
HAL Id: hal-02290732
https://hal.science/hal-02290732v1

Submitted on 17 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Complex Value Relations in Hive
Matthieu Pilven, Stefanie Scherzinger, Laurent d’Orazio

To cite this version:
Matthieu Pilven, Stefanie Scherzinger, Laurent d’Orazio. On Complex Value Relations in Hive. In-
ternational Workshop on Modeling and Management of Big Data, Nov 2019, Salvador, Bahia, Brazil.
�hal-02290732�

https://hal.science/hal-02290732v1
https://hal.archives-ouvertes.fr

On Complex Value Relations in Hive

Matthieu Pilven1,2, Stefanie Scherzinger1, and Laurent d’Orazio2

1 OTH Regensburg, Regensburg, Germany
stefanie.scherzinger@oth-regensburg.de

2 Univ Rennes, CNRS, IRISA, France
laurent.dorazio@irisa.fr

Abstract. In this paper, we raise the question how data architects
model their data for processing in Apache Hive. This well-known SQL-on-
Hadoop engine supports complex value relations, where attribute types
need not be atomic. In fact, this feature seems to be one of the promi-
nent selling points, e.g., in Hive reference books. In an empirical study,
we analyze Hive schemas in open source repositories. We examine to
which extent practitioners make use of complex value relations and ac-
cordingly, whether they write queries over complex types. Understanding
which features are actively used will help make the right decisions in set-
ting up benchmarks for SQL-on-Hadoop engines, as well as in choosing
which query operators to optimize for.

Keywords: Hive · Complex value relations · Empirical study.

1 Introduction

Originally a Facebook-internal data warehouse [17], the SQL-on-Hadoop engine
Hive is now an official Apache project. After only a decade of development,
Apache Hive is listed among the top-10 relational database systems on the DB-
Engines Ranking website3, alongside IBM DB2 and Oracle Database. Yet the lat-
ter are commercial products with development histories up to four times longer.
Part of this success is owed to the fact that working with Hive feels very familiar:
– Hive users conveniently interact with a relational data model, yet the raw

data is typically stored in the Hadoop Distributed File System (HDFS).
– While the query language HiveQL closely resembles the SQL dialect of

MySQL [18], queries are executed as scalable MapReduce workflows [17].
Moreover, Hive relations need not be in first normal form, where all attribute
values are atomic. Rather, the data model allows for (a restricted form of) com-
plex value relations: A tuple constructor struct declares tuples. The complex
types map and array declare maps and arrays, concepts familiar from program-
ming languages. These constructors can be applied recursively, to an arbitrary
level of nesting. This allows ingestion of data that already arrives in nested form
(e.g., in JSON format). Further, denormalization accelerates query processing in

3
https://db-engines.com/de/ranking/relational+dbms, as of September 2019.

https://db-engines.com/de/ranking/relational+dbms

2 Pilven, Scherzinger, d’Orazio

1 CREATE TABLE employees (

2 name STRING,

3 salary FLOAT,

4 subordinates ARRAY<STRING>,

5 deductions MAP<STRING, FLOAT>,

6 address STRUCT<street:STRING, CITY:STRING, state:STRING, zip:INT>

7);

8

9 SELECT name, subordinates[0] FROM employees;

10 SELECT explode(subordinates) AS sub FROM employees;

11

12 SELECT name, sub FROM employees

13 LATERAL VIEW explode(subordinates) subView AS sub;

Fig. 1. A Hive table declaration and queries, taken from [5].

data warehouse settings, where data is updated rarely (if at all). Complex value
relations are also supported in related systems, such as Impala [12] and Presto4.

Example 1 (From [5]). The table declaration shown in Figure 1 captures employ-
ees with their name, salary, and their nested subordinates. It further captures
employee-specific tax deductions, as well as their home address. The HiveQL syn-
tax for accessing a field in an array is straightforward, as seen in line 9. HiveQL
offers table generating functions: accordingly, the query in line 10 produces one
tuple for each element of array subordinates. To list pairs of a manager and a
subordinate, we need to declare a LATERAL VIEW, as seen in lines 12 and 13. �

Contributions. The support for complex value relations is one of the major
selling points for using Hive, c.f. [5]. Yet it is an open question whether practi-
tioners make use of this feature. We therefore explore complex value relations in
Hive by analyzing open source repositories on GitHub. There is a tradition of
empirical studies on database schemas in open source projects, typically in the
context of schema evolution, e.g. [7,15]. However, we are not aware of any studies
on the dissemination of complex value relations in SQL-on-Hadoop processing.
In particular,
– we formalize complex value relations in Hive and point out connections to

the theory of V-relations [1], dating back to the 80s.
– We identify 133 unique and relevant GitHub repositories with a total of over

900 table declarations. We then identify complex value relations in Hive
schemas, as well as the occurrence of matching operators in HiveQL queries.

