminder C’ being symmetric with 0 on the diagonal, by swithcing all the signs
below the main diagonal we obtain a certain matrix C’ € oy. Thus, we have decomposed
A € uy as follows, with B, C" € oy, and with D € My (R) being diagonal:

A= B+iD+iC"

(5) As a conclusion now, we have shown that we have a direct sum decomposition of
real linear spaces as follows, with A C My(R) being the diagonal matrices:

UNZUN@A@ON

Thus, we can stop our study here, and say that we have reached the conclusion in the
statement, namely that uy appears as a “complexification” of oy. O
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As before with many other things, that we will not really need in what follows, this
was just an introduction to the subject. More can be found in any Lie group book.

Let us discuss now the unitary quantum group Uy. We have 3 main topics to be
discussed, namely the character law with N — oo, the representation theory at fixed
N € N, and complexification, and the situation with respect to Uy is as follows:

(1) The asymptotic character law appears as a “free complexification” of the Wigner
law, with the combinatorics being similar to the classical case one.

(2) The representation theory is definitely simpler, with the fusion rules being given
by a “free complexification” of the Clebsch-Gordan rules, at any N > 2.

(3) As for the complexification aspects, here the situation is extremely simple, with
the passage OF, — U}, being a usual free complexification.

More in detail now, let us first discuss the character problematics for Uy, or rather
the difficulties that appear here. We have the following theoretical result, to start with,
coming from the general C*-algebra theory developed in section 1 above:

Theorem 6.5. Given a C*-algebra with a faithful trace (A,tr), any normal variable,
aa* =a*a

has a “law”, which is by definition a complex probability measure p € P(C) satisfying:

tr(a®) :/Czkdu(z)

This law is unique, and is supported by the spectrum o(a) C C. In the non-normal case,
aa”® # a*a, such a law does not exist.

Proof. We have two assertions here, the idea being as follows:

(1) In the normal case, aa* = a*a, the Gelfand theorem, or rather the subsequent
continuous functional calculus theorem, tells us that we have:

<a>=C(c(a))

Thus the functional f(a) — tr(f(a)) can be regarded as an integration functional on
the algebra C'(o(a)), and by the Riesz theorem this latter functional must come from a
probability measure p on the spectrum o(a), in the sense that we must have:

/fdu

We are therefore led to the conclusions in the statement, with the uniqueness assertion
coming from the fact that the elements a*, taken as usual with respect to colored integer
exponents, k = oeeo ..., generate the whole C*-algebra C(o(a)).
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(2) In the non-normal case now, aa* # a*a, we must show that such a law does not
exist. For this purpose, we can use a positivity trick, as follows:

ac* —a*a #0 = (aa* —a*a)® >0
= aa’aa” —aa’a*a — a*aaa” + a*aa*a > 0
— tr(aa*aa” — aa*a*a — a*aaa* + a*aa*a) > 0
= tr(aa”aa” + a*aa*a) > tr(aa*a*a + a*aaa™)
= tr(eaa*aa”) > tr(aaa*a”)

Now assuming that a has a law p € P(C), in the sense that the moment formula
in the statement holds, the above two different numbers would have to both appear by
integrating |z|* with respect to this law u, which is contradictory, as desired. O

All the above might look a bit abstract, so as an illustration here, consider the following
matrix, which is the simplest example of a non-normal matrix:

0 1
7= (i o)
We have then the following formulae, which show that Z has no law, indeed:

xRy _ 0 0 _
tr(ZZZZ)—tr(O 0)—0

e (1 0)_1

Getting back now to Uy, its main character is not normal, so it does not have a law
p € P(C). Here is a concrete illustration for this phenomenon:

Proposition 6.6. The main character of Uy, satisfies, at N > 4,

/ XXXt =1
Uy

/ XXX =2
Uy,

and so this main character x does not have a law p € P(C).

Proof. This follows from the last assertion in Theorem 6.1, which tells us that the moments
of x are given by the following formula, valid at any N > k:

/ V= VG ()]
v
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Indeed, we obtain from this the following formula, valid at any N > 4:

/ XXX = [NCy(ooee)]
Uy

= |m|

- 1

On the other hand, we obtain as well the following formula, once again at N > 4:

/U+XX*XX* = |NCs(ceoce)]

NN, Al
= 2
Thus, we have the formulae in the statement. Now since we cannot obtain both 1 and
2 by integrating |z|?> with respect to a measure, our variable has no law p € P(C). O

Summarizing, we are a bit in trouble here, but we can nevertheless advance, in connec-
tion with our questions, in the following rather formal way:

Definition 6.7. Given a C*-algebra with a faithful trace (A, tr), we call a variable a € A
circular when its moments are given by:

tr(a®) = INCy(K)|
In this case we also write a ~ 1'1, and call 'y the Voiculescu circular law.

In other words, what we are doing here is calling I'; the “formal law” having as moments
the numbers My, = |NCz(k)|. We will see later, in section 8 below, some theory here. We
will see there as well that the passage v, — I'i is similar to the passage g1 — Gi, in
the sense that, with suitable definitions for everything, I'; can be alternatively defined as
follows, with «, f being “free”, each following the Wigner semicircle law ~;:

1 .
Iy~ E(Of + i)

In what follows, in order to do our quantum group work for Uy, we will use the above
definition as it is. We will also need the following result, which is the standard illustration
for the above-mentioned freeness decomposition of the circular variables:

Theorem 6.8. Let H be the Hilbert space having as basis the colored integers k = ceeo. . .
and consider the shift operators S : k — ok and T : k — ek. We have then

S+ 8%~ Y1
S + T* ~ Fl
with respect to the state p(T) =< Te,e >, where e is the empty word.
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Proof. This is standard free probability, the idea being as follows:

(1) We must compute the moments of the shift S : k — ok with respect to the state
©(T) =< Te,e >. Our claim is that these moments are given by:

< (S+ 5%, e >= [NCy(k)|

Indeed, when expanding (S + S*)* and computing the value of ¢ : T' —< Te, e >, the
only contributions will come via the formula S*S = 1, which must succesively apply, as
to collapse the whole product of S, S* variables into a 1 quantity. But these applications
of §*S = 1 must appear in a non-crossing manner, and so the contributions, which are
each worth 1, are parametrized by the partitions 7 € NCy(k). Thus, we obtain the above
moment formula, which shows that we have S + S* ~ 71, as claimed.

(2) The proof of the second formula is similar. With S : k — ok and T': k — ek, our
claim is that we have the following moment formula:

< (S+T") e e >= [NCy(k)|

Indeed, let us expand the quantity (S + T™)*, and apply the state ¢. This time the
contributions will come via the formulae S*S = 1, T*T = 1, which must succesively
apply, as to collapse the whole product of S, S* T, T* variables into a 1 quantity. As
before, these applications of S*S = 1, T*T = 1 must appear in a non-crossing manner,
but what happens now, in contrast with (1) above, where S + S* was self-adjoint, is that
at each point where the exponent k has a o entry we must use 7*7T = 1, and at each point
where the exponent k has a e entry we must use S*S = 1. Thus the contributions, which
are each worth 1, are parametrized by the partitions 7 € NCy(k). Thus, we obtain the
above moment formula, which shows that we have S + T* ~ I'y, as claimed. O

We will be back with more explanations on all this in section 8 below. For our purposes
now, the above definition and theorem are all we need.

Getting back now to the quantum group U, we can reformulate the main result that
we have so far about it, by using the above notions, as follows:

Theorem 6.9. For the quantum group Uy with N > 2 we have

Hom(u®* u®) = span (T7r

Te D(k;,l))

and at the level of the moments of the main character we have

/ V< INC (k)|
U+

N

with equality at N > k, the numbers on the right being the moments of I'y.
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Proof. This is something that we already know. To be more precise, the Brauer type result
is from section 4, the estimate for the moments follows from this and from Peter-Weyl,
as explained in section 5, the equality at NV > k is something more subtle, explained in
section 5, and the last statement comes from the above discussion. Il

With the above result in hand, we can now go ahead and do with Uy, exactly what
we did with O, in section 5, with modifications where needed, namely constructing the
irreducible representations by recurrence, using a Frobenius duality trick, computing the
fusion rules, and concluding as well that we have xy ~ I'y, at any N > 2.

In practice, all this will be more complicated than for O}, mainly because the fusion
rules will be something new, in need of some preliminary combinatorial study. These
fusion rules will be a kind of “free Clebsch-Gordan rules”, as follows:

Ty @1 = E Txz
k=xy,l=yz

Let W be the set of colored integers k = ceeo ..., and consider the complex algebra
E spanned by W. We have then an isomorphism, as follows:

(C < XaX* >7+7') = (Ea+a)

X—=0 , X"—oe

We define an involution on our algebra FE., by antilinearity and antimultiplicativity,

according to the following formulae, with e being as usual the empty word:
e=¢ , O=e e —=o0

Y

With these conventions, we have the following result:

Proposition 6.10. The map x : W x W — E given by
T Xy= Z ab
r=ag,y=gb

extends by linearity into an associative multiplication of E.

Proof. Observe first that x is well-defined, the sum being finite. Let us prove now that
X is associative. Let z,y,z € W. Then:

(xxy) xz = Z ab x z

r=ag,y=gb

= Z cd

r=ag,y=gb,ab=ch,z=hd
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Now observe that for a,b,c, h € W the equality ab = ch is equivalent to b = uh, c = au
with uw € W, or to a = cv, h = vb with v € W. Thus, we have:

(rxy)xz = Z aud

r=ag,y=guh,z=hd
+ E cd
z=cvg,y=gb,z=bvd

A similar computation shows that z x (y X z) is given by the same formula. O

Next, we have the following result:

Proposition 6.11. Consider the following morphism, with S, T being the shifts,
P <E7 -+, ) - (B(ZQ(W))a =+, O)

a— S+T"
and let E,, C E be the linear space generated by the words of W having length < n.

(1) If J: E — E is the map f — P(f)e, then (J — Id)E,, C E,_y for any n.
(2) J is an isomorphism of x-algebras (E,+,-) ~ (E,+, X).

Proof. We have several assertions here, the idea being as follows:
(1) Let f € E. We have then the following formula:
Pla)f=(S+T")f=0xf
Thus, for any g € E, we have the following formula:
J(eg) = P(0)J(g)
= ox J(g)
= J(o) x J(g)
The same argument shows that we have, for any g € E:
J(eg) = J(e) x J(g)

Now the algebra (E, +, -) being generated by o and e, we conclude that .J is a morphism
of algebras, as follows:

J:(E,+,) = (E,+, X)
We prove now by recurrence on n > 1 that we have:
(J—Id)E, C E,4

At n =1 we have J(o) = o, J(e) = @ and J(e) = ¢, and since E} is generated by e, o, o,
we have J = Id on E;. Now assume that this is true for n, and let k € E,,,,1. We write
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k=of +eg+ h with f,g,h € E,, and we have:
(J —Id)k
J(of +eg+h)—(of +eg+h)
= [(S+T)J()+ S+ T)J(g) + J(h)] = [Sf+Tg+h
= SU) = N+TU(g) —g)+TI(f) + 5 (g) + (J(h) = h)

By using the recurrence assumption, applied to f, g, h we find that E, contains all the
terms of the above sum, and so contains (J — Id)k, and we are done.

(2) Here we have to prove that J preserves the involution %, and that it is bijective.
We have Jx = *J on the generators {e, o, e} of E, so J preserves the involution. Also, by
(1), the restriction of J — Id to E, is nilpotent, so J is bijective. U

Following [1], we can now formulate a result about Uy, which is quite similar to the
result for OF; from section 5 above, as follows:

Theorem 6.12. For the quantum group Uy, with N > 2, the main character follows the
Voiculescu circular law,

x ~ T
and the irreducible representations can be labelled by the colored integers, k = oceeo ...,
with ro = 1, 1o = u, re = u, and with the involution and the fusion rules being

Tk = Tg

TE T = E Txz

k=xy,l=yz

where k — k is obtained by reversing the word, and switching the colors.

Proof. This is similar to the proof for O3, as follows:

(1) In order to get familiar with the fusion rules, let us first work out a few values of
the representations rj, computed according to the formula in the statement:

re =1
To = U
Te = U

Too = U XU
Toe —UXRU— 1
Teo = UX@U—1

Tee = UX U
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(2) Equivalently, we want to decompose into irreducibles the Peter-Weyl representa-
tions, because the above formulae can be written as follows:
®e _

u =T
u®® =r,
u® =r,
u® = Too
u®® = 1roe + 1
u*® = Teo + Te
u*® = Tee

(3) In order to prove the fusion rule assertion, let us construct a morphism as follows,
by using the polynomiality of the algebra on the left:

U: (B, +,x)— C(Uy)
o= x(u) , o= x(u)
Our claim is that, given an integer n > 1, assuming that W(x) is the character of an

irreducible representation r, of Uy, for any € W having length < n, then ¥(x) is the
character of a non-null representation of Uy, for any x € W of length n + 1.

(4) At n =1 this is clear. Assume n > 2, and let € W of length n + 1. If = contains
a > 2 power of o or of e, for instance if x = z o oy, then we can set:

Ty = Tz @ Toy

Assume now that z is an alternating product of o and e. We can assume that = begins
with o. Then x = o e oy, with y € W being of length n — 2. Observe that U(z) = ¥(2)*
holds on the generators {e, o, e} of W, so it holds for any z € W. Thus, we have:

<X(To @ Teoy), X(Toy) > = < X(Taoy), X(re @ 70y) >

< X(eoy), W(e X oy) >
< X(Taoy), W(o0y) + ¥(y) >
< X(Teoy)s X(Teoy) + x(1y) >

> 1

Now since 1., is by assumption irreducible, we have ro, C 7o ® 740y. Consider now the
following quantity:

X(ro ® T.Oy) — X(Toy) = U(oxeoy—oy)
= U(x)

This is then the character of a representation, as desired.
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(5) We know from easiness that we have the following estimate:
dim(Fiz(u®*)) < |NCy(k)|

By identifying as usual (C < X, X* >, +,-) = (E, +, -), the noncommutative monomials
in X, X* correspond to the elements of W C E. Thus, we have, on W:

hJ<tJ

(6) We prove now by recurrence on n > 0 that for any z € W having length n, ¥(z) is
the character of an irreducible representation r,.

(7) At n = 0 we have Wg(e) = 1. So, assume that our claim holds at n > 0, and let
x € W having length n 4+ 1. By Proposition 6.11 (1) we have, with z € E,,:

J(z) =24z

Let EN C E be the set of functions f such that f(z) € N for any 2 € W. Then
J(a),J(B) € EN, so by multiplicativity J(W) C EV. In particular, J(z) € EN. Thus
there exist numbers m(z) € N such that:

J@)=z+ > m(2)z
I(z)<n

(8) It is clear that for a,b € W we have 7(a X b) = §,4. Thus:

tJ(zZ) = T ((:L‘ + Zm(z)z) X (f + Zm(z)é))
= 1+) m(z)’

(9) By recurrence and by (3), ¥(z) is the character of a representation r,. Thus ¥.J(x)
is the character of r, + 37, m(z)r;, and we obtain from this:

hOJ(x2) > h(x(ra)x(r2)") + Y m(2)?
(10) By using (5), (8), (9) we conclude that r, is irreducible, which proves (6).

(11) The fact that the r, are distinct comes from (5). Indeed, W being an orthonormal
basis of ((E,+, x), 1), for any z,y € W, & # y we have 7(x x ) = 0, and so:
hx(r © 7)) = W (ap)
< 7J(zy)
= 7(x X 7)
= 0
(12) The fact that we obtain all the irreducible representations is clear too, because we
can now decompose all the tensor powers u®* into irreducibles.
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(13) Finally, since W is an orthonormal system in ((F,+, x),7), the set ¥(W) =
{x(r;)|z € W} is an orthonormal system in C(U}), and so we have:

hvJ = 1P

Now since the distribution of x(u) € (C(G), h) is the functional h¥¢.J, and the distri-
bution of S+T* € (B(I*(NxN)), 79) is the functional 79 P, we have x ~ T'y, as claimed. [

Let us discuss now the relation with O%. As mentioned earlier in this section, in the
classical case the passage Oy — Uy is something not trivial, requiring a passage via the
associated Lie algebras. In the free case the situation is very simple, as follows:

Theorem 6.13. We have an identification as follows,
Uy = 0%
modulo the usual equivalence relation for compact quantum groups.

Proof. We recall from section 2 above that the free complexification operation G — G is
obtained by multiplying the coefficients of the fundamental representation by a unitary
free from them. We have embeddings as follows, with the first one coming by using the
counit, and with the second one coming from the universality property of Uy:

0% c 05 C Ut

We must prove that the embedding on the right is an isomorphism, and there are several
ways of doing this, all instructive, as follows:

(1) The original argument, from [1], is something quick and advanced, based on the
standard free probability fact, from [135], that when freely multiplying a semicircular

variable by a Haar unitary we obtain a circular variable. Thus, the main character of Oy

is circular, exactly as for Uy, and by Peter-Weyl we obtain that the inclusion O} C Uy
must be an isomorphism, modulo the usual equivalence relation for quantum groups.

(2) A version of this proof, not using any prior free probability knowledge, is by using
fusion rules. Indeed, as explained in section 2 above, the representations of the dual free
products, and in particular of the free complexifications, can be explicitely computed.

Thus the fusion rules for Of; appear as a “free complexification” of the Clebsch-Gordan
rules for O}, and in practice this leads to the same fusion rules as for Uy;. As before, by

Peter-Weyl we obtain from this that the inclusion O} C Uy must be an isomorphism,
modulo the usual equivalence relation for the compact quantum groups.

(3) A third proof, based on the same idea, and which is perhaps the simplest, makes use
of the easiness property of O, Uy only. Indeed, if we denote by v, zv, u the fundamental
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representations of the quantum groups O} C O} C U}, at the level of the associated
Hom spaces we obtain reverse inclusions, as follows:

Hom/(v®* v®") 5 Hom((2v)®*, (20)®") D Hom(u®*, u®")

The spaces on the left and on the right are known from section 4 above, the result there
stating that these spaces are as follows:

span <T7r m e NCy(k, l)) D span <T7r

Regarding the spaces in the middle, these are obtained from those on the left by “col-
oring”, so we obtain the same spaces as those on the right. Thus, by Tannakian duality,

m € NCy(k, 1))

our embedding O3, C U}, is an isomorphism, modulo the usual equivalence relation. [

As a comment here, the proof (3) above, when properly worked out, provides as well

an alternative proof for Theorem 6.12. Indeed, once we know that we have Uy, = OF, it
follows that the fusion rules for Uy, appear as a “free complexification” of the Clebsch-
Gordan rules for Oy, and in practice this leads to the formulae in Theorem 6.12.

As an interesting consequence of the above result, we have:

Theorem 6.14. We have an identification as follows,
PO} = PUY;

modulo the usual equivalence relation for compact quantum groups.
Proof. As before, we have several proofs for this result, as follows:

(1) This follows from Theorem 6.13, because we have:

PU}; = PO} = PO,
(2) We can deduce this as well directly. With notations as before, we have:

Hom ((v®v)¥, (v®@wv)') = span (T7T T € NCy((oe)F, (oo)l)>

Hom ((u®u)*, (u® u)') = span (T7r

™€ NCy((00)", (09)"))

The sets on the right being equal, we conclude that the inclusion PO}, C PUj; preserves
the corresponding Tannakian categories, and so must be an isomorphism. U

As a conclusion, the passage Oy — Uy is something much simpler than the passage
On — Uy, with this ultimately coming from the fact that the combinatorics of O, Uy
is something much simpler than the combinatorics of Oy, Uy. In addition, all this leads
as well to the interesting conclusion that the free projective geometry does not fall into
real and complex, but is rather unique and “scalarless”. We will be back to this.



QUANTUM GROUPS 113

More generally now, once again by following [1], we have similar results obtained by re-
placing O}, with the more general super-orthogonal quantum groups O} from the previous
section, which include as well the free symplectic groups Spj,. Let us start with:

Theorem 6.15. We have an identification as follows,
Uy =Op
valid for any super-orthogonal quantum group OF..

Proof. This is a straightforward extension of Theorem 6.13 above, with any of the proofs
there extending to the case of the quantum groups OF. See [1]. O

We have as well a projective version of the above result, as follows:
Theorem 6.16. We have an identification as follows,
PUY = PO},
valid for any super-orthogonal quantum group OF..

Proof. This is a straightforward extension of Theorem 6.14, with any of the proofs there
extending to the case of the quantum groups Of. Alternatively, the result follows from
Theorem 6.15, by taking the projective versions of the quantum groups there. O

The free symplectic result at N = 2 is particularly interesting, because here we have
Spy = SUs,, and so we obtain that U is the free complexification of SUs:

Theorem 6.17. We have an identification as follows,
Uy = SU,
modulo the usual equivalence relation for compact quantum groups.

Proof. As explained above, this follows from Theorem 6.15, and from Sp; = SUs,, via the
material explained in section 5 above. See [1]. O

Finally, we have a projective version of the above result, as follows:

Theorem 6.18. We have an identification as follows, and this even without using the
standard equivalence relation for the compact quantum groups:

PU; = SO,

A similar result holds for the “left” projective version of Uy, constructed by using the
corepresentation u ® u instead of u ® u.

Proof. We have several assertions here, the idea being as follows:

(1) By using Theorem 6.17 we obtain, modulo the equivalence relation:

PU; = PSU, = PSU, = S04
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(2) Now since SOj; is coamenable, the above formula must hold in fact in a plain way,
meaning without using the equivalence relation. This can be checked as well directly, by
verifying that the coefficients of © ® u commute indeed.

(3) Finally, the last assertion can be either deduced from the first one, or proved directly,
by using “left” free complexification operations, in all the above. O

We refer to [1] for some further applications of the above N = 2 results, for instance
with structure results regarding the von Neumann algebra L>=(Uy").

We will be back to the quantum groups Uy, in section 8 below, with a number of more
advanced probabilistic results about them.
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7. EIASINESS, TWISTING

Our purpose here will be that of extending the main findings about O, Uy from the
previous sections to Oy, Uy too, and to other compact quantum groups as well. Let us
begin with a general definition, from [38], [127], as follows:

Definition 7.1. Let P(k,l) be the set of partitions between an upper colored integer k,
and a lower colored integer l. A collection of subsets

D =| | D(k,1)

k.l

with D(k,1) C P(k,l) is called a category of partitions when it has the following properties:

(1) Stability under the horizontal concatenation, (w, o) — [mo].
(2) Stability under vertical concatenation (7, 0) — [7], with matching middle symbols.
(3) Stability under the upside-down turning *, with switching of colors, o <> e.
(4) Each set P(k,k) contains the identity partition ||...||.
(5) The sets P(), ce) and P((, e0) both contain the semicircle N.
We have already met a number of such categories, in section 4 above. There are many
other examples of such categories, as for instance P itself, or the category NC' C P of all

noncrossing partitions. The relation with the Tannakian categories comes from:

Proposition 7.2. Fach partition m € P(k,l) produces a linear map
T7T . (CN)(X)k N ((CN)®Z

given by the following formula, where e, ..., ey is the standard basis of CV,
11 ... I
Tﬁ(eh ®"'®€ik) :JZ; 57T (]1 ]l) 6]'1 ®.”®€jl
101

and with the Kronecker type symbols 6, € {0,1} depending on whether the indices fit or
not. The assignement m — T is categorical, in the sense that we have

Tﬂ' X To - l-r[ﬂ'o]
T.T, = N
T: - TW*

where c(m,0) are certain integers, coming from the erased components in the middle.

Proof. This is something that we already know for the pairings, from section 4 above. In
general, the proof is identical. Il

In relation with the quantum groups, we have the following result, from [38]:



116 TEO BANICA

Theorem 7.3. Each category of partitions D = (D(k,l)) produces a family of compact
quantum groups G = (Gy), one for each N € N, via the formula

Hom(u®* u®") = span (T7r

© e D(k, l))
which produces a Tannakian category, and the Tannakian duality correspondence.

Proof. This follows indeed from Woronowicz’s Tannakian duality, in its “soft” form from
[106], as explained in section 4 above. Indeed, let us set:

C(k,l) = span (T7r

= D(k,z))

By using the axioms in Definition 7.1, and the categorical properties of the operation
m — T, from Proposition 7.2 above, we deduce that C = (C(k,[)) is a Tannakian
category. Thus the Tannakian duality applies, and gives the result. U

We already know, from section 4 above, that the quantum groups O}, Uy appear in
this way, with D being respectively NC5, N'Co. In general now, let us formulate:

Definition 7.4. A closed subgroup G C Uy, is called easy when we have

Hom/(u®* u®) = span (T7r

© e D(k, 5))
for any colored integers k.1, for a certain category of partitions D C P.

In other words, a compact quantum group is called easy when its Tannakian category
appears in the simplest possible way: from a category of partitions. Observe that the
category D is not unique, for instance because at N = 1 all the categories of partitions
produce the same easy quantum group, namely G = {1}. We will be back to this.

In practice now, what we know so far, from section 4 above, is that Uy, Uy, On, O
are easy. Regarding now the half-liberations, we have here:

Theorem 7.5. We have the following results:
(1) Uy is easy, coming from the category Py C Po of pairings having the property that,

when the legs are relabelled clockwise o @ o e ..., each string connects o — e.
(2) Ox is easy too, coming from the category Py C Py of pairings having the same
property: when legs are labelled clockwise o e o e ... each string connects o — e.

Proof. We can proceed here as in the proof for Uy, Oy, from section 4 above, by replacing
the basic crossing by the half-commutation crossing, as follows:

(1) Regarding Uy C U}, the corresponding Tannakian category is generated by the
operators T}, with m =}, taken with all the possible 23 = 8 matching colorings. Since
these latter 8 partitions generate the category P, we obtain the result.



QUANTUM GROUPS 117
(2) For O3 we can proceed similarly, by using the following formula:
N =0yNUy

At the categorical level, this tells us that the associated Tannakian category is given
by C' = span(T,|r € D), with:

D =< NCy,P; >=PF;
Thus, we are led to the conclusion in the statement. Il
Let us collect now the results that we have so far in a single theorem, as follows:

Theorem 7.6. The basic unitary quantum groups, namely

Un Ux Uy
On On o)
are all easy, the corresponding categories of partitions being:
Po P; NC,
P Py NCy

Proof. This follows indeed from the various results established so far, in section 4 and
here. U

We have seen in sections 5-6 above that the easiness property of O, Uy leads to some
interesting consequences. Regarding Oy, Uy, as a main consequence, we can now compute
their projective versions, as part of the following general result:

Theorem 7.7. The projective versions of the basic quantum groups are as follows,

PUy PUy PU;

POy

PUy

PU;;

when identifying, in the free case, full and reduced version algebras.
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Proof. In the classical case, there is nothing to prove. Regarding the half-classical versions,
consider the inclusions O3, Uy C Uy. These induce inclusions as follows:

PO}, PUy C PU

Our claim is that these inclusions are isomorphisms. Let indeed u,v,w be the funda-
mental corepresentations of Oy, Uy, Uy . According to Theorem 7.5, we have:

Hom ((u ® ﬂ)k, (u® ﬂ)l) = span (T7r T e PQ*((oo)k7 (oo)l)>

Hom ((u ® ﬁ)k, (u® ﬂ)l) = span (T7r T e 792((00)’“7 (oo)l)>

Hom ((u ® )", (u® a)l) = span (T7T T € P;((cw)", (oo)l)>

The sets on the right being equal, we conclude that the inclusions O3, Uy C U} preserve
the corresponding Tannakian categories, and so must be isomorphisms.

Finally, in the free case the result follows either from the free complexification result
from section 5, or from Theorem 7.6, by using the same method. O

Let us discuss now composition operations. We will be interested in:

Proposition 7.8. The closed subgroups of Uy, are subject to operations as follows:

(1) Intersection: H N K is the biggest quantum subgroup of H, K.
(2) Generation: < H, K > is the smallest quantum group containing H, K.

Proof. We must prove that the universal quantum groups in the statement exist indeed.
For this purpose, let us pick writings as follows, with I, J being Hopf ideals:

C(H) = CU)/T . C(K)=CU$))]
We can then construct our two universal quantum groups, as follows:
CHNK)=CUy)/ <I,J>
C(< H,K >)=CU/(INJ)
Thus, we obtain the result. U
In practice, the operation N can be usually computed by using:
Proposition 7.9. Assuming H, K C G, the intersection H N K 1is given by
C(HNK)=C(G)/{R,P}

whenever
CH)=C(G)/R , C(K)=C(G)/P

with R, P being certain sets of polynomial *-relations between the coordinates u;;.
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Proof. This follows from Proposition 7.8 above, or rather from its proof, and from the
following trivial fact, regarding relations and ideals:
I=<R>J=<P> = <I[,J>=<R,P>
Thus, we obtain the result. Il

In order to discuss the generation operation, let us call Hopf image of a representation
C(G) — A the smallest Hopf algebra quotient C'(L) producing a factorization:

O(G) = O(L) — A

The fact that this quotient exists indeed is routine, by dividing by a suitable ideal, and
we will be back to this in section 16 below. This notion can be generalized as follows:

Proposition 7.10. Assuming H, K C G, the quantum group < H, K > 1is such that
CG)—CHNK)—C(H),C(K)
15 the joint Hopf image of the following quotient maps:
C(G) — C(H),C(K)

Proof. In the particular case from the statement, the joint Hopf image appears as the
smallest Hopf algebra quotient C(L) producing factorizations as follows:

C(G)—C(L)— C(H),C(K)
We conclude from this that we have L =< H, K >, as desired. See [56]. O
In the Tannakian setting now, we have the following result:

Theorem 7.11. The intersection and generation operations N and <,> can be con-
structed via the Tannakian correspondence G — Cg, as follows:

(1) Intersection: defined via Cony =< Cq,Ch >.
(2) Generation: defined via C<g pgs = Ca N Ch.

Proof. This follows from Proposition 7.8, or rather from its proof, by taking I,.J to be
the ideals coming from Tannakian duality, in its soft form, from section 4 above. U

In relation now with our easiness questions, we first have the following result:

Proposition 7.12. Assuming that H, K are easy, then so is H N K, and we have

Dynx =< Dy, Dk >
at the level of the corresponding categories of partitions.
Proof. We have indeed the following computation:

Cung = <Cy,Ck >
< span(Dg), span(Dg) >
= span(< Dy, Dk >)
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Thus, by Tannakian duality we obtain the result. U
Regarding the generation operation, the situation is more complicated, as follows:
Proposition 7.13. Assuming that H, K are easy, we have an inclusion
< H K>C{H, K}
coming from an inclusion of Tannakian categories as follows,
Cy NCk D span(Dy N D)
where {H, K} is the easy quantum group having as category of partitions Dy N D .

Proof. This follows from the definition and properties of the generation operation, and
from the following computation:

Ccnxs> = CapNCk
= span(Dg) N span(Dk)
D span(Dy N D)
Indeed, by Tannakian duality we obtain from this all the assertions. O

Summarizing, we have some problems here, and we must proceed as follows:

Theorem 7.14. The intersection and easy generation operations N and {,} can be con-
structed via the Tannakian correspondence G — D¢, as follows:

(1) Intersection: defined via Dgny =< Dg, Dy >.
(2) Easy generation: defined via Dyg gy = Dg N Dy.

Proof. Here the situation is as follows:
(1) This is an result coming from Proposition 7.12.
(2) This is more of an empty statement, coming from Proposition 7.13. U

With the above notions in hand, we can formulate a nice result, which improves our
main result so far, namely Theorem 7.6 above, as follows:

Theorem 7.15. The basic unitary quantum groups, namely

Uy U Uy

Ox o5, o,

are all easy, and they form an intersection and easy generation diagram, in the sense that
any rectangle P C Q, R C S of the above diagram satisfies P = QN R,{Q, R} = S.
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Proof. We know from Theorem 7.6 that the quantum groups in the statement are all
easy. Since the corresponding categories of partitions form an intersection and generation
diagram, by using Theorem 7.14 we obtain the result. U

Let us explore now a number of further examples of easy quantum groups, which appear
as “versions” of the basic unitary groups. With the convention that a matrix is called
bistochastic when its entries sum up to 1, on each row and each column, we have:
Proposition 7.16. We have the following groups and quantum groups:

(1) By C Oy, consisting of the orthogonal matrices which are bistochastic.
(2) Cn C Uy, consisting of the unitary matrices which are bistochastic.
(3) B C OF, coming via ué = £, where £ is the all-one vector.

(4) Cx C Uy, coming via ué = &, where £ is the all-one vector.

Also, we have inclusions By C By and Cy C C}, which are both liberations.

Proof. Here the fact that By, Cy are indeed groups is clear. As for B, C}, these are
quantum groups as well, because the relation ¢ € Fiz(u) is categorical.
Finally, observe that for U € Uy we have:

UE=¢ < U{=¢

By conjugating, these conditions are equivalent as well to U¢ = &, Ut¢é = ¢, Thus
U € Uy is bistochastic precisely when U¢ = &, and this gives the last assertion. U

The above quantum groups are all easy, and following [38], [127], we have:

Theorem 7.17. The basic orthogonal and unitary quantum groups and thewr bistochastic
versions are all easy, and they form a diagram as follows,

Cx

+/

e T
% N

which is an intersection and easy generation diagram, in the sense of Theorem 7.15.

By
By

Proof. The first assertion comes from the fact that the all-one vector ¢ used in Proposition
7.16 above is the vector associated to the singleton partition:

£=T,
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Indeed, we obtain from this that the quantum groups By, C, BY, Cy; are indeed easy,
appearing from the categories of partitions for Oy, Uy, O, Uy, by adding singletons.

In practice now, according to this observation, and to Theorem 7.15 above, the corre-
sponding categories of partitions are as follows, where the symbol 12 stands for “singletons
and pairings”, in the same way as the symbol 2 stands for “pairings”:

Nclg NC2

N012 4~7 NCQ
P12 *&7 P
Py
Now since both this diagram and the one the statement are intersection diagrams, the
quantum groups form an intersection and easy generation diagram, as stated. O

P12

Generally speaking, the above result is quite nice, among others because we are now
exiting the world of pairings. However, there are a few problems with it. First, we cannot
really merge it with Theorem 7.15, as to obtain a nice cubic diagram, containing all the
quantum groups considered so far. Indeed, the half-classical versions of the bistochastic
quantum groups collapse, and so cannot be inserted into the cube, as shown by:

Proposition 7.18. The half-classical versions of By, Cy: are given by:
BiNnOy=Byx , CHinUy=Cy
In other words, the half-classical versions collapse to the classical versions.

Proof. This follows from Tannakian duality, by using the fact that when capping the half-
classical crossing with 2 singletons, we obtain the classical crossing. Alternatively, this
follows from a direct computation. O

Yet another problem with the bistochastic groups and quantum groups comes from the
fact that these objects are not really “new”, because, following [116], we have:

Proposition 7.19. We have isomorphisms as follows:
(1) BN ~ ONfl.
(2) By ~ O} ;.
(3) ON ~ UN—l-
(4) Ch ~Uy_,.
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Proof. Let us pick a matrix F' € Uy satisfying the following condition, where £ is the
all-one vector:

1
—=£
VN

Such matrices exist of course, the basic example being the Fourier matrix:

F€0:

1 iy .
FN _ (wz])ij . ow= 627r2/N

VN

We have then the following computation:
ué =§¢ <= uley= Fey
<— [MuFeq= ¢
<— F*uF =diag(l,w)
Thus we have an isomorphism given by w;; — (F*uF);;, as desired. O

Back to generalities now, let us point out the fact that the easy quantum groups are
not the only ones “coming from partitions”, but are rather the simplest ones having this
property. An interesting and important class of compact quantum groups, which appear
in relation with many questions, are the ¢ = —1 twists of the compact Lie groups. In
order to discuss this, the best is to deform first the simplest objects that we have, namely
the noncommutative spheres. This can be done as follows:

Theorem 7.20. We have noncommutative spheres as follows, obtained via the twisted
commutation relations ab = +ba, and twisted half-commutation relations abc = +cba,

QN-1 QN-1 N—-1
S —— ST —— 8t

e
where the signs at left correspond to the anticommutation of distinct coordinates, and their

adjoints, and the other signs come from functoriality.

Proof. For the spheres on the left, if we want to replace some of the commutation relations
2iz; = 2;z; by anticommutation relations z;z; = —z;2;, a bit of thinking tells us that the
one and only natural choice is:

Rikj = TRZjZ \4) #]
In other words, with the notation ¢;; = 1 — J;;, we must have:

ZiZj = (—1)5” ZjZi
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Regarding now the spheres in the middle, the situation is a priori a bit more tricky,
because we have to take into account the various possible collapsings of {i, j, k}. However,
if we want to have embeddings as above, there is only one choice, namely:

ZiZjZk = (—1)€ij+5jk+s"’“zkzjzi
Thus, we have constructed our spheres, and embeddings, as needed. U

Let us discuss now the quantum group case. The situation here is considerably more
complicated, because the coordinates u;; depend on double indices, and finding for in-
stance the correct signs for w;;ugUpmn = FUmnUrt;; looks nearly impossible. However, we
can solve this problem by taking some inspiration from the sphere case, as follows:

Proposition 7.21. We have quantum groups as follows,

Uy

Uy

On

Oy
defined via the following relations,

3 —Ba for a,b € {u;;} distinct, on the same row or column
ab =
Ba otherwise

with the convention o = a,a* and 3 = b, b*.

Proof. These quantum groups are well-known, see [17]. The idea indeed is that the exis-
tence of €, 5 is clear. Regarding now A, set U;; = >, wix @ ugj. For j # k we have:

UiijUp, = g UisUit & UgjUsk + g UjsUis @ UgjUsk

s#t s

- Z —UitUis & Utk Usj + Z UisUis & (_uskusj)
s#t s

= —UuUi

Also, for ¢ # k,j # | we have:
UgUn = > Uistike @ Ugjtiy + Y Uisligs @ Ugjtlg

s#t s

= ) Ukt @ Uty + Y (—Ukstis) ® (—tgtig)
s#t s

= UnUy
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This finishes the proof in the real case. In the complex case the remaining relations can
be checked in a similar way, by putting * exponents in the middle. U

It remains now to twist Oy, Ux. In order to do so, given three coordinates a, b, ¢ € {u;;},
let us set span(a,b,c) = (r,c), where r,c € {1,2,3} are the number of rows and columns
spanned by a, b, c. In other words, if we write a = u;;,b = ug, ¢ = up, then r = #{i, k, p}
and | = #{j,1,q}. With these conventions, we have the following result:

Proposition 7.22. We have intermediate quantum groups as follows,

Un

Oy

defined via the following relations,

Uy Uy

O O

0y = {—7504 for a,b, c € {u;;} with span(a,b,c) = (<2,3) or (3,<2)

vBa  otherwise

with the conventions o = a,a*,  =b,b* and v = ¢, c*.

Proof. The rules for the various commutation/anticommutation signs are:

r\¢e 1 2 3
1+ + -
2 + + -
3 - — +

We first prove the result for O%. The construction of the counit, £(u;;) = 0;5, requires
the Kronecker symbols ¢;; to commute/anticommute according to the above table. Equiv-
alently, we must prove that the situation d,;050,, = 1 can appear only in a case where
the above table indicates “+”. But this is clear, because 0;;030, = 1 implies r = c.

The construction of the antipode S is clear too, because this requires the choice of our
=+ signs to be invariant under transposition, and this is true, the table being symmetric.

With U;; = >, ui, ® ug;, we have the following computation:

Uia Ujb Ukc

E Uiz Ujy Uz X UgqUypUzc

TYZ

E iukzujyuix & :l:uzcuybu:ca

Tyz

+ Ukojb Uia
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We must prove that, when examining the precise two + signs in the middle formula,
their product produces the correct + sign at the end. The point now is that both these
signs depend only on s = span(z,y, z), and for s = 1,2, 3 respectively:

— For a (3,1) span we obtain +—, +—, —+, so a product — as needed.

— For a (2,1) span we obtain ++, ++, ——, so a product + as needed.
— For a (3, 3) span we obtain ——, ——, ++, so a product + as needed.
— For a (3,2) span we obtain +—, +—, —+, so a product — as needed.
— For a (2,2) span we obtain ++, ++4, ——, so a product + as needed.

Together with the fact that our problem is invariant under (r,c) — (c,r), and with the
fact that for a (1,1) span there is nothing to prove, this finishes the proof. For U} the
proof is similar, by putting % exponents in the middle. U

The above results can be summarized as follows:

Theorem 7.23. We have quantum groups as follows, obtained via the twisted commuta-
tion relations ab = £ba, and twisted half-commutation relations abc = +cba,

Uy U Uy

On O% 0)e
where the signs at left correspond to anticommutation for distinct entries on rows and
columns, and commutation otherwise, and the other signs come from functoriality.

