

Inflammation, DNA damage and Staphylococcus aureus infection

Nadejda Berkova

UMR1253 STLO (Science Technologie du Lait et de l'Oeuf) INRA Agrocampus Ouest, Rennes)

INFLAMMATION

Cause of inflammation	 Microbial infection Noxious substances Tissue stress Tissue injury
Physiological purpose	 Defense from microbial infection Expulsion of noxious substances Tissue repaire Adaptation to stress
Outcome	 Tissue dammage Autoimmune diseases Disease of homeostasis Fibrosis, metaplasie, cancer

HOMEOSTATIS AND INFLAMMATION

Metchnikoff's theory of inflammation

Nature Reviews | Molecular Cell Biology

.04

Alfred Tauber

Anti-inflammatory cytokines

INFECTION MEDIATED-INFLAMMATION

Pathogens induce various levels of inflammation in the host

Inflammation caused by infection leads to increased production of mutagenic compounds as reactive oxygen species (ROS)/reactive nitrogen species (RNS) and subsequent oxidative DNA damage

These in turn cause further inflammation and exacerbation of DNA damage

CHRONIC INFLAMMATION AS A DRIVING FORCE IN THE GENESIS OF DNA DAMAGE

AGRO CAMPUS

OUEST

THE IMMUNE SYSTEM RESPONDS TO DNA DAMAGE

Premature aging

Cancer

Chronic inflammation

Damaged endogenous DNA triggers inflammatory gene expression.

DNA damage response (DDR) orchestrates DNA damage checkpoint activation

Staphylococcus aureus

Gram-positive bacterium that is carried by up to 50% of healthy people

Staphylococcus aureus is responsible for a wide range of infections in human and animals

Nature Reviews | Microbiology

Human:

Pneumonia, osteomyelitis, meningitis, endocarditis, sepsis, chronic infections as bone and joint infections

Dairy cattle: Chronic mastitis

S. aureus, FACULTATIVE INTRACELLULAR PATHOGEN

Foster T. et al, Nat Rev Microbio, 2016

.011

Many pathogens such as Helicobacter sp., Chlamydia sp., Salmonella sp., or Escherichia coli induce DNA damage in the host, demonstrating that it may lead to genomic alterations and cancer-associated transformation

Does Staphylococcus aureus induce DNA damage in host cells?

.013

S. aureus-induced DNA damage

S. aureus induces DNA damage

HeLa **vH2AX vH2AX** γH2AX Control Control 6 h Control Control 6 h 20 h S. aureus MOI 1:25 S. aureus MOI 1:50 Etoposide 6 h **Etoposide Etoposide** Etoposide 20 h Cell count S. aureus S. aureus S. aureus γH2AX [™]γH2AX is a marker for DNA damage in the absence of apoptosis

S. aureus triggers DNA repair

MG-63

HeLA

*****53BP1 is the early repair protein

To define whether the formation of 53BP1 foci was associated with a canonical DDR comprising the triggering of the ATM kinase-signaling pathway, HeLa and MG-63 cells were treated with the ATM inhibitor KU-55933.

.016

STLO

20 h

AGRO

OUEST

CAMPUS

CARN

OUALIMENT

S. aureus prompts a ROS production, which induces 8-oxoG DNA lesion

HeLA Control 6 h Etoposide 6 h S. aureus MW2 6 h Control 24 h S. aureus MW2 24 h Etoposide 24 h

> Mutagenic lesion 8-oxoG is most often involved in oxidative DNA damage

8-oxoG

Are S. aureus virulence factors PSMs and LPL involved in DNA damage?

Lipoproteins

A pathogenicity island that contains a cluster of lipoprotein-encoding genes, lpl

Membrane bound virulence factors

Phenol-soluble modulins peptides (PSMs) define the virulence potential of *S. aureus*.

OVERVIEW OF PHENOL-SOLUBLE MODULIN ACTIVITIES

STLO

Nature Reviews | Microbiology

.021

Peschel and Michael Otto, 2013

CARNO

OUALIMENT

AGRO

OUEST

CAMPUS

S. aureus LAC (WT) pTX Δ 16 contains plasmid pTX Δ 16 (blue line) PSM-deficient deletion mutant LAC $\Delta psm\alpha\beta hld$ pTX Δ 16 (yellow line) Complemented mutant LAC $\Delta psm\alpha\beta hld$ pTX Δ α1-4 (blue-green line, b) LAC $\Delta psm\alpha\beta hld$ pTX $\Delta\beta$ (blue-green line, c) and LAC $\Delta psm\alpha\beta hld$ pTX Δ hld (blue-green line d) Constructed in the Michael Otto laboratory, NIH, USA