– We discuss our findings w.r.t. existing benchmarks targeted at Hive.

Structure. In Section 2, we provide formal preliminaries. In Section 3, we lay
down our methodology. In Section 4, we present the detailed study results, which
we discuss in Section 5. We list threats to the validity of our study in Section 6.
Section 7 gives an overview over related work. We then conclude with Section 8.

4
https://prestosql.io/

https://prestosql.io/

On Complex Value Relations in Hive 3

2 Preliminaries

We recap the definition of complex value relations and formalize complex types
in Hive. We then point out a connection between these concepts.

Complex value relations [1]. In complex value relations, attribute values need
not be atomic. Intuitively, the data structure makes use of two constructors,
which can be applied recursively, (1) a tuple constructor to make tuples, and
(2) a set constructor to make sets of tuples, and thus relations.

Underlying the notion of a schema, there is the notion of complex types (or
sorts). The abstract syntax for complex types is shown next:

τ = dom | 〈B1 : τ, . . . , Bk : τ〉 | {τ},

where k ≥ 0, and B1, . . . , Bk are distinct attribute names. Intuitively, an element
of dom is a constant, an element of 〈B1 : τ, . . . , Bk : τ〉 is a k-tuple with an
element of type τi in entry Bi for each i. We refer to [1] for the formal definition
of JτK, the set of values of type τ , and merely operate on the level of examples.
We define a complex value relation of type τ to be a finite set of values of type τ .

Example 2. For Figure 1 (up to line 3), the type (abstracting from string and
float) is {〈name : dom, salary : dom〉}. We state a value of this type: {〈name :
"John Doe", salary : 100000.0〉, 〈name : "Mary Smith", salary : 80000.0〉}. �

Example 3. Below, we consider a complex type for declaring a non-flat complex
value relation (equation 1), and a value of this type (equation 2):

{〈name : dom, salary : dom, subordinates : {〈key : dom, value : dom〉}〉}. (1)

{〈name : "John Doe", salary : 80000.0, (2)

subordinates : {〈key : 0, value : "Mary Smith"〉, 〈key : 1, value : "Tod Jones"〉}〉,
〈name : "Mary Smith", salary : 80000.0, subordinates : {}〉,
〈name : "Todd Jones", salary : 70000.0, subordinates : {}〉} �

Figure 2 shows a visualization of the complex type from the above example
as a finite tree. The tuple constructor is denoted by a node labeled × and the set
constructor is denoted by a node labeled ∗. Outgoing edges from tuple nodes are
labeled, while set nodes have a single child. Based on this tree visualization, it is

*

×

*

×

domdom

key value

domdom

name salary subordinates

Fig. 2. The complex type from Example 3 as a tree, with a set height of 2.

4 Pilven, Scherzinger, d’Orazio

intuitive to define the set height [1] of a complex type as the maximum number
of set constructors in any branch. In the tree shown, the set height is 2.

Hive types. The Hive data model offers a second tuple constructor via struct.
While it does not allow to nest with a proper set constructor, we can nest maps
and arrays. We declare the abstract syntax for Hive type τH as

τH = {〈B1 : τ, . . . , Bk : τ〉}
τ = dom | map <τ, τ> | array <τ> | struct <B1 : τ, . . . , Bk : τ>.

Thus, the top-level type is always a set of tuples. Underneath, maps, arrays,
and structs may be nested arbitrarily. Given a flat Hive relation over type τH ,
we say the Hive nesting level is 1. For any (recursive) declaration of a map, an
array, or a struct, the Hive nesting level increases by one.

The set of values of a Hive type τH is denoted by JτHK and declared next.
The values for the tuple and set constructor are defined the same as for complex
types. Below, we equate structs with the tuple constructor. Arrays and maps are
encoded as sets of key-value pairs:

Jstruct <B1 : τ1, . . . , Bk : τk>K = J〈B1 : τ1, . . . , Bk : τk〉K
Jmap <τk, τv>K = {{〈key : k1, value : v1〉, . . . , 〈key : kj , value : vj〉}

| j ≥ 0, ki ∈ JτkK, vi ∈ JτvK, i ∈ [1, j]}
Jarray <τ>K = {{〈key : 1, value : v1〉, . . . , 〈key : j, value : vj〉}

| j ≥ 0, vi ∈ JτK, i ∈ [1, j]}

Then, a Hive relation of type τH is a value of type τH .