Proof. This follows indeed from Proposition 7.21 and Proposition 7.22. U

Our purpose now will be that of showing that the quantum groups constructed above
can be in fact defined in a more conceptual way, as “Schur-Weyl twists”. Let P.yen(k, 1) C
P(k,1) be the set of partitions with blocks having even size, and NCleyep(k, 1) C Poyen(k,1)
be the subset of noncrossing partitions. Also, we use the standard embedding S, C
Py(k, k), via the pairings having only up-to-down strings. Given a partition 7 € P(k,1),
we call “switch” the operation which consists in switching two neighbors, belonging to
different blocks, in the upper row, or in the lower row. With these conventions, we have:

Proposition 7.24. There is a signature map € : Peyen, — {—1,1}, given by

e(r) = (=1)°
where ¢ is the number of switches needed to make T noncrossing. In addition:

(1) For 1 € Sk, this is the usual signature.
(2) For m € P, we have (—1)°, where ¢ is the number of crossings.
(3) For 7 <1 € NCeyen, the signature is 1.
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Proof. In order to show that ¢ is well-defined, we must prove that the number ¢ in the
statement is well-defined modulo 2. It is enough to perform the verification for the non-
crossing partitions. More precisely, given 7,7 € NC,,., having the same block structure,
we must prove that the number of switches ¢ required for the passage 7 — 7’ is even.

In order to do so, observe that any partition 7 € P(k,l) can be put in “standard
form”, by ordering its blocks according to the appearence of the first leg in each block,
counting clockwise from top left, and then by performing the switches as for block 1 to
be at left, then for block 2 to be at left, and so on. Here the required switches are also
uniquely determined, by the order coming from counting clockwise from top left. Here is
an example of such an algorithmic switching operation:

The point now is that, under the assumption 7 € NCppen(k,1), each of the moves
required for putting a leg at left, and hence for putting a whole block at left, requires an
even number of switches. Thus, putting 7 is standard form requires an even number of
switches. Now given 7,7 € NC,,., having the same block structure, the standard form
coincides, so the number of switches ¢ required for the passage 7 — 7’ is indeed even.

Regarding now the remaining assertions, these are all elementary:

(1) For 7 € Sy the standard form is 7/ = id, and the passage 7 — id comes by composing
with a number of transpositions, which gives the signature.

(2) For a general 7 € P,, the standard form is of type 7/ = |...|22, and the passage

7 — 7’ requires ¢ mod 2 switches, where ¢ is the number of crossings.

(3) Assuming that 7 € P.ye, comes from m € NCpy, by merging a certain number of
blocks, we can prove that the signature is 1 by proceeding by recurrence. U

We can use the above signature map, as follows:

Definition 7.25. Associated to a partition m € Pyen(k, 1) is the linear map
Tﬂ . (CN)(X)k N ((CN)@)Z

given by the following formula, with ey, ..., ex being the standard basis of CV,
= < (11 ...
Tw<en®..-®eik>—;5”(ﬁ jl)eﬁ‘g’“'@eﬁ
101

and where 6, € {—1,0,1} is 6 = () if T > 7, and 6 = 0 otherwise, with T = ker (;)
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In other words, what we are doing here is to add signatures to the usual formula of 7.
Indeed, observe that the usual formula for 7T, can be written as folllows:

Tﬂ—(ei1®...®€ik): Z 6j1®...®€jl
j:ker(;-)Zﬂ'

Now by inserting signs, coming from the signature map ¢ : P, — {1}, we are led
to the following formula, which coincides with the one given above:

Telen ®...@e,)=> e(1) Y, €,0..0¢

T>T 7 ker(;.):T

We will be back later to this. For the moment, we must first prove a key categorical
result, as follows:

Proposition 7.26. The assignement m — T, is categorical, in the sense that

Tw X Ta = T[ﬂ.a] , TWTU = NC(F’U)T[Z] , T; =T
where c(m,0) are certain positive integers.

Proof. We have to go back to the proof from the untwisted case, from section 4 above,
and insert signs. We have to check three conditions, as follows:

1. Concatenation. In the untwisted case, this was based on the following formula:

e (1) o, (T ) = Oy (T O
(jqu) (llls [o) J1---Jq llls

In the twisted case, it is enough to check the following formula:

o ker 112 ker ki...k, —  (xer 221...2'? ki...k,
Ji---Jq ly... 1 Ji---Jg Lol

Let us denote by 7, v the partitions on the left, so that the partition on the right is of
the form p < [rv]. Now by switching to the noncrossing form, 7 — 7" and v — v/, the
partition on the right transforms into p — p’ < [7'v/]. Now since the partition [7'2/] is
noncrossing, we can use Proposition 7.24 (3), and we obtain the result.

2. Composition. In the untwisted case, this was based on the following formula:

p ]qu c(m,o Zp
Z5<]1 )5"(kz1...kr> N 6["<k1 k:)

In order to prove now the result in the twisted case, it is enough to check that the signs
match. More precisely, we must establish the following formula:

Qo)) e (i) == (i)
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Let 7, v be the partitions on the left, so that the partition on the right is of the form
p < [7]. Our claim is that we can jointly switch 7,v to the noncrossing form. Indeed, we
can first switch as for ker(j; ... j,) to become noncrossing, and then switch the upper legs
of 7, and the lower legs of v, as for both these partitions to become noncrossing. Now
observe that when switching in this way to the noncrossing form, 7 — 7’ and v — V/, the
partition on the right transforms into p — o’ < [7,]. Since the partition [7,] is noncrossing,
we can apply Proposition 7.24 (3), and we obtain the result.

3. Involution. Here we must prove the following formula:
5. () g (B
"\J1---Jq T\
But this is clear from the definition of d,, and we are done. U

As a conclusion, our twisted construction 7 — T, has all the needed properties for
producing quantum groups, via Tannakian duality. Thus, we can formulate:

Theorem 7.27. Given a category of partitions D C P,ye,, the construction

Hom(u®* u®") = span (Tﬂ TE D(k,l))

produces via Tannakian duality a quantum group G C Uy, for any N € N.

Proof. This follows indeed from the Tannakian results from section 4 above, exactly as in
the easy case, by using this time Proposition 7.26 as technical ingredient.

To be more precise, Proposition 7.26 shows that the linear spaces on the right form a
Tannakian category, and so the results in section 4 apply, and give the result. O

We can unify the easy quantum groups, or at least the examples coming from categories
D C P,,e,, with the quantum groups constructed above, as follows:

Definition 7.28. A closed subgroup G C Uy, is called q-easy, or quizzy, with deformation
parameter ¢ = £1, when its tensor category appears as follows,

Hom(u®* u®") = span (Tﬂ TE D(k,l))

for a certain category of partitions D C Peyen, where, for ¢ = —1,1:
T=T,T
The Schur-Weyl twist of G is the quizzy quantum group G C U obtained via ¢ — —q.

We will see later on that the easy quantum group associated to P.,., itself is the
hyperochahedral group Hpy, and so that our assumption D C P.,.,, replacing D C P,
simply corresponds to Hy C G, replacing the usual condition Sy C G.

In relation now with the basic quantum groups, we first have the following result:
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Proposition 7.29. The linear map associated to the basic crossing is:
_ —e;®e; fori#j
Ty(ei@e;)=q 7
ej®e;  otherwise
The linear map associated to the half-liberating permutation 1is:
- —ep®e; ®e; for i, j, k distinct
Tx(6i®6j®6k): b I j.
er ®ej @ e; otherwise
Also, for any noncrossing pairing ©1 € NCs, we have T, = Ty.

Proof. We have to compute the signature of the various partitions involved, and we can
use here (1,2,3) in Proposition 7.24, which give the results. O

The relation with the basic quantum groups comes from:

Proposition 7.30. For an orthogonal quantum group G, the following hold:
(1) Ty € End(u®?) precisely when G C Oy.
(2) Ty € End(u®?) precisely when G C Oj.
Proof. We know this in the untwisted case. In the twisted case, the proof is as follows:

(1) By using the formula of T} in Proposition 7.29, we obtain:
(Ty @ Du®*(e; @e; @ 1) = Z e ® e @ UpiUp;
k

— Z € Q e & Uguy;
kil
We have as well the following formula:
Dk €D e © Ui if 1=
— > me @ e @ujuy; if i # g
For ¢+ = j the conditions are u%l = u%l for any k, and uguy;; = —uug; for any k # 1.

For i # j the conditions are uy;u; = —ugjug; for any k, and UpiUy; = UpjUp; for any k # .
Thus we have exactly the relations between the coordinates of O, and we are done.

(e (eoegl) = {

(2) By using the formula of 7y in Proposition 7.29, we obtain:
(TX X 1)u®2(61‘ & €; R e X 1)
- Z e ®ep®e, ® UqiUpjUck

abc not distinct

- E € @ ep Q ey @ UgiUp;Uck

a,b,c distinct
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On the other hand, we have as well the following formula:
uP(Ty @ 1)(e; ®e; @ e, ®1)
B Y abe €c @ €5 ® €4 & UgkUpjUgi for 4, 7, k not distinct
I - Y abe €c D €p @ €4 @ UgrUpjUq;  for i, j, k distinct

For 4, j, k not distinct the conditions are wg;upjter = UckUpjUq; for a, b, c not distinct, and

UgiUpjUeck = —UckUpjUq; fOr a,b, ¢ distinct. For 7, j, k distinct the conditions are wq;uy;tcr, =
—UekUpjUqgi fOr a,b, ¢ not distinct, and wqup;ucy = UckUpjUq; for a,b, c distinct. Thus we
have exactly the relations between the coordinates of O3, and we are done. 4

We can now formulate our first Schur-Weyl twisting result, as follows:

Theorem 7.31. The twisted quantum groups introduced before,

Oy 0 Ut
On o ore
appear as twists of the basic quantum groups, namely
Un Ux Uy
On O% o%

via the Schur-Weyl twisting procedure described above.
Proof. This follows indeed from Proposition 7.30 above. U

In order for our twisting theory to be complete, let us discuss as well the computation
of the quantum isometry groups of the twisted spheres. We have here:

Theorem 7.32. The quantum isometry groups of the twisted spheres,

aN-1 aN-1 N-1
S¢ —>S<c,* —>S<c,+

GN-1 GN-1 N-1
Sg 5. —Sr;

are the above twisted orthogonal and unitary groups.
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Proof. The proof in the classical twisted cases is similar to the proof in the classical
untwisted cases, by adding signs. Indeed, for the twisted real sphere Sg ~! we have:

O(225) = Z Zh @ Upgli;
K

+ E 252 @ (Upitly; — UpiUyj)
k<l

We deduce that with [[a, b]] = ab+ ba we have the following formula:

O([[zi,z]) = D 2 ® [luns, ]

k
+ ZZkZl @ ([wgi, wij] — [wi, ugs))
k<l
Now assuming i # j, we have [[2;, ;]| = 0, and we therefore obtain:
[[uki, uk]]] = O s Vk
[uki, ’LLlj] = [uli,ukj] , Vk <l
By using now the standard trick, namely applying the antipode and then relabelling,
the latter relation gives:
[tni; ] = 0
Thus, we obtain the result. The proof for Sg ~1is similar, by using the above-mentioned
categorical trick, in order to deduce from the relations ab = +ba the remaining relations

ab* = +b*a. Finally, the proof in the half-classical twisted cases is similar to the proof in
the half-classical untwisted cases, by adding signs where needed. U

As a conclusion, we have a quite interesting notion of easy quantum group, basically
coming from the Brauer philosophy for Oy, Uy, and notably covering O}, Uy, along with
some theory and examples, and with a twisting extension as well.

We will be back to this later on, in sections 11-12 below, with a negative result this
time, stating that the easy quantum reflection groups are invariant under twisting.
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8. PROBABILISTIC ASPECTS

We discuss here the computation of the various integrals over the compact quantum
groups, with respect to the Haar measure. In order to formulate our results in a conceptual
form, we use the modern measure theory language, namely probability theory. In the
general noncommutative setting, the starting definition is as follows:

Definition 8.1. Let A be a C*-algebra, given with a trace tr.

(1) The elements a € A are called random variables.
(2) The moments of such a variable are the numbers My(a) = tr(a®).
(3) The law of such a variable is the functional u: P — tr(P(a)).

Here k = o e e o ... is as usual a colored integer, and the powers a”

multiplicativity and the usual formulae, namely:

are defined by

=1, a®=a , a"=ua
As for the polynomial P, this is a noncommuting *-polynomial in one variable:
PeC<X X*>

Observe that the law is uniquely determined by the moments, because:
P(X) =) MX' = u(P)=> A\My(a)
k k

Generally speaking, the above definition is something quite abstract, but there is no
other way of doing things, at least at this level of generality. We have indeed:

Theorem 8.2. Given a C*-algebra with a faithful trace (A,tr), any normal variable,
aa* = a*a

has a usual law, namely a complex probability measure p € P(C) satisfying:

tr(a®) :/(Czkdu(z)

This law is unique, and is supported by the spectrum o(a) C C. In the non-normal case,
aa”® # a*a, such a usual law does not exist.

Proof. We have two assertions here, the idea being as follows:

(1) In the normal case, aa* = a*a, the Gelfand theorem, or rather the subsequent
continuous functional calculus theorem, tells us that we have < a >= C(o(a)). Thus the
functional f(a) — tr(f(a)) can be regarded as an integration functional on the algebra
C(o(a)), and by the Riesz theorem, this latter functional must come from a probability
measure /4 on the spectrum o(a), in the sense that we must have:

tr(f(a)) = / )
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We are therefore led to the conclusions in the statement, with the uniqueness assertion
coming from the fact that the elements a”, taken as usual with respect to colored integer
exponents, k = oeeo ..., generate the whole C*-algebra C'(o(a)).

(2) In the non-normal case now, aa* # a*a, we must show that such a law does not
exist. For this purpose, we can use a positivity trick, as follows:
aac* —a*a#0 = (aa* —a*a)® >0

= aa’ad” —aa’a*a — a*aaa” + a*aa*a >0
— tr(aa”aa” —aa*a*a — a*aaa* + a*aa*a) > 0
— tr(ea’aa” 4 a*aa*a) > tr(aa*a*a + a*aaa”)
= tr(ea’aa”) > tr(aaa*a®)

Now assuming that a has a law p € P(C), in the sense that the moment formula

in the statement holds, the above two different numbers would have to both appear by
integrating |z|* with respect to this law u, which is contradictory, as desired. U

Summarizing, we have a beginning of a theory, generalizing that of the compact prob-
ability spaces (X, u). A noncommutative probability space corresponds by deﬁnition to
a pair (A, tr), according to the formulae A = C(X) and tr(f) = [ f( . We can
talk about moments and laws in this setting. And when A IS commutatlve we recover
in this way the usual probability theory. Let us discuss now the independenee7 and its
noncommutative versions. As a starting point here, we have the following notion:

Definition 8.3. Two subalgebras B,C C A are called independent when the following
condition s satisfied, for anyb € B and c € C':

tr(bc) = tr(b)tr(c)
Equivalently, the following condition must be satisfied, for any b € B and c € C':
tr(b) =tr(c) =0 = tr(bc) =0
Also, two variables b,c € A are called independent when the algebras that they generate,
B=<b> , (C=<c¢>
are independent inside A, in the above sense.

Observe that the above two conditions are indeed equivalent. In one sense this is clear,
and in the other sense, with o’ = a — tr(a), this follows from:

tr(bc) = tr[(b' +tr(b))(c +tr(c))]
= tr(t/)+t(t)tr(c) + tr(b)tr(c") + tr(b)tr(c)
= tr(t/d) +tr(b)tr(c)
= tr(b)tr(c)
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The other remark is that the above notion generalizes indeed the usual notion of inde-
pendence, from the classical case, the result here being as follows:

Theorem 8.4. Given two compact measured spaces Y, Z, the algebras
cCY)cC(YxZ) , CZ)cClYxZ)

are independent in the above sense, and a converse of this fact holds too.

Proof. We have two assertions here, the idea being as follows:

(1) First of all, given two arbitrary compact spaces Y, Z, we have embeddings of algebras
as in the statement, defined by the following formulae:

f=1w,2) = fW) ., g2 —g()

In the measured space case now, the Fubini theorems tells us that:

szf(y)g(Z) Z/Yf(y)/zg(Z)

Thus, the algebras C'(Y'),C(Z) are independent in the sense of Definition 8.3.

(2) Conversely now, assume that B, C' C A are independent, with A being commutative.
Let us write our algebras as follows, with X, Y, Z being certain compact spaces:

A=C(X) , B=CY) , C=0C(2)
In this picture, the inclusions B, C' C A must come from quotient maps, as follows:
p:Z—=X , q:Z—=Y

Regarding now the independence condition from Definition 8.3, in the above picture,
this tells us that the folowing equality must happen:

/X () g(a(x)) = /X F () /X 9(e())

Thus we are in a Fubini type situation, and we obtain from this Y x Z C X. Thus, the
independence of B, C' C A appears as in (1) above. O

It is possible to develop some theory here, but this is ultimately not very interesting.
As a much more interesting notion now, we have the freeness:

Definition 8.5. Two subalgebras B,C C A are called free when the following condition
is satisfied, for any b; € B and ¢; € C':

t?"(bl) = t’I"(Cl') =0 = t?"(blCleCQ .. ) =0
Also, two variables b,c € A are called free when the algebras that they generate,
B=<b> |, C=<c>

are free inside A, in the above sense.
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In short, freeness appears by definition as a kind of “free analogue” of independence,
taking into account the fact that the variables do not necessarily commute. We will see
in a moment examples, theory, applications, and other reasons for studying freeness. As
a first observation, of theoretical nature, there is actually a certain lack of symmetry
between Definition 8.3 and Definition 8.5, because in contrast to the former, the latter
does not include an explicit formula for the quantities of the following type:

tr(61016202 .. )

However, this is not an issue, and is simply due to the fact that the formula in the free
case is something more complicated, the result being as follows:

Proposition 8.6. Assuming that B,C C A are free, the restriction of tr to < B,C' >
can be computed in terms of the restrictions of tr to B,C'. To be more precise,

tr(bieibocs ) = P({tr(sbi - b {tr(enes - )))

where P is certain polynomial in several variables, depending on the length of the word

bicibacs . .., and having as variables the traces of products of type
bilbiz . y Cj1Cjy v v+
with the indices being chosen increasing, i1 < ia < ... and j1 < jo < ...

Proof. This is something quite theoretical, so let us begin with an example. Our claim is
that if b, ¢ are free then, exactly as in the case where we have independence:

tr(bc) = tr(b)tr(c)

Indeed, let us go back to the computation performed after Definition 8.3, which was as
follows, with the convention a’ = a — tr(a):

tr(bc) = tr[(b +tr(b))(d +tr(c))]
tr(t'c) + t(b')tr(c) + tr(b)tr(c') + tr(b)tr(c)
= tr(t'd) +tr(b)tr(c)
= tr(b)tr(c)

Our claim is that this computation perfectly works under the sole freeness assumption.
Indeed, the only non-trivial equality is the last one, which follows from:

tr(t)=tr(d)=0 = tr(t/d)=0

In general now, the situation is of course more complicated, but the same trick applies.
To be more precise, we can start our computation as follows:

tr(b101b202 .. ) = tr [(bll + tr(bl))(cll + tT(Cl))(bIQ + tr(bg))(c’Q + tT’(Cg)) ...... ]
= tr(bic)bycy . . .) + other terms

= other terms



QUANTUM GROUPS 137

Observe that we have used here the freeness condition, in the following form:
tr(b)) =tr(c}) =0 = tr(bjcibhcy...) =0

Now regarding the “other terms”, those which are left, each of them will consist of a
product of traces of type tr(b;) and tr(c;), and then a trace of a product still remaining
to be computed, which is of the following form, with §; € B and v; € C"

tr(BiviBaye---)

To be more precise, the variables 8; € B appear as ordered products of those b; € B not
getting into individual traces tr(b;), and the variables ; € C appear as ordered products
of those ¢; € C not getting into individual traces tr(c;). Now since the length of each
such alternating product 17158272 . . . is smaller than the length of the original alternating
product bycibacs .. ., we are led into of recurrence, and this gives the result. O

Let us discuss now some models for independence and freeness. We first have the
following result, which clarifies the analogy between independence and freeness:
Theorem 8.7. Given two algebras (B, tr) and (C,tr), the following hold:

(1) B,C are independent inside their tensor product BQC', endowed with its canonical
tensor product trace, given on basic tensors by tr(b ® c) = tr(b)tr(c).

(2) B, C are free inside their free product BxC', endowed with its canonical free product
trace, given by the formulae in Proposition 8.6.

Proof. Both the assertions are clear from definitions, as follows:

(1) This is clear with either of the definitions of the independence, from Definition 8.3
above, because we have by construction of the trace:

tr(be) =tr[(b® 1)(1 @ c)] = tr(b® ¢) = tr(b)tr(c)

Observe that there is a relation here with Theorem 8.4 as well, due to the following
formula for compact spaces, with ® being a topological tensor product:

CY x Z) = C(Y)® C(Z)

To be more precise, the present statement generalizes the first assertion in Theorem
8.4, and the second assertion tells us that this generalization is more or less the same
thing as the original statement. All this comes of course from basic measure theory.

(2) This is clear from definitions, the only point being that of showing that the notion of
freeness, or the recurrence formulae in Proposition 8.6, can be used in order to construct
a canonical free product trace, on the free product of the two algebras involved:

tr: Bx(C — C
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But this can be checked for instance by using a GNS construction. Indeed, consider
the GNS constructions for the algebras (B, tr) and (C,tr):
B — B(*(B)) , C— B(*(0))

By taking the free product of these representations, we obtain a representation as
follows, with the % symbol on the right being a free product of pointed Hilbert spaces:

BxC — B(I*(B) = I*(C))

Now by composing with the linear form T —< T&, & >, where £ = 15 = 1¢ is the
common distinguished vector of [*(B) and [?(C), we obtain a linear form, as follows:

tr: Bx(C — C

It is routine then to check that tr is indeed a trace, and this is the “canonical free
product trace” from the statement. Then, an elementary computation shows that B, C'
are indeed free inside B * C', with respect to this trace, and this finishes the proof. U

As an concrete application of the above results, we have:

Theorem 8.8. We have a free convolution operation B for the distributions
p:C< X, X*>—C
which is well-defined by the following formula, with b, c taken to be free:
po B fie = e
This restricts to an operation, still denoted H, on the real probability measures.
Proof. We have several verifications to be performed here, as follows:

(1) We first have to check that given two variables b, ¢ which live respectively in cer-
tain C*-algebras B, (', we can recover inside some C*-algebra A, with exactly the same
distributions up, ji., as to be able to sum them and then talk about .. But this comes
from Theorem 8.7, because we can set A = B % C, as explained there.

(2) The other verification which is needed is that of the fact that if b, ¢ are free, then
the distribution . depends only on the distributions uy, .. But for this purpose, we
can use the general formula from Proposition 8.6, namely:

tr(bicibacy...) = P({tr(bilbiz b {tr(eeg, . .)}j)

Here P is certain polynomial, depending on the length of byc1bscs . . ., having as variables
the traces of products b;,b;, ... and ¢, ¢j, ..., with 7; <iy < ... and j; < jo < ...

Now by plugging in arbitrary powers of b, c as variables b;, c;, we obtain a family of
formulae of the following type, with ) being certain polyomials:

tr(bchiphedz ) = P({tr(bk)}k, {tr(cl)}l>
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Thus the moments of b+ ¢ depend only on the moments of b, ¢, with of course colored
exponents in all this, according to our moment conventions, and this gives the result.

(3) Finally, in what regards the last assertion, regarding the real measures, this is clear
from the fact that if b, ¢ are self-adjoint, then so is their sum b + c. O

We would like to have a linearization result for H, in the spirit of the known result for
x. We will do this slowly, in several steps. As a first observation, both the independence
and the freeness are nicely modelled inside group algebras, as follows:

Theorem 8.9. We have the following results, valid for group algebras:
(1) C*(T"),C*(A) are independent inside C*(I' x A).
(2) C*(I"),C*(A) are free inside C*(I" x A).

Proof. In order to prove these results, we have two possible methods:

(1) We can use here the general results in Theorem 8.7 above, along with the following
two isomorphisms, which are both standard:

C*(T'x A)=C*"(A)@C*(T)
(T % A) = C*(A) + C*(D)
(2) We can prove this directly as well, by using the fact that each group algebra is

spanned by the corresponding group elements. Indeed, it is enough to check the indepen-
dence and freeness formulae on group elements, which is in turn trivial. Il

Regarding now the linearization problem for H, the situation here is quite tricky, and
the above models do not provide good results. We must use instead:

Theorem 8.10. Consider the shift operator on the space H = [*(N), given by:
S(e;) = e

The variables of the following type, with f € C[X] being a polynomial,
S*+ f(9)

model then in moments, up to finite order, all the distributions p : C[X]| — C.

Proof. We have already met the shift S in section 1 above, as the simplest example of an
isometry which is not a unitary, S*S = 1,55 = 1, with this coming from:

S*(e;) =4 7 (Z. >0
0 (i=0)
Consider now a variable as in the statement, namely:

T=S54ay+aS+aS*+...+a,S"
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We have then tr(T) = ag, then tr(T?) will involve ay, then tr(73) will involve ay, and
so on. Thus, we are led to a certain recurrence, that we will not attempt to solve now,
with bare hands, but which definitely gives the conclusion in the statement. O

Before getting further, with taking free products of such models, let us work out a very
basic example, which is something fundamental, that we will need in what follows:

Proposition 8.11. In the context of the above correspondence, the variable
T=8+5"
follows the Wigner semicircle law on [—2,2].

Proof. This is something that we already know from section 6, the idea being that the
combinatorics of (S + S*)¥ leads us into paths on N, and to the Catalan numbers. O

Getting back now to our linearization program for H, the next step is that of taking a
free product of the model found in Theorem 8.10 with itself. We have here:

Proposition 8.12. We can define the algebra of creation operators
S,:v—=>r®U
on the free Fock space associated to a real Hilbert space H, given by
FH)=CQoHOH” o ...

and at the level of examples, we have:

(1) With H = C we recover the shift algebra A =< S > on H = [*(N).
(2) With H = C?, we obtain the algebra A =< S, Sy > on H = [*(N*N).

Proof. We can talk indeed about the algebra A(H) of creation operators on the free Fock
space F'(H) associated to a real Hilbert space H, with the remark that, in terms of the
abstract semigroup notions from section 6 above, we have:

A(CF) = C*(N*F)
F(CF) = B(N*)
As for the assertions (1,2) in the statement, these are both clear. U
With the above notions in hand, we have the following key freeness result:
Proposition 8.13. Given a real Hilbert space H, and two orthogonal vectors x,y € H,
zly
the corresponding creation operators Sy and S, are free with respect to
tr(T) =< TQ,Q >

called trace associated to the vacuum vector.
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Proof. In standard tensor notation for the elements of the free Fock space F(H), the
formula of a creation operator associated to a vector x € H is as follows:

Se(h ® ... QYy) =R Y ® ... Yy
As for the formula of the adjoint of this creation operator, this is as follows:
Si(1 ® ... QYp) =< x,y1 > QYo @ ... QYp
We obtain from this the following formula, valid for any two vectors x,y € H:
SySy =<,y >1id

With these formulae in hand, the result follows by doing some elementary computations,
in the spirit of those done before for the group algebras. O

With this technology in hand, let us go back to our linearization program for H. We
have the following key result, further building on Proposition 8.13:

Theorem 8.14. Given two polynomials f,g € C[X]|, consider the variables
R+ f(R) , S"+g(9)

where R, S are two creation operators, or shifts, associated to a pair of orthogonal norm
1 vectors. These variables are then free, and their sum has the same law as

T 4 (f +9)(T)
with T being the usual shift on 1*(N).

Proof. We have two assertions here, the idea being as follows:

(1) The freeness assertion comes from the general freeness result from Proposition 8.13,
via the various identifications coming from the previous results.

(2) Regarding now the second assertion, the idea is that this comes from a 45° rotation
trick. Let us write indeed the two variables in the statement as follows:

X=R'+ay+aR+aR>+...
Y =S*+by+ b5 +aS%+...

Now let us perform the following 45° base change, on the real span of the vectors
r,s € H producing our two shifts R, S:
- r+s Y — r—=s
V2 V2
The new shifts, associated to these vectors t,u € H, are then given by:
ReS . R-S

V2o V2

T —
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By using now these new shifts, which are free as well according to Proposition 8.13, we
obtain the following equality of distributions:

X+Y = R*+S*+ZakR’“+ka’“
k
T+U\" T-U\*
= V2T +) a (—) +b (—)
zk: "\ V2 "\ V2

T\" T\"
N CARES
~ T4 a T+ b T"
k
To be more precise, here in the last two lines we have used the freeness property of T, U

in order to cut U from the computation, as it cannot bring anything, and then we did a
basic rescaling at the end. Thus, we are led to the conclusion in the statement. U

We can now solve the linearization problem. Following [132], we have:

Theorem 8.15. Given a real probability measure p, define its R-transform as follows:

60 = [ P — 6, (R0 + ) =

The free convolution operation is then linearized by this R-transform.
Proof. This can be done by using the above results, in several steps, as follows:

(1) According to Theorem 8.14, the operation p — f from Theorem 8.10 above lin-
earizes the free convolution operation H. We are therefore left with a computation inside
C*(N). To be more precise, consider a variable as in Theorem 8.14 above:

X = 8"+ f(X)

In order to establish the result, we must prove that the R-transform of X, constructed
according to the procedure in the statement, is the function f itself.

(2) In order to do so, fix |z] < 1 in the complex plane, and let us set:
w, = 50 + Z Zk(;k
k=1

The shift and its adjoint act then as follows, on this vector:

Sw, =2z Hw, —d) , S*w,=zw,
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It follows that the adjoint of our operator X acts as follows on this vector:
Xw, = (S+ f($)w
2w, — &) + f2)w.
(27" + f(2))ws — 2710
Now observe that this formula can be written as follows:
200 = (7 + f(2) = X,

The point now is that when |z| is small, the operator appearing on the right is invertible.
Thus, we can rewrite this formula as follows:

(2714 flz) — X*) 1 = 2w,
Now by applying the trace, we are led to the following formula:
tr [(z_l + f(2) — X*)_l] = <(z_1 + f(2) — X*)_150,50>
= < zw,, 0y >
= z

(3) Let us apply now the complex function procedure in the statement to the real
probability measure y modelled by X. The Cauchy transform G, is given by:

Gu(§) = tr((¢-X)7")
= tr((g—X*)—l)
= (=X

Now observe that, with the choice & = 271 + f(2) for our complex variable, the trace
formula found in (2) above tells us precisely that we have:

Gu(z7"+ f(2) =2
Thus, we have R,(z) = f(z), which finishes the proof, as explained in step (1). d

With the above linearization technology in hand, we can now establish the following
free analogue of the CLT, also due to Voiculescu [132], [133]:

Theorem 8.16 (Free CLT). Given self-adjoint variables 1, xo,x3,... which are f.i.d.,
centered, with variance t > 0, we have, with n — 00, in moments,

1 n
= Z Ti ~ Nt
v i=1
where vy, is the Wigner semicircle law of parameter t, having density:

1
Y = ﬂ\/4t2 — x2dx
™
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Proof. We follow the same idea as in the proof of the CLT:

(1) At t = 1, the R-transform of the variable in the statement on the left can be
computed by using the linearization property from Theorem 8.15, and is given by:

R(€) = nR, (%) ~

(2) Regarding now the right term, also at t = 1, our claim is that the R-transform of
the Wigner semicircle law 7, is given by the following formula:

R’Yl (5 ) =<
But this follows via some calculus, or directly from S+5* ~ 7;, coming from Proposition

8.11. Thus, the laws in the statement have the same R-transforms, as desired.

(4) Summarizing, we have proved the free CLT at ¢ = 1. The passage to the general
case, t > 0, is routine, by some standard dilation computations. Il

Similarly, in the complex case, we have the following result:

Theorem 8.17 (Free complex CLT). Given variables x1,xq, 3, . .., whose real and imag-
wnary parts are f.i.d., centered, and with variance t > 0, we have, with n — oo,

%lewft

where Ty is the Voiculescu circular law of parameter t, appearing as the law of == (a—i—zb)
where a,b are self-adjoint and free, each following the law ;.

Proof. This is clear from Theorem 8.16 above, by taking real and imaginary parts. O

We will be back later to theoretical free probability, with some further results on the
subject. Now back to our quantum group questions, let us start with:

Theorem 8.18. Given a Woronowicz algebra (A,u), the law of the main character

N
= E Ui
i=1

with respect to the Haar integration has the following properties:

(1) The moments of x are the numbers M, = dim(Fiz(u®*)).

(2) My counts as well the lenght p loops at 1, on the Cayley graph of A.

(3) law(x) is the Kesten measure of the assocmted discrete quantum group.
(4) When u ~ @ the law of x is a usual measure, supported on [—N, N].
(5) The algebra A is amenable precisely when N € supp(law(Re(x))).

(6) Any morphism f : (A,u) — (B,v) must increase the numbers Mj,.

(7) Such a morphism f is an isomorphism when law(x.) = law(x,).
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Proof. These are things that we already know, the idea being as follows:

(1) This comes from the Peter-Weyl theory, which tells us the number of fixed points
of v = u®* can be recovered by integrating the character y, = x*.

(2) This is something true, and well-known, for A = C*(T'), with I' =< ¢q,...,g9xy >
being a discrete group. In general, the proof is quite similar.

(3) This is actually the definition of the Kesten measure, in the case A = C*(I"), with
['=<g,...,gn > being a discrete group. In general, this follows from (2).

(4) The equivalence u ~ @ translates into x, = x, and this gives the first assertion.
As for the support claim, this follows from wu* =1 = ||uy|| < 1, for any i.

(5) This is the Kesten amenability criterion, which can be established as in the classical
case, A = C*(I"), with I' =< ¢y, ..., gy > being a discrete group.

(6) This is something elementary, which follows from (1) above, and from the fact that
the morphisms of Woronowicz algebras increase the spaces of fixed points.

(7) This follows by using (6), and the Peter-Weyl theory, the idea being that if f is not
injective, then it must strictly increase one of the spaces Fiz(u®*). O

As a conclusion to all this, given a compact quantum group G, computing p = law(x) is
the main question to be solved, and this regardless of our precise motivation for studying
G. In what follows we will be interested in computing such laws, for the main examples
of quantum groups that we have. In the easy quantum group case, we have:

Theorem 8.19. For an easy quantum group G = (Gy), coming from a category of
partitions D = (D(k,l)), the asymptotic moments of the main character are given by

lim [ x"=[D(k)]

N—o0 GN
where D(k) = D(0, k), with the limiting sequence on the left consisting of certain integers,
and being stationary at least starting from the k-th term.

Proof. This follows indeed from the general formula from Theorem 8.18 (1), by using the
linear independence result from section 5 above. U

Our next purpose will be that of understanding what happens for the basic classes of
easy quantum groups. In the orthogonal case, we have:

Theorem 8.20. In the N — oo limit, the law of the main character x, 1s as follows:

1) For Oy we obtain a Gaussian law, ——=e=%"/?dx.
Nors

(2) For OF, we obtain a Wigner semicircle law, 3=v/4 — x?dx.
Proof. These are results that we both know, from section 5 above. U

In the unitary case now, we have:
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Theorem 8.21. In the N — oo limit, the law of the main character x, is as follows:

(1) For Uy we obtain the complex Gaussian law Gy .
(2) For Uy we obtain the Voiculescu circular law T'y.

Proof. These are once again results that we know, from section 6 above. U

Summarizing, we have seen so far that for Oy, Ok, Uy, Uy, the asymptotic laws of the
main characters are the laws gq, 7, G1,'1 coming from the various CLT. This is certainly
nice, but there is still one conceptual problem, coming from:

Proposition 8.22. The above convergences law(x,) — 91,7, G1, 1 are as follows:

(1) They are non-stationary in the classical case.
(2) They are stationary in the free case, starting from N = 2.

Proof. This is something quite subtle, which can be proved as follows:

(1) Here we can use an amenability argument, based on the Kesten criterion. Indeed,
On, Uy being coamenable, the upper bound of the support of the law of Re(y.,,) is precisely
N, and we obtain from this that the law of y, itself depends on N € N.

(2) Here the result follows from the computations in section 4 above, performed when
working out the representation theory of O}, Uy, which show that the linear maps T}
associated to the noncrossing pairings are linearly independent, at any N > 2. U

In short, we are not over with our study, which seems to open more questions than it
solves. Fortunately, the solution to this latest question is quite simple. The idea indeed
will be that of improving our ¢y, 7, Gy, ['1 results above with certain gy, v, Gy, I'y results,
which will require N — oo in both the classical and free cases, in order to hold at any ¢.
In practice, the definition that we will need is as follows:

Definition 8.23. Given a Woronowicz algebra (A,u), the variable

[tN]

Xt = Z Uis
i=1

is called truncation of the main character, with parameter t € (0, 1].

Our purpose in what follows will be that of proving that for Oy, O, Uy, Uy, the
asymptotic laws of the truncated characters x; with ¢t € (0,1] are the laws g;, v, Gy, 'y
This is something quite technical, motivated by the findings in Proposition 8.22 above,
and also by a number of more advanced considerations, to become clear later on.

In order to start now, the basic result from Theorem 8.18 (1) is not useful in the general
t € (0,1] setting, and we must use instead general integration methods [58], [143]:
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Theorem 8.24. For an easy quantum group G C U]JQ, coming from a category of partitions
D = (D(k,1)), we have the Weingarten integration formula

/uflljl.. ugk; = Z 37(2)06 (J)Win (7, 0)
a

m,oeD(k)

for any colored integer k = ey ...ex and any multi-indices i, j, where D(k) = D(0, k), 0
are usual Kronecker symbols, and

Win = Giy
with Gy (m,0) = NI™V°l where |.| is the number of blocks.

Proof. We already know from section 3 above that any closed subgroup G C Uy, is subject
to an abstract Weingarten formula, coming from Peter-Weyl theory, via some elementary
linear algebra. With the notations there, the Kronecker symbols are given by:

5£ﬂ(z) = <£ﬂ'76’il®---®61k>
= 577(1.1,..‘,7;]6)
The Gram matrix being as well the correct one, we obtain the result. See [22]. O

We can apply the above formula to truncated characters, and we obtain:

Proposition 8.25. The moments of truncated characters are given by the formula

/(ull 4+ ...+ Uss)k = T’I“(WkNGkS)
G

and with N — oo this quantity equals (s/N)*|D(k)|.

Proof. The first assertion follows from the following computation:

/G(ull +...+ uss)k = Z Z /uml e Wiy

11=1 =1

= Z WkNT('O'Z Zé

m,o€D(k i1=1 =1
= Z Win (7, 0)Gys(0, )
m,0€D(k)
= TT(WkNGkS>

The point now is that we have the following trivial estimates:

= N* (m=o0)
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Thus with N — oo we have the following estimate:
Gin ~ N*1

But this gives the folowing estimate, for our moment:

/G(u11 o F )t = TT(G,:}VG;%)

~ Tr((N*1)~'Gis)
= N'Tr(Gp)
= N75"D(k)|
Thus, we have obtained the formula in the statement. See [22]. O

In order to process the above formula, we will need some more free probability theory.
Following [123], [124], given a random variable a, we write:

log Fu(¢) = Y _ kn(a)¢"

Ro(§) =D rn(a)¢"

We call the coefficients k,(a), k,(a) cumulants, respectively free cumulants of a. With
this notion in hand, we can define then more general quantities k,(a), k.(a), depending
on partitions m € P(k), by multiplicativity over the blocks. We have then:

Theorem 8.26. We have the classical and free moment-cumulant formulae

My(a) = > kxla)

meP(k)

My(a) = Z Kr(a)

TeNC(k)
where ky(a), kr(a) are the generalized cumulants and free cumulants of a.

Proof. This is standard, by using the formulae of F,, R,, or by doing some direct combi-
natorics, based on the Mobius inversion formula. See [115]. O

We can now improve our results about characters, as follows:

Theorem 8.27. With N — oo, the laws of truncated characters are as follows:

(1) For Oy we obtain the Gaussian law g;.

(2) For O} we obtain the Wigner semicircle law ;.
(3) For Uy we obtain the complex Gaussian law Gy.
(4) For Uy we obtain the Voiculescu circular law Ty.
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Proof. With s = [tN] and N — oo, the formula in Proposition 8.25 above gives:
: k n

e 2
By using now the formulae in Theorem 8.26, this gives the results. Indeed:
(1) This is clear.
(2) This is clear as well.
(3) This follows by complexification.
(4) This follows by free complexification.
For details on all this, we refer to [22]. O

As an interesting consequence, related to [42], let us formulate as well:

Theorem 8.28. The asymptotic laws of truncated characters for the liberation operations
ON — Oj\}

UN — U]—\’]—
are in Bercovici-Pata bijection, in the sense that the classical cumulants in the classical
case equal the free cumulants in the free case.

