
HAL Id: hal-02290671
https://hal.science/hal-02290671

Submitted on 17 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The 4-Steiner Root Problem
Guillaume Ducoffe

To cite this version:
Guillaume Ducoffe. The 4-Steiner Root Problem. 45th International Workshop on Graph-Theoretic
Concepts in Computer Science (WG 2019), Jun 2019, Vall de Nuria, Spain. pp.14-26, �10.1007/978-
3-030-30786-8_2�. �hal-02290671�

https://hal.science/hal-02290671
https://hal.archives-ouvertes.fr


The 4-Steiner Root Problem ?

Guillaume Ducoffe1,2,3

1 University of Bucharest, Faculty of Mathematics and Computer Science, Romania
2 The Research Institute of the University of Bucharest ICUB, Romania

3 National Institute for Research and Development in Informatics, Romania

Abstract. The kth-power of a graph G is obtained by adding an edge
between every two distinct vertices at a distance ≤ k in G. We call G a
k-Steiner power if it is an induced subgraph of the kth-power of some tree
T. In particular, G is a k-leaf power if all vertices in V (G) are leaf-nodes of
T. Our main contribution is a polynomial-time recognition algorithm of
4-Steiner powers, thereby extending the decade-year-old results of (Lin,
Kearney and Jiang, ISAAC’00) for k = 1, 2 and (Chang and Ko, WG’07)
for k = 3. As a byproduct, we give the first known polynomial-time
recognition algorithm for 6-leaf powers. Our work combines several new
algorithmic ideas that help us overcome the previous limitations on the
usual dynamic programming approach for these problems.

Keywords: k-Leaf Powers; k-Steiner Powers; Clique-tree; Clique-arrangement;
Dynamic programming; Maximum matching.

1 Introduction

A basic problem in computational biology is, given some set of species and a
dissimilarity measure in order to compare them, find a phylogenetic tree that
explains their respective evolution. Namely, such a rooted tree starts from a
common ancestor and branches every time there is a separation between at least
two of the species we consider. In the end, the leaves of the phylogenetic tree
should exactly represent our given set of species. We study a related problem
that has attracted some attention in Graph theory:

Problem 1 (k-Leaf Power).

Input: a graph G = (V,E).
Question: Is there a tree T whose leaf-nodes are the vertices in V and such

that uv ∈ E ⇐⇒ distT(u, v) ≤ k?

The yes-instances of Problem 1 are called k-leaf powers. Their structural and
algorithmic properties have been intensively studied (e.g., see [1,8,12] and the

? This work was supported by an ICUB Fellowship for Young Researchers and a grant
of Romanian Ministry of Research and Innovation CCCDI-UEFISCDI. project no.
17PCCDI/2018.



2 G. Ducoffe

papers cited therein). However, the complexity of k-Leaf Power is a longstand-
ing open problem. Very recently, parameterized (FPT) algorithms were proposed
for every fixed k on the graphs with degeneracy at most d, where the param-
eter is k + d [11]. For general graphs, polynomial-time recognition algorithms
are known only for k ≤ 5 [4,6,9]. Characterizations are known only for k ≤ 4.
Several variations of k-leaf powers were introduced in the literature [5,7,9,13].
In this work, we consider k-Steiner powers: a natural relaxation of k-leaf powers
where the vertices in the graph may also be internal nodes in the tree T. Interest-
ingly, there is a linear-time reduction from k-Leaf Power to (k − 2)-Steiner
Power [6]. However, there only exist polynomial-time recognition algorithms
for k-Steiner powers for k ≤ 3 [9,13].

Our Results. We obtain the first improvement on the recognition of k-Steiner
powers in a decade, by solving the case k = 4. Combining our main result
with the aforementioned reduction from k-Leaf Power to (k − 2)-Steiner
Power [6], we also improve the state of the art for k-leaf powers.

Theorem 1. There is a polynomial-time algorithm for the problems 4-Steiner
Power and 6-Leaf Power. For the yes-instances, this algorithm also outputs
a corresponding tree T.

Proving this above Theorem 1, while it may look like a modest improvement
in our understanding of the k-Leaf Power and k-Steiner Power problems,
was technically challenging. In the full version of this paper, we further discuss
why the dominant approach for k-Steiner Power, based on dynamic program-
ming, was already showing its limitations with 4-Steiner Power. We so believe
that one of the main merits of our work is to bring several new ideas in order to
tackle with these aforementioned limitations. As such, we expect further uses of
these ideas in the study of k-leaf powers and their relatives.

Organization of the paper. We refer to Sec. 2 for any missing definition in what
follows. As our starting point we restrict our study to chordal graphs and strongly
chordal graphs, that are two well-known classes in algorithmic graph theory of
which k-Steiner powers form a particular subclass [1]. Doing so, we can use
various properties of these classes of graphs, such as: the existence of a tree-like
representation of chordal graphs, that is called a clique-tree [2] and is commonly
used in the design of dynamic programming algorithms on this class of graphs;
and an auxiliary data structure which is called “clique arrangement” and is
polynomial-time computable on strongly chordal graphs [16]. Roughly, this clique
arrangement encodes all possible intersections of a subset of maximal cliques in
a graph. It is worth noticing that clique arrangements were introduced in the
same paper as leaf powers, under the different name of “clique graph” [17].