Hive relations as Verso-relations. The Hive data model does not allow nest-
ing with a proper set constructor, a limitation has also been observed in [16].
Nevertheless, a Hive type may be generalized to a complex value type. For in-
stance, we may generalize a map or an array to a set of key-value tuples:

Jmap <τk, τv>K ⊂ J{〈key : τk, value : τv〉K
Jarray <τ>K ⊂ J{〈key : dom, value : τ〉K.

Note that the generalized type allows non-consecutive and even repetitive array
indexes, so it really defines a superset of values.

Given this generalization, we can relate Hive relations to a data model ex-
plored in earlier research: We may safely assume that all recursive nestings of
structs with structs have been flattened to a single struct. This can be done with-
out loss of information. Then, the above generalization of Hive types to complex
value types actually produces Verso-relations [1]. These data structures have the
appealing property that the information contained can be equivalently repre-
sented using (several) flat relations. This imposes a polynomial bound on the
cardinality of a set in a Verso-relation, which is a nice property for the practical
evaluation of tuple constructors (such as explode).

On Complex Value Relations in Hive 5

Latest commit (days) Total LoC DDL-LoC #Commits

0 -

10 -

10² -

10³ -

10 -

10 -

10 -

10 -

- 0

- 10

- 10²

- 10³

- 10

- 10

- 10

- 10

Fig. 3. Overview of the analyzed repos-
itories (axes with log scales).

yes no
Query operators over complex types

no
ye

sCo
m

pl
ex

 v
al

ue
 re

la
tio

ns

5

13

108

7

Fig. 4. Repositories with complex value
relations vs. queries over complex types.

3 Methodology

3.1 Context Description

We used Google BigQuery5 to identify relevant open source repositories on
GitHub, as of July 16th, 2019. This cloud service allows for querying the GitHub
open data collection, mostly non-forked projects with an open source license. We
consider a repository relevant if it contains at least one file with ending .hql,
which commonly denotes a file with HiveQL statements. This revealed 417 repos-
itories. We discarded any projects that were registered as forks of other repos-
itories, which leaves 158 (the GitHub open data collection is not free of forks).
We further eliminated 25 repositories that had no table declarations in hql-files.

Figure 3 characterizes the 133 analyzed repositories (for now, we disregard
the colors): We report the days passed since the latest commit, the total lines
of code (LoC), and DDL-LoC, the lines of code for table declarations (c.f. Sec-
tion 3.3). We further report the number of commits. The lines of code and the
number of commits are indicators of project maturity. The lines of code of schema
declarations are generally considered a proxy metric for schema complexity [10].

3.2 Research Questions

RQ1: How common are complex value relations in Hive schemas?
RQ2: What is the usage of query operators over complex types?

3.3 Analysis Process

Parsing Hive schemas. We wrote a Python-based parser for processing hql-
files. One hql-file was missing a semicolon as a delimiter. We fixed this manually

5
https://cloud.google.com/bigquery/

https://cloud.google.com/bigquery/

6 Pilven, Scherzinger, d’Orazio

Table 1. The subset of repositories with (non-flat) complex value relations.

Repository #CVRs HNL SH #Cont

1 sixeyed/hive-succinctly 3 out of 16 3 2 1
2 jbrambleDC/predict_restaurant_success 2 out of 3 3 2 1

3 flaminem/flamy 21 out of 51 2 2 1
4 yhemanth/hive-samples 1 out of 22 2 2 1
5 Benjguin/UnlockLuxury 1 out of 15 2 2 2
6 DXFrance/data-hackathon 1 out of 15 2 2 1
7 mellowonpsx/ESCA 2 out of 7 2 1 1
8 Sicmatr1x/Sicmatr1x.github.io 1 out of 7 2 2 1
9 PolymathicCoder/Avempace 4 out of 5 2 2 1

10 airbnb/aerosolve 1 out of 4 2 2 21
11 gliptak/hadoop-course 1 out of 4 2 2 1
12 EXEM-OSS/Flamingo2 1 out of 3 2 2 1

to include this file in our analysis. We extract all CREATE TABLE statements and
pretty-print them such that one attribute is declared per line, like in Figure 1.
This is the pre-processing step in measuring DDL-LoC. Note that we ignore all
declarations of the form CREATE TABLE LIKE <T> and CREATE TABLE AS <Q>,
of which there are 17 and 117 respectively. We justify this as follows: With the
first, we merely create copies of tables that we already analyze, so there is little
added value. The second construct is commonly used for storing intermediate
results, like one would declare a materialized view. We argue that these are not
the base tables holding the original data, and therefore choose to ignore them in
our analysis. Along the same line of arguments, we do not analyze CREATE VIEW

statements, where complex types may be introduced over flat base relations.