Proof. This follows indeed from the computations in the proof of Theorem 8.27. U

This result will be of great use for the liberation of more complicated compact Lie
groups, because it provides us with a criterion for checking if our guesses are right. Let us
discuss now the other easy quantum groups that we have. Regarding the half-liberations

~> Ux the situation is a bit complicated, but we have the following result, at ¢ = 1:

Proposition 8.29. The asymptotic laws of the main characters are as follows:
(1) For Oy we obtain a symmetrized Rayleigh variable.
(2) For U} we obtain a complezification of this variable.

Proof. The idea is to use a projective version trick. Indeed, assuming that G = (Gy) is
easy, coming from a category of pairings D, we have:

dim [ (o) = #D((00)")
In our case, where Gy = Oy, Uy, we can therefore use Theorem 8.27 above at ¢ = 1,
and we are led to the conclusions in the statement. See [27], [28], [127]. O

The above result is of course something quite modest. We will be back to the quantum
groups Oj, U}, in section 16 below, with some better techniques for dealing with them.
Next in our lineup, we have the bistochastic quantum groups. We have here:
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Proposition 8.30. For the bistochastic quantum groups
BN7 B]-i\_[a CN7 CV]-"\}
the asymptotic laws of truncated characters appear as modified versions of

Gty Vts G, T

and the operations Oyx — O, and Uy — Uy, are compatible with the Bercovici-Pata
bijection.

Proof. This follows indeed by using the same methods as for Oy, OF, Uy, Uy, with the
verification of the Bercovici-Pata bijection being elementary, and with the computation
of the corresponding laws being routine as well. See [38], [28], [127]. O

Regarding now the twists, we have here the following general result:
Proposition 8.31. The integration over Gy is given by the Weingarten type formula
/ Uijy Ui, = Y 0x()00(j)Win(m, 0)
Gn moeD(k)

where Wy is the Weingarten matriz of Gy .

Proof. This follows from the general Weingarten formula from Theorem 8.24, with the
corresponding Gram matrix being computed exactly as in the untwisted case. See [4]. O

As a consequence of the above result, we have another general result, as follows:

Theorem 8.32. The Schur-Weyl twisting operation Gy <+ Gy leaves invariant:

(1) The law of the main character.
(2) The coamenability property.
(3) The asymptotic laws of truncated characters.

Proof. This basically follows from Proposition 8.31, as follows:
(1) This is clear from the integration formula.
(2) This follows from (1), and from the Kesten criterion.
(3) This follows once again from the integration formula. g
To summarize, we have results for all the easy quantum groups introduced so far, and

in each case we obtain Gaussian laws, and their versions.

There are many other probabilistic results that can be proved, by using the above
technology, and we refer here to [26], [28], [29], [62], [63], [64], [65], [70], [71], [72], [73],
[74], [80], [82], [83], [97], [98], [100], [104], [110], [111].
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9. Quantum permutations

The quantum groups that we considered so far, namely Oy, Uy and their liberations
and twists, are of “continuous” nature. In order to have as well “discrete” examples, the
idea will be that of looking at the corresponding quantum reflection groups. Let us start
with a functional analytic description of the usual symmetric group:

Proposition 9.1. Consider the symmetric group Sy .

(1) The standard coordinates v;; € C(Sn), coming from the embedding Sy C Oy given
by the permutation matrices, are given by v;; = x(o|o(j) = 1).

(2) The matriz v = (v;;) is magic, in the sense that its entries are orthogonal projec-
tions, summing up to 1 on each row and each column.

(3) The algebra C(Sy) is isomorphic to the universal commutative C*-algebra gener-
ated by the entries of a N X N magic matrix.

Proof. These results are all elementary, as follows:

(1) We recall that the canonical embedding Sy C Oy, coming from the standard
permutation matrices, is given by o(e;) = ey(;). Thus, we have o = Zj €o(j)j and it
follows that the standard coordinates on Sy C Oy are given by:

vi(0) = di0(j)

(2) Any characteristic function x € {0,1} being a projection in the operator algebra
sense (x? = x* = x), we have indeed a matrix of projections. As for the sum 1 condition
on rows and columns, this is clear from the formula of the elements v;;.

(3) Consider the universal algebra in the statement, namely:
A=Clum ((wij)i,jzl,...,N‘w = magic)

We have a quotient map A — C(Sy), given by w;; — v;;. On the other hand, by using
the Gelfand theorem we can write A = C(X), with X being a compact space, and by
using the coordinates w;; we have X C Oy, and then X C Sy. Thus we have as well a
quotient map C(Sn) — A given by v;; — w;;, and this gives (3). See Wang [140]. O

With the above result in hand, we can now formulate, following [140]:

Theorem 9.2. The following is a Woronowicz algebra,
O(S]—G) = O* ((uij)i7j:17_,.7N)u = magic)
and the underlying compact quantum group Sy is called quantum permutation group.

Proof. As a first remark, the algebra C'(Sy) is well-defined, because the magic condition
forces ||u;;|| < 1, for any C*-norm. Our claim now is that, by using the universal property
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of this algebra, we can define maps A, e, 5. Consider indeed the following matrix:
Uij = Z Uik & Uk
k

As a first observation, we have U;; = U}. In fact the entries U;; are orthogonal projec-
tions, because we have as well:

2
Ui = E Uik Ui @ Up; Uy

kl

= E Uik, & U
k
Usi;

In order to prove now that the matrix U = (U,;) is magic, it remains to verify that the
sums on the rows and columns are 1. For the rows, this can be checked as follows:

D Uy =) un@uy=) uz®l=181
J jk k
For the columns the computation is similar, as follows:

% ik k

Thus the matrix U = (U;;) is magic indeed, and so we can define a comultiplication
map by setting A(u;;) = U;;. By using a similar reasoning, we can define as well a counit
map by (u;;) = d;;, and an antipode map by S(u;;) = uj;. Thus the Woronowicz algebra
axioms from section 2 are satisfied, and this finishes the proof. O

The terminology in the above result comes from the comparison with Proposition 9.1
(3), which tells us that we have an inclusion Sy C S}, and that this inclusion is a
liberation, in the sense that the classical version of Sy, obtained at the algebra level by
dividing by the commutator ideal, is the usual symmetric group Sy. The terminology is
further motivated by the following result, also from [140]:

Proposition 9.3. The quantum permutation group Sj; acts on the set X = {1,... N},
the corresponding coaction map ® : C(X) — C(X) ® C(S5) being given by:

(I)((SZ) = ZCS] ® Ui
J

In fact, S% is the biggest compact quantum group acting on X, by leaving the counting
measure invariant, in the sense that

(tr @ id)® = tr(.)1

where tr is the standard trace, given by tr(8;) = +, Vi.
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Proof. Our claim is that given a compact matrix quantum group G, the formula ®(¢;) =

> i d; ® uj;; defines a morphism of algebras, which is a coaction map, leaving the trace

invariant, precisely when the matrix u = (u;;) is a magic corepresentation of C'(G).
Indeed, let us first determine when ® is multiplicative. We have:

D(0;)P(0k) = Z 0;0; ® wjiuge = Z 0 ® wjiuk
Jl J
On the other hand, we have as well the following formula:

B(6:05) = 6P (6;) = Oy Z(s ® uj;

Thus, the multiplicativity of ® is equivalent to the following conditions:
UjiUjl = 5ikujz' . Vi gk

Regarding now the unitality of ®, we have the following formula:

o(1) = ()
= Z(%@Uﬂ

- ¥oe(Tu)
] i
Thus @ is unital when the following conditions are satisfied:
Z Uj; = 1 y Vi

Finally, the fact that ® is a x-morphism translates into:
ug =y, Vi j

Summing up, in order for ®(4;) = >_;d; ® u;; to be a morphism of C*-algebras, the
elements u;; must be projections, summing up to 1 on each row of u. Regarding now the
preservation of the trace condition, observe that we have:

(tr @ id)P Z wj;

Thus the trace is preserved precisely when the elements u;; sum up to 1 on each of
the columns of u. We conclude from this that ®(6;) = >, d; ® uj; is a morphism of C*-
algebras preserving the trace precisely when u is magic, and since the coaction conditions
on ® are equivalent to the fact that u must be a corepresentation, this finishes the proof
of our claim. But this claim proves all the assertions in the statement. U

As a perhaps quite surprising result now, also from [140], we have:
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Theorem 9.4. We have an embedding of compact quantum groups
SN C SJJ\?

given at the algebra level, C(Sy) — C(Sy), by the formula
Uij = X (0‘0(]') = z)

and this embedding is an isomorphism at N < 3, but not at N > 4, where S3; is non-
classical, infinite compact quantum group.

Proof. The fact that we have indeed an embedding as above is clear from Proposition 9.1
and Theorem 9.2. Note that this follows as well from Proposition 9.3. Regarding now the
second assertion, we can prove this in four steps, as follows:

Case N = 2. The result here is trivial, the 2 x 2 magic matrices being by definition as
follows, with p being a projection:

-2, '5)
I—p p

Indeed, this shows that the entries of a 2 x 2 magic matrix must pairwise commute,
and so the algebra C(S,) follows to be commutative, which gives the result.

Case N = 3. This is more tricky, and we present here a simple, recent proof, from [105].
By using the same abstract argument as in the N = 2 case, and by permuting rows and
columns, it is enough to check that wq;, uss commute. But this follows from:

Upilley = UniUga(U1n + Uiz + trg)
= U1U22U11 + Up1U22UL3
= U Ugourr + U1 (1 — ugr — ugg)uss
= U11U22U71
Indeed, by applying the involution to this formula, we obtain from this that we have

as well ugoty; = upiugouyr. Thus we get uy1use = usouqy, as desired.

Case N =4. In order to prove our various claims about S, consider the following
matrix, with p, ¢ being projections, on some infinite dimensional Hilbert space:

P 1—p O 0
_|({1=-p» »p 0 0
U= 0 0 g 1—gq
0 0 1—gq q
This matrix is magic, and if we choose p,q as for the algebra < p,q > to be not

commutative, and infinite dimensional, we conclude that C'(S;) is not commutative and
infinite dimensional as well, and in particular is not isomorphic to C(Sy).
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Case N > 5. Here we can use the standard embedding S;” C S]f,, obtained at the level
of the corresponding magic matrices in the following way:

_ U 0
0 1y

Indeed, with this embedding in hand, the fact that S} is a non-classical, infinite compact
quantum group implies that S}, with N > 5 has these two properties as well. O

At the representation theory level now, we have the following result, from [23]:

Theorem 9.5. For the quantum groups Sy, Sy, the intertwining spaces for the tensor
powers of the fundamental corepresentation u = (u;;) are given by

Hom(u®* u®) = span (T7r

© e D(k, l))
with D = P,NC. In other words, Sy, Sy are easy, coming from the categories P, NC'.

Proof. We use the Tannakian duality results from section 4 above:

(1) S%. According to Theorem 9.2, the algebra C/(S};) appears as follows:
C(SH) = C(0%) / <u - magic>

Consider the one-block partition x4 € P(2,1). The linear map associated to it is:
Tu(ei @ e5) = bijes
We have T}, = (6;;x)i jk, and we obtain the following formula:

(Tuu®)igi = Y (T)itm (U )im gt = ijtiin

lm

On the hand, we have as well the following formula:
(WTy)ige = Y wia(T)je = Oty
!

Thus, the relation defining S}, C O} reformulates as follows:
T, € Hom(u®?, u) <= UijUik = Ok, Vi, 7,k
The condition on the right being equivalent to the magic condition, we obtain:
C(Sy) = C(O]\L,)/<TM € Hom(u®2,u)>

By using now the general theory from section 7, we conclude that the quantum group
S% is indeed easy, with the corresponding category of partitions being D =< p >. But
this latter category is NC', as one can see by “chopping” arbitrary noncrossing partitions
into p-shaped components. Thus, we are led to the conclusion in the statement.
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(2) Sy. Here the first part of the proof is similar, leading to the following formula:
C(Sy) = C(ON)/<TM € Hom(u®2,u)>
But this shows that Sy is easy, the corresponding category of partitions being:
D=<pu,P,>=< NC, P, >=P

Alternatively, this latter formula follows directly for the result for S¥ proved above, via
Sy = 83 N Oy, and the functoriality results explained in section 7. O

As a technical comment, there might seem to be a bit of a clash between the above
results for Sy, SY% at N = 2,3, where we have Sy = Sy. However, there is no clash,
because the implementation of the partitions is not faithful. In order to discuss now the
representation theory of S¥, we will need precisely linear independence results for the
vectors &, associated to the partitions m € NC'. Let us start with:

Proposition 9.6. We have a bijection NC(k) ~ NCy(2k), constructed as follows:

(1) The application NC(k) — NC5(2k) is the “fattening” one, obtained by doubling
all the legs, and doubling all the strings as well.

(2) Its inverse NCy(2k) — NC(k) is the “shrinking” application, obtained by collaps-
ing pairs of consecutive neighbors.

Proof. The fact that the two operations in the statement are indeed inverse to each other
is clear, by computing the corresponding two compositions, with the remark that the
construction of the fattening operation requires the partitions to be noncrossing. U

Next in line, we have the following key result:
Theorem 9.7. Consider the Temperley-Lieb algebra of index N > 4, defined as
TLyn(k) = span(NCy(k, k))

with product given by the rule () = N, when concatenating.

(1) We have a representation i : T Ly (k) — B((CN)®%), given by 7 — T.
(2) Tr(T,) = NWors(<™) where 1 —< 7 > is the closing operation.

(3) The linear form 7 =Troi:TLn(k) — C is a faithful positive trace.
(4) The representation i : TLy(k) — B((CN)®*) is faithful.

In particular, the vectors {&x|m € NC(k)} C (CN)®k are linearly independent.
Proof. All this is quite standard, but advanced, the idea being as follows:

(1) This is clear from the categorical properties of 7 — T.
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(2) This follows indeed from the following computation:

Tr(T;) = Z‘SWGZ)

i1k

= #{21,,ZkE{l,,N}‘ker(lek)zTr}
11 ...
— Nloops(<7r>)

(3) The traciality of 7 is clear. Regarding now the faithfulness, this is something well-
known, and we refer here to Jones’ paper [90].

(4) This follows from (3) above, via a standard positivity argument. As for the last
assertion, this follows from (4), by fattening the partitions. O

For our purposes, the final conclusion of Theorem 9.7 is exactly what we need. The
problem, however, is that the proof of this fact remains quite heavy, based on [90]. We
will be back to this a bit later, with the outline of a few alternative arguments. We can
now work out the representation theory of S¥, as follows:

Theorem 9.8. The quantum groups Sy, with N > 4 have the following properties:
(1) The moments of the main character are the Catalan numbers:

/ XF = Cy
Cpe

(2) The fusion rules for representations are as follows, exactly as for SOs:
Tk & T = T|kfl| + 74|k7[|+1 + ...+ Tkl

(3) The dimensions of the irreducible representations are given by

¢+ — g

qg—1
where q,q~1 are the roots of X?> — (N —2)X +1 = 0.

Proof. The proof, from [2], based on Theorem 9.7, goes as follows:

(1) We have indeed the following computation, coming from the SU, computations
from section 5, and from Theorem 9.5, Proposition 9.6 and Theorem 9.7:

/S = dim(Fia(u®)
= [NC(k)]
= |NCy(2F)|
e
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(2) This is standard, by using the formula in (1), and the known theory of SOs;. Let
A = span(xk|k € N) be the algebra of characters of SO3. We can define a morphism as
follows, where f is the character of the fundamental representation of Sy:

Ui A— C(SH)

x1— f—1
The elements fr = W(yy) verify then the following formulae:

Jefio = fie—y + fle—g1 + -+ fron

We prove now by recurrence that each fj is the character of an irreducible corepresen-
tation 7 of C’(S;{,), non-equivalent to rg,...,7x_1. At k = 0,1 this is clear, so assume
that the result holds at £ — 1. By integrating characters we have, exactly as for SOj:

Th—2,Tk—1 C Tk—1 ® 11
Thus there exists a certain corepresentation r; such that:
Tp—1 & 11 = g2+ g1+ 7k

Once again by integrating characters, we conclude that 7 is irreducible, and non-
equivalent to ry,...,r,_1, as for SO3, which proves our claim. Finally, since any irre-
ducible representation of Sy, must appear in some tensor power of u, and we have a
formula for decomposing each u®* into sums of representations r;, we conclude that these
representations r; are all the irreducible representations of Sj;.

(3) From the Clebsch-Gordan rules we have, in particular:
TRTL = Th—1 + Tk + Tkt

We are therefore led to a recurrence, and the initial data being dim(rg) = 1 and
dim(r{) =N —1=¢q+ 1+ ¢!, we are led to the following formula:

dim(ry) =¢" +¢" ' +.. . +¢"F +¢7"
In more compact form, this gives the formula in the statement. Il

The above result is quite surprising, and raises a massive number of questions. We
would like to better understand the relation with SOj3, and more generally see what
happens at values N = n? with n > 2, and also compute the law of y, and so on.

We will come up with answers to all these questions, but we will do this slowly. One
way of understanding the relation with SO3 comes from noncommutative geometry con-
siderations. We recall that, according to the general theory from section 1, each finite
dimensional C*-algebra A can be written as A = C'(F’), with F' being a “finite quantum
space”. We make the convention that each such space F' is endowed with its counting
measure, corresponding to the canonical trace tr: A C L(A) — C.
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Let us study the quantum group actions G ~ F. We denote by p,n the multiplication
and unit map of the algebra C'(F'). Following [2], [140], we first have:

Proposition 9.9. Consider a linear map ® : C(F) — C(F) ® C(G), written as
CID(eZ) = Z ej X uji
J
with {e;} being a linear space basis of C(F), orthonormal with respect to tr.

(1) ® is a linear space coaction <= wu is a corepresentation.
(2) @ is multiplicative < p € Hom(u®? u).

(3) @ is unital <= n € Hom(1,u).

(4) @ leaves invariant tr <= n € Hom(1,u*).

(5) If these conditions hold, ® is involutive <= w is unitary.

Proof. This is a bit similar to the proof of Proposition 9.3 above, as follows:
(1) There are two axioms to be processed here. First, we have:

(@A) =(PRid)d += > ¢@Auy) =Y Per)®uy

J

= Zej ® A(uyi) = Zej ® Ujr @ Up;

J jk

k

As for the axiom involving the counit, here we have as well, as desired:

(id®@e)d =id <= Zs(uji)ej =e;
J

< 8(16]'1') = 6ji
(2) We have the following formula:

Ole;) = > e;@uy

J
= (Z €ji @ Uji) (e;®1)
ij
= u(e; ®1)
By using this formula, we obtain the following identity:
D(ejer) = uleer ®1)
= u(p®id)(e; e, ®1)
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On the other hand, we have as well the following identity, as desired:
Oe;))P(ep) = Z ejer @ UjiUy
5
= (p®id) Z e; Qe @ ujiuy
5
= (u X Zd) (Z €ji (%9 Clk & ujl-ulk) (61' & €k & 1)
ijkl

= (p®id)u®(e; ® e, ® 1)

(3) The formula ®(e;) = u(e; ® 1) found above gives by linearity ®(1) = u(1® 1), which
shows that ® is unital precisely when u(1 ® 1) = 1 ® 1, as desired.

(4) This follows from the following computation, by applying the involution:

(tr @ id)D(e;) = tr(e;)l <= Ztr(ej)uﬁ:tr(em

— Zu;;.lj =1,
J

— (u'l);=1

— u'l=1

(5) Assuming that (1-4) are satisfied, and that ® is involutive, we have:

* *
(W) = E Ui
= g tr e el u ULk

— (tr@id)Ze;@@U;iulk
= (tr®id)(®(e;) P (ex))
= (tr®@id)®(eley)

1

= tr(eleg)
= b
Thus u*u = 1, and since we know from (1) that u is a corepresentation, it follows that
u is unitary. The proof of the converse is standard too, by using similar tricks. O

Following now [2], [140], we have the following result, extending the basic theory of S¥
to the present finite noncommutative space setting:
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Theorem 9.10. Given a finite quantum space F', there is a universal compact quantum
group S} acting on F, leaving the counting measure invariant. We have

C(S}) = C’(Uﬁ)/<,u € Hom(u®?* u),n € Fm(u)>

where N = |F| and where p,n are the multiplication and unit maps of C(F). For F =
{1,..., N} we have S = S5%. Also, for the space F = My we have S} = SOj.

Proof. This result is from [2], the idea being as follows:

(1) This follows from Proposition 9.9 above, by using the standard fact that the complex
conjugate of a corepresentation is a corepresentation too.

(2) Regarding now the main example, for /' = {1,..., N} we obtain indeed the quantum
permutation group Sy, due to the abstract result in Proposition 9.3 above.

(3) In order to do now the computation for F' = My, we use some standard facts about
SUs,, SO3. We have an action by conjugation SUs ~ Ms(C), and this action produces,
via the canonical quotient map SUs — SOz, an action SO3 ~ Ms(C).

On the other hand, it is routine to check, by using arguments like those in the proof of
Theorem 9.4 at N = 2,3, that any action G ~ Ms(C) must come from a classical group.
We conclude that the action SO3 ~ My(C) is universal, as claimed. O

Regarding now the representation theory of these generalized quantum permutation
groups S}, the result here, from [2], is very similar to the one for S}, as follows:
Theorem 9.11. The quantum groups S3. have the following properties:

(1) The associated Tannakian categories are T Ly, with N = |F)|.
(2) The main character follows the Marchenko-Pastur law m, when N > 4.
(3) The fusion rules for S} with |F| > 4 are the same as for SOj.

Proof. Once again this result is from [2], the idea being as follows:

(1) Our first claim is that the fundamental representation is equivalent to its adjoint,
u ~ u. Indeed, let us go back to the coaction formula from Proposition 9.9:

@(ez) = Z €; &® Ugjs
J

We can pick our orthogonal basis {e;} to be the stadard multimatrix basis of C'(F),
so that we have ef = e;+, for a certain involution ¢ — ¢* on the index set. With this
convention made, by conjugating the above formula of ®(e;), we obtain:

CID(eZ-*) = Z €, X ujz

J



162 TEO BANICA

Now by interchanging ¢ <> 7* and j <+ j*, this latter formula reads:

Dle) =D € @iy
J
We therefore conclude, by comparing with the original formula, that we have:

*

But this shows that we have an equivalence u ~ u, as claimed. Now with this result
in hand, the proof goes as for the proof for Sy. To be more precise, the result follows
from the fact that the multiplication and unit of any complex algebra, and in particular
of C(F'), can be modelled by the following two diagrams:

m=|U|] , u=n

Indeed, this is certainly true algebrically, and this is something well-known. As in what
regards the x-structure, things here are fine too, because our choice for the trace leads to
the following formula, which must be satisfied as well:

upt =N -id
But the above diagrams m, u generate the Temperley-Lieb algebra T'Ly, as stated.

(2) The proof here is exactly as for S3;, by using moments. To be more precise, according
to (1) these moments are the Catalan numbers, which are the moments of 7.

(3) Once again same proof as for S¥, by using the fact that the moments of y are the
Catalan numbers, which naturally leads to the Clebsch-Gordan rules. U

It is quite clear now that our present formalism, and the above results, provide alto-
gether a good and conceptual explanation for our SOs result regarding Sy. To be more
precise, we can merge and reformulate the above results in the following way:

Theorem 9.12. The quantun groups S have the following properties:
(1) For F ={1,...,N} we have S} = S},.
(2) For the space F = My we have Sj. = POy = PU}..

(3) In particular, for the space F = My we have Sj = SOs.

(4) The fusion rules for S} with |F| > 4 are independent of F.

(5) Thus, the fusion rules for S with |F| > 4 are the same as for SOj.

Proof. This is basically a compact form of what has been said above, with a new result

added, and with some technicalities left aside:

(1) This is something that we know from Theorem 9.10.

(2) This is new, the idea being as follows. First of all, we know from section 4 above
that the inclusion PO}, C PUY is an isomorphism, with this coming from the free com-

plexification formula 6K, = Uy, but we will actually reprove this result. Consider indeed



QUANTUM GROUPS 163

the standard vector space action Uy, ~ CV, and then its adjoint action PU, ~ My(C).
By universality of S;}N, we have inclusions as follows:

PO}, C PUY C ST,

On the other hand, the main character of Oy with N > 2 being semicircular, the
main character of PO must be Marchenko-Pastur. Thus the inclusion PO} C S} has
the property that it keeps fixed the law of main character, and by Peter-Weyl theory we
conclude that this inclusion must be an isomorphism, as desired.

(3) This is something that we know from Theorem 9.10, and that can be deduced as
well from (2), by using the formula PO; = SOz, which is something elementary.

(4) This is something that we know from Theorem 9.11.
(5) This follows from (3,4), as already pointed out in Theorem 9.11. O

All this is certainly quite conceptual, but perhaps a bit too abstract. At N = 4 we can
formulate a more concrete result on the subject, by using the following construction:

Definition 9.13. C(SO3;"') is the universal C*-algebra generated by the entries of a 3 x 3
orthogonal matriz a = (a;;), with the following relations:

(1) Skew-commutation: a;jay = *aga;;, with sign + if i # k, j # 1, and — otherwise.
(2) Twisted determinant condition: ¥,cs,010(1)020(2)030(3) = 1.

Observe the similarity with the twisting constructions from section 7. However, SO3
being not easy, we are not exactly in the Schur-Weyl twisting framework from there.

Our first task would be to prove that C(SO3; ') is a Woronowicz algebra. This is of course
possible, by doing some computations, but we will not need to do these computations,
because the result follows from the following theorem, from [13]:

Theorem 9.14. We have an isomorphism of compact quantum groups
S§ = 5051
given by the Fourier transform over the Klein group K = Zo X Zs.
Proof. Consider indeed the matrix a™ = diag(1, a), corresponding to the action of SO;*
on C*, and apply to it the Fourier transform over the Klein group K = Zy x Zs:

1 1 1 1 1 0 0 0 1 1 1 1
1 1 -1 -1 1 0 a1 a1 ai13 1 -1 -1 1
411 -1 1 -1 0 agq e asg 1 -1 1 -1
1 1 -1 -1 0 a31 Q32 ass 1 1 -1 -1

u =

It is routine to check that this matrix is magic, and vice versa, i.e. that the Fourier
transform over K converts the relations in Definition 9.13 into the magic relations in
Definition 8.1. Thus, we obtain the identification from the statement. O
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Yet another extension of Theorem 9.8, which is however quite technical, comes by
looking at the general case N = n?, with n > 2. It is possible indeed to complement
Theorem 9.12 above with a general twisting result of the following type:

GH(F,) = GH(F)°

To be more precise, this formula is valid indeed, for any finite group F' and any 2-cocycle
o on it. In the case F' = Z2 with Fourier cocycle on it, this leads to the conclusion that
PO} appears as a cocycle twist of S,. See [19]. In relation with this, we have:

Proposition 9.15. The Gram matrices of NCo(2k), NC(k) are related by the formula
Gopn (1, 0) = 1 (D) Grn2 By ) (7, 0)
where m — 7' is the shrinking operation, and Ay, is the diagonal of Gy,.
Proof. In the context of Proposition 9.6 above, it is elementary to see that we have:
|TVo|=k+2|7' V| —|x|—|o
We therefore have the following formula, valid for any n € N:
nlmvel — pk+2lr'vo'|=|x'|—|o’|
Thus, we obtain the formula in the statement. U
We have the following interesting probabilistic fact, from [19] as well:

Theorem 9.16. The following families of variables have the same joint law,

(1) {ufj} € IC(OJ),

(2) {Xi; = 3 XapPiagn} € C(S2),
where u = (u;;) and p = (piaj») are the corresponding fundamental corepresentations.
Proof. This result can be obtained via twisting methods. An alternative approach is by

using the Weingarten formula for our two quantum groups, and the shrinking operation
m — 7. Indeed, we obtain the following moment formulae:

/ u?f = Z Wopn(, 0)
o

m,0€NC2(2k)

3

ko _ |7’ |+|o’ |-k o

/+ X = 5 n Win2(m', o)
S 2

m,0€NCo(2k)

n

According to Proposition 9.15 the summands coincide, and so the moments are equal,
as desired. The proof in general, dealing with joint moments, is similar. U

The above result is quite interesting, because it makes a connection between free hy-
perspherical and free hypergeometric laws. We refer here to [19], [25].
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Let us go back now to our main result so far, namely Theorem 9.8, and further build
on that. Following [12], we have the following result:

Theorem 9.17. The spectral measure of the main character of SY;, with N > 4 is the
Marchenko-Pastur law of parameter 1, having the following density:

1
T = 2—\/ 4= — 1dx
m

Also, Sf is coamenable, and S} with N > 5 is not coamenable.

Proof. Here the first assertion follows from the following formula, which can be established
by doing some calculus, and more specifically by setting « = 4 sin®¢:

1 4
= / VI Iz Tatde = G,
0

As for the second assertion, this follows from this, and from the Kesten criterion. [J

Our next purpose will be that of understanding, probabilistically speaking, the libera-
tion operation Sy — S]J{,. In what regards Sy, we have the following basic result:

Theorem 9.18. Consider the symmetric group Sy, regarded as a compact group of ma-
trices, Sy C Op, via the standard permutation matrices.

(1) The main character x € C(Sn), defined as usual as x = Y, u;;, counts the number
of fized points, x(o) = #{i|o(i) =i}.

(2) The probability for a permutation o € Sy to be a derangement, meaning to have
no fized points at all, becomes, with N — oo, equal to 1/e.

(3) The law of the main character x € C(Sy) becomes, with N — 0o, a Poisson law
of parameter 1, with respect to the counting measure.

Proof. This is something very classical, and beautiful, as follows:

(1) We have indeed the following computation:
x(o) = Zuii(a) = Z So(iyi = # {z|a(z) =i}
(2) This is best viewed by using the inclusion-exclusion principle. Let us set:

ik {a € Snlo(in) =1, ..., o) = 'Lk}

By using the inclusion-exclusion principle, we have:
1

P(x=0) = ﬁ(Slu...uSN)C|

- %(|SN|_Z|S§v|+2|5%|—...+(_1)N Z |S§\1,ZN|>

7 1<j 11 <...<in
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For any i; < ... < i, we have |Sy | = (N — k)!, and we obtain:

k=0
1 1 N-1 v 1
= l-gtg— (1) m+<_1) N!

Since on the right we have the expansion of %, we conclude that we have:
1
lim P(y =0) = —
Wi P=0r=5

(3) This follows by generalizing the computation in (2). To be more precise, a similar
application of the inclusion-exclusion principle gives the following formula:

. 1
A FOC= ) = 70
Thus, we obtain in the limit a Poisson law, as stated. Il

In order to talk about free analogues of this, we will need some theory:

Theorem 9.19. The following Poisson type limits converge, for any t > 0,

¢ + *N
Pt = lim ((1 - —) 50 + —51)
n—00 n n
Hn
t t
Ty = lim <(1——) 50-'--(51)
n—+00 n n

the limiting measures being the Poisson law p;, and the Marchenko-Pastur law 7,

1Ry,
Pr=er 2
k=0
4t — (x —1—1)2
ﬂt:max(l—t,0)50+\/ (@ ) dx

2rx
whose moments are given by the following formula

My (p;) = Z ¢l
weD(k)
with D = P, NC. The Marchenko-Pastur measure m; is also called free Poisson law.
Proof. This is something standard, which follows by using either log F, R and calculus,
or classical and free cumulants, and combinatorics. The point indeed is that the limiting

measures must be those having classical and free cumulants t,¢,¢,... But this gives all
the assertions, the density computations being standard. See [109], [115], [136], [145]. O

We can now formulate a conceptual result about Sy — Sy, as follows:
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Theorem 9.20. The law of the main character x, is as follows:

(1) For Sy with N — 0o we obtain a Poisson law py.
(2) For S}, with N > 4 we obtain a free Poisson law .

In addition, these laws are related by the Bercovici-Pata correspondence.

Proof. This follows indeed from the computations that we have, from Theorem 9.17 and
Theorem 9.18, by using the various theoretical results from Theorem 9.19. U

As in the continuous case, our purpose now will be that of extending this result to the
truncated characters. In order to discuss the classical case, we first have:

Proposition 9.21. Consider the symmetric group Sy, together with its standard matrix
coordinates u;; = x(o € Sn|o(j) =1). We have the formula

/ w v — w if keri = kerj
Sn I 0 otherwise

where ker i denotes as usual the partition of {1, ... k} whose blocks collect the equal indices
of i, and where |.| denotes the number of blocks.

Proof. According to the definition of u,;, the integrals in the statement are given by:

1 ) . . )
/ uim .. .uik]’k = m# {O’ € SN‘U(jl) =11,... ,O’(jk) = Zk}
SN °

The existence of o € Sy as above requires i, = i,, <= J,» = Jn. Lhus, the integral
vanishes when keri # ker j. As for the case keri = ker j, if we denote by b € {1,...,k}
the number of blocks of this partition, we have N — b points to be sent bijectively to N —b
points, and so (N — b)! solutions, and the integral is %, as claimed. O

We can now compute the laws of truncated characters, and we obtain:

Proposition 9.22. For the symmetric group Sy C Oy, regarded as a compact group of
matrices, Sy C Oy, via the standard permutation matrices, the truncated character

[tN]
Xt = Z U
i=1
counts the number of fized points among {1,...,[tN]}, and its law with respect to the

counting measure becomes, with N — oo, a Poisson law of parameter t.
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Proof. With Sy, being the Stirling numbers, we have:

[tN]
k
/ Xt = E / Wiyiy - - - Uipiy,
SN SN

iy..ip=1

[tN]! (N —|=]")
- E:wm—mm' NI

[#N]
B [tN]! (N —b)!
_Z;wm—mr N Sk

In particular with N — oo we obtain the following formula:

k
lim / Xk = Sk,btb

But this is a Poisson(¢) moment, and so we are done. O

We can now finish our computations, and generalize Theorem 9.20, as follows:

Theorem 9.23. The laws of truncated characters x; = Zyzj\? uy; are as follows:

(1) For Sy with N — oo we obtain a Poisson law p;.
(2) For S}, with N — oo we obtain a free Poisson law .

In addition, these laws are related by the Bercovici-Pata correspondence.

Proof. This follows from the above results:
(1) This is something that we already know, from Proposition 9.22.

(2) This is something that we know so far only at ¢ = 1, from Theorem 9.20. In order
to deal with the general ¢ € (0, 1] case, we can use the same method as for the orthogonal
and unitary quantum groups, from section 8, and we obtain the following moments:

w3

TENC (k)
But these numbers being the moments of the free Poisson law of parameter t, as ex-
plained in Theorem 9.19 above, we obtain the result. See [23]. O

Summarizing, the liberation operation Sy — Sj; has many common features with the
liberation operations Oy — O;{, and Uy — U;, studied in section 8 above.

There are many other things that can be said about S3; and its subgroups, with all this
being related to the subfactor and planar algebra theory of Jones [90], [91], [92], [93], [94],
[95], [96]. For an introduction to this, we refer to [2], [3] and related papers.
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10. QUANTUM REFLECTIONS

Many interesting examples of quantum permutation groups appear as particular cases
of the following general construction from [3], involving finite graphs:

Proposition 10.1. Given a finite graph X, with adjacency matriz d € My(0,1), the
following construction produces a quantum permutation group,

O(GH(X)) = C(SF) / <du - ud>
whose classical version G(X) is the usual automorphism group of X.

Proof. The fact that we have a quantum group comes from the fact that du = ud re-
formulates as d € End(u), which makes it clear that we are dividing by a Hopf ideal.
Regarding the second assertion, we must establish here the following equality:

C(G(X)) = C(Sy) / <du - ud>

For this purpose, recall that we have wu; (U) = 0q(j)i- By using this formula, we have:

du z] Z d; kuk] Z dzkaa(] k= za(]
On the other hand, we have as Well

Ud Z_] Z uzk dkj Z 5a(k)idkj = da—l(i)j
k

Thus the condition du = ud reformulates as dijj = dy(i)o(j), and we are led to the usual
notion of an action of a permutation group on X, as claimed. O

Let us work out some basic examples. We have the following result:

Theorem 10.2. The construction X — G (X) has the following properties:

(1) For the N-point graph, having no edges at all, we obtain Sy.

(2) For the N-simplez, having edges everywhere, we obtain as well S5.
(3) We have G (X) = GT(X°), where X is the complementary graph.
(4) For a disconnected union, we have GT(X)*GH(Y) C GH(X UY).
(5) For the square, we obtain a non-classical, proper subgroup of Sy .

Proof. All these results are elementary, the proofs being as follows:
(1) This follows from definitions, because here we have d = 0.

(2) Here d = I is the all-one matrix, and the magic condition gives ul = Iu = NI. We
conclude that du = ud is automatic in this case, and so GT(X) = Sy.

(3) The adjacency matrices of X, X¢ being related by the formula dy +dx. = I. We can
use here the above formula ull = Iu = NI, and we conclude that dxu = udy is equivalent
to dxeu = udxe. Thus, we obtain, as claimed, G(X) = GT(X°).
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(4) The adjacency matrix of a disconnected union is given by dx.y = diag(dy,dy).
Now let w = diag(u,v) be the fundamental corepresentation of G*(X)*G*(Y). Then
dxu = udx and dyv = vdy imply, as desired, dx yw = wdxy.

(5) We know from (3) that we have G*(OJ) = G*(| |). We know as well from (4) that
we have Zo % Zy C G*(] |). It follows that G*(0) is non-classical. Finally, the inclusion
GT(O) c Sy is indeed proper, because S; C S does not act on the square. O

In order to further advance, and to explicitely compute various quantum automorphism
groups, we can use the spectral decomposition of d, as follows:

Proposition 10.3. A closed subgroup G C S¥ acts on a graph X precisely when
Pu=uP, , VAER
where d =), X - Py is the spectral decomposition of the adjacency matriz of X.

Proof. Since d € My(0,1) is a symmetric matrix, we can consider indeed its spectral
decomposition, d = ), A - Py. We have then the following formula:

< d >= span {P)\’)\ € R}
But this shows that we have the following equivalence:
d € End(u) <= P, € End(u),VA € R
Thus, we are led to the conclusion in the statement. Il
In order to exploit this, we will often combine it with the following standard fact:
Proposition 10.4. Consider a closed subgroup G C Sy, with associated coaction map
d:CYN - CVeC@)

For a linear subspace V C CV, the following are equivalent:

(1) The magic matriz u = (u;;) commutes with Py .
(2) V is invariant, in the sense that (V) C V ® C(G).

Proof. Let P = Py. For any i € {1,..., N} we have the following formula:

O(Ple;)) = @ (Z Pki€k>

= E Prie; @ ujy,
ik

= D & ®(uP);

J



QUANTUM GROUPS 171

On the other hand the linear map (P ® id)® is given by a similar formula:
(PRid)(®(e) = S Ple) ®
k

= E Pjre; @ ug;
ik

= > ;@ (Pu);;
J
Thus uP = Pu is equivalent to ®P = (P ® id)®, and the conclusion follows. 4

We have as well the following useful complementary result, from [3]:

Proposition 10.5. Let p € My(C) be a matriz, and consider its “color” decomposition,
obtained by setting (p.)i; = 1 if pij = ¢ and (p.)ij = 0 otherwise:

p= Z C: Pe
ceC
Then uw = (u;;) commutes with p if and only if it commutes with all matrices p..
Proof. Consider the multiplication and counit maps of the algebra C¥:
M:ei®ej%eiej s C:ei—>ei®ei
Since M, C' intertwine u, u®?, their iterations M® C*) intertwine u, u®*, and so:
ceC

Let S = {c € C|p. # 0}, and f(c) = c. By Stone-Weierstrass we have S =< f >, and
so for any e € S the Dirac mass at e is a linear combination of powers of f:

=X S (D) -3 (S
k k ceS ceS k
The corresponding linear combination of matrices p® is given by:

; Aep® = Zk: A (Z ckpc> =y (Z )\kck> Pe

ceS ceS k

The Dirac masses being linearly independent, in the first formula all coefficients in the
right term are 0, except for the coefficient of §., which is 1. Thus the right term in the
second formula is p., and it follows that we have p. € End(u), as claimed. O

The above results can be combined, and we are led into a “color-spectral” decomposition
method for d, which can lead to a number of nontrivial results. See [3].

As a basic application of this, we can further study G*(0), as follows:
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Proposition 10.6. The quantum automorphism group of the N-cycle is as follows:
(1) At N # 4 we have GT(X) = Dy.
(2) At N =4 we have Dy C GT(X) C S, with proper inclusions.

Proof. We already know that the results hold at N < 4, so let us assume N > 5. Given
a N-th root of unity, w" = 1, consider the following vector:

£ = (w')
This is an eigenvector of d, with eigenvalue w +w™¥~!. With w = *"/V it follows that
L f, f?,..., fN~! are eigenvectors of d. More precisely, the invariant subspaces of d are

as follows, with the last subspace having dimension 1 or 2, depending on N:
Cl,CfecCfN-t, cfrroCcfhN—2 ...
Consider now the associated coaction ® : C¥ — CV @ C(G), and write:
d(fl=f@a+ @b
By taking the square of this equality we obtain:
(A =r0d+ b0 +1® (ab+ ba)
It follows that ab = —ba, and that ®(f?) is given by the following formula:
(f2) = foa+ N2 e
By multiplying this with ®(f) we obtain:
()= od+ NPl + N+ f® bd?