.022

After crossing the cytoplasmic membrane Lgt (prolipoprotein diacyl glyceryl transferase) transfers a diacylglyceride to the polypeptide chain and Lsp (lipoprotein signal peptidase) cleaves the signal peptide

.023

Mutant USA300 Δlpl in which the entire *lpl* cluster was deleted and the complemented mutant USA300 Δlpl (pTX30-*lpl*) were constructed in the Fritz Goetz laboratory, University of Tubingen, Germany

S. aureus clinical isolats

Three couples of *S. aureus* isolates were selected from patients P1, P2, P3 who were diagnosed with initial acute (i) and recurrent (r) staphylococcal BJI

Patient P1	Patient P2	Patient P3	
45i	47i	51i	
46r	48r	52r	

Genomic comparison did not reveal mutations in the major regulatory systems (*agr, sar, sigma* genes) or in virulence genes between initial and recurrent strains

S. aureus recurrent isolates express a lower amount of Lpls than initial acute isolates

SCIENTIFIC **Reports**

OPEN Staphylococcus aureus induces DNA damage in host cell

Martine Deplanche¹, Nassim Mouhali¹, Minh-Thu Nguyen², Chantal Cauty¹, Frédéric Ezan³, Alan Diot^{4,5}, Lesly Raulin⁶, Stephanie Dutertre⁶, Sophie Langouet³, Patrick Legembre⁷, Frederic Taieb⁸, Michael Otto ⁹, Frédéric Laurent^{4,5}, Friedrich Götz², Yves Le Loir ¹& Nadia Berkova ¹

SCIENTIFIC REPORTS (2019) 9:7694 https://doi.org/10.1038/s41598-019-44213-3

Staphylococcus aureus Lpl Lipoproteins Delay G2/M Phase Transition in HeLa Cells

Minh-Thu Nguyen¹, Martine Deplanche², Mulugeta Nega¹, Yves Le Loir², Loulou Peisl¹, Friedrich Götz¹⁺ and Nadia Berkova²⁺

December 2016 | Volume 6 | Article 201

Level of DNA damage

Does *Staphylococcus aureus* induce cell cycle arrest in host cells?

CELL CYCLE ANALYSIS

G2 (Gap 2)		G1 (Gap 1)
	EUKARYOTIC CELL CYCLE	
		Cells that
S phase (DNA synth	nesis)	cease division

M (mitosis)

FACS	G0/G1		
8- 	<u>Î</u>		
mber			
N			
ຶ່		_	G2/M
		S	~

2n

	State	Phase	Abbre viation	Description
t	quiescent/ senescent	Gap0	G ₀	A resting phase where the cell has left the cycle and has stopped dividing.
		Gap1	G ₁	Cells increase in size in Gap 1. The G_1 checkpoint control mechanism ensures that everything is ready for DNA synthesis.
		Synthesis	S	DNA replication
		Gap2	G ₂	During the gap between DNA synthesis and mitosis, the cell will continue to grow. The \mathbf{G}_2 checkpoint control mechanism ensures that everything is ready to enter the M (mitosis) phase and divide.
	Cell division	Mitosis	М	Cell growth stops. Division into two daughter cells. A Mitosis checkpoint iensures that the cell is ready to complete division.

Cyclomodulins is a term for bacterial

effectors that interfere with the eukaryotic cell cycle and may affect pathogen virulence.

DNA Content (PI)

150

120

4n

S. aureus induced a G2/M phase delay

HeLa

Two key classes of regulatory molecules, cyclins and cyclin-dependent kinases.

Dephosphorylation of Cdk1 at the late G2 phase activates Cdk1/cyclinB1 complex and triggers mitotic entry.

S. aureus-induced accumulation of phosphorylated Cdk1

Intracellular bacteria in asynchronous, G1- and G2-phase enriched HeLa cells

OPEN CACCESS Freely available online

Staphylococcus aureus-Induced G2/M Phase Transition Delay in Host Epithelial Cells Increases Bacterial Infective Efficiency

Ludmila Alekseeva^{1, 2,3}°, Lucie Rault^{2,3}°, Sintia Almeida^{2,3,4}, Patrick Legembre⁵, Valérie Edmond⁵, Vasco Azevedo⁴, Anderson Miyoshi⁴, Sergine Even^{2,3}, Frédéric Taieb⁶, Yannick Arlot-Bonnemains⁷, Yves Le Loir^{2,3}, Nadia Berkova^{2,3}*