Analyzing HiveQL queries. The Hive query language offers several con-
structs to deal with complex types6, such as (1) collection functions (e.g.,
the operation array_contains(A,v) checks whether array A contains value v),
(2) complex type constructors (e.g. for creating a map), and (3) built-in table-
generating functions (e.g., json_tuple for generating a relational tuple from a
JSON string). (4) Further, there are built-in functions for XPath-style queries.7

We grep for SELECT-statements with these constructs in hql-files. Thus, we
cover a wide range of operators and only exclude access to single fields, such as
A[i] to access the ith field of array A, or S.c to access component c of struct S.8

4 Detailed Study Results

4.1 RQ: How common are complex value relations in Hive schemas?

In the following, whenever we mention complex value relations, we assume non-
flat relations, and explicitly refer to flat relations otherwise. Only 9 % of all

6
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF

7
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+XPathUDF

8 These operators are difficult to match reliably by keyword search alone.

sixeyed/hive-succinctly
jbrambleDC/predict_restaurant_success
flaminem/flamy
yhemanth/hive-samples
Benjguin/UnlockLuxury
DXFrance/data-hackathon
mellowonpsx/ESCA
Sicmatr1x/Sicmatr1x.github.io
PolymathicCoder/Avempace
airbnb/aerosolve
gliptak/hadoop-course
EXEM-OSS/Flamingo2
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+XPathUDF

On Complex Value Relations in Hive 7

analyzed repositories contain complex value relations, and are listed in Table 1:
next to the repository, we state how many of the relations analyzed are non-flat
(column #CVRs). For the first repository, this means 3 out of 16 relations. We
state the maximum Hive nesting level (HNL), set height (SH), and the number
of contributors (#Cont). The entries are sorted hierarchically, by HNL and the
total number of tables analyzed. While Hive does not restrict the nesting level,
the maximum HNL observed is only 3. The set height is at most 2, so there
is not a single recursive nesting of maps or arrays. Repository 2 is one of the
few repositories that is actually a data analytics project, it predicts restaurant
success. Further, Repository 8 analyzes server logs. Repository 10 is a machine
learning library where complex value relations hold training data. The other
repositories seem experimental, as suggested by names like hadoop-course and
hive-samples, some even contain the tutorial table declared in Figure 1. Most
are for personal development, aerosolve stands out with 21 contributors.

In Figure 3, we show these 12 repositories in context (we recommend that
this figure is viewed in color). The red lines denote the repositories from Table 1.
What is common to these repositories is that (1) the latest commit dates back
half a year or more. Thus, projects undergoing active development have flat
relations only. (2) Further, all repositories from Table 1 have schema declarations
spanning at least 57 DDL-LoC, which is more than in 40 % of all repositories.

Results. We find little evidence of complex value relations being used. Mostly,
the developers merely experiment with complex types. Moreover, even though
Hive does not restrict the nesting level, the maximum observed is 3. Of course,
complex types may also be introduced in views, as discussed next.

4.2 RQ: What is the usage of query operators over complex types?

In total, we have analyzed 2,771 HiveQL queries in hql-files. The mosaic plot in
Figure 4 reads as follows: Along the vertical, we distinguish the repositories that
use complex value relations from those that declare only flat relations. Along
the horizontal, we distinguish repositories with queries over complex types. The
largest area with 108 repositories represents the repositories that have neither
complex value relations, nor queries over complex types. Among the repositories
with complex value relations, only about half contain matching queries (repos-
itories 5–9). Interestingly, 13 repositories have no complex value relations, but
queries over complex types: some evaluate XPath over string-valued attributes,
or views introduce complex types and the queries operate over these views.

Next, we list all observed query operators over complex types, ordered by
the number of occurrence: explode: 27, lateral_view: 26, xpath_string: 6,
json_tuple: 5, size: 5, xpath_int: 4, stack:1. Some words on operators that
we have not introduced yet. stack breaks down tuples into several, smaller-sized
tuples. size returns the number of elements in a map or an array. While we have
searched for 20 different syntactic constructs, we have only found evidence of 7.