Now since N > 5 implies that 1, N — 1 are different from 3, N — 3, we must have
ab? = ba* = 0. By using this and ab = —ba, we obtain by recurrence on k that:

O(f*) = fF @ dt + fNF @ pb
In particular at k = N — 1 we obtain:
OV = VgVl 4 f g pN!
On the other hand we have f* = fN¥~! so by applying * to ®(f) we get:
(NN = N loa + fob
Thus a* = a™~! and b* = b¥~1. Together with ab? = 0 this gives:
(ab)(ab)* = abb*a*
_ VN1
— (@b 2N !

= 0
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From positivity we get from this ab = 0, and together with ab = —ba, this shows that
a,b commute. On the other hand C(G) is generated by the coefficients of ®, which are
powers of a, b, and so C'(G) must be commutative, and we obtain the result. Il

Summarizing, this was a bad attempt in understanding G*(O), which appears to be
“exceptional” among the quantum symmetry groups of the N-cycles. An alternative
approach to G () comes by regarding the square as the N = 2 particular case of the
N-hypercube [y. Indeed, the usual symmetry group of [y is the hyperoctahedral group
Hy, so we should have a formula of the following type:

G(O) = Hy
In order to clarify this, let us start with the following simple fact:

Proposition 10.7. We have an embedding as follows, g; being the generators of 7.,
gi

7N N-1 _
ZZ C SR7+ 9 Ii —

=

whose 1mage is the geometric hypercube:

DN_{xG]RN

Proof. This is something that we already know, from section 1 above. Consider indeed
the following standard group algebra generators:

g € C(ZY) = C(ZY)

These generators satisfy satisfy then g; = gf, g? = 1, and when rescaling by 1/v N, we
obtain the relations defining [Jy. O

We can now study the quantum symmetry groups G*(Cy), and we are led to the quite
surprising conclusion, from [17], that these are the twisted orthogonal groups Oy:

Theorem 10.8. With Z5 =< g1,...,gn > we have a coaction map
©:CH(ZY) = CHZY) @ C(On) . gi— Y g5 Dy

J

—

which makes Oy the quantum isometry group of the hypercube Oy = ZY , as follows:
(1) With Oy viewed as an algebraic manifold, Oy C S§ + C S@f;l.
(2) With Oy viewed as a graph, with 2V vertices and 2V~ N edges.
(3) With Oy viewed as a metric space, with metric coming from RY

Proof. Observe first that Oy is indeed an algebraic manifold, so (1) as formulated above
makes sense, in the general framework of section 2. The cube [y is also a graph, as
indicated, and so (2) makes sense as well, in the framework of Proposition 10.1. Finally,



174 TEO BANICA

(3) makes sense as well, because we can define the quantum isometry group of a finite
metric space exactly as for graphs, but with d being this time the distance matrix.

(1) In order for G C O} to act affinely on Oy, the variables G; = >-;9j ® uyj; must
satisfy the same relations as the generators g; € Z5. The self-adjointness being automatic,
the relations to be checked are therefore:

GZQ = 1 5 GlG] - G]Gl
We have the following computation:

G? = Z kgt & Uikl
Kl

= 1+ Z Ik g1 @ (Wirti + wgir,)
k<l

As for the commutators, these are given by:

G, Gy = nggz @ (WiUji — UjpUi + Ul — Ujilsy)
k<l

From the first relation we obtain ab = 0 for a # b on the same row of u, and by using
the antipode, the same happens for the columns. From the second relation we obtain:

(Wi, uj] = (g, uq] . Yk #I

Now by applying the antipode we obtain:
[t k] = i, s

By relabelling, this gives the following formula:

(Wit wja) = [wi, ue]  J#1
Thus for ¢ # j, k # | we must have:

[wir, wj] = [wjn, wir] =0

We are therefore led to G C Oy, as claimed.

(2) We can use here the fact that the cube Oy, when regarded as a graph, is the Cayley
graph of the group ZY. The eigenvectors and eigenvalues of [y are as follows:

Viy.iy = Z (‘Diljﬁ'"HNjNg{l x -Q%V
Ji-dN
Ny = (D" 4 4 (=1)™
With this picture in hand, and by using Proposition 10.3 and Proposition 10.4 above,
the result follows from the same computations as in the proof of (1). See [17].
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(3) Our claim here is that we obtain the same symmetry group as in (2). Indeed,
observe that distance matrix of the cube has a color decomposition as follows:

d=dy+V2dy+ V3ds+ ...+ VNdy

Since the powers of d; can be computed by counting loops on the cube, we have formulae
as follows, with x;; € N being certain positive integers:

d% = .T211N + l’QQdQ
di = x31ly + zaads + 2333
div = [ENllN+[L’N2d2+l'N3d3—|—...+lL‘NNdN

But this shows that we have < d >=< d; >. Now since d; is the adjacency matrix of
Oy, viewed as graph, this proves our claim, and we obtain the result via (2). U

Now back to our questions regarding the square, we have G*(0J) = O, and this formula
appears as the N = 2 particular case of a general formula, namely G*(Oy) = Oy. This is
quite conceptual, but still not ok. The problem is that we have G(Oy) = Hy, and so for
our theory to be complete, we would need a formula of type H;; = Oy. And this latter
formula is obviously wrong, because for Oy the character computations lead to Gaussian
laws, who cannot appear as liberations of the character laws for Hy, that we have not
computed yet, but which can only be something Poisson-related.

Summarizing, the problem of conceptually understanding G/([J) remains open. In order
to present now the correct, final solution, the idea will be that to look at the quantum
group G (| |) instead, which is equal to it, according to Proposition 10.2 (3). We first
have the following result, extending Proposition 10.2 (4) above:

Proposition 10.9. For a disconnected union of graphs we have
GH(X1) * ... G (X)) CGT(XpU...UXy)
and this inclusion is in general not an isomorphism.

Proof. The proof of the first assertion is nearly identical to the proof of Proposition 10.2
(4) above. Indeed, the adjacency matrix of the disconnected union is given by:

Xmu...Lle = diag(dX17 e 7ka)

w = diag(uy, ..., uy)

We have then dx,u; = w;dx,, and this implies dw = wd, which gives the result. As for
the last assertion, this is something that we already know, from Proposition 10.6 (2). O

In the case where the graphs Xi,..., X} are identical, which is the one that we are
truly interested in, we can further build on this. We recall from [45] that we have:
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Proposition 10.10. Given closed subgroups G C Uy, H C S\, with fundamental corep-
resentations u, v, the following construction produces a closed subgroup of Uy,.:

C(G L H) = (C(@)* « C(H))/ < lujj, va) = 0>

In the case where G, H are classical, the classical version of G . H is the usual wreath
product GV H. Also, when G is a quantum permutation group, so is G, H.

Proof. Consider indeed the matrix w;, j = uﬁ?)vab, over the quotient algebra in the state-

ment. It is routine to check that w is unitary, and in the case G C S}, our claim is that
this matrix is magic. Indeed, the entries are projections, because they appear as products
of commuting projections, and the row sums are as follows:

Z Wiq,jb = Z U,L('?)Uab = Z Vab Z Ugj) -1
Jb jb b j

As for the column sums, these are as follows:
D Wiagp = Y v =Y vy u =1
i ia a 7

With these observations in hand, it is routine to check that G, H is indeed a quantum
group, with fundamental corepresentation w, by constructing maps A, ¢, S as in section
1, and in the case G C S}, we obtain in this way a closed subgroup of Sy, . Finally, the
assertion regarding the classical version is standard as well. See [45]. U

We refer to [12], [45], [126] for more details regarding the above construction. Now with
this notion in hand, following [12], we have the following result:

Theorem 10.11. Given a connected graph X, and k € N, we have the formulae
G(kX) =G(X) Sk
GHkX)=GT"(X)n S
where kX = X U...U X s the k-fold disjoint union of X with itself.

Proof. The first formula is something well-known, which follows as well from the sec-
ond formula, by taking the classical version. Regarding now the second formula, it is
elementary to check that we have an inclusion as follows, for any finite graph X:

GH(X) .S c G (kX)

Indeed, we want to construct an action G (X ). S;” ~ kX, and this amounts in proving
that we have [w,d] = 0. But, the matrices w,d are given by:

(@)
Wia,jb = W5 Vab dz‘a,jb = 5z‘jdab
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With these formulae in hand, we have the following computation:

(dw)ia,jb = Zdikwka,jb
k

= > dikug}) Vab
k

= (du(“) )ij'Uab

On the other hand, we have as well the following computation:

(wd)iq 0 = sz‘a,kbdkj
k

= > uvady
k

= (ud)ivm
Thus we have [w, d] = 0, and from this we obtain:
GH(X) . S Cc GT(kX)

Regarding now the reverse inclusion, which requires X to be connected, this follows by
doing some matrix analysis, by using the commutation with u. To be more precise, let us
denote by w the fundamental corepresentation of G (kX), and set:

W' =S wi Vgp = Y
ij ia,jb ab — ab
b i

It is then routine to check, by using the fact that X is indeed connected, that we have
here magic unitaries, as in the definition of the free wreath products. Thus we obtain the
reverse inclusion, that we were looking for, namely:

G*(kX) C GH(X)1 S

To be more precise, the key ingredient is the fact that when X is connected, the *-
algebra generated by dy contains a matrix having nonzero entries. See [12]. O

We are led in this way to the following result, from [17]:

Theorem 10.12. Consider the graph consisting of N segments.

(1) Its symmetry group is the hyperoctahedral group Hy = Za ! Sy .
(2) Its quantum symmetry group is the quantum group Hy = Zy . S¥.

Proof. This comes from the above results, as follows:

(1) This is clear from definitions, with the remark that the relation with the formula
Hy = G(Oy) comes by viewing the N segments as being the [—1, 1] segments on each



178 TEO BANICA

of the N coordinate axes of RY. Indeed, a symmetry of the N-cube is the same as a
symmetry of the NV segments, and so, as desired:

G(On) =Z21 Sy

(2) This follows from Theorem 10.11 above, applied to the segment graph. Observe
also that (2) implies (1), by taking the classical version. O

Now back to the square, we have G*(0J) = H,, and our claim is that this is the
“good” and final formula. In order to prove this, we must work out the easiness theory
for Hy, Hy;, and find a compatibility there. We first have the following result:

Proposition 10.13. The algebra C(Hy;) can be presented in two ways, as follows:

(1) As the universal algebra generated by the entries of a 2N x 2N magic unitary
having the “sudoku” pattern w = (¢ %), with a,b being square matrices.

(2) As the universal algebra generated by the entries of a N x N orthogonal matrix
which is “cubic”, in the sense that u;ju;, = wjur; = 0, for any j # k.

As for C(Hy), this has similar presentations, among the commutative algebras.

Proof. Here the first assertion follows from Theorem 10.12, via Proposition 10.10, and the
last assertion is clear as well, because C(Hy) is the abelianization of C(H};). Thus, we
are left with proving that the algebras Ay, A. coming from (1,2) coincide.

We construct first the arrow A. — A;. The elements a;;, b;; being self-adjoint, their
differences are self-adjoint as well. Thus a — b is a matrix of self-adjoint elements. We
have the following formula for the products on the columns of a — b:

(@a—Db)i(a—0b)jr = aixar — aibjr — birajk + birbjk
)0 for i # 7
~ aw by fori= J

In the ¢ = j case the elements a;; + by, sum up to 1, so the columns of a — b are
orthogonal. A similar computation works for rows, so a — b is orthogonal.

Now by using the i # j computation, along with its row analogue, we conclude that
a — b is cubic. Thus we can define a morphism A. — A, by the following formula:

p(uij) = aij — b
We construct now the inverse morphism. Consider the following elements:

2 | 2 .
uij—l—um Uss — Ugj

L= v
2 ) ﬁzy 9

These are projections, and the following matrix is a sudoku unitary:

v (5 )

Oél'j =
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Thus we can define a morphism A, — A. by the following formula:

2 2
U’ij + uij ;. — uij

Y(ai;) = 5 o Y(by) = < 9
We check now the fact that 1, ¢ are indeed inverse morphisms:

Vo(uy) = Y(ai; — bij)
uf Ui Uy — Uy
2 2

As for the other composition, we have the following computation:

2 4y
pPlai) = ¢ (—u” HL”)

2
_ (ai; = biy)* + (ai; — biy)
2
Qi
A similar computation gives ¢ (b;;) = b;;, which completes the proof. g

We can now work out the easiness property of Hy, Hy, with respect to the cubic
representations, and we are led to the following result, which is fully satisfactory:

Theorem 10.14. The quantum groups Hy, Hy, are both easy, as follows:

(1) Hy corresponds to the cateqory P.yen.
(2) Hy corresponds to the category NCeyen.

Proof. These assertions follow indeed from the fact that the cubic relations are imple-
mented by the one-block partition in P(2,2), which generates NCleye,. See [17]. O

There is a similarity here with the easiness results for permutations and quantum
permutations, obtained in sections 7 and 9 above. In fact, the basic algebraic results
regarding Sy, Sy and Hy, H}; appear as the s = 1,2 particular cases of:

Theorem 10.15. The complex reflection groups Hy, = Zs ! Sy and their free analogues
HY =71 SY, defined for any s € N, have the following properties:
(1) They have N-dimensional coordinates u = (u;;), which are subject to the relations
uiju;‘j = Uj;Uij, Pij = UijU;; = Magic, and ui; = Dij-
(2) They are easy, the corresponding categories P* C P,NC*®* C NC' being given by
the fact that we have # o —#e = 0(s), as a weighted sum, in each block.

Proof. We already know that the results hold at s = 1,2, and the proof in general is
similar. With respect to the above proof at s = 2, the situation is as follows:
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(1) Observe first that the result holds at s = 1, where we obtain the magic condition,
and at s = 2 as well, where we obtain something equivalent to the cubic condition. In
general, this follows from a Zs-analogue of Proposition 10.13. See [41].

(2) Once again, the result holds at s = 1, trivially, and at s = 2 as well, where our
condition is equivalent to # o +#e = 0(2), in each block. In general, this follows as in
the proof of Theorem 10.14, by using the one-block partition in P(s,s). See [10]. O

The above proof is of course quite brief, but we will not be really interested here in the
case s > 3, which is quite technical. In fact, the above result, dealing with the general
case s € N, is here for providing an introduction to the case s = oo, where we have:

Theorem 10.16. The pure complex reflection groups Ky = TUSn and their free analogues
K3, =T Sf have the following properties:
(1) They have N-dimensional coordinates u = (u;;), which are subject to the relations
uiju;‘j = ufjuij and p;; = uijufj = magic.
(2) They are easy, the corresponding categories Peyen C PyNCepen C NC' being given
by the fact that we have #o0 = #e, as a weighted equality, in each block.

Proof. The assertions here appear as an s = 0o extension of (1,2) in Theorem 10.15 above,
and their proof can be obtained along the same lines, as follows:

(1) This follows indeed by working out a T-analogue of the computations in the proof
of Proposition 10.13 above. We refer here to [41].

(2) Once again, this appears as a s = oo extension of the results that we already have,
and for details here, we refer once again to [10]. O

The above results at s = 2, 00 are quite interesting for us, because we can now focus
on the quantum reflection groups Hy, Hy, Ky, K3, with the idea in mind of completing
the orthogonal and unitary quantum group picture from section 7 above.

Before doing this, we have two more quantum groups to be introduced and studied,
namely the half-liberations Hy, K. We have here the following result:

Theorem 10.17. We have quantum groups Hy,, Ky, which are both easy, as follows,
(1) Hy = Hy, N Oy, corresponding to the category P

(2) Ky = K}, N U}, corresponding to the category P,

with the symbol x standing for the fact that the corresponding partitions, when relabelled
clockwise o @ o e ..., must contain the same number of o, e, in each block.

Proof. This is standard, from the results that we already have, regarding the various
quantum groups involved, because the interesection operations at the quantum group
level correspond to generation operations, at the category of partitions level. U

We can now complete the “continuous” picture from section 7 above, as follows:
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Theorem 10.18. The basic orthogonal and unitary quantum groups are related to the
basic real and complexr quantum reflection groups as follows,

Uy Uk Uy Ky K3, K

Ox Oy 0% Hy Hy, Hy
the connecting operations U <> K being given by K = U N K}, and U = {K,On}.

Proof. According to the general results in section 7 above, in terms of categories of par-
titions, the operations introduced in the statement reformulate as follows:

DK:<DU7NCeven> 5 DU:DKQPQ

On the other hand, by putting together the various easiness results that we have, the
categories of partitions for the quantum groups in the statement are as follows:

P2 P; NC2 Peven ~ P*

even NC even

P2 P2* NCQ Peven P

even

NCG’UBTL

It is elementary to check that these categories are related by the above intersection and
generation operations, and we conclude that the correspondence holds indeed. O

Our purpose now will be that of showing that a twisted analogue of the above result
holds. It is convenient to include in our discussion two more quantum groups, coming

from [27], [117] and denoted Hk;o], K][so], which are constructed as follows:

Theorem 10.19. We have intermediate liberations HJ[\C;O}, K][\o,o] as follows, constructed by
using the relations afy = 0, for any a # ¢ on the same row or column of u,

Ky K% K K}

Hy H3, H Hi;

with the convention a = a, a*, and so on. These quantum groups are easy, the correspond-

ing categories PQZZL C P.yen, and Pe[z(é]n C Peven being generated by n = ker(“j).

ji
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Proof. This is routine, by using the fact that the relations a8y = 0 in the statement are
equivalent to the condition n € End(u®*), with |k| = 3. We refer here to [27], [117]. O

In order to discuss the twisting, we will need the following technical result:

Proposition 10.20. We have the following equalities,

P:ven = {ﬂ-epeven 5(7-):1,V7'§7T, |7'| :2}
PRl = {W € Poyen|o € P, ,No C 7r}
Pe[i}n - {ﬂ-epeven 5<7—>:1,VT§7T}

where € : Poen — {E1} is the signature of even permutations.

Proof. This is routine combinatorics, from [5], [117], the idea being as follows:

(1) Given ™ € P.yen, we have 7 < m,|7| = 2 precisely when 7 = 77 is the partition
obtained from 7 by merging all the legs of a certain subpartition § C 7, and by merging
as well all the other blocks. Now observe that 77 does not depend on , but only on
3, and that the number of switches required for making 7 noncrossing is ¢ = N, — N,
modulo 2, where N,/N, is the number of black/white legs of 3, when labelling the legs
of 7 counterclockwise o @ o e ... Thus e(7”) = 1 holds precisely when 3 € 7 has the same
number of black and white legs, and this gives the result.

(2) This simply follows from the equality Pl =< 1 > coming from Theorem 10.19,

by computing < 1 >, and for the complete proof here we refer to [117].

(3) We use here the fact, also from [117], that the relations g;9;,9; = g;¢:g; are trivially
satisfied for real reflections. This leads to the following conclusion:

Pl (k1) = {ker (Z.l Zk)
Ju oo

In other words, the partitions in P are those describing the relations between free
variables, subject to the conditions gf = 1. We conclude that Pe[f,i]n appears from NC,,q,

Giy - - - Gip, = Gj, - - - g5, inside Z;N}

by “inflating blocks”, in the sense that each 7w € Pe[ii]n can be transformed into a partition
7" € NCppen by deleting pairs of consecutive legs, belonging to the same block.

Now since this inflation operation leaves invariant modulo 2 the number ¢ € N of
switches in the definition of the signature, it leaves invariant the signature ¢ = (—1)°
itself, and we obtain in this way the inclusion “C” in the statement.

Conversely, given m € P, satisfying (1) = 1, V7 < 7, our claim is that:

p<ocCmlpl=2 = e(p) =1

Indeed, let us denote by «, 8 the two blocks of p, and by 7 the remaining blocks of
7, merged altogether. We know that the partitions 71 = (a« A7, 8), o = (B A 7, q),
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73 = («, 3,7) are all even. On the other hand, putting these partitions in noncrossing

form requires respectively s+t, s’ +1t, s+ s+t switches, where t is the number of switches

needed for putting p = («, #) in noncrossing form. Thus ¢ is even, and we are done.
With the above claim in hand, we conclude, by using the second equality in the state-

ment, that we have 0 € P’ . Thus we have 7 € Pe[iz}n, which ends the proof of “2”. [

even'

With the above result in hand, we can now prove:

Theorem 10.21. We have the following results:

(1) The quantum groups from Theorem 10.19 are equal to their own twists.
(2) With input coming from this, a twisted version of Theorem 10.18 holds.

Proof. This result, established in [5], basically comes from the results that we have.
(1) In the real case, the verifications are as follows:

— H;{,. We know from section 7 above that for m € NCeye,, we have T. = T,, and since
we are in the situation D C NCyyen, the definitions of GG, G coincide.

-H I[\?O J. Here we can use the same argument as in (1), based this time on the description
of P2, involving the signature found in Proposition 10.20.

— Hy. We have Hy, = HI[\?O] N O%, so Hy C H][\?O] is the subgroup obtained via the
defining relations for O%. But all the abc = —cba relations defining Hy, are automatic,
of type 0 = 0, and it follows that Hj C H ][\C;o lis the subgroup obtained via the relations
abc = cba, for any a,b,c € {u;;}. Thus we have H} = H][\C;O] N Oy = Hy, as claimed.

— Hy. We have Hy = Hj N Oy, and by functoriality, Hy = Hjy N Oy = Hj N Oy.
But this latter intersection is easily seen to be equal to Hy, as claimed.

In the complex case the proof is similar, and we refer here to [5].

(2) This can be proved by proceeding as in the proof of Theorem 10.18 above, with of
course some care when formulating the result. Once again, we refer here to [5]. u

Regarding the probabilistic aspects, we will need some general theory. We have the
following definition, extending the Poisson limit theory from section 9 above:

Definition 10.22. Associated to any compactly supported positive measure p on R are

the probability measures
1 *1
pp, = lim ((1 — E) do + —p)
n—00 n n

. c 1 Hn
=t (1 5) o0t o)

where ¢ = mass(p), called compound Poisson and compound free Poisson laws.
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In what follows we will be interested in the case where p is discrete, as is for instance
the case for p = §; with ¢t > 0, which produces the Poisson and free Poisson laws. The
following result allows one to detect compound Poisson/free Poisson laws:

Proposition 10.23. For p = Zle ci0,, with ¢; > 0 and z; € R, we have

F,,(y) = exp <Z ci(e — 1))

Re(y) = > —

= 1~y

where F, R denote respectively the Fourier transform, and Voiculescu’s R-transform.

Proof. Let u, be the measure appearing in Definition 10.22, under the convolution signs.
In the classical case, we have the following computation:

F

c 1< :
= 1 J— _> — i 1Yz
() = ( S) D ae

=1

= Fun(y) = ((1 - %) + %ch,eiya)
— B, =ew (Z (e 1))

i=1

In the free case now, we use a similar method. The Cauchy transform of , is:

eyl 1 C;
Gun© = (1-2) 24— Z
Consider now the R-transform of the measure 2", which is given by:

R, gn (y) =nRy,(y)

The above formula of G, shows that the equation for R = R @n is as follows:

S

c 1 1 C;
(1_ﬁ> y—l—i—R/n—i_ﬁZy_l—l—R/n—zi:y

=1

S

c 1 1 c
— 1——)— l i —1
( n 1+yR/n+nzl+yR/n—yzi

i=1
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Now multiplying by n, rearranging the terms, and letting n — oo, we get:

s

C-'-ZJR _Z Ci
1+yR/n 1+yR/n—yz

i=1

s

Ci
— Rﬂ_ =
c+yRa,(y) ; pm—
® CiZ;
— Rﬂ_ =
() z; Iy
This finishes the proof in the free case, and we are done. O

We have as well the following result, providing an alternative to Definition 10.22:

Theorem 10.24. For p =3 _, ¢;0,, with ¢; > 0 and z; € R, we have

Pp/ T, = law (Z ziai>
i—1

where the variables o are Poisson/free Poisson(c;), independent/free.

Proof. Let a be the sum of Poisson/free Poisson variables in the statement. We will show
that the Fourier/R-transform of « is given by the formulae in Proposition 10.23.
Indeed, by using some well-known Fourier transform formulae, we have:

Fo(y) =exp(ci(e¥ — 1)) = F.a,(y) = exp(c;(e¥* — 1))

— Fu(y) = exp (Z (e - 1))

i=1
Also, by using some well-known R-transform formulae, we have:

Ci CiZ;
Ra- = - Rz-a- -
() =2 ) = T
z CiZ;
— ROL =
(v) ; Ty
Thus we have indeed the same formulae as those in Proposition 10.23. Il

We can go back now to quantum reflection groups, and we have:

Theorem 10.25. The asymptotic laws of truncated characters are as follows, where €
with s € {1,2,...,00} is the uniform measure on the s-th roots of unity:

(1) For Hj, we obtain the compound Poisson law b] = pye, .
(2) For H}" we obtain the compound free Poisson law [ = m.,.

These measures are in Bercovici-Pata bijection.
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Proof. This follows from easiness, and from the Weingarten formula. To be more precise,
at t = 1 this follows by counting the partitions, and at ¢t € (0, 1] general, this follows in
the usual way, for instance by using cumulants. For details here, we refer to [10]. U

The above measures are called Bessel and free Bessel laws. This is because at s = 2 we
have b7 = e "> 77 fi(t/2)dy, with fi being the Bessel function of the first kind:

0 O k2
fty =3
Ip!
The Bessel and free Bessel laws have particularly interesting properties at the parameter
values s = 2,00. So, let us record the precise statement here:

Theorem 10.26. The asymptotic laws of truncated characters are as follows:

(1) For Hy we obtain the real Bessel law by = pye,.

(2) For Ky we obtain the complex Bessel law By = py._, .

(3) For H}, we obtain the free real Bessel law By = my.,.

(4) For Kj; we obtain the free complex Bessel law By = .. .

Proof. This follows indeed from Theorem 10.25 above, at s = 2, co. O

In addition to what has been said above, there are as well some interesting results
about the Bessel and free Bessel laws involving the multiplicative convolution x, and the
multiplicative free convolution X from [134]. For details, we refer here to [10].

Also, the study of the quantum automorphism groups of the finite graphs is some-
thing that was systematically developed, and goes well beyond the preliminary material
explained here. We refer here to [44], [105], [112], [118], [119], [120], [126].
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11. CLASSIFICATION RESULTS

We discuss in this section and in the next one the classification questions for the closed
subgroups Gy C Uj, in the easy case, and beyond. There has been a lot of work on
the subject, and our objective will be that of presenting a few basic results, with some
discussion. We have already met a number of easy quantum groups, as follows:

Proposition 11.1. We have the following basic examples of easy quantum groups:
(1) Unitary quantum groups: On, Ok, O, Un, Uk, U

(2) Bistochastic versions: By, By, C, Ci:.

(3) Quantum permutation groups: Sy, Sy

(4) Quantum reflection groups: Hy, Hy, Hy, Kn, Kx, Ky

Proof. This is something that we already know, the partitions being as follows:
(1) Ps, P5,NCs, P, Py, NCs.

(2) P12, NCha, P12, NCia.

(3) P,NC.

(4) Peven Plyens NCevens Pevens Poyens N Ceven- O

even?’

In addition to the above list, we have the quantum groups Hy,, Hy" with 3 < s < oo,
as well as the related series Hyr = Hy™ N Uy. Further examples can be constructed via
free complexification, or via operations of type Gy — Z, X Gy, or Gy — Z,G N, with
r € {2,3,...,00}. There are as well many “exotic” intermediate liberation procedures,
involving relations far more complicated than the half-commutation ones abc = cba.

All this makes the classification question particularly difficult. So, our first task in
what follows will be that of cutting a bit from complexity, by adding some extra axioms,
chosen as “natural” as possible. A first such axiom, very natural, is as follows:

Proposition 11.2. For an easy quantum group G = (Gy), coming from a category of
partitions D C P, the following conditions are equivalent:

(1) Gy-1 = Gy NUN_y, via the embedding Uy, C Uy, given by u — diag(u, 1).

(2) Gno1 = Gy NUy_,, via the N possible diagonal embeddings Uy, , C Uyr.

(3) D is stable under the operation which consists in removing blocks.

If these conditions are satisfied, we say that G = (Gy) is “uniform”.
Proof. We use here the general easiness theory from section 7 above.

(1) <= (2) This is something standard, coming from the inclusion Sy C Gy, which
makes everything Sy-invariant. The result follows as well from the proof of (1) <= (3)
below, which can be converted into a proof of (2) <= (3), in the obvious way.
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(1) <= (3) Given a subgroup K C Uy _,, with fundamental corepresentation u,
consider the N x N matrix v = diag(u, 1). Our claim is that for any 7 € P(k) we have:
& € Fiz(v®) «— & € Fiz(v®), Vo' € P(K),n' C =
In order to prove this, we must study the condition on the left. We have:
&x € Fix(v®F)
= ()i = )i, Vi

— Z ®k i1 RPN jk(fﬂ')hmjk = (gﬂ)il.--iMVi

< 25 .717---7]k Uzljl--'vikjk:5ﬂ<i17---:ik)7Vi

Now let us recall that our corepresentation has the special form v = diag(u,1). We
conclude from this that for any index a € {1,...,k}, we must have:

With this observation in hand, if we denote by ', j' the multi-indices obtained from i, j

obtained by erasing all the above i, = j, = N values, and by k' < k the common length
of these new multi-indices, our condition becomes:

Z(g ]17---7jk ( /)Z/j/:57r(’i1,...,ik),v¢

Here the index j is by definition obtained from j' by filling with N values. In order to
finish now, we have two cases, depending on i, as follows:

Case 1. Assume that the index set {a|i, = N} corresponds to a certain subpartition
7' C 7. In this case, the N values will not matter, and our formula becomes:

25 ]17"'7]/{:/ ( k)l/j/:(sﬂ('lll,,lz./)

Case 2. Assume now the opposite, namely that the set {a|i, = N} does not correspond
to a subpartition #/ C 7. In this case the indices mix, and our formula reads:

0=0
Thus, we are led to & € Fiz(v®*), for any subpartition 7’ C 7, as claimed.
Now with this claim in hand, the result follows from Tannakian duality. U

At the level of the basic examples, from Proposition 11.1 above, the classical and free
quantum groups are uniform, while the half-liberations are not. Indeed, this can be seen
either with categories of partitions, or with intersections, the point in the half-classical
case being that the relations abc = cba, when applied to the coefficients of a matrix of
type v = diag(u, 1), collapse with ¢ = 1 to the usual commutation relations ab = ba.
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For classification purposes the uniformity axiom is something very natural and useful,
substantially cutting from complexity, and we have the following result, from [38]:

Theorem 11.3. The classical and free uniform orthogonal easy quantum groups, with
inclusions between them, are as follows:

i o

i
s;/ B;/
. Hy————0»
7 7
SN By

Moreover, this is an intersection/easy generation diagram, in the sense that for any of its
square subdiagrams P C Q, R C S we have P=Q N R and {Q,R} = S.

Proof. We know that the quantum groups in the statement are indeed easy and uniform,
the corresponding categories of partitions being as follows:

NCoven NG,
amne
NO NQH :
Peyen P,
v e

P

P12

Since this latter diagram is an intersection and generation diagram, we conclude that
we have an intersection and easy generation diagram of quantum groups, as stated.

Regarding now the classification, consider an easy quantum group Sy C Gy C Oy.
This most come from a category P, C D C P, and if we assume G = (Gy) to be uniform,
then D is uniquely determined by the subset L. C N consisting of the sizes of the blocks
of the partitions in D. Our claim is that the admissible sets are as follows:

(1) L = {2}, producing Oy.
= {1,2}, producing By.

{2,4,6,...}, producing Hy.
={1,2,3,...}, producing Sy.
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In one sense, this follows from our easiness results for Oy, By, Hy, Sy. In the other
sense now, assume that L C N is such that the set P, consisting of partitions whose sizes
of the blocks belong to L is a category of partitions. We know from the axioms of the
categories of partitions that the semicircle N must be in the category, so we have 2 € L.
We claim that the following conditions must be satisfied as well:

kilelL k>l = k—1lelL
kel k>2 — 2k—2¢L

Indeed, we will prove that both conditions follow from the axioms of the categories of
partitions. Let us denote by b, € P(0, k) the one-block partition:

o= JM T
ETY12 ..k

For k > [, we can write bx_; in the following way:

I
yo_J12 o LI+l ok
T Yw oo |

In other words, we have the following formula:
b1 = (0] ® |** )by

Since all the terms of this composition are in Py, we have by_; € P;, and this proves
our first claim. As for the second claim, this can be proved in a similar way, by capping
two adjacent k-blocks with a 2-block, in the middle.

With these conditions in hand, we can conclude in the following way:
Case 1. Assume 1 € L. By using the first condition with [ = 1 we get:
kel = k—-1€L

This condition shows that we must have L = {1,2,...,m}, for a certain number m €
{1,2,...,00}. On the other hand, by using the second condition we get:

melL — 2m-—-2¢lL
— 2m—2<m
= m e {1,2,00}

The case m = 1 being excluded by the condition 2 € L, we reach to one of the two sets
producing the groups Sy, By.

Case 2. Assume 1 ¢ L. By using the first condition with [ = 2 we get:
kel = k—-2¢cL
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This condition shows that we must have L = {2,4,...,2p}, for a certain number
p € {1,2,...,00}. On the other hand, by using the second condition we get:

2pel — 4dp—-2¢€L
— 4p—-2<12p
= pe€{l,00}

Thus L must be one of the two sets producing Oy, Hy, and we are done.

In the free case, Sy, C Gy C O}, the situation is quite similar, the admissible sets
being once again the above ones, producing this time O%, By, Hy, S%. See [38]. U

As already mentioned, when removing the uniformity axiom things become more com-
plicated, and the classification result here, from [38], [117], is as follows:

Theorem 11.4. The classical and free orthogonal easy quantum groups are

Hy Oy
A A A A
S By
A A
Sy By
A : A
Hy On
A A
S By
A 4
SN BN

with S = Sy X Zy, By = Bn X Za, and with Sy, By being their liberations, where By
stands for the two possible such liberations, By C By'.

Proof. The idea here is that of jointly classifying the “classical” categories of partitions
P, C D C P, and the “free” ones NCy C D C NC. At the classical level this leads to
2 more groups, namely Sy, By. See [38]. At the free level we obtain 3 more quantum
groups, Sy, B, By, with the inclusion BY C BY' being best thought of as coming
from an inclusion B), C BY;, which happens to be an isomorphism. See [38]. u

Now back to the easy uniform case, the classification here remains a quite technical
topic. The problem comes from the following negative result:
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Proposition 11.5. The cubic diagram from Theorem 11.3, and its unitary analogue,

Ky Uy
e
St C
Ky ——— Uy
DA
S Cy

cannot be merged, without degeneration, into a 4-dimensional cubic diagram.

Proof. All this is a bit philosophical, with the problem coming from the “taking the
bistochastic version” operation, and more specifically, from the following equalities:

HNﬂON:KNﬂCN:SN

Indeed, these equalities do hold, and so the 3D cube obtained by merging the classical
faces of the orthogonal and unitary cubes is something degenerate, as follows:

Ky Un
Sn / Cn /
Hy On
Sn / By /
Thus, the 4D cube, having this 3D cube as one of its faces, is degenerate too. U

Summarizing, when positioning ourselves at Uy, we have 4 natural directions to be
followed, namely taking the classical, discrete, real and bistochastic versions. And the
problem is that, while the first three operations are “good”, the fourth one is “bad”.

In order to fix this problem, in a useful and efficient way, the natural choice is that
of slashing the bistochastic quantum groups By, B}, C, C};, which are rather secondary
objects anyway, as well the quantum permutation groups Sy, S¥.

In order to formulate now our second general axiom, doing the job, consider the cube
Tn = 7%, regarded as diagonal torus of Oy. We have then:
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Proposition 11.6. For an easy quantum group G = (Gy), coming from a category of
partitions D C P, the following conditions are equivalent:

(1) Ty C Gy.
(2) Hy C Gn.
(3) D C P.yen-

If these conditions are satisfied, we say that Gy is “twistable”.
Proof. We use the general easiness theory from section 7 above.

(1) <= (2) Here it is enough to check that the easy envelope T} of the cube equals
the hyperoctahedral group Hy. But this follows from:

T],V =<< TN,SN >'= H;V = Hpy

(2) <= (3) This follows by functoriality, from the fact that Hxy comes from the
category of partitions P,,e,, that we know from section 10 above. Il

The teminology in the above result comes from the fact that, assuming D C P.,c,, wWe
can indeed twist G, into a certain quizzy quantum group Gx. We refer to section 7
above to full details regarding the construction Gy — Gxn. In what follows we will not
need this twisting procedure, and we will just use Proposition 11.6 as it is, as a statement
providing us with a simple and natural condition to be imposed on G. In practice now,
imposing this second axiom leads to something nice, namely:

Theorem 11.7. The basic quantum unitary and quantum reflection groups, from Propo-
sition 11.1 above, which are uniform and twistable, are as follows,

H+/KN 0% /
1T

and this is an intersection and easy generation diagram.

Ux
Uy

Proof. The first assertion comes from discussion after Proposition 11.2, telling us that
the uniformity condition eliminates Oy, Uy, Hy, K§. Also, the twistability condition
eliminates By, By, Cy, Cy; and Sy, S%. Thus, we are left with the 8 quantum groups in
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the statement, which are indeed easy, coming from the following categories:

NCven NC,
S /
NCopen NC,
Peven P
e /

Peven P2

Since this latter diagram is an intersection and generation diagram, we conclude that
we have an intersection and easy generation diagram of quantum groups, as stated. [

In the general case now, where we have an arbitrary uniform and twistable easy quantum
group, this quantum group appears by definition as follows:

HNCGNCU]—VF

Thus, our quantum group can be imagined as sitting inside the above cube. The point
now is that, by using the operations N and {,}, we can in principle “project” it on the
faces and edges of the cube, and then use some kind of 3D orientation coming from this,
in order to deduce some structure and classification results. Let us start with:

Definition 11.8. Associated to any twistable easy quantum group
Hy C Gy C U;

are its classical, discrete and real versions, given by the following formulae,

¢ =GnNUy
G4 =Gy NKY
N =GyNOY

as well as its free, smooth and unitary versions, given by the following formulae,
G{V = {GNv Hj—i\}}
N ={Gn,On}
nv ={Gn, Kn}
where N and {,} are respectively the intersection and easy generation operations.
In this definition the classical, real and unitary versions are something quite standard.
Regarding the discrete and smooth versions, here we have no abstract justification for our

terminology, due to the fact that easy quantum groups do not have known differential
geometry. However, in the classical case, where Gy C Uy, our constructions produce
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indeed discrete and smooth versions, and this is where our terminology comes from.
Finally, regarding the free version, this comes once again from the known examples.

To be more precise, regarding the free version, the various results that we have show
that the liberation operation Gy — G3; usually appears via the formula:
G—ij\_f = {GN .S 1—\? }

This formula expresses the fact that the category of partitions of G}, is obtained from
the one of Gy by removing the crossings. But in the twistable setting, where we have by
definition Hy C Gy, this is the same as setting:

G} - {GNvHJJ’\;}

All this is of course a bit theoretical, and this is why we use the symbol f for free
versions in the above sense, and keep + for well-known, studied liberations.

In relation now with our questions, and our 3D plan, we can now formulate:

Proposition 11.9. Given an intermediate quantum group Hy C Gy C Uy, we have a
diagram of closed subgroups of Uy;, obtained by inserting

G K, U5
. HY o%
Gf]i\/' GN G?V .............. >
b
Gy Kx Uy
G?V HN ON

in the obvious way, with each G¥%, belonging to the main diagonal of each face.

Proof. The fact that we have indeed the diagram of inclusions on the left is clear from
Definition 11.8. Regarding now the insertion procedure, consider any of the faces of the
cube, denoted P C @Q,R C S. Our claim is that the corresponding quantum group
G = G% can be inserted on the corresponding main diagonal P C S, as follows:

G/S

/
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We have to check here a total of 6 x 2 = 12 inclusions. But, according to Definition
11.8, these inclusions that must be checked are as follows:

(1) Hy C G C Uy, where G, = Gy N Uy.

(2) Hy C G% C Ky, where G4 = Gy N K}
(3) Hy C Gy C OF;, where G, = Gy N OY..
(4) Hf, ¢ GL, c Uy, where G4 = {Gy, H¥}.
(5) On C G5 C Uy, where G = {Gn,On}.
(6) Ky C G% C Uy, where G% = {Gn, Kn}.