May 2013 | Volume 8 | Issue 5 | e63279

Gel-filtration chromatography of *S. aureus* supernatants

.036

Detection of PSMα peptide derivatives in *S. aureus* chromatography fractions

Uniprot Entry	Gene Name	Description	Peptide sequence	X!Tandem e-value	SEC Fractions identification
PSMA1_STAAW	psmA1	Phenol-soluble modulin alpha 1	GIIKVIKS	1,7E-3	23
PSMA1_STAAW	psmA1	Phenol-soluble modulin alpha 1	-soluble modulin alpha 1 IIAGIIKV 1,2E-2		23, 24
PSMA1_STAAW	psmA1	Phenol-soluble modulin alpha 1	IIKVIKS	1,8E-2	23, 24
PSMA1_STAAW	psmA1	Phenol-soluble modulin alpha 1	LIEQFTGK	1,1E-2	23, 24, 25
PSMA1_STAAW	psmA1	Phenol-soluble modulin alpha 1	IIAGIIKVIKS	3,2E-5	23, 25
PSMA3_STAAW	psmA3	Phenol-soluble modulin alpha 3	FKDLLGKF	8,8E-4	23, 24, 25
PSMA3_STAAW	psmA3	Phenol-soluble modulin alpha 3	AKLFKF	4,7E-2	24, 25, 26
PSMA3_STAAW	psmA3	Phenol-soluble modulin alpha 3	FFKDLLGK	3,6E-2	25
PSMA3_STAAW	psmA3	Phenol-soluble modulin alpha 3	FVAKLF	3,6E-2	25
PSMA3_STAAW	psmA3	Phenol-soluble modulin alpha 3	FVAKLFKF	4,7E-3	26
PSMA2_STAAW	psmA2	Phenol-soluble modulin alpha 2	GIIKFIKG	4,6E-2	23
PSMA2_STAAW	psmA2	Phenol-soluble modulin alpha 2	IIAGIIKF	1,1E-3	23
PSMA2_STAAW	psmA2	Phenol-soluble modulin alpha 2	IIKFIKGL	5,1E-3	23
PSMA4_STAAW	psmA4	Phenol-soluble modulin alpha 4	IIDIFAK	4,2E-4	23, 24, 26
PSMA4_STAAW	psmA4	Phenol-soluble modulin alpha 4	IDIFAK	8,2E-3	24

PSMα1 and PSMα2 induce the G2/M phases transition delay

S. aureus-induced G2/M transition delay is strain-dependent

mRNA levels of HBD-1, -3 and -9 in PSM α 1-treated cells

.042

The FASEB Journal • Research Communication

Phenol-soluble modulin α induces G2/M phase transition delay in eukaryotic HeLa cells

Martine Deplanche,^{**,†,1} Rachid Aref El-Aouar Filho,^{**,†,‡,1} Ludmila Alekseeva,^{**†,§} Emilie Ladier,^{**,†} Julien Jardin,^{**,†} Gwénaële Henry,^{*,†} Vasco Azevedo,[‡] Anderson Miyoshi,[‡] Laetitia Beraud,[¶] Frederic Laurent,^{¶,||} Gerard Lina,^{¶,||} François Vandenesch,^{¶,||} Jean-Paul Steghens,^{||} Yves Le Loir,^{**,†} Michael Otto,[#] Friedrich Götz,^{**} and Nadia Berkova^{**,†,2}

29, 1950-1959 (2015). www.fasebj.org

CONCLUSIONS

S. aureus triggers ROS-mediated DNA damage thus affecting the genome integrity

DNA damage depends on the balance between the levels of PSM α and LpIs

Host cells detect the DNA damage and transiently block cell cycle progression in the G2/M phases

PSMs α and membrane-anchored LpIs are responsible for a G2/M arrest

S. aureus-induced cell cycle alteration is associated with an increased bacterial intracellular proliferation as well as with the decreased production of antibacterial peptides

These findings open a new avenue for the development of innovative therapeutic strategies that either suppress DNA damage or boost DNA repair during *S. aureus* infection

Deplanche M, Ladier E, Mouhali N, Jardin J, Henry G, Cauty C, Le Loir Y **INRA, UMR1253,** STLO, Rennes.

SCIENCE & IMPACT

Belo Horizonte MG university, Brazil Sintia Almeida, Aref El Aouar Filho R, Lima, Leite E, Miyoshi A Azevedo V,

COLLABORATIONS

CNRS: Arlot-Bonnemains Y, **INSERM:** Legembre P, Langouet S.

Inserm **INRA, INSERM, Toulouse** Frederic Taieb (Toulouse)

Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, University of Lyon, France Lina G, Laurent F, Vandenesch F

NIH, Bethesda, Maryland, USA Michael Otto

% HEALTY

TÜBINGEN University of Tubingen, Germany, Fritz Goetz

EBERHARD KARLS UNIVERSI

Hospices Civil de Lyon **Beraud B, Steghens JP**

ABSENCE OF APOPTOSIS

.047