Results. We found query operators over complex types to be rare. There are
even repositories with complex value relations but no matching queries. More-

8 Pilven, Scherzinger, d’Orazio

Table 2. Database benchmarks used to also benchmark Hive.

Benchmark
(Non-flat)

CVRs

Queries over
complex types

TPC-H11, TPC-DS11 , Hive-600 [14] , ,
HiBench [9], SmartBench9 , ,
Pavlo et al [13] , ,
Hive-testbench10 , ,
BigBench [8], TPC-xbb11 X X
UniBench [19] X X

over, despite the richness of the HiveQL query language, authors of queries seem
to restrict themselves to a chosen few operators over complex types.

5 Discussion

In the repositories analyzed, the majority of schemas is actually in first normal
form. This matches our impression from discussions with practitioners. We have
several conjectures: (1) One reason may be that when data is ingested into Hive
from a relational data warehouse, the data is “flat” to start with. (2) A further
conjecture is that different tools might share access to the data in HDFS, but not
all tools can handle complex types. Thus, data architects may be less inclined to
declare complex value relations. (3) Queries over complex types tend to become
complex. In fact, repository 2 in Table 1 contains a “flat” view over a complex
value relation, probably to facilitate query formulation.

In Table 2, we list benchmarks commonly used for Hive. Interestingly, few
include (non-flat) complex value relations and matching queries. BigBench spec-
ifies a log processing scenario, with an explode statement in a query over semi-
structured data. This matches the results of our study, as we found explode to
occur most frequently (c.f. Section 4.2). UniBench, in contrast, contains multi-
model data and is not restricted to complex value relations, e.g., it also includes
queries over graph and key-value data. However, there are several benchmarks
targeted at Hive that do not include complex value relations or queries over
complex types. This mismatch between our findings and the schemas in these
benchmarks motivates future and larger-scale studies.

6 Threats to Validity

Construct validity. (1) In identifying relevant repositories, we rely on the
convention that CREATE TABLE statements are contained in hql-files. However,
(1a) CREATE TABLE statements can be embedded in the application code. While
this is certainly a limitation of our methodology, ignoring SQL statements in ap-
plication code is common in virtually all earlier empirical studies on relational

9
https://github.com/bomeng/smartbench

10
https://github.com/hortonworks/hive-testbench

11
http://www.tpc.org/

https://github.com/bomeng/smartbench
https://github.com/hortonworks/hive-testbench
http://www.tpc.org/

On Complex Value Relations in Hive 9

schemas, e.g. [7,15]. (1b) Some CREATE TABLE statements for Hive are contained
in sql-files, rather than hql-files: if we also were to analyze sql-files, then repos-
itory 7 in Table 1 would have maximum HNL 3. We carefully assessed the risk
of ignoring sql-files: Across all analyzed repositories, we count 1,006 hql-files
and even 5,870 sql-files. At first, this seems promising: In Table 1, we could add
two further, personal-development projects with HNL 2 and SH 2. Yet while
the table would grow by two entries, the maximum Hive nesting level and set
height would remain unchanged. Thus, there is little information gain regarding
research question 1. Regarding research question 2, analyzing the query con-
structs in sql-files increases the absolute numbers, but not the relative ranking
of occurrences (e.g., explode being the most frequent). In particular, no new
constructs are found. Again, there is little information gain.

At the same time, there is considerable risk in including sql-files: For in-
stance, cloudera/hue is a SQL workbench that supports several database sys-
tems. Analyzing the contents of sql-files files would introduce considerable bias
into our analysis. Considering this risk, we restrict ourselves to hql-files.

(2) Similarly, if an Impala-based repository contains hql-files, we falsely
include this in our analysis. However, we consider this a minor threat, as we have
carefully inspected the repositories from Table 1 for signs that they might not
be Hive projects. (3) We currently do not analyze ALTER TABLE statements.
We have verified that while ALTER TABLE statements occur 489 times, none
of them introduce complex types. Thus, this threat can be safely ignored.

External validity. It is a fundamental question how representative studies on
open source projects are [4, 11]. Actually, we have encountered Stack Overflow
questions about declaring tables with deep nesting levels, so some developers go
beyond HNL 3, yet we do not see evidence of this in our data.

7 Related Work

There is a long tradition of research on normal forms and also complex value
databases, dating back to the 80s [1]. Recent experiments have shown (for Spark)
that denormalization into complex value relations can indeed speed up query
processing in Big Data scenarios [2].