All these statements being trivial from the definition of N and {,}, and from our
assumption Hy C Gy C Uy, our insertion procedure works indeed, and we are done. [J

In order now to complete the diagram, we have to project as well G on the edges of
the cube. For this purpose we can basically assume, by replacing G with each of its 6
projections on the faces, that Gy actually lies on one of the six faces. The technical result
that we will need here is as follows:

Proposition 11.10. Given an intersection and easy generation diagram P C Q, R C S
and an intermediate easy quantum group P C G C S, as follows,

G/S

/!

we can extend this diagram into a diagram as follows:

P R

Q {G,Q} S
GNQ G (G, R}
P GNR R

In addition, G “slices the square”, in the sense that this is an intersection and easy
generation diagram, precisely when G = {GNQ,GN R} and G = {G,Q} N {G, R}.
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Proof. This is indeed clear from definitions, because the intersection and easy generation
conditions are automatic for the upper left and lower right squares, and so are half of
the intersection and easy generation conditions for the lower left and upper right squares.
Thus, we are left with two conditions only, which are those in the statement. Il

Now back to 3 dimensions, and to the cube, we have the following result:
Proposition 11.11. Assuming that Hy C G C Uy satisfies the conditions
N=GN o, Gy =Gy . GV =Gf
Gu=Gy , Gl=c¢i . Gy=aG%

the diagram in Proposition 11.9 can be completed, via the construction in Proposition
11.10, into a diagram dividing the cube along the 3 coordinates azes, into 8 small cubes.

Proof. We have to prove that the 12 projections on the edges are well-defined, with the
problem coming from the fact that each of these projections can be defined in 2 possible
ways, depending on the face that we choose first.

The verification goes as follows:
(1) Regarding the 3 edges emanating from Hy, the result here follows from:
GU=G%=GyNKy
v =Gy=GnNOxN
G¥ =GN =Gy N HY
These formulae are indeed all trivial, of type:
(GNQ)INR=(GNR)NQ=GNP
(2) Regarding the 3 edges landing into Uy, the result here follows from:
Gy =Gy = {Gn, 03}
Gy =GY ={Gn, Ky}
v =Gy ={Gn, Un}
These formulae are once again trivial, of type:
{{G.Q} Rk} = {{G, Rk}, Q} = {G, 5}

(3) Finally, regarding the remaining 6 edges, not emanating from Hy or landing into
Uy, here the result follows from our assumptions in the statement. U

We are not done yet, because nothing guarantees that we obtain in this way an inter-
section and easy generation diagram.

Thus, we must add more axioms, as follows:
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Theorem 11.12. Assume that Hy C Gy C Uy, satisfies the following conditions, where
by “intermediate” we mean in each case “parallel to its neighbors”:

) The 6 compatibility conditions in Proposition 11.11 above,

) G5, Gn, G N slice the classical/intermediate/free faces,

) GN, Gn, G slice the discrete/intermediate/smooth faces,

) G, G, GN slice the real/intermediate/unitary faces,

(1
(2
(3
(4

Then Gy “slices the cube”, in the sense that the diagram obtained in Proposition 11.11
above is an intersection and easy generation diagram.

Proof. This follows indeed from Proposition 11.10 and Proposition 11.11 above. U

It is quite clear that Gy can be reconstructed from its edge projections, so in order to
do the classification, we first need a “coordinate system”. Common sense would suggest to
use the one emanating from Hy, or perhaps the one landing into U;;. However, technically
speaking, best is to use the coordinate system based at Oy, highlighted below:

Ky Ux
/ /
Hy O
KN 4”7 U,

This choice comes from the fact that the classification result for Oy C OF, explained
below, is something very simple. And this is not the case with the results for Hy C Hy
and for Uy C Uy, from [108], [117] which are quite complicated, with uncountably many
solutions, in the general non-uniform case. As for the result for Ky C K, this is not
available yet, but it is known that there are uncountably many solutions here as well.

So, here is now the key result, from [41], dealing with the vertical direction:
Theorem 11.13. There is only one proper intermediate easy quantum group
On C Gy C OF
namely the quantum group O}, which is not uniform.

Proof. We must compute here the categories of pairings NCy C D C P,, and this can be
done via some standard combinatorics, in three steps, as follows:

(1) Let m € P, — NCj, having s > 4 strings. Our claim is that:
— If m € P, — Pj, there exists a semicircle capping ' € P, — Pj.
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—If m € Py — NCj, there exists a semicircle capping n’ € Py — NCs.
Indeed, both these assertions can be easily proved, by drawing pictures.
(2) Consider now a partition m € Py(k,l) — NCq(k,1). Our claim is that:

“If 7€ Pk, 1) — P;(k,1) then < 7w >= P».
—If m € Py(k,l) — NCy(k,l) then < m >= Pj.

This can be indeed proved by recurrence on the number of strings, s = (k +[)/2, by
using (1), which provides us with a descent procedure s — s — 1, at any s > 4.

(3) Finally, assume that we are given an easy quantum group Oy C G C O, coming
from certain sets of pairings D(k,l) C Pa(k,l). We have three cases:

~If D ¢ Py, we obtain G = Oy.
~-If DCP,D ¢ NC,, we obtain G = Ojy.
~If D C NCjy, we obtain G = O%,.

Thus, we have proved the uniquess result. As for the non-uniformity of the unique
solution, O}, this is something that we already know, from Theorem 11.7 above. U

The above result is something quite remarkable, and it is actually believed that the
result could still hold, without the easiness assumption. We refer here to [18]. As already
mentioned, the related inclusions Hy C H}; and Uy C Uy, studied in [108] and [117], are
far from being maximal, having uncountably many intermediate objects, and the same
is known to hold for Ky C Kj;. There are many interesting open questions here. It is
conjectured for instance that there should be a contravariant duality Hy <> Uy, mapping
the family and series from [117] to the series and family from [127].

Here is now another basic result that we will need, in order to perform our classification
work here, dealing this time with the “discrete vs. continuous” direction:

Theorem 11.14. There are no proper intermediate easy groups
Hy ¢ Gy C Oy
except for Hy,Opn themselves.

Proof. We must prove that there are no proper intermediate categories P, C D C Peyep-
But this can done via some combinatorics, in the spirit of the proof of Theorem 11.3, and
with the result itself coming from Theorem 11.4. For full details here, see [38]. U

As a comment here, the inclusion H}; C OF; is maximal as well, as explained once again
n [38]. As for the complex versions of these results, regarding the inclusions Ky C Uy
and K3 C Uy, here the classification, in the non-uniform case, is available from [127].
Summarizing, we have here once again something very basic and fundamental, providing
some evidence for a kind of general “discrete vs. continuous” dichotomy.
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Finally, here is a third and last result that we will need, for our classification work here,
regarding the missing direction, namely the “real vs. complex” one:

Theorem 11.15. The proper intermediate easy groups
On C Gy C Uy
are the groups Z,On with r € {2,3,...,00}, which are not uniform.
Proof. This is standard and well-known, from [127], the proof being as follows:

(1) Our first claim is that the group TOy C Uy is easy, the corresponding category of
partitions being the subcategory P, C P, consisting of the pairings having the property
that when flatenning, we have the global formula #o0 = #e.

(2) Indeed, if we denote the standard corepresentation by u = zv, with z € T and with
v = 0, then in order to have Hom(u®*, u®') # (), the z variabes must cancel, and in the
case where they cancel, we obtain the same Hom-space as for Oy.

Now since the cancelling property for the z variables corresponds precisely to the fact
that k,l must have the same numbers of o symbols minus e symbols, the associated
Tannakian category must come from the category of pairings P, C Py, as claimed.

(3) Our second claim is that, more generally, the group Z,Oyn C Uy is easy, with the
corresponding category P; C P, consisting of the pairings having the property that when
flatenning, we have the global formula #o = # e (7).

(4) Indeed, this is something that we already know at r = 1,00, where the group in
question is Oy, TOx. The proof in general is similar, by writing u = zv as above.

(5) Let us prove now the converse, stating that the above groups Oy C Z,0Oy C Uy
are the only intermediate easy groups Oy C G C Uy. According to our conventions for
the easy quantum groups, which apply of course to the classical case, we must compute
the following intermediate categories of pairings:

PyCDCB

(6) So, assume that we have such a category, D # Py, and pick an element m € D — Ps,
assumed to be flat. We can modify 7, by performing the following operations:

— First, we can compose with the basic crossing, in order to assume that 7 is a partition
of typen...... N, consisting of consecutive semicircles. Our assumption 7 ¢ P, means
that at least one semicircle is colored black, or white.

— Second, we can use the basic mixed-colored semicircles, and cap with them all the
mixed-colored semicircles. Thus, we can assume that 7 is a nonzero partition of type
N.o.o.... N, consisting of consecutive black or white semicircles.

— Third, we can rotate, as to assume that 7 is a partition consisting of an upper row
of white semicircles, U...... U, and a lower row of white semicircles, N...... N. Our
assumption m ¢ P, means that this latter partition is nonzero.
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(7) For a,b € N consider the partition consisting of an upper row of a white semicircles,
and a lower row of b white semicircles, and set:

C= {ﬂ'ab

According to the above we have m €< C >. The point now is that we have:

a,bEN}ﬂD

— There exists 7 € NU {oo} such that C equals the following set:

C, = {7Tab a= b(r)}

This is indeed standard, by using the categorical axioms.

— We have the following formula, with P; being as above:
<C.>=PF;
This is standard as well, by doing some diagrammatic work.

(8) With these results in hand, the conclusion now follows. Indeed, with r € NU {oo}
being as above, we know from the beginning of the proof that any m € D satisfies:

Te<C >=<C, >=PF;
Thus we have an inclusion D C Pj. Conversely, we have as well:
Py =<C,>=<C>C<D>=D

Thus we have D = Pj, and this finishes the proof. See [127]. O

Once again, there are many comments that can be made here, with the whole subject
in the easy case being generally covered by the classification results in [127]. As for the
non-easy case, there are many interesting things here as well, as for instance the results
in [18], stating that POy C PUy, and TOx C Uy as well, are maximal.

We can now formulate a classification result, as follows:

Theorem 11.16 (Ground zero). There are ezactly eight closed subgroups Gy C Uy
having the following properties,

(1) Easiness,

(2) Uniformity,

(3) Twistability,
(4) Slicing property,

namely the quantum groups Oy,Un, Hy, Knx and Oy, Uy, Hy, K.
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Proof. We already know, from Theorem 11.7 above, that the 8 quantum groups in the
statement have indeed the properties (1-4), and form a cube, as follows:

Ky
/ /
Ox
Ky
/
ON/

Conversely now, assuming that an easy quantum group G = (Gy) has the above

properties (2-4), the twistability property, (3), tells us that we have:

Uy
Uy

Hy
Hy

HNCGNCU;

Thus G sits inside the cube, and the above discussion applies. To be more precise,
by using Theorem 11.13, Theorem 11.14 and Theorem 11.15, along with the uniformity
condition, (2), we conclude that the edge projections of G must be among the vertices
of the cube. Now by using the slicing axiom, (4), we deduce from this that Gy itself must
be a vertex of the cube. Thus, we have exactly 8 solutions to our problem, as claimed. [J

All this is quite philosophical. Bluntly put, by piling up a number of very natural
axioms, namely those of Woronowicz from [148], then our assumption S? = id, and then
the easiness, uniformity, twistability, and slicing properties, we have managed to destroy
everything, or almost. The casualities include lots of interesting finite and compact Lie
groups, the duals of all finitely generated discrete groups, plus of course lots of interesting
quantum groups, which appear not to be strong enough to survive our axioms.

We should mention that the above result is in tune with free probability, and with
noncommutative geometry, where the most important quantum groups which appear are
precisely the above 8 ones. In what regards free probability, this comes from the various
character computations performed in sections 8 and 10 above, which give:
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Theorem 11.17. The asymptotic character laws for the 8 main quantum groups are

%t—rt

v

By Yt

B, Gy

Ve

b —————a
which are exactly the 8 main limiting laws in classical and free probability.

Proof. This is something that we already know, explained in sections 8 and 10 above. To
be more precise, the assertion regarding the characters is something which was proved
there, and the last assertion, which is a bit informal, comes from the general classical and
free probability theory explained as well in sections 8 and 10 above. O

In what regards now noncommutative geometry, the idea is that our 8 main quan-
tum groups correspond to the 4 possible “abstract noncommutative geometries”, in the
strongest possible sense, which are the real/complex, classical/free ones. In order to
explain this, consider the following diagram, consisting of spheres and tori:

TN

These 4+4 spheres and tori add to the 4+4 unitary and reflection groups that we have,
so we have a total of 16 basic geometric objects. But these objects can be arranged, in
an obvious way, into 4 quadruplets of type (S,T,U, K), consisting a sphere S, a torus T,



204 TEO BANICA

a unitary group U, and a reflection group K, with relations between them, as follows:
S T

U K

To be more precise, we obtain in this way the quadruplets (S, 7, U, K) corresponding
to the real/complex, classical/free geometries. As mentioned above, it is possible to do
some axiomatization and classification work here, with the conclusion that, under strong
combinatorial axioms, including easiness, these 4 geometries are the only ones.
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12. THE STANDARD CUBE

We discuss here a number of more specialized classification results, for the twistable
easy quantum groups, Hy C G C Uy, and for more general such intermediate quantum
groups. The general idea will be as before, namely that of viewing our quantum group as
sitting inside the standard cube, discussed in section 11:

Ky Uy
Hy On
Let us first discuss the classification in the easy case, for the lower and upper faces of
the cube. Following [127], in the uniform case, the result here is as follows:

Theorem 12.1. The classical and free uniform tuistable easy quantum groups are

+ ++ +
Ky —= Ky" — Uy

A A
Hy /
A

iy "
) | .
Ky Un
-
- HY /
4

Hy On

where Hy = 731 Sy, HY = Zs . S with s = 4,6,8..., and where K3 = Ej&

Proof. The idea here is that of jointly classifying the “classical” categories of partitions
Py C D C P.yen, and the “free” ones NCy C D C NClepen, under the assumption that the
category is stable under the operation which consists in removing blocks. In the classical
case, the new solutions appear on the edge Hy C Ky, and are the complex reflection
groups Hy, = Zs,1 Sy with s = 4,6,8..., the cases s = 2, 00 corresponding respectively
to Hy, Ky. In the free case we obtain as new solutions the standard liberattions of these
groups, namely the quantum groups Hy' = Zg 1. SF; with s = 4,6,8..., and we have as
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well an extra solution, appearing on the edge K}, C Uy, which is the free complexification

;(\]J\:, of the quantum group K}, which is easy, and bigger than K},. See [127]. U

The above result can be generalized, by lifting both the uniformity and twistablility
assumptions, and the result here, which is more technical, is explained in [127].

Another key result is the one from [117], dealing with the front face of the standard
cube, the orthogonal one. We first have the folowing result:

Proposition 12.2. The easy quantum groups Hy C G C OF; are as follows,

Hy Ox
N N
A

Hy Oy

with the dotted arrows indicating that we have intermediate quantum groups there.
Proof. This is a key result in the classification of easy quantum groups, as follows:

(1) We have a first dichotomy concerning the quantum groups in the statement, namely
Hy C G C Oy, which must fall into one of the following two classes:

Oy C G C O},
Hy C G C Hy,

This comes indeed from the early classification results for easy quantum groups, from
[22], [38], [39]. In addition, these early classification results solve as well the first problem,
On C G C Of;, with G = O} being the unique non-trivial solution.

(2) We have then a second dichotomy, concerning the quantum groups which are left,
namely Hy C G C Hj;, which must fall into one of the following two classes:

Hy c G c HY
HY ¢ G c H:
This comes indeed from various papers, and more specifically from the final classification

paper of Raum and Weber [117], where the quantum groups Sy C G C H}; with G ¢ HJ[\C;O}
were classified, and shown to contain H][\C;O]. For full details, we refer to [117]. g

Regarding now the case H][\?O] C G C Hj;, the precise result here, from [117], is:
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Proposition 12.3. Let Hk}] C H;y; be the easy quantum group coming from:

1 (R
We have then inclusions of quantum groups as follows,
Hy=HU>HISHY 5. > H
and we obtain in this way all the intermediate easy quantum groups
HY ¢ G c H:
satisfying the assumption G # H ][\?O I
Proof. Once again, this is something technical, and we refer here to [117]. O

It remains to discuss the easy quantum groups Hy C G C HJ[\?O], with the endpoints
G=Hy,H ][30 Vincluded. Once again, we follow here [117]. First, we have:
Definition 12.4. A discrete group generated by real reflections, g? = 1,
I'=<g1,...,9n >
is called uniform if each o € Sy produces a group automorphism, g; — Go(i)-

Consider a uniform reflection group, Z3N — I' — ZY. We can associate to it a family
of subsets D(k,l) C P(k,l), which form a category of partitions, as follows:
D(k,l) = {7? € P(k,l)‘ ker (Z) <T = Gi---Gi, = Yjs - - .gjl}
J

Observe that we have Pe[ﬁlm C D C P,.yen, with the inclusions coming respectively from

n € D, and from I' — Z%. Conversely, given Pe[si]n C D C P,,.,, we can associate to it a
uniform reflection group Zi¥ — ' — ZY | as follows:

I = <gl,...gN Giy - Gix. = Gjr - - 95, V1, 5, k, [ ker (j) € D(k:,l)>

As explained in [117], the correspondences I' — D and D — I are bijective, and inverse
to each other, at N = co. We have in fact the following result, from [117]:

Proposition 12.5. We have correspondences between.:
(1) Uniform reflection groups Z3>° — I' — 7Z.3°.
(2) Categories of partitions P cbDc PLyen.
(3) Easy quantum groups G = (Gy), with H][f;o] OGN D Hy.
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Proof. This is something quite technical, which follows along the lines of the above dis-
cussion. As an illustration, if we denote by Z3Y the quotient of Z3™ by the relations of
type abc = cba between the generators, we have the following correspondences:

Zy zgN zsN

Hy H H

More generally, for any s € {2,4, ..., 00}, the quantum groups H](\?) CH ][\37] constructed

in [22] come from the quotients of ZsY <« Z3N by the relations (ab)® = 1. See [117]. O
We can now formulate a final classification result, as follows:

Theorem 12.6. The easy quantum groups Hy C G C OF are as follows,

Hy Ox
A
HY
i
H O3,
!
Hy
i

Hy On

with the family HYy covering Hy, H][\?O}, and with the series H][G] covering Hy.

Proof. This follows indeed from Proposition 12.2, Proposition 12.3 and Proposition 12.5
above. For further details, we refer to the paper of Raum and Weber [117]. U

All the above is quite technical, and can be extended as well, as to cover all the orthog-
onal easy quantum groups, Sy C G C OF,. For full details here, we refer to [117].

Another interesting result, dealing this time with the unitary edge of the standard cube,
is the one from [107], [108]. To be more precise, the problem here is that of classifying
the intermediate easy quantum groups as follows:

Uv CGCUyY

A first construction of such quantum groups is as follows:
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Proposition 12.7. Associated to any r € N is the quantum group Uy C U](\q,n) c Uy

coming from the category 732(” of matching pairings having the property that #o = # e (r)

holds between the legs of each string. These quantum groups have the following properties:
(1) At r =1 we obtain the usual unitary group, U = U.

(2) At r =2 we obtain the half-classical unitary group, UJ(\?) = Ujx.

(3) For any r|s we have an embedding U](\;) C U](VS).

(4) In general, we have an embedding U](\;") CUx XNZ,.

(5) We have as well a cyclic matriz model C(U](\}n)) C M, (C(Uy)).

(6)

5
6) In this latter model, fU“") appears as the restriction of tr,. ® fUT .
N N

Proof. This is something quite compact, summarizing the various findings from [16], [107].
Here are a few brief explanations on all this:

(1) This is clear from 732(1) = P,, and from a well-known result of Brauer [54].

(2) This is because 7352) is generated by the partitions with implement the relations
abc = cba between the variables {u;;, uj;}, used in [49] for constructing Uy;.

(3) This simply follows from 732(8) - PQ(T), by functoriality.

(4) This is the original definition of U ](\; ) from [16]. We refer to [16] for the exact formula
of the embedding, and to [107] for the compatibility with the Tannakian definition.

(5) This is also from [16], more specifically it is an alternative definition for U ](\;).

(6) Once again, this is something from [16], and we will be back to it. O

Let us discuss now the second known construction of unitary quantum groups, from
[108]. This construction uses an additive semigroup D C N, but as pointed out there,
using instead the complementary set C' = N — D leads to several simplifications.

So, let us call “cosemigroup” any subset C' C N which is complementary to an additive
semigroup, x,y ¢ C = x +y ¢ C. The construction from [108] is then:

Proposition 12.8. Associated to any cosemigroup C' C N is the easy quantum group
Ux C US C Uy coming from the category PS C PQ(OO) of pairings having the property
# o —#e c C, between each two legs colored o, e of two strings which cross. We have:

1) For C' =0 we obtain the quantum group Usy;.

2) For C' = {0} we obtain the quantum group Uy.
3) For C'={0,1} we obtain the quantum group UX'.
4) For C' =N we obtain the quantum group U](VOO).
5) For C' C C' we have an inclusion UG C US.

)

6) Each quantum group US contains each quantum group U ](\7,").

(
(
(
(
(
(
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Proof. Once again this is something very compact, coming from recent work in [108],
with our convention that the semigroup D C N which is used there is replaced here by
its complement C' = N — D. Here are a few explanations on all this:

(1) The assumption C' = () means that the condition #o0—#e € C can never be applied.
Thus, the strings cannot cross, we have Py = N'Cy, and so UY = Uy

(2) As explained in [108], here we obtain indeed the quantum group Uy, constructed
by using the relations ab*c = cb*a, with a, b, c € {u;;}.

(3) This is also explained in [108], with U} being the quantum group from [16], which
is the biggest whose full projective version, in the sense there, is classical.

(4) Here the assumption C' = N simply tells us that the condition # o —#e € C in the
statement is irrelevant. Thus, we have P = 732(00), and so UN = U ](VOO).

(5) This is clear by functoriality, because C' C C' implies P§ C PS".
(6) This is clear from definitions, and from Proposition 12.7 above. d
We have the following key result, from [108]:
Theorem 12.9. The easy quantum groups Uy C G C Uy are as follows,
Uy C{UY} c {US} C Uy
with the series covering Uy, and the family covering Uy

Proof. This is something non-trivial, and we refer here to [108]. The general idea is that

U J(VOO) produces a dichotomy for the quantum groups in the statement, and this leads, via
combinatorial computations, to the series and the family. See [107], [108]. O

Observe that there is an obvious similarity here with the dichotomy for the liberations of
Hy, coming from [117]. To be more precise, the above-mentioned classification results for
the liberations of Hy, Uy have some obvious similarity between them. We have indeed
a family followed by a series, and a series followed by a family, and this suggests the
existence of a “contravariant duality” between these quantum groups, as follows:

Uy Ul U¢ Ut
Hi AU Y, Hy

At the first glance, this might sound a bit strange. Indeed, we have some natural
and well-established correspondences Hy <+ Uy and H]T, > U]J\;, obtained in one sense
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by taking the real reflection subgroup, H = U N Hy;, and in the other sense by setting
U =< H,Uy >. Thus, our proposal of duality seems to go the wrong way.

On the other hand, obvious as well is the fact that these correspondences Hy < Uy
and H}; «» Uy cannot be extended as to map the series to the series, and the family to
the family, because the series/families would have to be “inverted”, in order to do so.

Following [9], let us discuss now what happens inside the standard cube, first in the
easy case, and then in general. Let us start with the following definition:

Definition 12.10. An easy quantum group Hyx C Gy C Uy is called “bi-oriented” if

G4, Gy G

G¥ / Gy / 4'—

G GS Gsu

/7 /7

cr
Gy

Hy
are both intersection and easy generation diagrams.

Observe that the diagram on the left is automatically an intersection diagram, and that
the diagram on the right is automatically an easy generation diagram.

The question of replacing the slicing axiom with the bi-orientability condition makes
sense. In fact, we can even talk about weaker axioms, as follows:

Definition 12.11. An easy quantum group Hy C Gy C Uy is called “oriented” if
Gy = {G%lﬂ CNT7G§Z\7;}
Gy =G nGlnay
and “weakly oriented” if the following weaker conditions hold,
Gy = {G}:\UG?\H §V}
Gy =GL NGy NGY
where the various versions are those in section 11 above.

In order to prove the uniqueness, in the bi-orientable case, we can still proceed as in
the proof of the Ground Zero theorem, but we are no longer allowed to use the coordinate



212 TEO BANICA

system there, based at Oy. To be more precise, we must use the 2 coordinate systems
highlighted below, both taken in some weak sense, weaker than the slicing:

H /—';V 0+/ |
/KNJWUN

HN=ON

Skipping some details here, all this is viable, by using the known “edge results” sur-
veyed above, and with the key fact being that the quantum group H ][\C;O ! from [117] has no
orthogonal counterpart. Thus, we obtain in principle some improvements of the Ground
Zero theorem, under the bi-orientability assumption, and more generally under the ori-
entability assumption. As for the weak orientability assumption, the situation here is
more tricky, because we would need full “face results”, which are not available yet.

Let us discuss now the general, non-easy case. We must find extensions of the notions
of uniformity, twistability and orientability. Regarding the uniformity, we have:
Definition 12.12. A series G = (Gy) of closed subgroups G C Uy is called:

(1) Weakly uniform, if for any N € N we have Gx_1 = Gy NUy,_,, with respect to
the embedding Uy, | C Uy given by u — diag(u, 1).

(2) Uniform, if for any N € N we have Gy_1 = Gy NUy,_|, with respect to the N
possible embeddings Uy, | C Uy, of type u — diag(u,1).

Regarding the examples, in the classical case we have substantially more examples than
in the easy case, obtained by using the determinant, and its powers:

Proposition 12.13. The following compact groups are uniform,
(1) The complex reflection groups

Hy = {g € Zs SN‘(detg)d = 1}

for any values of the parameters s € {1,2,...,00} and d € N, d|s,
(2) The orthogonal group Oy, the special orthogonal group SOy, and the series

i ={ge UN)(detg)d =1}

of modified unitary groups, with s € {1,2,..., 00},
and so are the bistochastic versions of these groups.
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Proof. Both these assertions are clear from definitions. Observe that the groups in (1),
which are well-known objects in finite group theory, and more precisely form the series of
complex reflection groups, generalize the groups H3 from section 10 above, which appear
at d = s. See [121]. The groups in (2) are well-known as well, in compact Lie group
theory, with U3, being equal to SUy, and with Ug® being by definition Uy itself. Il

In the free case now, corresponding to the condition Sy C Gy C Uy, it is widely
believed that the only examples are the easy ones. A precise conjecture in this sense,
which is a bit more general, valid for any G C Uj;, states that we should have:

< Gn, Sy >={GYy, Sy}

Here G’y denotes as usual the easy envelope of Gy, and {,} is an easy generation
operation. This conjecture is probably something quite difficult.

Now back to our questions, we have definitely no new examples in the free case. So,
the basic examples will be those that we previously met, namely:

Proposition 12.14. The following free quantum groups are uniform,
(1) Liberations H3" = Zs . Sy, of the complex reflection groups Hy, = Z 1 Sn,
(2) Liberations Oy, Uy of the continuous groups Oy, Uy,

and so are the bistochastic versions of these quantum groups.

Proof. This is something that we basically know, with the uniformity check for H3" being
the same as for S, Hy, Ky, which appear at s = 1,2, 0o. O

We would need a second axiom, such as the twistability condition T C G. However,
if we look at Proposition 12.14, a condition of type Ay C G would be more appropriate.
In order to comment on this dillema, let us recall from section 11 that “taking the bis-
tochastic version” is a bad direction, geometrically speaking. But the operations “taking
the diagonal torus” and “taking the special version”, that we are currently discussing, are
bad too. Thus, we have 3 bad directions, and so a cube:

Proposition 12.15. We have the following diagram of finite groups,

Sy Hy
/
SHy
{1} 4'_TN
{1} STN/

obtained from Hy by taking bistochastic, special and diagonal versions.

e
/7
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Proof. This is clear, with the operations of taking bistochastic versions, special versions
and diagonal subgroups corresponding to going left, backwards, and downwards. O

Observe that the above cube is degenerate on the bottom left, but this is certainly not
surprising, because what we are doing here is to combine 3 bad directions.

Now back to our classification questions, the vertices of the above cube are all inter-
esting groups, and assuming that our quantum groups G C U, contain any of them is
something quite natural. Let us just select here three such conditions, as follows:

Definition 12.16. A closed subgroup Gy C Uy is called:

(1) Twistable, if Ty C Gy.
(2) Homogeneous, if Sy C Gy.
(3) Half-homogeneous, if Ay C Gy.

Let us go ahead now, and formulate our third and last definition, regarding the ori-
entability axiom. Things are quite tricky here, and we must start as follows:

Definition 12.17. Associated to any closed subgroup Gy C Uy are its classical, discrete
and real versions, given by

¢ =GnNUy
G4 =Gy NKY
n=GyNOL

as well as its free, smooth and unitary versions, given by
Gl =< Gy, Hy >
Gy =< Gn,Opn >
Gy =< Gn,Kn >
where <, > 1s the usual, non-easy topological generation operation.

Observe the difference, and notational clash, with some of the notions from section 11
above. As explained in section 7 above, it is believed that we should have {,} =<, >,
but this is not clear at all, and the problem comes from this.

A second issue comes when composing the above operations, and more specifically those
involving the generation operation, once again due to the conjectural status of the formula
{,} =<,>. Due to this fact, instead of formulating a result here, we have to formulate
a second definition, complementary to Definition 12.7, as follows:
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Definition 12.18. Associated to any closed subgroup Gy C Uy are the mizes of its
classical, discrete and real versions, given by

G =GyNKy
Y =GnNOy
GU =Gy NHE

as well as the mizes of its free, smooth and unitary versions, given by
Gl =< Gy, 0% >
G =< Gy, K} >
1](7 =< GN, Ux >

where <, > 1s the usual, non-easy topological generation operation.

Now back to our orientation questions, the slicing and bi-orientability conditions lead us
again into {, } vs. <, > troubles, and are therefore rather to be ignored. The orientability
conditions from Definition 12.11, however, have the following analogue:

Definition 12.19. A closed subgroup Gy C Uy is called “oriented” if
Gy =< G¥¢,G%, GY% >
Gy =GUNGY NGy
and “weakly oriented” if the following conditions hold,
Gy =< GS,G%, G >
Gy =GL NGy NGY
where the various versions are those in Definition 12.17 and Definition 12.18.

With these notions, our claim is that some classification results are possible:

(1) In the classical case, we believe that the uniform, half-homogeneous, oriented groups
are those in Proposition 12.13, with some bistochastic versions excluded. This is of
course something quite heavy, well beyond easiness, with the potential tools available
for proving such things coming from advanced finite group theory and Lie algebra theory.
Our uniformity axiom could play a key role here, when combined with [121], in order to
exclude all the exceptional objects which might appear on the way.

(2) In the free case, under similar assumptions, we believe that the solutions should be
those in Proposition 12.14, once again with some bistochastic versions excluded. This is
something heavy, too, related to the above-mentioned conjecture < Gy, S¥ >= {G'y, S5}
Indeed, assuming that we would have such a formula, and perhaps some more formulae
of the same type as well, we can in principle work out our way inside the cube, from the
edge and face projections to G itself, and in this process G would become easy.
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(3) In the group dual case, the orientability axiom simplifies, because the group duals
are discrete in our sense. We believe that the uniform, twistable, oriented group duals
should appear as combinations of certain abelian groups, which appear in the classical
case, with duals of varieties of real reflection groups, which appear in the real case.

Let us go back now to the cube, and to edge problems, but without the easiness as-
sumption, this time. We have the following result from [18], to start with:

Theorem 12.20. The following inclusions are mazximal:

(1) TOy C Un.
(2) POy C PUy.

Proof. In order to prove these results, consider as well the group TSOy.

Observe that we have TSOy = TOy if N is odd. If N is even the group TOy has two
connected components, with TSSOy being the component containing the identity.

Let us denote by soy, uy the Lie algebras of SOy, Uy. It is well-known that uy consists
of the matrices M € My(C) satisfying M* = —M, and that:

soy = uy N My(R)
Also, it is easy to see that the Lie algebra of TSOy is soy @ iR.

Step 1. Our first claim is that if N > 2, the adjoint representation of SOy on the space
of real symmetric matrices of trace zero is irreducible.

Let indeed X € My (R) be symmetric with trace zero. We must prove that the following
space consists of all the real symmetric matrices of trace zero:

V = span {UXUt U e SON}

We first prove that V' contains all the diagonal matrices of trace zero. Since we may
diagonalize X by conjugating with an element of SOy, our space V' contains a nonzero
diagonal matrix of trace zero. Consider such a matrix:

D= diag(dl, dg, R ,dN)

We can conjugate this matrix by the following matrix:

0O -1 0
1 0 0 € SOn
0 0 In-o

We conclude that our space V' contains as well the following matrix:
D/ = diag(dg, dl, dg, c. ,dN)

More generally, we see that for any 1 < 7,7 < N the diagonal matrix obtained from
D by interchanging d; and d; lies in V. Now since Sy is generated by transpositions, it
follows that V' contains any diagonal matrix obtained by permuting the entries of D. But
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it is well-known that this representation of Sy on the diagonal matrices of trace zero is
irreducible, and hence V' contains all such diagonal matrices, as claimed.

In order to conclude now, assume that Y is an arbitrary real symmetric matrix of trace
zero. We can find then an element U € SOy such that UYU! is a diagonal matrix of
trace zero. But we then have UYU! € V, and hence also Y € V, as desired.

Step 2. Our claim is that the inclusion TSOx C Uy is maximal in the category of
connected compact groups.

Let indeed G be a connected compact group satisfying TSOy C G C Uy. Then G is a
Lie group. Let g denote its Lie algebra, which satisfies:

soy iR CgCuy

Let adg be the action of G on g obtained by differentiating the adjoint action of G on
itself. This action turns g into a G-module. Since SOy C G, g is also a SOn-module.

Now if G # TSOy, then since G is connected we must have soy & iR # g. It follows
from the real vector space structure of the Lie algebras uy and soy that there exists a
nonzero symmetric real matrix of trace zero X such that:

1X €g

We know that the space of symmetric real matrices of trace zero is an irreducible
representation of SOy under the adjoint action. Thus g must contain all such X, and
hence g = uy. But since Uy is connected, it follows that G = Uy.

Step 3. Our claim is that the commutant of SOy in My (C) is as follows:

(1) SO, — {<_0‘5 g) o, 5 € c}.
(2) It N > 3, SO, = {aly|a € C}.

Indeed, at N = 2 this is a direct computation.

At N > 3, an element in X € SO/ commutes with any diagonal matrix having exactly
N — 2 entries equal to 1 and two entries equal to —1. Hence X is a diagonal matrix.

Now since X commutes with any even permutation matrix and N > 3, it commutes in
particular with the permutation matrix associated with the cycle (7,7, k) for any 1 <i <
j < k, and hence all the entries of X are the same.

We conclude that X is a scalar matrix, as claimed.

Step 4. Our claim is that the set of matrices with nonzero trace is dense in SOy .

At N = 2 this is clear, since the set of elements in SO, having a given trace is finite.
So assume N > 2, and let:
T € SOy ~ SORN)

Tr(T)=0
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Let £ C RY be a 2-dimensional subspace preserved by T, such that:

Tip € SO(E)
Let € > 0 and let S. € SO(F) with ||Tjg — S.|| < €, and with Tr(T|g) # Tr(S;), in the

N = 2 case. Now define T, € SO(RY) = SOy by:
T.g = S:

TE|EJ_ = T|EJ_

It is clear that we have:
IT = T2l < ||Tjs — il < e
Also, we have:
Tr(T:) =Tr(S.) +Tr(Tigr) #0

Thus, we have proved our claim.

Step 5. Our claim is that TOy is the normalizer of TSOy in Uy, i.e. is the subgroup
of Uy consisting of the unitaries U for which, for all X € TSOy:

U 'XU € TSOy

It is clear that the group TOyN normalizes TSOy, so in order to prove the result, we
must show that if U € Uy normalizes TSOpy then U € TOy.
First note that U normalizes SOp. Indeed if X € SOy then:

U'XU € TSOy

Thus U™' XU = \Y for some A € T and Y € SOy.
If Tr(X) # 0, we have A € R and hence:
AY =U'XU € SOy
The set of matrices having nonzero trace being dense in SOy, we conclude that
U=1XU € SOy for all X € SOy. Thus, we have:
X eSOy = UXUMHY(UXUY=1Iy
— X'U'UX=UU
= U'U € SOy
It follows that at N > 3 we have U'U = aly, with a € T, since U is unitary. Hence
we have U = a'/?(a~1/2U) with:
Oz_l/zU € Oy
U e TOyx
If N =2, (U'U)" = U'U gives again that U'U = aly, and we conclude as in the previous
case.

Step 6. Our claim is that the inclusion TOy C Uy is maximal in the category of
compact groups.
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Suppose indeed that TOy C G C Uy is a compact group such that G # Uy. It is a
well-known fact that the connected component of the identity in GG is a normal subgroup,
denoted (Gy. Since we have TSOy C Gy C Uy, we must have:

Go =TSOpN
But since Gy is normal in GG, the group G normalizes TSOy, and hence G C TOy.

Step 7. Our claim is that the inclusion POy C PUy is maximal in the category of
compact groups.

This follows from the above result. Indeed, if POy C G C PUy is a proper intermediate
subgroup, then its preimage under the quotient map Uy — PUy would be a proper
intermediate subgroup of TOyN C Uy, which is a contradiction. O

In connection now with the “edge question” of classifying the intermediate groups
Oy C G C Uy, the above result leads to a dichotomy, coming from:

PG € {POy, PUy}

In the lack of a classification result here, which is surely known, but that we were unable
to find in the literature, here are some basic examples of such intermediate groups:

Proposition 12.21. We have compact groups Oy C G C Uy as follows:
(1) The following groups, depending on a parameter r € N U {oo},

7,0 {wU’w €7,.U e ON}

whose projective versions equal POy, and the biggest of which is the group TOy,
which appears as affine lift of POy.
(2) The following groups, depending on a parameter d € 2N U {oo},

Ud = {U c UN‘detU c Zd}

interpolating between U% and U = Uy, whose projective versions equal PUy.
Proof. All the assertions are elementary, and well-known. U

The above results suggest that the solutions of Oy C G C Uy should come from
On, Uy, by succesively applying the constructions G — Z,G and G — G N U%. These
operations do not exactly commute, but normally we should be led in this way to a 2-
parameter series, unifying the two 1-parameter series from (1,2) above. However, some
other groups like Zy SOy work too, so all this is probably a bit more complicated.

We have as well the following result, also from [18]:



220 TEO BANICA

Theorem 12.22. The inclusion of compact quantum groups
On C O?V
is maximal in the category of compact quantum groups.

Proof. The idea is that this follows from the result regarding POy C PUy, by taking
affine lifts, and using algebraic techniques. Consider indeed a sequence of surjective Hopf
x-algebra maps as follows, whose composition is the canonical surjection:

C(0y) L AL c(oy)
This produces a diagram of Hopf algebra maps with pre-exact rows, as follows:

C—— C(PO}) — C(O) —= C(Zy) ——C

fi f
C PA A C(Zy) ——C
g g

C——PC(Oy) —— C(Oy) ——= C(Zy) ——C

Consider now the following composition, with the isomorphism on the left being some-
thing well-known, coming from [49], that we will explain in section 16 below:

C(PUy) =~ C(PO%) 5 PA 2 PC(Oy) = C(POY)
This induces, at the group level, the embedding POy C PUy. Thus f| or g is an

isomorphism. If f| is an isomorphism we get a commutative diagram of Hopf algebra
morphisms with pre-exact rows, as follows:

C—— C(PO%) — C(0%) —= C(Zy) —C

Ox
|
A

C—— C(POY) C(Zy) —C

Then f is an isomorphism. Similarly if g| is an isomorphism, then g is an isomorphism.
For further details on all this, we refer to [18]. O
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Finally, let us discuss twisting results. Let us go back to the standard cube, namely:

Ky
/! S
OX
Ky
d /
On
According to the general Schur-Weyl twisting method from section 7 above, all these
quantum groups can be twisted. In addition, the continuous twists were explicitely com-

puted in section 7 above, and the discrete objects were shown in section 10 above to be
equal to their own twists. Thus, we are led to the following conclusion:

Uy
Un

Hy
Hy

Theorem 12.23. The Schur-Weyl twists of the main quantum groups are

Ky Ux
HY; / O% /
e
/
Hy On /
and we will call this diagram “twisted standard cube”.
Proof. This follows indeed from the above discussion. O

This construction raises the perspective of finding the twisted versions of the above
classification results. Following [6], in the uniform case, the result here is as follows:
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Theorem 12.24. The classical and free uniform twised easy quantum groups are

+ ++ +
Ky —= Ky" — Uy

o ]
Y /
s

Hy oy
A A
Ky Uy
7 /
HY,
7 i
HN ON

where Hy = 7,1 Sy, HY = Zs . Sf; with s = 4,6,8..., and where K3 = }(E
Proof. This follows indeed from Theorem 12.1, and from the above discussion. U

It is possible to get beyond this, with further classification results in the twisted case,
and also with noncommutative geometry considerations, in the spirit of those mentioned
at the end of section 11. We refer here to [4], [5], [6] and related papers.