Given a k-Steiner power G, let us call k-Steiner root a corresponding tree T.
In Sec. 3 we present new results on the structure of k-Steiner roots that we use
in the analysis of our algorithm. Specifically, we show in Sec. 3.1 that in any
k-Steiner root T of a graph G, any intersection of maximal cliques in G must



The 4-Steiner Root Problem 3

be contained in a particular subtree where no other vertex of G can be present.
Furthermore, the inclusion relationships between these “clique-intersections” in
G are somewhat reflected by the diameter of their corresponding subtrees in T.
This extends prior results from [9,17]. Then, we focus in Sec. 3.2 on the case k =
4. For every clique-intersection X in a chordal graph G, we classify the vertices in
X into two main categories: “free” and ”constrained”, that depend on the other
clique-intersections these vertices are contained in. Our study shows that free
vertices cause a combinatorial explosion of the number of partial solutions we
should store in a naive dynamic programming algorithm. However, we overcome
this issue by proving that there always exists a “well-structured” 4-Steiner root
where such free vertices are leaves with very special properties.

Sec. 4, 5, 6 and 7 are devoted to the main steps of the algorithm. We start
by presenting a constructive proof of a rooted clique-tree with quite constrained
properties in Sec. 4. Roughly we carefully control the ancestor/descendant re-
lationships between the edges that are labelled by different minimal separators
of the graph. These technicalities are the cornerstone of our approach in Sec. 6
in order to bound the number of partial solutions that we should store in our
dynamic programming algorithm.

Then given our special rooted clique-tree TG, we recall that the maximal
cliques and the minimal separators of G can be mapped to the nodes and edges
of TG, respectively. For every node and edge in TG, we consider the corresponding
clique-intersection inG and we precompute by dynamic programming all possible
subtrees to which it could be mapped in some well-structured 4-Steiner root of
G. Of particular importance is Sec. 5.1 where for any minimal separator S, we
give a polynomial-time algorithm in order to generate all the candidate smallest
subtrees that could contain S in a well-structured 4-Steiner root of G. The result
is then easily extended to the maximal cliques that appear as leaves in our
clique-tree (Sec. 5.2). Correctness of these two first parts follows from Sec. 3.2.
Finally, in Sec. 5.3 we give a more complicated representation of a family of
candidate subtrees T〈Ki〉 for all the other maximal cliques Ki. This part is based
on a careful analysis of clique-intersections in Ki and several additional tricks.
Roughly, our representation in Sec. 5.3 is composed of partially constructed
subtrees and of “problematic” subsets that need to be inserted to these subtrees
in order to complete the construction. The exact way these insertions must be
done is postponed until the very end of the algorithm (Sec. 7).

Sec. 6 is devoted to the encoding of partial solutions in our dynamic pro-
gramming. Specifically, instead of computing partial solutions at each node of
the clique-tree and storing their encodings, we rather pre-compute a polynomial-
size subset of allowed encodings for each node. Then, the problem becomes to
decide whether given such an encoding, there exists a corresponding partial solu-
tion. We formalize our approach by introducing an intermediate problem where
the goal is to compute a 4-Steiner root with additional constraints on its struc-
ture and the distances between some sets of nodes. Finally, we detail in Sec. 7
the resolution of our intermediate problem, thereby completing the presentation
of our algorithm. An all new contribution in this part is a greedy procedure,



4 G. Ducoffe

based on Maximum-Weight Matching, in order to ensure some distances’
constraints are satisfied by the solutions we generate during the algorithm.

This is only an extended abstract. Full proofs can be found in our technical
report [10]. Due to their intricacy we gave up optimizing the running-time of our
algorithm. A very rough upper bound would be O(n16m5)-time.

2 Preliminaries

For standard graph terminology, see [3]. All graphs in this study are finite,
simple, unweighted and connected. Given a graph G = (V,E), let n := |V | and
m := |E|. The neighbourhood of a vertex v ∈ V is defined as NG(v) := {u ∈
V | uv ∈ E}. By extension, we define the neighbourhood of a set S ⊆ V as
NG(S) :=

(⋃
v∈S NG(v)

)
\ S. The subgraph induced by any subset U ⊆ V is

denoted by G[U ]. For every u, v ∈ V , we denote by distG(u, v) the minimum
length (number of edges) of a uv-path. The eccentricity of vertex v is defined as
eccG(v) := maxu∈V distG(u, v). The radius and the diameter of G are defined,
respectively, as rad(G) := minv∈V eccG(v) and diam(G) := maxv∈V eccG(v). We
denote by C (G) the center of G, a.k.a. the vertices with minimum eccentricity.