In software engineering research, analyzing open source applications is an
established practice [4]. It is only natural that the availability of public code
repositories has enabled empirical studies on database schemas. For instance,
there is a line of studies on schema evolution, e.g. [7,15]. There is also a history of
empirical studies on real-world data in nested data models, such as DTDs [6] and
XML Schema [3]. These studies are very similar to ours in their methodology.

8 Conclusion and Future Work

By analyzing real-world Hive schemas, we are able to show that complex value
relations occur to only a small extent and that nesting is shallow.

10 Pilven, Scherzinger, d’Orazio

In future work, we plan to conduct a larger-scale study that involves more
data, and further SQL-on-Hadoop engines, to obtain a wider perspective.

Acknowledgements: This work was supported by the Franco-German Youth Office

(FGYO), which funded Matthieu Pilven’s internship at OTH Regensburg. This project

was further supported by the Deutsche Forschungsgemeinschaft (DFG, German Re-

search Foundation), grant #385808805, as well as a Google Cloud Platform Research

Credit award. We thank Uta Störl for her feedback on an earlier version of this paper.

References

1. Abiteboul, S., Hull, R., Vianu, V. (eds.): Foundations of Databases: The Logical
Level. Addison-Wesley Longman Publishing Co., Inc., 1st edn. (1995)

2. Arrascue Ayala, V.A., Koleva, P., Alzogbi, A., Cossu, M., et al.: Relational
Schemata for Distributed SPARQL Query Processing. In: Proc. SBD’19 (2019)

3. Bex, G.J., Neven, F., Van den Bussche, J.: DTDs Versus XML Schema: A Practical
Study. In: Proc. WebDB’04 (2004)

4. Bird, C., Menzies, T., Zimmermann, T.: The Art and Science of Analyzing Software
Data. Morgan Kaufmann Publishers Inc., 1st edn. (2015)

5. Capriolo, E., Wampler, D., Rutherglen, J.: Programming Hive. O’Reilly Media,
Inc., 1st edn. (2012)

6. Choi, B.: What are real DTDs like? In: Proc. WebDB’02 (2002)
7. Curino, C.A., Tanca, L., Moon, H.J., Zaniolo, C.: Schema evolution in Wikipedia:

Toward a Web Information System Benchmark. In: Proc. ICEIS’08 (2008)
8. Ghazal, A., Rabl, T., Hu, M., Raab, F., et al.: BigBench: Towards an Industry

Standard Benchmark for Big Data Analytics. In: Proc. SIGMOD’13 (2013)
9. Huang, S., Huang, J., Dai, J., Xie, T., et al.: The HiBench benchmark suite: Char-

acterization of the MapReduce-based data analysis. In: Proc. ICDEW’10 (2010)
10. Jain, S., Moritz, D., Howe, B.: High variety cloud databases. In: Proc. ICDE Work-

shops’16 (2016)
11. Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., et al.: The Promises and

Perils of Mining GitHub. In: Proc. MSR’14 (2014)
12. Kornacker, M., Behm, A., Bittorf, V., Bobrovytsky, T., et al.: Impala: A Modern,

Open-Source SQL Engine for Hadoop. In: Proc. CIDR’15 (2015)
13. Pavlo, A., Paulson, E., Rasin, A., Abadi, D.J., et al.: A comparison of approaches

to large-scale data analysis. In: Proc. SIGMOD’09 (2009)
14. Poess, M., Rabl, T., Jacobsen, H.: Analysis of TPC-DS: the first standard bench-

mark for SQL-based big data systems. In: Proc. SoCC’17 (2017)
15. Qiu, D., Li, B., Su, Z.: An Empirical Analysis of the Co-evolution of Schema and

Code in Database Applications. In: Proc. ESEC/FSE’13 (2013)
16. Sauer, C., Härder, T.: Compilation of Query Languages into MapReduce.

Datenbank-Spektrum 13(1), 5–15 (2013)
17. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., et al.: Hive: A Warehousing Solution

over a Map-Reduce Framework. Proc. VLDB Endow. 2(2), 1626–1629 (Aug 2009)
18. White, T.: Hadoop: The Definitive Guide. O’Reilly Media, Inc., 3rd edn. (2009)
19. Zhang, C., Lu, J., Xu, P., Chen, Y.: UniBench: A Benchmark for Multi-model

Database Management Systems. In: Proc. TPCTC’18 (2018)

	On Complex Value Relations in Hive