This above was just an introduction to the classification problems for the compact
quantum groups, and for more we refer to [81], [87], [102], [107], [108], [117], [126].



QUANTUM GROUPS 223

13. Toral subgroups

We have seen in the previous sections that the group dual subgroups Aca play an
important role in the theory. Our purpose here is to understand how the structure of a
closed subgroup G C Uy can be recovered from the knowledge of such subgroups. Let us
start with a basic statement, regarding the classical and group dual cases:

Proposition 13.1. Let G C Uy be a compact quantum group, and consider the group
dual subgroups AcC G, also called toral subgroups, or simply “tori”.
(1) In the classical case, where G C Uy is a compact Lie group, these are the usual
tori, where by torus we mean here closed abelian subgroup.
(2) In the group dual case, G = T with T =< J1,---,9n > being a discrete group,
these are the duals of the various quotients I' — A.

Proof. Both these assertions are elementary, as follows:

(1) This follows indeed from the fact that a closed subgroup H C Uy is at the same
time classical, and a group dual, precisely when it is classical and abelian.

(2) This follows from the general propreties of the Pontrjagin duality, and more precisely
from the fact that the subgroups A C I' correspond to the quotients I' — A. O

Based on the above simple facts, regarding the groups and the group duals, we can see
that in general, there are two motivations for the study of toral subgroups A C G:

(1) Tt is well-known that the fine structure of a compact Lie group G C Uy is partly
encoded by its maximal torus. Thus, in view of Proposition 13.1, the various tori
A C G encode interesting information about a quantum group G C Uy, both in
the classical and the group dual case. We can expect this to hold in general.

(2) Any action G ~ X on some geometric object, such as a manifold, will produce

actions of its tori on the same object, A~ X And, due to the fact that A are
familiar objects, namely discrete groups, these latter actions are easier to study,
and this can ultimately lead to results about the action G ~ X itself.

At a more concrete level now, most of the tori that we met appear as diagonal tori, in
the sense of section 2 above. Let us first review this material. We first have:

Theorem 13.2. Given a closed subgroup G C Uy;, consider its “diagonal torus”, which
is the closed subgroup T' C G constructed as follows:

C(T) = C(G) / {u; = 0[¥i # j)

This torus is then a group dual, T = /A\, where N =< ¢1,...,gn > 1is the discrete group
generated by the elements g; = u;;, which are unitaries inside C(T).
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Proof. This is something that we already know, from section 2. Indeed, the elements
gi; = w;; are unitaries and group-like inside C'(T"), and this gives the result. O

Alternatively, we have the following construction:

Proposition 13.3. The diagonal torus T C G can be defined as well by

T=GNT§,
where T C Uy is the free complex torus, appearing as
TS = Fy
with Fy =< g1,...,g9n > being the free group on N generators.

Proof. We recall from Theorem 12.2 that the diagonal torus is defined via:
(1) = (@) {wiy = 0¥ # 7)
On the other hand, the free complex torus T}, appears as follows:
(1) = CWR) [ {wiy = 0|vi # 5)
Thus, by intersecting with G' we obtain the diagonal torus of G. O

Most of our computations so far of diagonal tori, that we will recall in a moment,
concern various classes of easy quantum groups. In the general easy case, we have:

Proposition 13.4. For an easy quantum group G C Uy, coming from a category of
partitions D C P, the associated diagonal torus is T =T, with:

F:FN/<gil...gik =g, ..., Vi, j. k1,31 € D(k,1), 6, (]) 7éo>

Moreover, we can just use partitions m which generate the category D.

Proof. Let g; = wu;; be the standard coordinates on the diagonal torus 7', and set g =
diag(g;). We have then the following computation:

o) = [O(Um/ <T7r c Hom(u®k,u®l)‘V7r c Dﬂ /<uj — o’w £ j>
[C’(U;})/ <uij = 0|Vi # ]>] /<T7r € Hom(um,u@l)‘VW € D>
= C*(FN)/ <T7T € Hom(g®k,g®l)“v’7r € D>

The associated discrete group, I' = f, is therefore given by:

= FN/ <T7T € Hom(g®k,g®l)‘V7r € D>
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Now observe that, with g = diag(g1, ..., gn) as above, we have:
T,rg®k(ei1 ®...Qe€;,)= Z Or (]i ]]:) e, ®...0¢€j Gi - Giy
Ji--di

g®lTw(ei1®...®eik):25W<j1 jlj)eﬁ@...@ejl-gjl...gjl

We conclude that the relation T, € Hom/(g®*, g*!) reformulates as follows:

i ...
(57r<‘71 ]l)#O:gzngk:gﬁgﬂ
Thus, we obtain the formula in the statement. Finally, the last assertion follows from
Tannakian duality, because we can replace everywhere D by a generating subset. U

In practice now, in the continuous case we have the following result:

Theorem 13.5. The diagonal tori of the basic unitary quantum groups, namely

Un Uy Uy
On Ox 0)e
and of their ¢ = —1 twists as well, are the standard cube and torus, namely
Ty =75
Ty =TV
in the classical case, and their liberations in general, which are as follows:
Ty T4 T
Tn TX T

Also, for the quantum groups By, By, Cxn, C, the diagonal torus collapses to {1}.

Proof. We have several assertions here, the idea being as follows:

(1) The main assertion, regarding the basic unitary quantum groups, is something that
we already know, from section 2 above, with the various liberations Ty, T of the basic
tori Ty, Ty in the statement being by definition those appearing there.
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(2) Regarding the invariance under twisting, this is best seen by using Proposition 13.4.
Indeed, the computation in the proof there applies in the same way to the general quizzy
case, and shows that the diagonal torus is invariant under twisting.

(3) In the bistochastic case the fundamental corepresentation g = diag(gi,...,gn) of
the diagonal torus must be bistochastic, and so g; = ... = gy = 1, as claimed. U

Regarding now the discrete case, the result is as follows:
Theorem 13.6. The diagonal tori of the basic quantum reflection groups, namely

Ky K3 K}

Hy H, Hj;

are the same as those for Ox, Uy described above, namely:

Ty T%, T},

Ty Ty T~
Also, for the quantum permutation groups Sy, Sy we have T = {1}.

Proof. The first assertion follows from the general fact that the diagonal torus of Gx C Uy,
equals the diagonal torus of the discrete version, namely:

G4 =Gy N K

Indeed, this fact follows from definitions, for instance via Proposition 13.3. As for the
second assertion, this follows from:

Sy C By
SY C BY,
Indeed, by using the last assertion in Theorem 13.5, we obtain the result. U

As a conclusion, the diagonal torus T" C G is usually a quite interesting object, but
for certain quantum groups like the bistochastic ones, or the quantum permutation group
ones, this torus collapses to {1}, and so it cannot be of use in the study of G.

In order to deal with this issue, the idea, from [11], [34], will be that of using:
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Theorem 13.7. Given a closed subgroup G C Uy and a matriz Q € Uy, we let Tg C G
be the diagonal torus of G, with fundamental representation spinned by Q:

C(Tg) = C(G) [ ((QuQ)y; = 0[vi # )

This torus is then a group dual, given by Tg = /AXQ, where Ag =< q1,...,9n > 1is the
discrete group generated by the elements

9i = (QuQ")ii
which are unitaries inside the quotient algebra C(1y).

Proof. This follows from Theorem 13.2, because, as said in the statement, Tf, is by defi-
nition a diagonal torus. Equivalently, since v = Qu@)* is a unitary corepresentation, its
diagonal entries ¢g; = v;;, when regarded inside C(Ty), are unitaries, and satisfy:

A(gi) = 9 ® g;

Thus C(TY) is a group algebra, and more specifically we have C(Ty) = C*(Ag), where
Ag =< ¢1,...,9n > is the group in the statement, and this gives the result. U

Summarizing, associated to any closed subgroup G C Uy is a whole family of tori,
indexed by the unitaries U € Uy. We use the following terminology:

Definition 13.8. Let G C Uy, be a closed subgroup.

(1) The tori Tg C G constructed above are called standard tori of G.
(2) The collection of tori T = {Ty C G|Q € Un'} is called skeleton of G.

This might seem a bit awkward, but in view of various results, examples and counterex-
amples, to be presented below, this is perhaps the best terminology. As a first general
result now regarding these tori, coming from [148], we have:

Theorem 13.9. Any torus T C G appears as follows, for a certain QQ € Uy:
T'cToCcG
In other words, any torus appears inside a standard torus.

Proof. Given a torus T' C G, we have an inclusion as follows:
TCGcCUy

On the other hand, we know from section 3 above that each torus 7' C Uy, has a
fundamental corepresentation as follows, with ) € Uy:

U = deag(gh s 79N)Q*
But this shows that we have T' C Tf, and this gives the result. U

Let us do now some computations. In the classical case, the result is as follows:
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Proposition 13.10. For a closed subgroup G C Uy we have
To =GN (QTYQ)
where TV C Uy is the group of diagonal unitary matrices.

Proof. This is indeed clear at () = 1, where I'; appears by definition as the dual of the
compact abelian group G NTY. In general, this follows by conjugating by Q. O

In the group dual case now, we have the following result:
Proposition 13.11. Given a finitely generated discrete group
I'=<aq,...,98 >

consider its dual compact quantum group G = f, diagonally embedded into Uy,. We have
Ao =T/ <gi = gj|3k, Qi # 0,Qr; # 0>

with the embedding Ty C G = r coming from the quotient map I' = Aq.

Proof. Assume indeed that I' =< g¢y,...,gxy > is a discrete group, with dual T c Ux

coming via u = diag(gi, ..., gn). With v = Qu@Q*, we have the following computation:
Z Qsivsk = Z QsiQstthgt
s st
= Z 5itQk:tgt
t
= Qrigi

Thus the condition v;; = 0 for 7 # j gives:
Qriver = Qkigi
But this is the same as saying that:
Qri #0 = gi = vk
Now this latter equality reads:

g9 =Y |Qkil’g;
J
We conclude from this that, as desired:
Qri #0,Qk #0 = g =g,
As for the converse, this is elementary to establish as well. O

According to the above results, we can expect the skeleton T" to encode various algebraic
and analytic properties of G. We will discuss this in what follows, with a number of results
and conjectures. We first have the following result:
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Theorem 13.12. The following results hold, both over the category of compact Lie groups,
and over the category of duals of finitely generated discrete groups:

(1) Injectivity: the construction G — T is injective, in the sense that G # H implies,
for some Q € Uy:

To(G) # To(H)

(2) Monotony: the construction G — T is increasing, in the sense that passing to a
subgroup H C G decreases at least one of the tori Ty:

To(H) # To(G)

(3) Generation: any closed quantum subgroup G C Uy is generated by its tori, or,
equivalently, has the following generation property:

G=<Ty|Q €Uy >
Proof. We have two cases to be investigated, as follows:

(1) Assume first that we are in the classical case, G C Uy. In order to prove the
generation property we use the following formula, established above:

To =GNQTYQ

Now since any group element U € G is unitary, and so diagonalizable, we can write,
for certain matrices Q € Uy and D € TV:

U=Q"DQ
But we have then, for this precise value of the spinning matrix () € Uy:
U e TQ

Thus we have proved the generation property, and the injectivity and monotony prop-
erties follow from this.

(2) Regarding now the group duals, here everything is trivial. Indeed, when the group
duals are diagonally embedded we can take () = 1, and when the group duals are embed-
ded by using a spinning matrix ) € Uy, we can use precisely this matrix ). O

As explained in [34], it is possible to go beyond the above verifications, notably with
some results regarding the half-classical and the free cases. However, there is no serious
idea so far, in order to deal with the general case. See [34].

We will be back to this, in section 14 below.

Let us focus now on the generation property, from Theorem 13.12 (3), which is perhaps
the most important. In order to discuss the general case, we will need:
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Proposition 13.13. Given a closed subgroup G C Uy, and a matriz Q € Uy, the corre-
sponding standard torus and its Tannakian category are given by

Ty =GNTy
C&b::<:Cb,Ch@ >

where Tg C Uy is the dual of the free group Fy =< gi,...,gn >, with the fundamental
corepresentation of C(Tq) being the matriz uw = Qdiag(gi, - .., gn)Q*.

Proof. The first assertion comes from the well-known fact that given two closed subgroups
G, H C Uy, the corresponding quotient algebra C(Uy,) — C(G'N H) appears by dividing
by the kernels of both the following quotient maps:

C(Ux) = C(G)
C(Uy) — C(H)

Indeed, the construction of Ty from Theorem 13.7 amounts precisely in performing this
operation, with H = Tg, and so we obtain, as claimed:

Ty, =GNTy

As for the Tannakian category formula, this follows from this, and from the following
general Tannakian duality formula from section 6 above:

Cong =< Cq,Cy >
Thus, we are led to the conclusion in the statement. Il
We have the following Tannakian reformulation of the toral generation property:
Theorem 13.14. Given a closed subgroup G C Uy, the subgroup
G' =<Ty|Q € Uy >

generated by its standard tori has the following Tannakian category:

Cky = (\ <I(1;,C&Q >

Qeln

In particular we have G = G" when this intersection reduces to Cg.

Proof. Consider indeed the subgroup G’ C G constructed in the statement. We have:

Co= () Cr,
QeUn
Together with the formula in Proposition 13.13, this gives the result. U

Let us further discuss now the toral generation property, with some modest results,
regarding its behaviour with respect to product operations. We first have:
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Proposition 13.15. Given two closed subgroups G, H C Uy, and Q € Uy, we have:
<TH(G), To(H) >C Th(< G, H >)
Also, the toral generation property is stable under the operation <, >.

Proof. The first assertion can be proved either by using Theorem 13.14, or directly. For
the direct proof, which is perhaps the simplest, we have:

To(G) = GNTyoC<G,H>NTy
= Th(< G, H >)
We have as well the following computation:
To(H) = HNTo C< G, H>NTy
= To(<G,H >)
Now since A, B C C implies < A, B >C (), this gives the result.
Regarding now the second assertion, we have the following computation:
<G, H> = <<Ty(G)|Q e Uy > < Tu(H)|Q € Uy >>
= <Tp(G),To(H)|Q € Uy >
= <<Tph(G), To(H) > |Q € Uy >
C <To(< G, H>)Q €Uy >
Thus the quantum group < G, H > is generated by its tori, as claimed. U

We have as well the following result:

Proposition 13.16. We have the following formula, for any G, H and R, S:
Tres(G x H) =Tgr(G) x Ts(H)
Also, the toral generation property is stable under usual products .

Proof. The product formula in the statement is clear from definitions. Regarding now the
second assertion, we have the following computation:

<To(G x H)|Q € Uyn >
D <Tres(Gx H)Re€ Uy, S €Uy >
= <Tr(G)xTs(H)|R € Uy, S € Uy >
= <Tg(G)x{1},{1} xTs(H)|R € Uy, S € Uy >
= <Tr(G)|Re Uy >x <Tg(H)|H € Uy >
= GxH

Thus the quantum group G x H is generated by its tori, as claimed. U
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In order to get beyond this, let us discuss now some weaker versions of the generation
property, which are partly related to the classification program from section 12:
Definition 13.17. A closed subgroup Gy C Uy, with classical version GS;, is called:

(1) Weakly generated by its tori, when:
Gn =< Gy, (1Q)qeuy >
(2) A diagonal liberation of GS;, when:
GN =< G?\U T, >

According to our results above, the first property is satisfied for the groups, for the
group duals, and is stable under generations, and direct products. Regarding the second
property, this is something quite interesting, which takes us away from our original gen-
eration questions. The idea here, from [55] and subsequent papers, is that such things
can be proved by recurrence on N € N. In order to discuss this, let us start with:

Proposition 13.18. Assume that G = (Gy) is weakly uniform, let n € {2,3,...,00} be
manimal such that G, is not classical, and consider the following conditions:

(1) Strong generation: Gy =< G, G, >, for any N > n.
(2) Usual generation: Gy =< G%,Gn-1 >, for any N > n.
(3) Initial step generation: Gy =< G5, Gy >.
We have then (1) <= (2) = (3), and (3) is in general strictly weaker.
Proof. All the implications and non-implications are elementary, as follows:
(1) = (2) This follows from G,, C Gy_; for N > n, coming from uniformity.
(2) = (1) By using twice the usual generation, and then the uniformity, we have:
Gy = <GY,Gn-1>
<Gy, Gy_1,Gnog >
= <GYy,Gnoo >
Thus we have a descent method, and we end up with the strong generation condition.
(2) = (3) This is clear, because (2) at N = n + 1 is precisely (3).
(3) == (2) In order to construct counterexamples here, the simplest is to use group

duals. Indeed, with G = I:J\V and 'y =< ¢g1,...,gn >, the uniformity condition tells us
that we must be in a projective limit situation, as follows:

P1<—F2%F3<—P4<—...
noa=Iy/<gyn=1>

Now by assuming for instance that I's is given and not abelian, there are many ways of
completing the sequence, and so the uniqueness coming from (2) can only fail. U
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Let us introduce now a few more notions, as follows:
Proposition 13.19. Assume that G = (Gy) is weakly uniform, let n € {2,3,...,00} be
as above, and consider the following conditions, where Iy C G is the diagonal torus:

(1) Strong diagonal liberation: Gy =< G, I, >, for any N > n.

(2) Technical condition: Gy =< G, In—1 > for any N > n, and G,, =< G, I,, >.
(3) Diagonal liberation: Gy =< G, In >, for any N.

(4) Initial step diagonal liberation: G, =< G, I,, >.

We have then (1) = (2) = (3) = (4).

Proof. Our claim is that when assuming that G = (G ) is weakly uniform, so is the family
of diagonal tori I = (Iy). Indeed, we have the following computation:

INnNUY , = (GyNTHNUN,
= (GyNUxN_) N(THNUN_y)
= Gy NTY
Iny

Thus our claim is proved, and this gives the various implications in the statement. [J

We can now formulate a key theoretical observation, as follows:
Theorem 13.20. Assuming that G = (Gn) is weakly uniform, and withn € {2,3, ..., 00}
being as above, the following conditions are equivalent, modulo their initial steps:
Generation: Gy =< G%,Gn_1 >, for any N > n.

(1)

(2) Strong generation: Gy =< G, G, >, for any N > n.

(3) Diagonal liberation: Gy =< G, Iny >, for any N > n.

(4) Strong diagonal liberation: Gy =< G%, I, >, for any N > n.

Proof. Our first claim is that generation plus initial step diagonal liberation imply the
technical diagonal liberation condition. Indeed, the recurrence step goes as follows:

Gy = < G?V,GNfl >
= < G?Va ?V—la]N—l >
= <Gy, In-1>

In order to pass now from the technical diagonal liberation condition to the strong
diagonal liberation condition itself, observe that we have:

GN = < G?\[aGN—l >
= < G?VJ ?VflalN—l >
= <Gy, In-1>
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With this condition in hand, we have then as well:
Gy = < G?\[aGN—l >
= <Gy, Gy, In2>
= < G?Va In_9 >
This procedure can be of course be continued. Thus we have a descent method, and
we end up with the strong diagonal liberation condition.
In the other sense now, we want to prove that we have, at N > n:
GN =< G?V,GN,1 >
At N =n + 1 this is something that we already have. At N = n + 2 now, we have:
Gn+2 = < Gz+27In >
= < sz+27 %Hv[n >
= <Gpi9Gny1 >
This procedure can be of course be continued. Thus, we have a descent method, and

we end up with the strong generation condition. U

It is possible to prove that many interesting quantum groups have the above properties,
and hence appear as diagonal liberations, but the whole subject is quite technical. Here
is however a statement, collecting most of the known results on the subject:

Theorem 13.21. The basic quantum unitary and reflection groups are as follows:
(1) Oy, Uy appear via diagonal liberation.
(2) O%, Uy appear via diagonal liberation.
(3) Hy, Ky appear via diagonal liberation.
(4) Hy;, Ky do not appear via diagonal liberation.
In addition, BY;, C%, S% do not appear either via diagonal liberation.

Proof. All this is quite technical, the idea being as follows:

(1) The quantum groups Oy, U} are not uniform, and cannot be investigated with the
above techniques. However, these quantum groups can be studied by using the technology
in [16], [47], [49], which will be briefly discussed in section 16 below, and this leads to

N =< On,T% >, as well as to Uy, =< Uy, Ty >, which implies Uy, =< Uy, Ty >.

(2) The quantum groups O}, Uy are uniform, and a quite technical computation, from
[52], [53], [55], [56], shows that the generation conditions from Theorem 13.20 are satisfied
for OF. Thus we obtain O3, =< Oy, Ty >, and from this we can deduce via the results
in [18] that we have Uy, =< Uy, Ty >, which implies Uy, =< Uy, T}, >. See [56].

(3) The situation for Hj;, K3 is quite similar to the one for O}, Uy, explained above.
Indeed, the technology in [16], [47], [49] applies, and this leads to Hy =< Hy,T% >, as
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well as to K} =< Ky, T% >, which implies K =< Ky, Ty >. In fact, these results are
stronger than the above ones for Oy, Uy, via some standard generation formulae.

[

(4) This is something subtle as well, coming from the quantum groups H ][30 ], Ky\° V from
[117], discussed before. Indeed, since the relations ¢;g;9; = g;9:9; are trivially satisfied for
real reflections, the diagonal tori of these quantum groups coincide with those for Hy;, K}
Thus, the diagonal liberation procedure “stops” at H ][\?o ], K ][30 I,

Finally, regarding the last assertion, here B}, Cf;, Sy do not appear indeed via diagonal
liberation, and this because of a trivial reason, namely 7" = {1}. O

Summarizing, all this is quite technical. Now regardless of these difficulties, and of the
various positive results on the subject, the notion of diagonal liberation is obviously not
the good one. As a conjectural solution to these difficulties, we have the notion of Fourier
liberation, that we will discuss now. For thisA purpose, we will need a lot of preliminaries,
in relation with the group dual subgroups I' C G of the quantum permutation groups,
G C S5, following the work of Bichon [46] and related papers.

Let us start with the following basic fact, which generalizes the embedding Do C S
that we met in section 9 above, when proving that we have S} # Sy:

Proposition 13.22. Consider a discrete group generated by elements of finite order,
written as a quotient group, as follows:

Zn, % ... %Ly, — T

1
We have then an embedding of quantum groups T c SY, where N = Ny + ...+ Nj.

Proof. We have a sequence of embeddings and isomorphisms as follows:

T C Zy, *.. *Zy,
= Zn % ... %Ly,
~ Zn k... %Ly,
C Sy % ...%SN,
C Sy *... %S]T,k
c Sy
Thus, we are led to the conclusion in the statement. Il

The above result is quite abstract, and it is worth working out the details, with an
explicit formula for the associated magic matrix. Let us start with a study of the simplest
situation, where k = 1, and where I' = Zy,. The result here is as follows:
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Proposition 13.23. The magic matriz for the quantum permutation group
ZV ~ 7N C SN C S]t[

with standard Fourier isomorphism on the left, is given by the formula

u=FIF*
where F = \/Lﬁ(wij) with w = e*™/N s the Fourier matriz, and where
1
j g
g1

is the diagonal matriz formed by the elements of Zy, regarded as elements of C*(Zy).
Proof. The magic matrix for the quantum group Zy C Sy C Sy is given by:
vij = X (a € ZN’a(j) = z)
= b

Let us apply now the Fourier transform. According to our Pontrjagin duality conven-
tions from section 1 above, we have a pair of inverse isomorphisms, as follows:

1 .
D :C(Zy) — C*(Zy) | %%N%M%k

U:CH(Zy) = C(Zy) , g — Y w ',
k

Here w = ¢*™/N | and we use the standard Fourier analysis convention that the indices

are 0,1,...,N — 1. With F' = \/Lﬁ(wij) and I = diag(g’) as above, we have:
uj = O(vy)
1 .
= Nzw( ik g
k
1 ) )
— N Z wzkgkw—]k
k
= Y Fulw(F")
k

Thus, the magic matrix that we are looking for is u = FIF*, as claimed. U

With the above result in hand, we can complement Proposition 13.22 with:



QUANTUM GROUPS 237

Proposition 13.24. Given a quotient group Zy, * ... * Zn, — L', the magic matriz for
the subgroup T' C Sy found in Proposition 13.22, with N = Ny + ...+ Ny, is given by

Fn, L Fy,
u =
Fn IpFy,
where Fy = \/—lﬁ(w%) with wy = €™V are Fourier matrices, and where
1
L= 7
gt
with g1, ..., gr being the standard generators of I
Proof. This follows indeed from Proposition 13.22 and Proposition 13.23. O

Following [46], let us prove now that this construction provides us with all the group
duals I' C Sy. The idea will be that of using orbit theory, which is as follows:

Theorem 13.25. Given a closed subgroup G C Sy, with standard coordinates denoted
u;; € C(G), the following defines an equivalence relation on {1,..., N},

that we call orbit decomposition associated to the action G ~ {1,...,N}. In the classical
case, G C Sy, this is the usual orbit equivalence coming from the action of G.

Proof. We first check the fact that we have indeed an equivalence relation:
(1) The condition ¢ ~ i follows from e(u;;) = d;;, which gives:
(2) The condition i ~ j = j ~ i follows from S(u;;) = uj;, which gives:
Ujj 7& 0 = Ui 7é 0
(3) The condition i ~ j,j ~ k = i ~ k follows from:
A(Ulk) = Z Uy5 ® Ujk
J
Indeed, in this formula, the right-hand side is a sum of projections, so assuming that
we have u;; # 0,u;, # 0 for a certain index j, we have:

Ugj & Uik > 0
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Thus we have A(u;) > 0, which gives uy, # 0, as desired. Finally, in the classical case,
G C Sy, the standard coordinates are the following characteristic functions:

Uij = X (0 € G’O'(j) = z)

Thus u;; # 0 is equivalent to the existence of an element o € G such that o(j) = 1.
But this means precisely that i, 7 must be in the same orbit of G, as claimed. U

Generally speaking, the theory from the classical case extends well to the quantum
group setting, and we have in particular the following result, also from [46]:

Theorem 13.26. Given a closed subgroup G C Sy, with magic matriz denoted u = (u;;),
consider the associated coaction map, on the space X ={1,...,N}:

:C(X) = CX)RC(G) , =Y e @uy
The following three subalgebras of C(X) are then equal J
Fir(u) = {¢ € C(X)’uf ¢}
Fix(®) = {g c C(X)‘cb({’) —(® 1}
F={ccci~i = &) =0}

where ~ s the orbit equivalence relation constructed in Theorem 13.25.

Proof. The fact that we have Fizr(u) = Fix(®P) is standard, with this being valid for
any corepresentation v = (u;;). Regarding now the equality with F, we know from
Theorem 13.25 that the magic unitary u = (u;;) is block-diagonal, with respect to the
orbit decomposition there. But this shows that the algebra Fiz(u) = Fiz(®) decomposes

as well with respect to the orbit decomposition, and so in order to prove the result, we
are left with a study in the transitive case, where the result is clear. See [46]. 4

We have as well the following result, of analytic flavor:

Proposition 13.27. For a closed subgroup G C Sy, the following are equivalent:

(1) G is transitive.
(2) Fiz(u) = CE, where & is the all-one vector.

(3) fyus = . Jor any i,
Proof. This is well-known in the classical case. In general, the proof is as follows:
(1) <= (2) This follows from the identifications in Theorem 13.26.

(2) <= (3) This is clear from the general properties of the Haar integration. O
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As a comment here, we should mention that the whole theory of quantum group orbits
and transitivity, originally developed in [46], has an interesting extension into a theory of
quantum group orbitals and 2-transitivity, recently developed in [105].

Now back to the tori, we have the following key result, from [46]:
Theorem 13.28. Consider a quotient group as follows, with N = Ny + ...+ Ng:

Zn, * ... %Ly, =T
We have then T C S, and any group dual subgroup of SY; appears in this way.

Proof. The fact that we have a subgroup as in the statement is something that we al-
ready know. Conversely, assume that we have a group dual subgroup I' C S.. The
corresponding magic unitary must be of the following form, with U € Uy:

u = UdZ(Ig(gl, s 7gN)U*
Consider now the orbit decomposition for Tc S5, coming from Theorem 13.25:
N=N +...+ N

We conclude that v has a N = N; 4 ... + N block-diagonal pattern, and so that U
has as well this N = N; + ...+ N; block-diagonal pattern.

But this discussion reduces our problem to its k = 1 particular case, with the statement
here being that the cyclic group Zy is the only transitive group dual T c S¥. The proof
of this latter fact being elementary, we obtain the result. See [46]. g

Here is a related result, from [11], which is useful for our purposes:

Theorem 13.29. For the quantum permutation group Sy, we have:
(1) Given Q € Uy, the quotient Fx — Ag comes from the following relations:

gi=1 if ZlQiﬁéO
gigi=1 if > ,QuQu #0
Gi9i9e =1 if >0, QuQQu # 0

(2) Given a decomposition N = Ny+ ...+ Ny, for the matriz Q = diag(Fy,, ..., Fn,),
where Fy = \/Lﬁ(fij)ij with & = e*™/N s the Fourier matriz, we obtain:

AQ:ZNl*“-*ZNk

(3) Given an arbitrary matriz QQ € Uy, there exists a decomposition N = Ny+. ..+ Ny,
such that Ag appears as quotient of Zn, * ... * Ly, .

Proof. This is something more or less equivalent to Theorem 13.28, and the proof can be
deduced either from Theorem 13.28, or from some direct computations. See [11]. U
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Summarizing, in the quantum permutation group case, the standard tori parametrized
by Fourier matrices play a special role. Now let us recall from section 7 that in what
regards the bistochastic groups, which are our second class of examples where the diagonal
liberation procedure does not apply, the Fourier matrices appear there as well.

All this discussion suggests formulating the following definition:

Definition 13.30. Consider a closed subgroup G C Uj:.

(1) Its standard tori T, with F = Fy, ® ... ® Fy,, and N = Ny + ... + Ny being
regarded as a partition, are called Fourier tori.

(2) In the case where we have Gy =< G%,(Tr)r >, we say that Gy appears as a
Fourier liberation of its classical version GY;.

We believe that the easy quantum groups should appear as Fourier liberations. With
respect to Theorem 13.21 above, the situation in the free case is as follows:

(1) OF, Uy are diagonal liberations, so they are Fourier liberations as well.

(2) By, Cy; are Fourier liberations too, by using the results in section 7.

(3) S is a Fourier liberation too, being generated by its tori [52], [56].

(4) Hy;, Ky remain to be investigated, by using the general theory in [117].

Finally, as a word of warning here, observe that an arbitrary classical group Gy C Uy
is not necessarily generated by its Fourier tori, and nor is an arbitrary discrete group

dual, with spinned embedding. Thus, the Fourier tori, and the related notion of Fourier
liberation, remain something quite technical, in connection with the easy case.
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14. AMENABILITY, GROWTH

We have seen so far that the theory of the compact quantum Lie groups, G C Uy, can
be developed with inspiration from the theory of compact Lie groups, G C Uy. In this
section we discuss an alternative approach to all this, by looking at the finitely generated
discrete quantum groups I' = G which are dual to our objects. Thus, the ideai\ will be

that of developing the theory of the finitely generated discrete quantum groups, Uy, — T,
with inspiration from the theory of finitely generated discrete groups, Fiy — I'.

As a first observation, the theory is already there, as developed in the previous sec-
tions, which equally concern the compact quantum group G and its discrete dual I' = G.
However, from the discrete group viewpoint, what has been worked out so far looks more
like specialized mathematics, and there are still a lot of basic things, to be developed.
In short, what we will be doing here will be a “complement” to the material from the
previous sections, obtained by using a different, and somehow opposite, philosophy.

Let us begin with a reminder regarding the cocommutative Woronowicz algebras, which
will be our “main objects” in this section, coming before the commutative ones, that we
are so used to have in the #1 spot. As explained in section 3 above, we have:

Theorem 14.1. For a Woronowicz algebra A, the following are equivalent:

(1) A is cocommutative, SA = A.
(2) The irreducible corepresentations of A are all 1-dimensional.
(3) A= C*(I), for some group I' =< gq,...,gn >, up to equivalence.

Proof. This follows from the Peter-Weyl theory, as follows:

(1) = (2) The assumption XA = A tells us that the inclusion Acepira C A is an
isomorphism, and by using Peter-Weyl theory we conclude that any irreducible corepre-
sentation of A must be equal to its character, and so must be 1-dimensional.

(2) = (3) This follows once again from Peter-Weyl, because if we denote by I' the
group formed by the 1-dimensional corepresentations, then we have A = C[I'], and so
A = C*(T") up to the standard equivalence relation for Woronowicz algebras.

(3) = (1) This is something trivial, that we already know from section 2. U

The above result is not the end of the story, because one can still ask what are the
cocommutative Woronowicz algebras, without reference to the equivalence relation.

More generally, we are led in this way into the question, that we have usually avoided
so far, as being not part of the “compact” philosophy, of computing the equivalence class
of a given Woronowicz algebra A. We first have here the following construction:
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Theorem 14.2. Given a Woronowicz algebra (A, u), the enveloping C*-algebra Ay of
the algebra of “smooth functions”™ A =< u;; > has morphisms

A Apy = Apu @ Apun

O Afull —C
S Afull — A(}Zzl)l

which make it a Woronowicz algebra, which is equivalent to A. In the cocommutative
case, where A ~ C*('), we obtain in this way the full group algebra C*(T).

Proof. There are several assertions here, the idea being as follows:

(1) Consider indeed the algebra Ay,;, obtained by completing the *-algebra A C A
with respect to its maximal C*-norm. We have then a quotient map, as follows:

7T3Afull—>z4

By universality of Ay,;, the comultiplication, counit and antipode of A lift into mor-
phisms A, e, S as in the statement, and the Woronowicz algebra axioms are satisfied.

(2) The fact that we have an equivalence A,y ~ A is clear from definitions, because
at the level of x-algebras of coefficients, the above quotient map 7 is an isomorphism.

(3) Finally, in the cocommutative case, where A ~ C*(I'), the coefficient algebra is
A = C[I'], and the corresponding enveloping C*-algebra is A, = C*(T'). O

Summarizing, in connection with our equivalence class question, we already have an
advance, with the construction of a biggest object in each equivalence class:

Afull — A

We could of course stop our study here, by formulating the following statement, which
apparently terminates any further discussion about equivalence classes:

Proposition 14.3. Let us call a Woronowicz algebra “full” when the following canonical
quotient map is an isomorphism:
T Afull — A

Then any Woronowicz algebra is equivalent to a full Woronowicz algebra, and when re-
stricting the attention to the full algebras, we have 1 object per equivalence class.

Proof. The first assertion is clear from Theorem 14.2, which tells us that we have A ~
Ajuy, and the second assertion holds as well, for exactly the same reason. Il

As a first observation, restricting the attention to the full Woronowicz algebras is more
or less what we have being doing so far in this book, with all the algebras that we
introduced and studied being full by definition. However, there are several good reasons



QUANTUM GROUPS 243

for not leaving things like this, and for further getting into the subject, one problem for
instance coming from the fact that for the non-amenable groups I', we have:

cr(l) ¢ L(T)

To be more precise, on the right we have the group von Neumann algebra L(I"), ap-
pearing by definition as the weak closure of C[I'], in the left regular representation. It
is known that the above non—inclugion happens indeed in the non-amenable case, and in
terms of the quantum group G = I', we are led to the following bizarre conclusion:

C(G) & L=(G)

In other words, we have noncommutative continuous functions which are not measur-
able! This is something that we must clarify. Welcome to functional analysis.

Before anything, we must warn the reader that a lot of modesty and faith is needed, in
order to deal with such questions. We are basically doing quantum mechanics here, where
the moving objects don’t have clear positions, or clear speeds, and where the precise laws
of motion are not known, and where any piece of extra data costs a few billion dollars.
Thus, the fact that we have C'(G) ¢ L*(G) is just one problem, among many other.

With this discussion made, let us go back now to Theorem 14.2. As a next step in our
study, we can attempt to construct a smallest object A,.q in each equivalence class. The
situation here is more tricky, and we have the following statement:

Theorem 14.4. Given a Woronowicz algebra (A,w), its quotient A — A,eq by the null
ideal of the Haar integration tr : A — C has morphisms as follows,

A Ared — Ared X Ared

g: Ared —C
S Apeqg — AZE

red

where x s the spatial tensor product of C*-algebras, and where A,ecq =< u;; >. In the
case where these morphisms lift into morphisms

A Ared — Ared ® Ared

e:Ared—HC

S Apeg — APE

red

we have a Woronowicz algebra, which is equivalent to A. Also, in the cocommutative case,
where A ~ C*("), we obtain in this way the reduced group algebra C*, ,(T').

red
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Proof. We have several assertions here, the idea being as follows:

(1) Consider indeed the algebra A,.q, obtained by dividing A by the null ideal of the
Haar integration tr : A — C. We have then a quotient map, as follows:

T A— Ared

Also, by GNS construction, we have an embedding as follows:
i Apea C B(L*(A))

By using these morphisms 7, 7, we can see that the comultiplication, counit and antipode
of the x-algebra A lift into morphisms A, e,S as in the statement, or, equivalently, that
the comultiplication, counit and antipode of the C*-algebra A factorize into morphisms
A e, S as in the statement. Thus, we have our morphisms, as claimed.

(2) In the case where the morphisms A, e, S that we just constructed lift, as indicated
in the statement, the Woronowicz algebra axioms are clearly satisfied, and so the algebra
A, eq, together with the matrix v = (u;;), is a Woronowicz algebra, in our sense.

(3) The fact that we have an equivalence A,.q4 ~ A is clear from definitions, because at
the level of x-algebras of coefficients, the above quotient map 7 is an isomorphism.

(4) Finally, in the cocommutative case, where A ~ C*(I"), the above embedding i is
the left regular representation, and so we have A,.; = C,,(I'), as claimed. g

With the above result in hand, which is complementary to Theorem 14.2, we can now
answer some of our philosophical questions, the idea being as follows:

(1) In the group dual case we have C* ,(T') C L(T'), as subalgebras of B(I*(T")), and

red
so in terms of the compact quantum group G = I, the conclusion is that we have

C(G) C L*™(G), as we should, with the convention C(G) = C,,(T').

red

(2) In view of this, it is tempting to modify our Woronowicz algebra axioms, with
A, e, S being redefined as in the first part of Theorem 14.4, as to include the
reduced group algebras C* ,(I'), and more generally, all the algebras A, cq.

red

(3) With such a modification done, we could call then a Woronowicz algebra “reduced”
when the quotient map A — A,.q is an isomorphism. This would lead to a nice
situation like in Proposition 14.3, with 1 object per equivalence class.

(4) However, we will not do this, simply because the bulk of the present book, which
is behind us, is full of interesting examples of Woronowicz algebras constructed
with generators and relations, which are full by definition.

In short, nevermind for the philosophy, we will keep our axioms which are nice, simple
and powerful, keeping however in mind the fact that the full picture is as follows:
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Theorem 14.5. Given a Woronowicz algebra A, we have morphisms

"
red

Afull — A — Ared C

which in terms of the associated compact quantum group G read
Cfu”(G) — A— Cred(G) C LOO(G)
and in terms of the associated discrete quantum group I' read

C*(T) = A — O (T) ¢ L(T)

red

with Woronowicz algebras at left, and with von Neumann algebras at right.

Proof. This is something rather philosophical, coming by putting together the results that
we have, namely Theorem 14.2 and Theorem 14.4. Il

With this discussion made, and with the reiterated warning that a lot of modesty and
basic common sense is needed, in order to deal with such questions, let us get now into
the real thing, namely the understanding of the following projection map:

T Apr — Apea

As already mentioned before, on numerous occasions, when the algebra A is cocom-
mutative, A ~ C*(I'), and with the underlying group I' being assumed amenable, this
projection map is an isomorphism. And the contrary happens when I' is not amenable.

This leads us into the amenability question for the general Woronowicz algebras A.
We have seen the basic theory here in section 3 above, in the form of a list of equivalent
conditions, which altogether are called amenability. The theory presented there, worked
out now in more detail, and with a few items added, is as follows:

Theorem 14.6. Let A,y be the enveloping C*-algebra of A, and let A,.q be the quotient
of A by the null ideal of the Haar integration. The following are then equivalent:

(1) The Haar functional of Asyy is faithful.

(2) The projection map Afyy — Areq 15 an isomorphism.

(3) The counit map € : A — C factorizes through A,q.

(4) We have N € o(Re(xy)), the spectrum being taken inside Ayeq.

(5) |lazy — e(a)zy|| — 0 for any a € A, for certain norm 1 vectors x;, € L*(A).

If this is the case, we say that the underlying discrete quantum group I' is amenable.

Proof. Before starting, we should mention that amenability and the present result are a
bit like the Spectral Theorem, in the sense that knowing that the result formally holds
does not help much, and in practice, one needs to remember the proof as well. For this
reason, we will work out explicitely all the possible implications between (1-5), whenever
possible, adding to the global formal proof, which will be linear, as follows:

)= 2 =06 = ¢ =06 =0
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In order to prove these implications, and the other ones too, the general idea is that
this is is well-known in the group dual case, A = C*(I"), with I being a usual discrete
group, and in general, the result follows by adapting the group dual case proof.

(1) <= (2) This follows from the fact that the GNS construction for the algebra A,
with respect to the Haar functional produces the algebra A, ..q4.

(2) == (3) This is trivial, because we have quotient maps Ay — A — A,eq, and so
our assumption Ay, = A,.q implies that we have A = A,4.

(3) = (2) Assume indeed that we have a counit map ¢ : A,.4 — C. In order to prove
Apui = Areq, we can use the right regular corepresentation. Indeed, as explained in [114],
we can define such a corepresentation by the following formula:

We®z)=A)(l®x)
This corepresentation is unitary, so we can define a morphism as follows:

A Areg = Area @ A full

a— Wlee )W*

Now by composing with € ® id, we obtain a morphism as follows:

(e @id)A": Aveq — Apun

Ui — Wij

Thus, we have our inverse for the canonical projection Ay, — A;cq, as desired.

(3) = (4) This implication is clear, because we have:

“(Re()) = %(Zdumzs(um)
= VN

= N
Thus the element N — Re(x,) is not invertible in A, .4, as claimed.

(4) = (3) In terms of the corepresentation v = u + u, whose dimension is 2N and
whose character is 2Re(x,,), our assumption N € o(Re(x,)) reads:

dimv € o(xw)

By functional calculus the same must hold for w = v + 1, and then once again by
functional calculus, the same must hold for any tensor power of w:

WE = w®k
Now choose for each k£ € N a state ¢, € A ; having the following property:

e (wg) = dimwy,
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By Peter-Weyl we must have e;(r) = dimr for any r < wy, and since any irreducible
corepresentation appears in this way, the sequence ¢, converges to a counit map:
€:Apg — C
(4) = (5) Consider the following elements of A,.4, which are positive:
a; =1 — Re(uy;)

Our assumption N € o(Re(x,)) tells us that a = > a; is not invertible, and so there
exists a sequence x; of norm one vectors in L?(A) such that:

< azrg,rp >— 0
Since the summands < a;xy, ), > are all positive, we must have, for any i:
< a;xg, r >— 0
We can go back to the variables u;; by using the following general formula:
vz — z||* = |Jvz]| [+ 2 < (1 — Re(v))z,x > —1

Indeed, with v = u;; and x = x; the middle term on the right goes to 0, and so the
whole term on the right becomes asymptotically negative, and so we must have:

Hu,-,-xk — l’kH —0
Now let M, (A,cq) act on C* ® L*(A). Since u is unitary we have:

> gzl = [ule; @ )| = 1

From ||uszk|| — 1 we obtain ||u;;xg|| — 0 for i # j. Thus we have, for any 1, j:
|wijxy — 0ijzk|| — 0
Now by remembering that we have e(u;;) = 0;;, this formula reads:
|lugjr — e(uij)ax|[ — 0
By linearity, multiplicativity and continuity, we must have, for any a € A, as desired:
|laxy —e(a)zk]| — 0

(5) = (1) This is something well-known, which follows via some standard functional
analysis arguments, worked out in Blanchard’s paper [51].

(1) = (5) Once again this is something well-known, which follows via some standard
functional analysis arguments, worked out in Blanchard’s paper [51]. O

This was for the basic amenability theory. We will be back to this on several occasions,
with more specialized amenability conditions, which will add to the above list.

As a first application of the above result, we can now advance on a problem left before,
in section 3 above, and then in the beginning of the present section as well:
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Theorem 14.7. The cocommutative Woronowicz algebras are the intermediate quotients
of the following type, with I' =< ¢1,...,gn > being a discrete group,

CH () = Co(T') = Creg(T)

red

and with m being a unitary representation of I', subject to weak containment conditions of
type m @ m C ™ and 1 C m, which guarantee the existence of A, e.

Proof. We use Theorem 14.1 above, combined with Theorem 14.5 and then with Theorem
14.6, the idea being to proceed in several steps, as follows:

(1) Theorem 14.1 and standard functional analysis arguments show that the cocommu-
tative Woronowicz algebras should appear as intermediate quotients, as follows:
c* )= A—Cr ()

red

(2) The existence of A : A - A ® A requires our intermediate quotient to appear as
follows, with 7 being a unitary representation of I', satisfying the condition 7 ® m C m,
taken in a weak containment sense, and with the tensor product ® being taken here to
be compatible with our usual maximal tensor product ® for the C*-algebras:

C* () = Co(T') = Creg(T)

red

(3) With this condition imposed, the existence of the antipode S : A — AP is then

automatic, coming from the group antirepresentation g — ¢ .

(4) The existence of the counit € : A — C, however, is something non-trivial, related
to amenability, and leading to a condition of type 1 C m, as in the statement. O

The above result is of course not the end of the story, because as formulated, with
the above highly abstract conditions on 7, it comes along with 0 non-trivial examples.
We refer to Woronowicz’s paper [148] for more on these topics, and to [101] for a more
advanced discussion, dealing with the non-cocommutative case as well.

Let us get back now to real life, and concrete mathematics, and focus on the Kesten
amenability criterion, from Theorem 14.6 (4) above, which brings connections with in-
teresting mathematics and physics, and which in practice will be our main amenability
criterion. In order to discuss this, we will need the following standard fact:

Proposition 14.8. Given a Woronowicz algebra (A, u), with u € My(A), the moments
of the main character x =), u; are given by:

/ x" = dim (Fiz(u®"))
e

In the case u ~ u the law of x is a usual probability measure, supported on [—N, N].
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Proof. There are two assertions here, the proof being as follows:

(1) The first assertion follows from the Peter-Weyl theory, which tells us that we have
the following formula, valid for any corepresentation v € M, (A):

/G Yo = dim(Fiz(v))

Indeed, with v = u®* the corresponding character is:

Xv:Xk

Thus, we obtain the result, as a consequence of the above formula.

(2) As for the second assertion, if we assume u ~ @ then we have xy = x*, and so
the general theory, explained above, tells us that law(x) is in this case a real probability
measure, supported by the spectrum of y. But, since u € My(A) is unitary, we have:

w =1 = ||uyl|| <1,Vi,j
= Xl <N

Thus the spectrum of the character satisfies:

o(x) C [-N,N]
Thus, we are led to the conclusion in the statement. O
In relation now with the notion of amenability, we have:

Theorem 14.9. A Woronowicz algebra (A, u), with uw € My(A), is amenable when

N € supp (l&w(Re(X)))

and the support on the right depends only on law(y).
Proof. There are two assertions here, the proof being as follows:

(1) According to the Kesten amenability criterion, from Theorem 14.6 (4) above, the
algebra A is amenable when the following condition is satisfied:

N € o(Re(x))

Now since Re(x) is self-adjoint, we know from spectral theory that the support of its
spectral measure law(Re(x)) is precisely its spectrum o(Re(y)), as desired:

supp(law(Re(x))) = o(Re(x))
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(2) Regarding the second assertion, once again the variable Re(y) being self-adjoint,
its law depends only on the moments fG Re(x)?, with p € N. But, we have:

[reor = [(2522)

1 k
DM R
|k|=p

Thus law(Re(x)) depends only on law(y), and this gives the result. d

Let us work out now in detail the group dual case. Here we obtain a very interesting
measure, called Kesten measure of the group [99], as follows:

Proposition 14.10. In the case A = C*(I') and u = diag(g1,...,9n), and with the
following normalization made,

leu=1u
the moments of the main character are given by the formula

/\Xp:#{ily--'aipgil'ugip:1}
r

counting the loops based at 1, having lenght p, on the corresponding Cayley graph.

Proof. Consider indeed a discrete group I' =< ¢1,...,9x5 >. The main character of
A = C*(I'), with fundamental corepresentation u = diag(gi, ..., gn), is then:

X=01+...+9gn

Given a colored integer k = ey ... ¢e,, the corresponding moment is given by:

/ka = /f(g1—|—...+gN)k

_ #{il,...,z‘pgf;...gj;:1}

In the self-adjoint case, u ~ u, we are only interested in the moments with respect to
usual integers, p € N, and the above formula becomes:

/\Xp:#{ilw"aipgil-'-gip:1}
T

Assume now that we have in addition 1 € u, so that the condition 1 € u = @ in the
statement is satisfied. At the level of the generating set S = {g1,..., gy} this means:

leS=5""

Thus the corresponding Cayley graph is well-defined, with the elements of I" as vertices,
and with the edges g — h appearing when the following condition is satisfied:

gh™tes
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A loop on this graph based at 1, having lenght p, is then a sequence as follows:
(1) = (9) = (90295) — - = (Gir -~ Gipr) — (911 --- 93, = 1)
Thus the moments of xy count indeed such loops, as claimed. U

In order to generalize the above result to arbitrary Woronowicz algebras, we can use
the discrete quantum group philosophy. The fundamental result here is as follows:

Theorem 14.11. Let (A, u) be a Woronowicz algebra, and assume, by enlarging if nec-
essary u, that we have 1 € w = u. The following formula

d(v,w) = min{k € N‘l C 6®w®u®k}
defines then a distance on Irr(A), which coincides with the geodesic distance on the
associated Cayley graph. In the group dual case we obtain the usual distance.

Proof. The fact that the lengths are finite follows from Woronowicz’s analogue of Peter-
Weyl theory, and the other verifications are as follows:

(1) The symmetry axiom is clear.
(2) The triangle inequality is elementary to establish as well.
(3) Finally, the last assertion is elementary as well.

In the group dual case now, where our Woronowicz algebra is of the form A = C*(I"),
with I' =< S > being a finitely generated discrete group, our normalization condition
1 € u = © means that the generating set must satisfy:

le S=8""

But this is precisely the normalization condition for the discrete groups, and the fact
that we obtain the same metric space is clear. Il

Summarizing, we have a good understanding of what a discrete quantum group is. We
can now formulate a generalization of Proposition 14.10, as follows:

Theorem 14.12. Let (A, u) be a Woronowicz algebra, with the normalization assumption
1 € u =u made. The moments of the main character,

/ X' = dim (Fiz(u®?))
G
count then the loops based at 1, having lenght p, on the corresponding Cayley graph.

Proof. Here the formula of the moments, with p € N, is the one coming from Proposition
14.8 above, and the Cayley graph interpretation comes from Theorem 14.11. O

Here is a related useful result, in relation with the notion of amenability:
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Theorem 14.13. A Woronowicz algebra (A, u) is amenable precisely when
X[l =N
where X is the principal graph of the associated planar algebra
Py, = End(u®%)
obtained by deleting the reflections in the Bratteli diagram of P = (Py).

Proof. This is something which might look quite complicated, but the idea is very simple,
namely that, via some standard identifications and rescalings, we have:

XTI = Myl acenira
= HXu’ Acentral
= [Ixulla,.
Thus, the result follows from the Kesten amenability criterion. O

There are many concrete illustrations for the above results, and we will be back to this.
As an application of this, we can introduce the notion of growth, as follows:

Definition 14.14. Given a closed subgroup G C Uy, with 1 € u = @, consider the series
whose coefficients are the ball volumes on the corresponding Cayley graph,

fz) =) bt

k

by = Z dim(v)?

and call it growth series of the discrete quantum group G. In the group dual case, G = f,
we obtain in this way the usual growth series of I

There are many things that can be said about the growth, and we will be back to this
in a moment, with explicit examples, and some general theory as well. As a first result,
in relation with the notion of amenability, we have:

Theorem 14.15. Polynomial growth implies amenability.

Proof. We recall from Theorem 14.11 above that the Cayley graph of G has by definition
the elements of Irr(G) as vertices, and the distance is as follows:

d(v,w) = min{k: € N‘l C 6®w®u®k}
By taking w = 1 and by using Frobenius reciprocity, the lenghts are given by:
I(v) = min{k e Njv C u®k}
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By Peter-Weyl we have a decomposition as follows, where By is the ball of radius k,
and my(v) € N are certain multiplicities:

u®k = Z my(v) - v
vEBy

By using now Cauchy-Schwarz, we obtain the following inequality:

mar(1)by = Z my(v)? Z dim(v)?

vEBy vEBy
2
> (Z my(v) dim(v))
vEDBy
— N2k

But shows that if b, has polynomial growth, then the following happens:

lim sup may(1)/** > N

k—o0

Thus, the Kesten type criterion applies, and gives the result. O

Let us discuss now as well, as a continuation of all this, the notions of connectedness
for GG, and no torsion for I'. These two notions are in fact related, as follows:

Theorem 14.16. For a closed subgroup G C Uy, the following conditions are equivalent,
and if they are satisfied, we call G connected:

(1) There is no finite quantum group quotient G — F # {1}.
(2) The algebra < v;; > is infinite dimensional, for any corepresentation v # 1.

In the classical case, G C Uy, we recover in this way the usual notion of connectedness.
For the group duals, G =T, this is the same as asking for I' to have no torsion.

Proof. The above equivalence comes from the fact that a quotient G — F must correspond
to an embedding C'(F) C C(G), which must be of the form:

C (F ) =< V4 >
Regarding now the last two assertions, the situation here is as follows:

(1) In the classical case, G C Uy, it is well-known that F' = G/G; is a finite group,
where GG is the connected component of the identity 1 € GG, and this gives the result.

(2) As for the group dual case, G = f, here the irreducible corepresentations are 1-
dimensional, corresponding to the group elements g € I', and this gives the result. U

Along the same lines, and at a more specialized level, we can talk as well about the
connected component of the identity, as follows:
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Theorem 14.17. Associated to any compact quantum group G is the connected compo-
nent of the identity
GoC @G

which 1s a connected compact quantum group, in the above sense.

Proof. This is something well-known, and for more on these topics, and on the Lie theory
in general, in the present quantum group setting, we refer to [57], [66], [141]. O

Finally, once again in connection with all this, we can talk about normal subgroups,
and about simple compact quantum groups, as follows:

Definition 14.18. Given a quantum subgroup H C G, coming from a quotient map
7m:C(G) — C(H), the following are equivalent:

(1) A={a e C(G)|(id® m)A(a) = a ® 1} satisfies A(A) C A® A.

(2) B={a € C(G)|(r®id)A(a) = 1® a} satisfies A(B) C B® B.

(3) We have A = B, as subalgebras of C(QG).

If these conditions are satisfied, we say that H C G is a normal subgroup.

Proof. This is something well-known, the idea being as follows:

(1) The conditions in the statement are indeed equivalent, and in the classical case we
obtain the usual normality notion for the subgroups.

(2) In the group dual case the normality of any subgroup, which must be a group dual
subgroup, is then automatic, with this being something trivial.

(3) For more on these topics, and on the basic compact group theory in general, ex-
tended to the present quantum group setting, we refer to [57], [66], [141]. O

Let us discuss now some further questions, in relation with the theory of toral subgroups,
developed in section 13 above. We have the following result, from [34]:

Theorem 14.19. The following results hold, both over the category of compact Lie groups,
and over the category of duals of finitely generated discrete groups:

(1) Characters: if G is connected, for any nonzero P € C(G)central there exists QQ € Uy
such that P becomes nonzero, when mapped into C(1g).

(2) Amenability: a closed subgroup G C Uy, is coamenable if and only if each of the
tori Ty is coamenable, in the usual discrete group sense.

(3) Growth: assuming G C Uy, the discrete quantum group G has polynomial growth
if and only if each the discrete groups Ty has polynomial growth.

Proof. In the classical case, where G C Uy, the proof goes as follows:

(1) Characters. We can take here Q € Uy to be such that QT'Q* C TV, where T' C Uy
is a maximal torus for G, and this gives the result.
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(2) Amenability. This conjecture holds trivially in the classical case, G C Uy, due to
the fact that these latter quantum groups are all coamenable.

(3) Growth. This is something nontrivial, well-known from the theory of compact Lie
groups, and we refer here for instance to [66].

Regarding now the group duals, here everything is trivial. Indeed, when the group duals
are diagonally embedded we can take () = 1, and when the group duals are embedded by
using a spinning matrix () € Uy, we can use precisely this matrix Q). O

As in the previous section with the general results regarding the tori there, it is con-
jectures that the properties in Theorem 14.19 should hold in general. Following [34], we
have the following result, regarding the free quantum groups:

Theorem 14.20. The character, amenability and growth conjectures hold for the free
quantum groups G = O%, Uy, Sk, HY:.

Proof. We have 3 x 4 = 12 assertions to be proved, and the idea in each case will be
that of using certain special group dual subgroups. We will mostly use the group dual
subgroups coming at ) = 1, which are well-known to be as follows:

G=0%,UN, Sh iy = Ty =7 Fy, {1}, 23N

However, for some of our 12 questions, using these subgroups will not be enough, and
we will use as well some carefully chosen subgroups of type I'g, with @ # 1.

As a last ingredient, we will need some specialized structure results for GG, in the cases
where (G is coamenable. Once again, the theory here is well-known, and the situations
where G = O, U, S¥, Hy is coamenable, along with the values of G, are as follows:

Of = SU,*
S =85, 8F = 85,8 = 505"
Hif =0;"

To be more precise, the equalities S, = Sy at N < 3 are known since Wang’s paper
[140], and the twisting results are all well-known, and we refer here to [11], [50].

With these ingredients in hand, we can now go ahead with the proof. It is technically
convenient to split the discussion over the 3 conjectures, as follows:

(1) Characters. For G = O, U}, it is known that the algebra C(G)entrar is polynomial,
respectively *-polynomial, on the variable x = ). u;. Thus, it is enough to show that
the variable p = ). g; generates a polynomial, respectively *-polynomial algebra, inside
the group algebra of the discrete groups Z3", Fy. But for Z3" this is clear, and by using
a multiplication by a unitary free from Z3", the result holds as well for Fy.

Regarding now G' = S}, we have three cases to be discussed, as follows:
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— At N = 2,3 this quantum group collapses to the usual permutation group Sy, and
the character conjecture holds indeed.

— At N = 4 we have S] = SO;", the fusion rules are well-known to be the Clebsch-
Gordan ones, and the algebra C(G)cenirar is therefore polynomial on x = >, u;. Now
observe that the spinned torus, with Q) = diag(F», F3), is the following discrete group:

T =77y = Ds.

Since Tr(u) = Tr(Q*uQ), the image of x = >, u; in the quotient C*(I'g) is the
variable p = 2 4+ g + h, where g, h are the generators of the two copies of Z,. Now since
this latter variable generates a polynomial algebra, we obtain the result.

— At N > 5 the fusion rules are once again known to be the Clebsch-Gordan ones,
the algebra C(G)centrar 18, as before, polynomial on x = . u;;, and the result follows by
functoriality from the result at N = 4, by using the embedding S C S5.

Regarding now G = Hy;, here it is known, from the computations in [40], that the
algebra C(G)centrar 18 polynomial on the following two variables:

X:ZUii 3 X/:ZU%

We have two cases to be discussed, as follows:

~ At N = 2 we have H = O;', and, as explained in [11], with Q = F, we have
I'g = Dw. Let us compute now the images p, p’ of the variables x, x’ in the group algebra
of Dy. As before, from Tr(u) = Tr(Q*u@)) we obtain p = g + h, where g, h are the
generators of the two copies of Zy. Regarding now p’, let us first recall that the quotient
map C(H;) — C*(Dy) is constructed as follows:

1 1 1 U1 Uy2 1 1 N g 0
2 1 -1 Ug1 U2 1 -1 0 h

Equivalently, this quotient map is constructed as follows:
U1 U2 N 1 1 1 g 0 1 1
U1 U2 2\1 -1 0 h 1 -1
_ Lfg+h g—nh
- 2\g—h g+h

We can now compute the image of our character, as follows:

1 1
p’:§(g+h)2:§(2+2gh):1+gh

By using now the elementary fact that the variables p = g+ h and p’ = 1+ gh generate
a polynomial algebra inside C*(D,,), this gives the result.
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— Finally, at N > 3 the result follows by functoriality, via the standard diagonal inclu-
sion Hy C Hj;, from the result at N = 2, that we established above.

(2) Amenability. Here the cases where G is not coamenable are those of OF; with N > 3,
UJJ\; with N > 2, S;{, with N > 5, and H]J\“, with N > 3. For G = O]J\r,, Hj\} with N > 3 the
result is clear, because I'; = Z3" is not amenable. Clear as well is the result for Uy, with
N > 2, because I'; = Fly is not amenable. Finally, for S with N > 5 the result holds as

well, because of the presence of Bichon’s group dual subgroup Z;\Zg,.

(3) Growth. Here the growth is polynomial precisely in the situations where G is infinite
and coamenable, the precise cases being Of = SU,*', S = SO;!, H = O;*, and the
result follows from the fact that the growth invariants are stable by twisting. U

We will prove now that the 3 conjectures hold for any half-classical quantum group. In
order to do so, we can use the approach from [49], which is as follows:

Theorem 14.21. Given a conjugation-stable closed subgroup H C Uy, consider the al-
gebra C([H]) C My(C(H)) generated by the following variables:

. 0 /Uij
U5 = (@ij 0 )

Then [H] is a compact quantum group, we have [H| C O%, and any non-classical subgroup
G C Oy appears in this way, with G = O} itself appearing from H = Uy.

Proof. The 2 x 2 matrices in the statement are self-adjoint, half-commute, and the N x N
matrix v = (u;;) that they form is orthogonal, so we have an embedding [H] C Ojy.
The quantum group property of [H] is also elementary to check, by using an alternative,
equivalent construction, with a quantum group embedding as follows:

C([H]) C C(H) X Zsy
The surjectivity part is non-trivial, and we refer here to [49]. O

Regarding now the maximal tori, the situation is very simple, as follows:

—

Proposition 14.22. The group dual subgroups [U], C [H] appear via
Mo = [Iel
from the group dual subgroups fQ C H associated to H C Uy.

Proof. Let us first discuss the case () = 1. Consider the diagonal subgroup T,CH , with
the associated quotient map C(H) — C(I'y) denoted:
Vij — 5@‘ hl
At the level of the algebras of 2 x 2 matrices, this map induces a quotient map:

My(C(H)) — M2<C(f1))
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Our claim is that we have a factorization, as follows:
C([H]) C© My(C(H))
A }

C([ﬁ]) C M2(C(f1))

Indeed, it is enough to show that the standard generators of C([H]) and of C([T']) map
to the same elements of My(C(I'7)). But these generators map indeed as follows:

0 (%]
Yy ;0

Thus we have the above factorization, and since the map on the left is obtained by
imposing the relations u;; = 0 with ¢ # j, we obtain, as desired:

[T = [I']
In the general case now, ) € Uy, the result follows by applying the above ) = 1 result
to the quantum group [H|, with fundamental corepresentation w = Qu@Q*. O

Now back to our conjectures, we have the following result:

Theorem 14.23. The 3 conjectures hold for any half-classical quantum group of the form
[H] C Oy, with H C Uy being connected.

Proof. We know that the conjectures hold for H C Uy. The idea will be that of “trans-
porting” these results, via H — [H|:

(1) Characters. We can pick here a maximal torus 1" = I'g for the compact group
H C Uy, and by using the formula [['|g = [I'g] = [T] from Proposition 14.22 above, we
obtain the result, via the identification in Theorem 14.21.

(2) Amenability. There is nothing to be proved here, because O} is coamenable, and
so are all its quantum subgroups. Note however, in relation with the comments made in
section 3 above, that in the connected case, the Kesten measures of G, [T'] are intimately
related. For some explicit formulae here, for G = O3, itself, see [38].

(3) Growth. Here the situation is similar to the one for the amenability conjecture,
because [H| has polynomial growth. O
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15. HOMOGENEOUS SPACES

We have seen that the closed subgroups G C Uy can be investigated with a variety
of techniques, for the most belonging to algebraic geometry and probability theory. Our
purpose here is to extend some of these results to certain classes of “quantum homogeneous
spaces”. This is somehow the first step into extending what we have into a theory of
noncommutative geometry, of algebraic and probabilistic nature.

This can be done at several levels of generality, and there has been quite some work
here, starting with [32], [37], then going further with [6], and even further with [8]. In
what follows we discuss the formalism in [6], which is quite broad, while remaining not
very abstract. We will study the spaces of the following type:

X = (GM X GN)/(GL X GM—L X GN—L)

These spaces cover indeed the quantum groups and the spheres. And also, they are quite
concrete and useful objects, consisting of certain classes of “partial isometries”. Our main
result will be a verification of the Bercovici-Pata liberation criterion, for certain variables
associated xy € C(X), in a suitable L, M, N — oo limit.

We begin with a study in the classical case. Our starting point will be:

Definition 15.1. Associated to any integers L < M, N are the spaces
Oy = {T E—=F isometry‘E CRY FcRM dimg F = L}

Ul = {T E— F isometry‘E cCN,FcCM dimc E = L}
where the notion of isometry is with respect to the usual real/complex scalar products.

As a first observation, at L = M = N we obtain the groups On, Un:

Another interesting specialization is L = M = 1. Here the elements of O} are the
isometries T : E — R, with £ C R" one-dimensional. But such an isometry is uniquely
determined by T7!(1) € RY, which must belong to S§ . Thus, we have O}, = Sy '.
Similarly, in the complex case we have Uly = S¥ !, and so our results here are:

1 _ ¢oN-1 1 _ gN-1
OIN_S]R ) UIN_S(C

Yet another interesting specialization is L = N = 1. Here the elements of O, are the
isometries T : R — F', with F' C RM one-dimensional. But such an isometry is uniquely
determined by 7'(1) € RM, whichmust belong to S§’~*. Thus, we have O}, = S3''.
Similarly, in the complex case we have U}, = Sé/f ~! and so our results here are:

1 _ oM-1 1 _ qgM-1
OMl_SR ) UMI_S(C
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In general, the most convenient is to view the elements of O%,y, UL\ as rectangular
matrices, and to use matrix calculus for their study. We have indeed:

Proposition 15.2. We have identifications of compact spaces

Ok =~ {U € MMxN(R)‘UUt = projection of trace L}

Ul v ~ {U € MMxN(C)‘UU* = projection of trace L}
with each partial isometry being identified with the corresponding rectangular matriz.

Proof. We can indeed identify the partial isometries T : E — F' with their corresponding
extensions U : RN — RM U : CV — CM, obtained by setting Ug:r = 0. Then, we can
identify these latter linear maps U with the corresponding rectangular matrices. U

As an illustration, at L = M = N we recover in this way the usual matrix description
of On,Uy. Also, at L = M = 1 we obtain the usual description of S]f{y_l, Sév_l, as row
spaces over the corresponding groups Oy, Uy. Finally, at L = N = 1 we obtain the usual
description of S]{{Y - S(]CV ~1as column spaces over the corresponding groups Oy, Uy.

Now back to the general case, observe that the isometries 7' : E — F', or rather their
extensions U : KV — KM with K = R, C, obtained by setting U = 0, can be composed
with the isometries of KM, K" according to the following scheme:

A

KN B* KN ““““““ U ....... > KM KM

J2{{D) I —— - E T

F o > A(F)
With the identifications in Proposition 15.2 made, the precise statement here is:
Proposition 15.3. We have an action map as follows, which is transitive,
On x Oxy ~ OF
(A,B)U = AUB?
as well as an action map as follows, transitive as well,
Uy X Uy ~ Ul
(A,B)U = AUB*
whose stabilizers are respectively:
Op X Op_p X On_p,

UL X UMfL X UNfL
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Proof. We have indeed action maps as in the statement, which are transitive. Let us
compute now the stabilizer G of the following point:

10
v~ (o 1)
Since (A, B) € G satisty AU = UB, their components must be of the following form:
T * x 0
=) ()

Now since A, B are both unitaries, these matrices follow to be block-diagonal, and so:

G—{(AB)\A— (g 2)’3_ (g 2>}

The stabilizer of U is then parametrized by triples (z, a,b) belonging respectively to:
O X Oy, X On_p,
U x Up—r X Un—1
Thus, we are led to the conclusion in the statement. U
Finally, let us work out the quotient space description of O, UL .. We have here:
Theorem 15.4. We have isomorphisms of homogeneous spaces as follows,
Okn = (O x ON)/(Op x Op—p X On_1)
Uiy = (Un xUx)/(Up x Upr—p x Un_1)
with the quotient maps being given by (A, B) — AU B*, where:
7= (i 0)
Proof. This is just a reformulation of Proposition 15.3 above, by taking into account the
fact that the fixed point used in the proof there was U = (§ §). O

Once again, the basic examples here come from the cases L =M = N and L = M = 1.
At L = M = N the quotient spaces at right are respectively:

On, Uy
At L = M =1 the quotient spaces at right are respectively:
On/On-1 , Ux/Ux-
In fact, in the general orthogonal L. = M case we obtain the following spaces:
Opixy = (Oum x Ox)/(Om % On—n1)
= On/On_um
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Also, in the general unitary L = M case we obtain the following spaces:

Upin' = (Unr x Ux)/(Unt X Uy-nr)
= UN/UN—M

Similarly, the examples coming from the cases L = M = N and L = N = 1 are
particular cases of the general L = N case, where we obtain the following spaces:

Onn = (On x On)/(Oy x Op—y)
= On/Opn-n

In the unitary case, we obtain the following spaces:

UMy = (U x Ux)/(Unr x Ups—n)
— UN/UM—N

We can liberate the spaces OF \, UL . as follows:

Definition 15.5. Associated to any integers L < M, N are the algebras

C’(Ofﬂv) = Cr ((u,-j)izleJ:lmN‘u = 4, uu' = projection of trace L)
CULy) = o ((ul-j)izl,m,MJ:Lm’N‘uu*,Eut = projections of trace L)

with the trace being by definition the sum of the diagonal entries.

Observe that the above universal algebras are indeed well-defined, as it was previously
the case for the free spheres, and this due to the trace conditions, which read:

* *
ij ij
We have inclusions between the various spaces constructed so far, as follows:

L+ L+
OMN UMN

L
UMN

L
OMN

At the level of basic examples now, we first have the following result:
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Proposition 15.6. At L = M =1 we obtain the diagram

N-1 N-1
SR7+ - SC7+

SNfl SNfl
R — ~°C
and at L = N =1 we obtain the diagram:

Sﬂ]{y;l SM—l

SMfl SMfl
R ~— °C
Proof. Both the assertions are clear from definitions. O

We have as well the following result:

Proposition 15.7. At L = M = N we obtain the diagram

O} Uy

On

Un
consisting of the groups Oy, Uy, and their liberations.

Proof. We recall that the various quantum groups in the statement are constructed as
follows, with the symbol x standing once again for “commutative” and “free”:

COy) = C% ((Uij)i,jzl,..‘,N‘U =, uu’ = vlu = 1)
CUy) = C% <(Uij)i,j:1,...,N‘UU* =vu*u =1, a0’ =v'u = 1>

On the other hand, according to Proposition 15.2 and to Definition 15.5 above, we have
the following presentation results:

C(ON%) = C: ((uij)i,jzl,m,N‘u = 4, uu’ = projection of trace N)

cuix) = o ((Ui]’)i’jzl’“.’j\]‘uu*,'ﬁut = projections of trace N)
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We use now the standard fact that if p = aa* is a projection then ¢ = a*a is a projection
too. We use as well the following formulae:

Tr(uu*) = Tr(u'a)
Tr(uu') = Tr(u*u)
We therefore obtain the following formulae:
C(ONy%) = C: ((u,-j)i,jzly,_,,N’u = 4, uu',u'u = projections of trace N)
cwix) = o ((uij)i,jzl,m,N)uu*,u*u, wu', u't = projections of trace N>
Now observe that, in tensor product notation, and by using the normalized trace, the
conditions at right are all of the form:
(tr®@id)p =1
To be more precise, p is a follows, for the above conditions:
p = wu*, vy, aut, u'a
We therefore obtain, for any faithful state ¢:
(tr@p)(1—p)=0
It follows from this that the projections p = wu*, u*u, tu', u'u must be all equal to the
identity, as desired, and this finishes the proof. Il
Regarding now the homogeneous space structure of OffN, U ALﬁV, the situation here is
more complicated in the free case than in the classical case. We have:
Proposition 15.8. The spaces U]\Lﬁv have the following properties:
(1) We have an action U, x U ~ Uiy, given by:
Uiy — Zum ® ag; @ by;
kl

(2) We have a map Uy, x US — ULX,, given by:
uij — Z ari @ by
r<L
Similar results hold for the spaces O]@XN, with all the x exponents removed.
Proof. In the classical case, consider the action and quotient maps:

Uy x Uy ~ Ul

Uy x Uy — Ul
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The transposes of these two maps are as follows, where J = (} 9):

v — ((U,AB) = ¢(AUB"))
p = (4, B) = ¢(AJB"))

But with ¢ = wu;; we obtain precisely the formulae in the statement. The proof in the
orthogonal case is similar. Regarding now the free case, the proof goes as follows:

(1) Assuming uu*u = u, let us set:
Uj= uu®ay @b},
Kl
We have then:
(UUU);; = Z Z Uk Uy Ust @ Uiy, Usq & bbby

pq klmnst

* k
= E Ukl Uy Ut @ Qg @ by
klmt

= Zukt ® ag; @ by
kt
U;

: . -
Also, assuming that we have . u;u;; = L, we obtain:
* _ * * *
E UijUij = E E Ui U gy &® AgiQg; &® bljbtj
ij i kist

= Z uklu};l (29 1 X 1
kl
= L

(2) Assuming vu*u = u, let us set:
Vij = Z ari @ by
r<L
We have then:
(VV V)i = D) ai)azq @ U by,bl

pq w,y,2<L

- Zam ® b;]

<L
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Also, assuming that we have Z s uiju;; = L, we obtain:
SV = Y wa et
ij ij r,s<L
- ¥
I<L
= L
By removing all the % exponents, we obtain as well the orthogonal results. U

Let us examine now the relation between the above maps. In the classical case, given
a quotient space X = G/H, the associated action and quotient maps are given by:

a:XxG—=X : (Hg,h)— Hgh
p:G—X : g— Hyg

Thus we have a(p(g),h) = p(gh). In our context, a similar result holds:
Theorem 15.9. With G = Gy x Gy and X = G%,y, where Gy = O%,UX, we have

Gx@d i G
pXid p
X xG = X

where a,p are the action map and the map constructed in Proposition 15.8.

Proof. At the level of the associated algebras of functions, we must prove that the following
diagram commutes, where ®, @ are morphisms of algebras induced by a, p:

C(X) 2 C(X x G)
« a®id
C(G) 2 C(G % G)

When going right, and then down, the composition is as follows:

(a®id)®(uy) = (@@id) Y uy® ar @b,

= ) D au @b @ a ® D],

kl r<L
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On the other hand, when going down, and then right, the composition is as follows,
where Fys is the flip between the second and the third components:

Aﬂ'(uij) = F23(A X A) Z ary & b:]

r<L

= Fy (Z Z ar, @ ag; ® by ® b;})

r<L kl
Thus the above diagram commutes indeed, and this gives the result. O
Let us discuss now some extensions of the above constructions. We will be mostly

interested in the quantum reflection groups, so let us first discuss, with full details, the
case of the quantum groups Hy, Hy. We use the following notion:

Definition 15.10. Associated to any partial permutation, o : I ~ J with I C {1,..., N}
and J C {1,..., M}, is the real/complex partial isometry

1€ I) — span <ej

T, : span (ei j € J)

giwen on the standard basis elements by T,(e;) = €q()-

We denote by S% the set of partial permutations ¢ : I ~ J as above, with range
I c{1,...,N} and target J C {1,..., M}, and with L = |I| = |J|. In analogy with the
decomposition result H}, = Z4 1 Sy, we have:

Proposition 15.11. The space of partial permutations signed by elements of Zs,
Hify = {T(ei) = wie,)|0 € Shrn, Wi € ZS}
1s 1somorphic to the quotient space
(Hyy x Hy)/(Hp x Hy o, < Hy 1)
via a standard isomorphism.

Proof. This follows by adapting the computations in the proof of Proposition 15.3 above.
Indeed, we have an action map as follows, which is transitive:

Hi x Hy — Hify
(A, B)U = AUB*
Consider now the following point:
10
"= 0)

The stabilizer of this point follows to be the following group:

S S S
H; x Hy,_; x Hy_|
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To be more precise, this group is embedded via:

z 0 x 0
o= (5 0)- (0 3)]
But this gives the result. U

In the free case now, the idea is similar, by using inspiration from the construction of
the quantum group Hy" = Z, 1. Sy in [10]. The result here is as follows:

Proposition 15.12. The compact quantum space H]SML; associated to the algebra
C(H]S\ff\}) = C(UAL[}V)/ <uiju;kj = Uj;uij = pij = projections, u;; = pij>
has an action map, and is the target of a quotient map, as in Theorem 15.9 above.

Proof. We must show that if the variables u,; satisfy the relations in the statement, then
these relations are satisfied as well for the following variables:

Ui = Z Ugr @ ag; ® by
i

Vii=> a,;®0b
r<L

We use the fact that the standard coordinates a;;, b;; on the quantum groups Hj/, Hy'
satisfy the following relations, for any x # y on the same row or column of a, b:

xy=xy" =0
We obtain, by using these relations:

* * * *
UijUij == E Ukl Uyim (059 Alei Qi &® bljbmj

klmn

* * *
= E U Uy X AgiQp; X bljblj
kl

We have as well the following formula:

ViV = ) ana;, @ biyby

rit<L
= Z a”-a:i & b:jbrj
r<L
Consider now the following projections:
mij = aijafj
Yij = bijbi;

bij = umuij
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In terms of these projections, we have:

Ui U = Zpkl & T Q Yij
Kl

ViiVii = Z Tri @ Yrj
r<L

By repeating the computation, we conclude that these elements are projections. Also,
a similar computation shows that U ;U;;, V;7Vi; are given by the same formulae.
Finally, once again by using the relations of type zy = xy* = 0, we have:

S * *
Uij = E Upyly -+ - Ukl (%9 Afyj- - Qi X bllj e blsj
krly

= ZUZZ ® ap; ® (b;j)s
kl
We have as well the following formula:

s _ E * *
‘/ij = aTli...aTsi(X)brlj...stj

<L

= Z ay; @ (b:j)s

r<L

Thus the conditions of type uj; = p;; are satisfied as well, and we are done. Il

Let us discuss now the general case. We have the following result:

Proposition 15.13. The various spaces G%; constructed so far appear by imposing to
the standard coordinates of Uiy the relations

> 3 GG, i, = I
i1omis J1.-ds
with s = (e1, ..., es) ranging over all the colored integers, and with w,0 € D(0, s).

Proof. According to the various constructions above, the relations defining G%, can be
written as follows, with ¢ ranging over a family of generators, with no upper legs, of the
corresponding category of partitions D:

> a0 usy, . us, = 6,(i)

J1---Js



270 TEO BANICA

We therefore obtain the relations in the statement, as follows:

€s _ es
E:E:é le1'uisjs - 2:5 §:§ 1131" zsjs

0105 J1--Js 11...0s J1---Js
= > 5()00(0)

i1...05

— L|7rVU|

As for the converse, this follows by using the relations in the statement, by keeping
fixed, and by making ¢ vary over all the partitions in the category. Il

In the general case now, where G = (Gy) is an arbitary uniform easy quantum group,
we can construct spaces G4, by using the above relations, and we have:

Theorem 15.14. The spaces G,y C Usfy constructed by imposing the relations
D D SOl iz, = L7
11085 J1-0-0s

with 7,0 ranging over all the partitions in the associated category, having no upper legs,
are subject to an action map/quotient map diagram, as in Theorem 15.9.

Proof. We proceed as in the proof of Proposition 15.8. We must prove that, if the variables
u;; satisfy the relations in the statement, then so do the following variables:

Uzg - Z Uk & Ay X bzkj
Kl

Vij = Zari X b:j

r<L
Regarding the variables U;;, the computation here goes as follows:

Yo > SN, UL,

1100 J1.0-]s

- Z Z Z Z uklll "uzzl ®5 ( )6 ( )aklu : -'aZEis ® (blesg]s "bl€11j1)*

11...0s J1...Js k1...ks 1. s

_ es __ 71 |mVol
= g E O ( uk?lll coug =1L

ki..ksli..ls
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For the variables V;; the proof is similar, as follows:

SN 66V, -V,

1.0 J1---Js

= > > > 60)d.(h)ary, - af, @ (b, b))

2105 J1.--Js 11,0, ls <L

_ Z 5 L|7r\/a\

lla 7

Thus we have constructed an action map, and a quotient map, as in Proposition 15.8
above, and the commutation of the diagram in Theorem 15.9 is then trivial. U

Let us discuss now the integration over G%;5. We have:

Definition 15.15. The integration functional of G%y is the composition
/ C(GLMN)—)C(GMXGN)—)C
kaN
of the representation u;j — Z’I‘SL Ary ® b:fj with the Haar functional of Gy X Gy .

Observe that in the case L = M = N we obtain the integration over Gy. Also, at
L=M=1,orat L =N =1, we obtain the integration over the sphere. In the general
case now, we first have the following result:

Proposition 15.16. The integration functional of G,y has the invariance property

(/G ®z’d><1>(x):/G .

L L
MN MN
with respect to the coaction map:

(I) uzg Z Ukt & Ap; X bl]
kl

Proof. We restrict the attention to the orthogonal case, the proof in the unitary case being
similar. We must check the following formula:

/ & Zd @(uiljl "‘uisjs) = / uiljl ...uisjs
GL GL
MN

MN
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Let us compute the left term. This is given by:

X = (/ ®Zd> Zuklll...ukslé;@aklil. a%®b11j1“'b;sjs
Glrn

kzlz
- * * * *
- Z Z Uiy - - - Qhgis @ bl1j1 T blsjs / Ariky - - - Orgkg / Tl brsls
kaly 1o <L Gum GnN
— ) ) " N
= Z Zaklzl -..azk,‘s’bs/ a’r’lk‘l . aq-ské ® g bll]l . / rily "'stls
re<L ke Gum G

By using now the invariance property of the Haar functlonals of Gy, G, we obtain:

X = Z (/ & Zd) A(amh Ce aTsis) ® (/ X Zd) A(b:1]1 b:s] )
Gm el

re<L
_ *k *
= E / aml...arsis/ le]l“'stjs

re<L Gum GN

* *
= (/ / ) arlil ...arsls ®b,,.1]1 ”'brsjs
Gu  JGN/ o<
But this gives the formula in the statement, and we are done. U

We will prove now that the above functional is in fact the unique positive unital invariant
trace on C'(G%;y). For this purpose, we will need the Weingarten formula:

Theorem 15.17. We have the Weingarten type formula

/G g, = 3 D808, Waar (7, 0) W (7, )

MN ToTV
where the matrices on the right are given by Wy = GS_]\}, with Gy (7, 0) = MI™Vel,

Proof. We make use of the usual quantum group Weingarten formula, for which we refer
o [22], [38]. By using this formula for Gy, G, we obtain:

L
MN
_ * *
- E / all’bl . 515 / blljl T blsjs
o ds<L”GM GnN
= E E Or( Wy (m,0) E o-( Win (T, V)
...ls<L mo

= Z( Z 67T(l)57(l)> (Sg(i)du(j)WsM(ﬂ-?U)WsN(T?V)

l1..0s<L
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The coefficient being LI™7, we obtain the formula in the statement. Il
We can now derive an abstract characterization of the integration, as follows:
Theorem 15.18. The integration of Gk, is the unique positive unital trace
C(GHy) = C
which is invariant under the action of the quantum group Gy X Gy.

Proof. We use a standard method, from [32], [37], the point being to show that we have
the following ergodicity formula:

(@'d@/GAd@/GN)cb(x):/GL v

MN
We restrict the attention to the orthogonal case, the proof in the unitary case being
similar. We must verify that the following holds:

(z’d®/ ®/ )‘I’(Um‘l--ﬂisjs) :/ Wiygy - - - Uiggs
Gm GN GHy

N

By using the Weingarten formula, the left term can be written as follows:

*
X = E E uklll...uksls/ ak1i1"'aksis/ bl1j1' blgj9
Gp Gn

ki..ks ly...1s

= E E uklll. ukl E (5 G sM T, 0 E 5 sN(T V)
ki..ksly...1s

= E 5 SM(TI' O' sN T, V E E (5 uklll. Ukl
ToTV ki..ksly..ls

By using now the summation formula in Theorem 15.14, we obtain:

X = Z L"TVT‘é (W (70, 0)Wen (T, V)

ToOTV

Now by comparing with the Weingarten formula for G¥;,, this proves our claim.

Assume now that 7 : C/( G ) — C satisfies the invariance condition. We have:

(o] of Joer - (rof o Yo
_ (/GM@@/GN) (r @ id)D(x)
_ (/GM®/GN) (r(2)1)

= 7(z)
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On the other hand, according to the formula established above, we have as well:

T(im /G K /G N) o) = (tr(w))

= tr(x)
Thus we obtain 7 = tr, and this finishes the proof.
As a main application, we have:

Proposition 15.19. For a sum of coordinates

which do not overlap on rows and columns we have

/ XE = Z K™ LW (o)W (1, 1)
.

L
MN ToOTV

where K = |E| is the cardinality of the indexing set.
Proof. With K = |E/|, we can write E = {(«(i), 5())}, for certain embeddings:
a:{l,....,K}c{l,...,.M}

g:{1,....,K} C{l,...,N}
In terms of these maps «, 3, the moment in the statement is given by:

M, = / . <Z “a(i)ﬂ(i))
Guinv \i<K

By using the Weingarten formula, we can write this quantity as follows:
M

- /GL Z Ue(ir)B(ir) - - - Ualis)B(is)

MN Zl’LgSK

= > > LYs(alin).. .., alis)d(B(i), .. ., Blis)) W (7, 0) Wen (7, 1)

i1...is<K moTVv

_ Z( > @r(i)&(i)) LWy (7, 0)Won (7, v)

ToTV \i1...1s<K

But, as explained before, the coefficient on the left in the last formula is:
C = K|7TVT|

We therefore obtain the formula in the statement.
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We can further advance in the classical/twisted and free cases, where the Weingarten
theory for the corresponding quantum groups is available from [10], [22], [38]:

Theorem 15.20. In the context of the liberation operations

Oin — Oy

Univ = Unily

Hypy — Hypy
the laws of the sums of non-overlapping coordinates,

XE = Z Wij

(if)ek
are in Bercovici-Pata bijection, in the
|E| = kN,L =AN,M = uN

regime and N — oo limit.

Proof. We use the general theory in [10], [22], [22], [38]. According to Proposition 15.19,
in terms of K = |F|, the moments of the variables in the statement are given by:

Ms _ Z [(|7rVT|L\zf\/u‘V[/'S]V[(';T7 U)WSN(T7 l/)

We use now two standard facts, namely:

(1) The fact that in the N — oo limit the Weingarten matrix Wy is concentrated on
the diagonal.

(2) The fact that we have an inequality as follows, with equality precisely when m = o
7| + |o|

Vol <
ATIES

For details on all this, we refer to [22].

Let us discuss now what happens in the regime from the statement, namely:
K=kN,L=AN,M =uN,N —

In this regime, we obtain:

M, ~ Z prdaal aany el Vel

T

~ Z K7 =l =1l =l

™

5y

™



276 TEO BANICA

In order to interpret this formula, we use general theory from [10], [22], [22]:

(1) For Gx = Oy, On/Oj;, the above variables yx follow to be asymptotically Gauss-
ian/semicircular, of parameter ”‘7’\, and hence in Bercovici-Pata bijection.

(2) For Gy = Uy, Ux/Uy the situation is similar, with yz being asymptotically com-
plex Gaussian/circular, of parameter ”7’\, and in Bercovici-Pata bijection.

(3) Finally, for Gy = Hy,/Hy', the variables xg are asymptotically Bessel/free Bessel
of parameter ”L—)‘, and once again in Bercovici-Pata bijection. U

The convergence in the above result is of course in moments, and we do not know
whether some stronger convergence results can be formulated. Nor do we know whether
one can use linear combinations of coordinates which are more general than the sums yg
that we consider. These are interesting questions, that we would like to raise here.

Also, there are several possible extensions of the above result, for instance by using
quantum reflection groups instead of unitary quantum groups, and by using twisting
operations as well. We refer here to [8], and to [37] as well, for a number of supplementary
results, which can be obtained by using the stronger formalism there.

Finally, there are many interesting questions in relation with Connes’ noncommutative
geometry [59], [60], [61], and more specifically with the quantum extension of the Nash
embedding theorem [113]. We refer here to [67], [68], [69], [86], [122], [137].
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16. MODELLING QUESTIONS

One interesting method for the study of the closed subgroups G C Uj;, that we have not
tried yet, consists in modelling the standard coordinates u;; € C(G) by concrete variables
Ui; € B. Indeed, assuming that the model is faithful in some suitable sense, that the
algebra B is something quite familiar, and that the variables U;; are not too complicated,
all questions about G would correspond in this way to routine questions inside B.

Regarding the choice of B, some very convenient algebras are the random matrix ones,
B = Mg (C(T)), with K € N, and with 7" being a compact space. These algebras gen-
eralize indeed the most familiar algebras that we know, namely the matrix ones Mg (C),
and the commutative ones C(T"). We are led in this way to:

Definition 16.1. A matriz model for G C Uy is a morphism of C*-algebras
m:C(G) — Mg(C(T))
where T 15 a compact space, and K > 1 is an integer.
Let us introduce as well the following related definition:

Definition 16.2. A matriz model 7 : C(G) — My (C(T)) is called stationary when

fi= (e f)r

where fT 15 the integration with respect to a given probability measure on T'.

Here the term “stationary” comes from a functional analytic interpretation of all this,
with a certain Cesaro limit being needed to be stationary, and this will be explained later
on. Yet another explanation comes from a certain relation with the lattice models, but
this relation is rather something folklore, not axiomatized yet. We will be back to this
later. As a first result now, the stationarity property implies the faithfulness:

Theorem 16.3. Assuming that G C Uy, has a stationary model,
m:C(G) = Mg(C(T))

[=(wo))

it follows that G must be coamenable, and that the model is faithful.

Proof. Assume that we have a stationary model, as in the statement. By performing
the GNS construction with respect to fG, we obtain a factorization as follows, which
commutes with the respective canonical integration functionals:

7: C(G) = C(G)rea C Mg (C(T))
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Thus, in what regards the coamenability question, we can assume that 7 is faithful.
With this assumption made, observe that we have embeddings as follows:

C¥(G) C C(G) € Mk(C(T))
The point now is that the GNS construction gives a better embedding, as follows:
L¥(G) € My (L*(T))

Now since the von Neumann algebra on the right is of type I, so must be its subalgebra
A = L>(G). This means that, when writing the center of this latter algebra as Z(A) =
L*>(X), the whole algebra decomposes over X, as an integral of type I factors:

12(G) = /X My (C) dz

In particular, we can see from this that C*°(G) C L*°(G) has a unique C*-norm, and so
(G is coamenable. Thus we have proved our first assertion, and the second assertion follows
as well, because our factorization of 7 consists of the identity, and of an inclusion. O

Regarding now the examples of stationary models, we first have:

Proposition 16.4. The following have stationary models:
(1) The compact Lie groups.
(2) The finite quantum groups.
Proof. Both these assertions are elementary, with the proofs being as follows:

(1) This is clear, because we can use the identity id : C(G) — M;(C(Q)).

(2) Here we can use the regular representation A : C(G) — Mg (C). Indeed, let us
endow the linear space H = C(G) with the scalar product < a,b >= [, ab*. We have
then a representation A\ : C(G) — B(H) given by a — [b — ab]. Now since we have
H ~ Cl¢l with |G| = dim A, we can view A as a matrix model map, as above, and the
stationarity axiom | o = lr o\ is satisfied, as desired. U

In order to discuss the group duals, consider a model 7 : C*(I') — Mg (C(T)). Accord-
ing to the general theory of group algebras, these matrix models must come from group
representations p : I' — C(T,Ug). With this identification made, we have:

Proposition 16.5. An matriz model p : I' C C(T,Uk) is stationary when:

/ tr(g”)dz = 0,Vg # 1
T

Moreover, the examples include all the abelian groups, and all finite groups.



QUANTUM GROUPS 279

Proof. Consider indeed a group embedding p : I' € C(T, Uk ), which produces by linearity
a matrix model, as follows:

m: C*(I') = Mg(C(T))
It is enough to formulate the stationarity condition on the group elements g € C*(I').
Let us set p(g) = (x — ¢*). With this notation, the stationarity condition reads:

/ tr(g®)dx = 41
T

Since this equality is trivially satisfied at ¢ = 1, where by unitality of our representation
we must have g* = 1 for any x € T, we are led to the condition in the statement.
Regarding now the examples, these are both clear. More precisely:

(1) When I' is abelian we can use the following trivial embedding:
I cc,u)

9= b= x(9)]
(2) When T is finite we can use the left regular representation:

I' c L(CT)
g = [h — ghl

Indeed, in both cases, the stationarity condition is trivially satisfied. O

In order to further advance, and to come up with some tools for giscussing the non-
stationary case as well, let us keep looking at the group duals G = I'. We know that a
model 7 : C*(I') = Mg (C(T)) must come from a group representation p : I' — C(T', Uk).
Now observe that when p is faithful, the representation 7 is in general not faithful, for
instance because when 7' = {.} its target algebra is finite dimensional. On the other hand,
this representation “reminds” I', and so can be used in order to fully understand I'.

Summarizing, we have a new idea here, basically saying that, for practical purposes,
the faithfuless property can be replaced with something much weaker. This weaker notion
is called “inner faithfulness”, and the theory here, from [14], is as follows:

Definition 16.6. Let 7w : C(G) — Mg (C(T)) be a matriz model.

(1) The Hopf image of 7 is the smallest quotient Hopf C*-algebra C(G) — C(H)
producing a factorization of type © : C(G) — C(H) — Mg(C(T)).

(2) When the inclusion H C G is an isomorphism, i.e. when there is no non-trivial
factorization as above, we say that 7 is inner faithful.

In the case where G =T is a group dual, 7 must come from a group representation:

pF—)C(T,UK)
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The above factorization is simply the one obtained by taking the image:
p:F%ACC(T,U}a

Thus 7 is inner faithful when I' C C(T,Ug). Also, given a compact group G, and
elements gy, ...,gx € G, we have a representation 7 : C(G) — CK, given by:

f=(flg), - fgx))

The minimal factorization of 7 is then via C'(H), with:

H=<g,...,9xk >

Also, 7 is inner faithful when G = H. We will see many other examples.

In general, the existence and uniqueness of the Hopf image comes from dividing C'(G)
by a suitable ideal, as explained in [14]. In Tannakian terms, we have:

Theorem 16.7. Assuming G C Uy, with fundamental corepresentation w = (u;;), the
Hopf image of

m:C(G) - Mg(C(T))
comes from the Tannakian category

Ckl = Hom(U®k, U®l>

where U;; = m(u;;), and where the spaces on the right are taken in a formal sense.

Proof. Since the morphisms increase the intertwining spaces, when defined either in a
representation theory sense, or just formally, we have inclusions as follows:

Hom(u®*, u®") ¢ Hom(U®*, U®"

More generally, we have such inclusions when replacing (G, u) with any pair producing
a factorization of m. Thus, by Tannakian duality, the Hopf image must be given by the
fact that the intertwining spaces must be the biggest, subject to the above inclusions.

On the other hand, since « is biunitary, so is U, and it follows that the spaces on the
right form a Tannakian category. Thus, we have a quantum group (H,v) given by:

Hom(v®* v®") = Hom(U®*, U®")
By the above discussion, C'(H) follows to be the Hopf image of 7, as claimed. Il

The inner faithful models 7 : C(G) — Mg (C(T)) are a very interesting notion, because
they are not subject to the coamenability condition on G, as it was the case with the
stationary models, as explained in Theorem 16.3. In fact, there are no known restrictions
on the class of closed subgroups G' C U}, which can be modelled in an inner faithful way.
Thus, our modelling theory applies a priori to any compact quantum group. Regarding
now the study of the inner faithful models, a key problem is that of computing the Haar
integration functional. The result here, from [30], [142], is as follows:
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Theorem 16.8. Given an inner faithful model 7 : C(G) — Mg (C(T)), we have

= Z/

, with ¢ =1tr ® fT being the random matriz trace.

*7

where [, = (¢ o)

Proof. As a first observation, there is an obvious similarity here with the Woronowicz
construction of the Haar measure, explained in section 1 above. In fact, the above result
holds more generally for any model 7 : C(G) — B, with ¢ € B* being a faithful trace.
With this picture in hand, the Woronowicz construction simply corresponds to the case
m = id, and the result itself is therefore a generalization of Woronowicz’s result. In order
to prove now the result, we can proceed as in section 1. If we denote by fé the limit in
the statement, we must prove that this limit converges, and that we have:

Iy

It is enough to check this on the coefficients of corepresentations, and if we let v = u®*
be one of the Peter-Weyl corepresentations, we must prove that we have:

(iae [Jo=(iae [ )o

We know from section 1 that the matrix on the right is the orthogonal projection onto
Fiz(v). Regarding now the matrix on the left, this is the orthogonal projection onto the
1-eigenspace of (id ® ¢m)v. Now observe that, if we set V;; = m(v;;), we have:

(id @ pm)v = (id @ p)V

Thus, as in section 1, we conclude that the 1-eigenspace that we are interested in equals
Fixz(V). But, according to Theorem 16.7, we have:

Fix(V) = Fixz(v)
Thus, we have proved that we have fé = fG, as desired. U
Getting back now to the stationary models, we have the following result, from [7]:

Theorem 16.9. For 7 : C(G) — Mg(C(T)), the following are equivalent:

(1) Im(m) is a Hopf algebra, and (tr @ [,)7 is the Haar integration on it.
(2) ¢ = (tr ® [ )7 satisfies the idempotent state property v s h = ).
(3) T? =T, Vp € N, Ve € {1,%}P, where:

(Te)il,..ip,j1...jp = <If7" X /T) (Uzellgl e Uiipjp>

If these conditions are satisfied, we say that w is stationary on its image.
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Proof. Given a matrix model 7 : C'(G) — Mg (C(T')) as in the statement, we can factorize
it via its Hopf image, as in Definition 16.6 above:
m:C(G) - C(H) — Mg(C(T))

Now observe that the conditions (1,2,3) in the statement depend only on the factorized
representation:
v:C(H)— Mg(C(T))
Thus, we can assume in practice that we have G = H, which means that we can assume
that 7 is inner faithful. With this assumption made, the general integration formula from
Theorem 16.8 applies to our situation, and the proof of the equivalences goes as follows:

(1) = (2) This is clear from definitions, because the Haar integration on any compact
quantum group satisfies the idempotent state equation:

Yoxip=1p
(2) = (1) Assuming ¢ x 1) = 1, we have, for any r € N:
Y=
Thus Theorem 16.8 gives fG = 1), and by using Theorem 16.3, we obtain the result.

In order to establish now (2) <= (3), we use the following elementary formula, which
comes from the definition of the convolution operation:

T ) = (T,

* VipJp
(2) = (3) Assuming ) * ¢ = 1, by using the above formula at r = 1,2 we obtain
that the matrices T, and T2 have the same coefficients, and so they are equal.

(3) = (2) Assuming T? = T,, by using the above formula at » = 1,2 we obtain that

the linear forms v and 9 * 1 coincide on any product of coefficients u'; ... u;"; . Now
1J1 ipJp

since these coefficients span a dense subalgebra of C'(G), this gives the result. O

As a first illustration, we will apply this criterion to certain models for the quantum
groups Oy, Uy. We first have the following result:

Proposition 16.10. We have a matriz model as follows,

C(Oy) = My(C(Uy))

N 0 Uij
Wi T\ 5y 0

where v is the fundamental corepresentation of C'(Uy), as well as a model as follows,

C(U;{,) — MQ(C(UN X UN))

N 0 Uij
uz] wij 0

where v, w are the fundamental corepresentations of the two copies of C(Uy).
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Proof. 1t is routine to check that the matrices on the right are indeed biunitaries, and
since the first matrix is also self-adjoint, we obtain in this way models as follows:

C(O}) — My(C(Uy))
C(U;) — MQ(C(UN X UN))

Regarding now the half-commutation relations, this comes from something general,
regarding the antidiagonal 2 x 2 matrices. Consider indeed matrices as follows:

0 ZT;
r= (y 0)

We have then the following computation:

0 x; 0 x; 0 xp 0 TiY; Tk
XZXX = J — J
ek (Z/z‘ 0) (yj 0) (yk 0) (yifb’jyk 0 )

Since this quantity is symmetric in 4, k, we obtain X;X;X; = X, X;X;. Thus, the
antidiagonal 2 X 2 matrices half-commute, and so our models factorize as claimed. U

We can now formulate our first concrete modelling theorem, as folllows:
Theorem 16.11. The above antidiagonal models, namely
C(Oy) — Mz(C(Un))
C(Uy) = My(C(Uy x Uy))
are both stationary.

Proof. We first discuss the case of O%. We use Theorem 16.9 (3). Since the fundamental
representation is self-adjoint, the matrices T, with e € {1,*}? are all equal. We denote
this common matrix by 7},. According to the definition of 7}, this matrix is given by:

S 0wy 0 Wiy,
(Tp>ll~~~1p7]1~~-ﬂp - <t7’®/H) |:<7ji1j1 0 ) ...... (/l_)ipjp 0

Since when multipliying an odd number of antidiagonal matrices we obtain an atidiag-
onal matrix, we have 7, = 0 for p odd. Also, when p is even, we have:

Viyiq « - Vg i 0
7Y . . . = tr®/ o s
( p)ll---lpvﬂl---ﬂp ( H) ( O Uiljl t 'Uipjp
1 _ _
- 5 Virgy -+« Vipjp + Viyji -+« Vipjp
H H

= / Re(v’iljl v T)Z‘pjp)
H
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We have T} = T,, = 0 when p is odd, so we are left with proving that we have T.) = T,
when p is even. For this purpose, we use the following formula:

Re(x) Rely) = 5 (Reliy) + Re(zp))

By using this identity for each of the terms which appear in the product, and multi-
index notations in order to simplify the writing, we obtain:

(T7);5

= Z(Tp)i1...ip,k1...kp(Tp)kl...kp,jl...jp
ki..kp

= / / g Re(Vijky - - - ik, ) Re(Wy, j, - . Wy, ;,)dvdw
HJIH )k,
1 o _ -
= 3 E Re (Vi i, Whyjy - - - Vipky Whyj, ) + Re(Vi o, Whyjy - - - Viphy Whyj, ) dvdw
HIH )k,

B % /H /H Re((vw)iy, - - (00)i5,) + Re((vi)iyj, - - - (0w)s, 5, )dvdw

Now since vw € H is uniformly distributed when v, w € H are uniformly distributed,
the quantity on the left integrates up to (7,);;. Also, since H is conjugation-stable, w € H
is uniformly distributed when w € H is uniformly distributed, so the quantity on the right
integrates up to the same quantity, namely (7},);;. Thus, we have:

(T)i; = %((Tp)ij+(Tp)ij>

(Tp)ij

Summarizing, we have obtained that for any p, the condition Tp2 =T, is satisfied. Thus
Theorem 16.9 applies, and shows that our model is stationary, as claimed.
As for the proof of the stationarity for the model for Uy, this is similar. See [23]. O

Following [33], let us discuss now some more subtle examples of stationary models,
related to the Pauli matrices, and Weyl matrices, and physics. We first have:

Definition 16.12. Given a finite abelian group H, the associated Weyl matrices are
Wia ey =< 1,0 > eqpp
where i € H, a,b € PAI, and where (1,b) —< i,b > is the Fourier coupling H X H—T.

As a basic example, consider the simplest cyclic group, namely:

H:ZQZ{O,l}



QUANTUM GROUPS 285

Here the Fourier coupling is < i,b >= (—1)®, and the Weyl matrices act as follows:
WOO ey — € , W10 Lep — (—1)beb

Wit ep — (=1)%epi ; Wor : ey — ey
Thus, we have the following formulae for the Weyl matrices:

10 1 0
WOO = <O 1) ) WlO = (0 _1>

0 -1 01
=) (0 )

We recognize here, up to some multiplicative factors, the four Pauli matrices. Now

back to the general case, we have the following well-known result:

Proposition 16.13. The Weyl matrices are unitaries, and satisfy:
(1) Wt =<i,a>W_; _,.
( ) VV%LVij =<1, b> Wz+] a+b-

( ) VVme—<j—Z b>W,_ —j,a—b-

(4) WiWy =<i,a—b>W;_;p 4.

Proof. The unltary follows from (3,4), and the rest of the proof goes as follows:
(1) We have indeed the following computation:

Wi, = (Z <ib> Ea+b,b>
b
= Z < _Zab > Eb,a+b
b

= Z<—i,b—a>Eb_a7b
b
= <i,a> W,i’,a

(2) Here the verification goes as follows:

WiaWjp = (Z <i,b+d> Ea+b+d,b+d) (Z <J,d> Eb+d,d>
d d

— Z<z’,b><i+j,d>Ea+b+d,d
F

= <4,b> Witja
(3,4) By combining the above two formulae, we obtain:
Wia ;b = < j7 b> WiaW—j,—b
= <Jb><i,=b>Wi_j.
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We obtain as well the following formula:
VV{ZVij = <i,a> W,i7,aij
= <,a><—1,0>W;_;p4

But this gives the formulae in the statement, and we are done. O

~

Observe that, with n = |H|, we can use an isomorphism [?(H) ~ C" as to view each
Wi, as a usual matrix, W;, € M, (C), and hence as a usual unitary, W;, € U,. Given a
vector &, we denote by Proj(&) the orthogonal projection onto C¢. We have:

Proposition 16.14. Given a closed subgroup E C U,, we have a representation
m : C(SY) = My(C(E))
Wig jb — [U — Proj(WiU j*b)]
where n = |H|, N = n?, and where W, are the Weyl matrices associated to H.

Proof. The Weyl matrices being given by W;, : e, =< i,b > €414, we have:
1 if (4,a) =
0 if (i,a) # (0,0)

Together with the formulae in Proposition 16.13, this shows that the Weyl matrices are
pairwise orthogonal with respect to the following scalar product on M, (C):

~—

< z,y >=tr(z*y)

Thus, these matrices form an orthogonal basis of M,,(C), consisting of unitaries:

W= {W

ieH,aefI}

Thus, each row and each column of the matrix &, j, = Wi, U W;b is an orthogonal basis
of M,,(C), and so the corresponding projections form a magic unitary, as claimed. U

We will need the following well-known result:
Proposition 16.15. With T' = Proj(x;) ... Proj(z,) and ||z;|| = 1 we have
<TEn>=<E, 2y ><Tp,Tpq > ... < To, 1 >< T1,1) >
for any &, m. In particular, we have:

Tr(T) =< x1,xp, >< Tp,Tp_1 > ... < To, T3 >
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Proof. For ||z|| = 1 we have Proj(z)§ =< £, x > x. This gives:
T¢ = Proj(xy)...Proj(z,)¢
= Proj(z1)...Proj(x,_1) <& x, >z,
= Proj(z1)... Proj(xp,_2) < & 1, >< xp, Tp_1 > Tp_q

= <&xp >< Tp, Tp1 > ... < T, X1 > T

Now by taking the scalar product with 7, this gives the first assertion. As for the second
assertion, this follows from the first assertion, by summing over £ = n = ¢;. O

Now back to the Weyl matrix models, let us first compute 7;,. We have:
Proposition 16.16. We have the formula

(T} ia.jb

1 . . . .
= N<@1,a1—ap>...<zp,ap—ap_1 >< J1,b1 — by > ... < jp, by — b1 >

/ tT(Wilfiz,tn*az UWjQ*jth*bl U*) - ‘tr(mp*ilyap*al Ulefjp,blfbp U*)dU
E

with all the indices varying in a cyclic way.

Proof. By using the trace formula in Proposition 16.15 above, we obtain:
(Tp)iadb

= (tr ® /) <P7"0j(VVZ-1a1 UWZy) - Proj(WipapUW/;bp»
E

Jabas Jib1

1
- N/E = VVilalU ;lbl’mpapUVV;;bp > < VVZQ@U iy VVilalU o> dU

In order to compute now the scalar products, observe that we have:
< Wi UW3H, Wi UWig > = tr(WaU Wi Wi UWp)
= tr(WWilUWgWU”)
= <i,a—c>< l, d—>b> tT(Wk_LC_aUVVj_l’b_dU*)
By plugging these quantities into the formula of 7},, we obtain the result. U

Consider now the Weyl group W = {W;,} C U, that we already met in the proof of
Proposition 16.14 above. We have the following result, from [33]:

Theorem 16.17. For any compact group W C E C U, the model
my : C(SY) = My(C(E))
Wiqjb — [U — Proj(W;,UW},)]
constructed above is stationary on its image.
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Proof. We must prove that we have T = T,,. We have:
(T, iajv
= > (T)iake(Ty)res

ke

1 , .
= m2:<21,a1—ap>...<zp,ap—ap,1></’<;1,cl—02>...</<:][,,cp—cl>

<k1,Cl—Cp>...<l€p,Cp—Cp,1><j1,b1—bz>...<jp,bp—b1>

/ tr(ml—i27a1—a2 UWk:Q—k:l,cg—cl U*) S tr(mp—il,ap—(h UWkl—k’p,q—ch*)dU
E

/tT(Wkle,cl cz‘/VVJ2 —j1,ba— blV*)...tr(Wkp,kl,cp cl‘/VV]1 —Jpyb1— pr*)dV
E

By rearranging the terms, this formula becomes:

(T7)ia.jb

1 . . .
= = <i,a1—ap > ... <lp, Gy — Ap1 >< j1,bp — by > .0 < jp, by — by >

// —kp,cr—cp > <k, —kp1,cp—Cp1 >
E

11 i2,a1— azUsz k1,co— 01U*)tr(Wk1—k2,C1—CzVVij—jhbz—hV*)
tr(vvipfil,apfalUWklfkp,clfch*)tr<Wkpfk1,cp clijl —Jp,b1— pr*)dUdV

Let us denote by I the above double integral. By using Wy, =< k,c > W_; _. for each
of the couplings, and by moving as well all the U* variables to the left, we obtain:

/E /E Z tr(U*ml_iQﬂI_aQ UWkQ—k1,C2—Cl )tr(WI:Q—lﬁ,cg—q VVVJQ—]'LbQ—IH V*)

tr(U*Wip—il,ap—al UWkl_kp7cl _cp)tT(Wl; VI/VJI —jipsb1—bp V*)dUdV

In order to perform now the sums, we use the following formula:

1
tT(Ach)tT(W]:CB) = N Z Aqr(ch)rq<W]:c)stBts

qrst

—kp,c1—cp

1
= T Aw < k0> by < ko5 > b B

qrst

1
= 5 Z <k,g—5>Agq+cBstcs

qs
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If we denote by A,, B, the variables which appear in the formula of I, we have:

I
= Np//Ek <ky—ki,qu—51>...<ky— kp,qp—8p>
cqs
qi q1tc2—c1 Bl)81+02 —C1,81 * ** (Ap)qpvqp-i-q—c;)(Bp)sp-i-q—chp
- Np//E <k17Qp _QI+51> <kp7qp1 QP+31)

keqs
(Al)q17q1+02—01 (Bl>81+02—01,81 s (Ap)qmqp-i-q—cp(Bp)sp+01—cp,sp
Now observe that we can perform the sums over ki, ..., k,. We obtain in this way a
multiplicative factor n?, along with the condition:
ql—Slz...:qp—Sp

Thus we must have ¢, = s, + a for a certain a, and the above formula becomes:

I'= _/ / Z Al Si+a s1+c2— Ci+a(Bl)Si+02 —C1,81 * * * (Ap)sp+a,sp+c1—cp+a(Bp)sp+cl—cp7sp

csa
Consider now the variables r, = c,11 — ¢,, which altogether range over the set Z of
multi-indices having sum 0. By replacing the sum over ¢, with the sum over r,, which
creates a multiplicative n factor, we obtain the following formula:

(Bl>51+7’1 81t (Ap>sp+a,sp+rp+a(Bp)spi-f’pﬁp

TGZ sa
For an arbitrary multi-index r we have:

1 . .
5Zi”’0:ﬁz<z’rl > <,y >
1

Thus, we can replace the sum over r € Z by a full sum, as follows:

/ / Z < 7/ 1 > )31+a,sl+r1+a(Bl)siJrT‘i,Si

rsia

<0y Tp > (Ap)sp-i-a,sp-i-rp—s—a(Bp)sp-i-rp,sp
In order to “absorb” now the indices 7, a, we can use the following formula:
W AW,

= (Z <1,—b> Eb,a+b> (Z Ea+b,a+cAa+b,a+c> (Z <i,¢> Ea+c,c)
be

b c
- Z < i, C — b > EbcAa+b,a+c

be
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Thus we have:
(WiZAI/Via)bc =< i7 c—0b> Aa+b,a+c

Our formula becomes:

= / / Z W* Al ia 81,81+T1(Bl)51+m S1 v (mzApWia>sp,sp+rp (Bp>sp+rp,sp

_ / / ST (WL AWLBY) ... (WA Wi B,)
EJE q
Now by replacing A,, B, with their respective values, we obtain:

//Ztr W* U* 7,1 12 al— agUmaVW72 ]1 b2 b1V)

tr(Wa U Wi i ap-a UWid VWj i b -3,V )dU AV
By moving the W} U* variables at right, we obtain, with S;, = UW;,V:

Z//tra/vh2'2,alazsiawj2j17bzblsfa>
ia YEJE

1 (Wey iy -0 S50ty S5 ) AUV

Now since S;, is Haar distributed when U, V' are Haar distributed, we obtain:
I = N/ / tT<Wi1*iz,a1*a2UW]2 —j1,ba—b1 U*) Ce tT(Wipfil,apfalUVle —jip,b1— pr*)dU
EJE

But this is exactly N times the integral in the formula of (7},);4 s, from Proposition
16.16 above. Since the N factor cancels with one of the two N factors that we found in
the beginning of the proof, when first computing (T )ia,jb, We are done. O

As an illustration for the above result, going back to [24], we have:
Theorem 16.18. We have a stationary matriz model
7 C(SF) € My(C(SUy))
given on the standard coordinates by the formula
7(u;j) = [ = Proj(c;xc;)]
where x € SUs,, and cy, ¢, c3,cq4 are the Pault matrices.

Proof. As already explained in the comments following Definition 16.12, the Pauli matrices
appear as particular cases of the Weyl matrices. By working out the details, we conclude
that Theorem 16.17 produces in this case the model in the statement. U
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Observe that, since the matrix Proj(c;zc;) depends only on the image of x in the
quotient SU; — SO3, we can replace the model space SUy by the smaller space SOs, if
we want to. This is something that can be used in conjunction with the isomorphism
Sy ~ SOz' from section 9 above, and as explained in [14], our model becomes in this
way something quite conceptual, algebrically speaking, as follows:

m: C(SO31) € My (C(S0s))

In general, going beyond stationarity is a difficult task, and among the results here,
let us mention the universal modelling questions for quantum permutations and quantum
reflections [33], [52], various results on the flat models for the discrete groups [21], [31],
questions regarding the Hadamard matrix models [14], [20], and the related fine analytic
study on the compact and discrete quantum groups [53], [82], [129], [131].

In what follows we will only discuss the Hadamard models, which are of particular
importance. Let us start with the following well-known definition:

Definition 16.19. A complex Hadamard matriz is a square matrizc
H e MN((C)
whose entries are on the unit circle, and whose rows are pairwise orthogonal.

Observe that the orthogonality condition tells us that the rescaled matrix U = H/v N
must be unitary. Thus, these matrices form a real algebraic manifold, given by:

Xy = My(T) NV NUy

The basic example is the Fourier matrix, Fy = (w*) with w = ¢ . More generally,
we have as example the Fourier coupling of any finite abelian group G, regarded via the
isomorphism G ~ G as a square matrix, Fg € Mqg(C):

2mi /N

Fo=<1,j Zicq.jeC
Observe that for the cyclic group G = Zy we obtain in this way the above standard
Fourier matrix Fly. In general, we obtain a tensor product of Fourier matrices Fly.

To be more precise here, we have the following result:

Theorem 16.20. Given a finite abelian group G, with dual group G = {x : G — T},
consider the Fourier coupling Fo : G x G — T, given by (i, x) — x(7).

(1) Via the standard isomorphism G =~ é, this Fourier coupling can be regarded as a
square matriz, Fg € Mq(T), which is a complex Hadamard matriz.

(2) In the case of the cyclic group G = Zy we obtain in this way, via the standard
identification Zy = {1,..., N}, the Fourier matriz Fy.

(3) In general, when using a decomposition G = Zy, X ... X Ly, , the corresponding
Fourier matriz s given by Fo = Fn, @ ... ® Fy, .
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Proof. This follows indeed from some basic facts from group theory:

(1) With the identification G ~ G made our matrix is given by (F&)iy = x(1), and the
scalar products between the rows are computed as follows:

<R;,R; >= ZX sz—j |G| - 6i;

X
Thus, we obtain indeed a complex Hadamard matrix.
(2) This follows from the well-known and elementary fact that, via the identifications
Zy = Zy = {1,..., N}, the Fourier coupling here is as follows, with w = ™/
(i,5) — w¥
(3) We use here the following well-known formula, for the duals of products:
AxK=HxEK
At the level of the corresponding Fourier couplings, we obtain from this:
Fpxk = Fn ® Fg

Now by decomposing G into cyclic groups, as in the statement, and by using (2) for
the cyclic components, we obtain the formula in the statement. U

There are many other examples of Hadamard matrices, with some being fairly exotic,
appearing in various branches of mathematics and physics. The idea is that the complex
Hadamard matrices can be though of as being “generalized Fourier matrices”, and this is
where the interest in these matrices comes from. See [75], [88], [125].

In relation with the quantum groups, the starting observation is as follows:
Proposition 16.21. If H € My(C) is Hadamard, the rank one projections

H:
P = Proj (#)

J
where Hy, ..., Hy € TV are the rows of H, form a magic unitary.

Proof. This is clear, the verification for the rows being as follows:

Hy sz_ Hkl
<H Hk> Z T Ly = Nog

zl

The verification for the columns is similar, as follows:

H H i
- ZH 'H ZHZ_N(S”“
kl

Thus, we obtain the result. U
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We can proceed now exactly in the same way as we did with the Weyl matrices, namely
by constructing a model of C'(S%), and performing the Hopf image construction. We are
led in this way to the following definition:

Definition 16.22. To any Hadamard matric H € My(C) we associate the quantum
permutation group G C S} given by the fact that C(G) is the Hopf image of

7:C(SY) = My(C)

( H;
uz; — Proj (E)
where Hy,...,Hy € TV are the rows of H.

Summarizing, we have a construction H — G, and our claim is that this construction
is something really useful, with G encoding the combinatorics of H. To be more precise,
our claim is that “H can be thought of as being a kind of Fourier matrix for G”.

There are several results supporting this claim, with the main evidence coming from
the following result, which collects the basic results regarding the construction H — G:

Theorem 16.23. The construction H — G has the following properties:

(1) For a Fourier matrix H = Fg we obtain the group G itself, acting on itself.
(2) For H € {F¢}, the quantum group G is not classical, nor a group dual.
(3) For a tensor product H = H' ® H" we obtain a product, G = G' x G".

Proof. All this material is standard, and elementary, as follows:

(1) Let us first discuss the cyclic group case, where:

H=Fy
Here the rows of H are given by H; = p’, where:
p=(Lww? . .. w""h

Thus, we have the following formula:

It follows that the corresponding rank 1 projections P;; = Proj(H;/H;) form a circu-
lant matrix, all whose entries commute. Since the entries commute, the corresponding
quantum group must satisfy G C Sy. Now by taking into account the circulant property
of P = (P;;) as well, we are led to the conclusion that we have G = Zy.

In the general case now, where H = Fg, with G being an arbitrary finite abelian
group, the result can be proved either by extending the above proof, of by decomposing
G =Zn, X ... X Ly, and using (3) below, whose proof is independent from the rest.
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(2) This is something more tricky, needing some general study of the representations
whose Hopf images are commutative, or cocommutative. For details here, along with a
number of supplementary facts on the construction H — G, we refer to [20].

(3) Assume that we have a tensor product H = H' ® H”, and let G,G’,G" be the
associated quantum permutation groups. We have then a diagram as follows:

C(S{) ® C(Syn) —= C(G") ® C(G") — My/(C) @ My»(C)

C(Sy) (@) My (C)

Here all the maps are the canonical ones, with those on the left and on the right coming
from N = N'N”. At the level of standard generators, the diagram is as follows:

/ /"
‘Pij ® ab

! 1/ ! 1
Uy @ Ugy, W;; @ Wy,

Uja,jb Wia,jb Pia,jb

Now observe that this diagram commutes. We conclude that the representation asso-
ciated to H factorizes indeed through C(G’) ® C(G"), and this gives the result. O

Going beyond the above result is an interesting question, and we refer here to [15], and
to follow-up papers. There are several computations available here, for the most regarding
the deformations of the Fourier models. We believe that the unification of all this with
the Weyl matrix models is a very good question, related to many interesting things.
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