Steiner roots. The kth-power of G, denoted Gk has same vertex-set V as G
and edge-set {uv | 0 < distG(u, v) ≤ k}. If there is some tree T such that G
is an induced subgraph of T k then, we call G a k-Steiner power and T a k-
Steiner root of G. Nodes in V (G) are called real, whereas nodes in V (T) \ V (G)
are called Steiner. We so define, for any S ⊆ V (T): Real(S) := S ∩ V (G) and
Steiner(S) := S \ V (G). Two (sub)trees T, T ′ are Steiner-equivalent, denoted
T ≡G T ′, if and only if Real(T) = Real(T ′) = S and there exists an isomorphism
ι : V (T)→ V (T ′) such that ι(v) = v for any v ∈ S (the trees are equal up to an
appropriate identification of their Steiner nodes). Finally, given a node-subset
X ⊆ V (T), T〈X〉 is the smallest subtree of T such that X ⊆ V (T〈X〉).

(Strongly) Chordal graphs. A clique-tree is a tree TG whose nodes are the maxi-
mal cliques of G and such that for every v ∈ V , the maximal cliques containing
v induce a subtree of TG. A graph G = (V,E) is called chordal if and only if
it has a clique-tree. Moreover if G is chordal then, we can construct a clique-
tree for G in O(m)-time [2]. An uv-separator is a subset S ⊆ V \ {u, v} such
that u and v are disconnected in G \ S. If in addition, no strict subset of S is
an uv-separator then, S is a minimal uv-separator. A minimal separator of G
is a minimal uv-separator for some u, v ∈ V . For a chordal graph G and any
clique-tree TG of G, S is a minimal separator of G if and only if there exist two
maximal cliques Ki,Kj such that: KiKj ∈ E(TG) and Ki ∩ Kj = S [2]. We
define ES (TG) := {KiKj ∈ E(TG) | Ki ∩Kj = S} (edges labeled by S).

A clique-intersection of G is the intersection of a subset of maximal cliques in
G. The families of all clique-intersections, maximal cliques and minimal separa-
tors of G are denoted by X (G), K (G) and S (G), respectively. For a superclass
of k-Steiner powers known as strongly chordal graphs, the family X (G) has poly-
nomial size and can be computed in polynomial time [15].



The 4-Steiner Root Problem 5

Step 0 (Initialization). Given G = (V,E), we check whether G is strongly
chordal. If this is not the case then, G cannot be a 4-Steiner power, and we stop.
Otherwise we compute X (G).

3 Structure Theorems

Some relationships between k-Steiner roots and clique-intersections are proved
in Sec. 3.1. These structural results are the cornerstone of our algorithm and its
analysis. Then, we refine our results for the special case k = 4 in Sec. 3.2.

3.1 Playing with the root

The following result is a generalization of [9, Lemma 1] to any k. We prove it by
using some intricate properties of the eccentricity function on trees [14].

Theorem 2. Given G = (V,E) and T any k-Steiner root of G, the following
properties hold for any clique-intersection X ∈ X (G):

• We have Real(T〈X〉) = X and diam(T〈X〉) ≤ k;
• If T ′ ⊃ T〈X〉 then, either X = Real(T ′) or diam(T ′) > diam(T〈X〉);
• If k = 2k′ is even then, for any two different maximal cliques Ki,Kj ∈ K (G)

we have C (T〈Ki〉) ∩ C (T〈Kj〉) = ∅.

3.2 Well-structured 4-Steiner roots

For k = 4, we introduce new notions which only depend on the clique-intersections
of G. Roughly, given X ∈ X (G) and an arbitrary root T, we introduce some
operations in order to modify T〈X〉. Doing so, we wish to force this subtree to
have some more structure, thereby avoiding a combinatorial explosion of the
number of possibilities to consider. Therefore, we carefully study the situations
when a vertex v ∈ X may not be arbitrarily movable inside T〈X〉 (in which case
we call v X-constrained). The most natural case is when there is a X ′ ∈ X (G)
s.t. X ′ ⊂ X, v ∈ X ′ and |X ′| ≥ 2 (v is internally X-constrained)4. However,
more subtle cases occur when X is a minimal separator, or more generally X
is contained in some larger clique-intersection. We say that v is (X,X1, X2)-
sandwiched if X1, X2 ∈ X (G) are s.t. X ⊂ X1 and X ∩X2 = {v} ⊂ X1 ∩X2.
Our study reveals that X-constrained vertices have a very rigid structure. Fi-
nally, a vertex that does not fall in one of these two above cases is called X-free.
We prove that we can always force the X-free vertices to be leaves of the subtree
T〈X〉, thereby considerably reducing the number of possibilities for the latter.

Theorem 3. Let G = (V,E) be a 4-Steiner power. There always exists a well-
structured 4-Steiner root T of G where, for any clique-intersection X ∈ X (G):

4 When X is a maximal clique, the internally X-constrained vertices can be charac-
terized in terms of simplicial vertices and a subset of the cut-vertices.



6 G. Ducoffe

• all the X-free vertices are leaves of T〈X〉 with maximum eccentricity diam(T〈X〉);
• there is a node c ∈ C (T〈X〉) such that for every X-free vertex v, except

maybe one, distT(v, c) = distT(v, C (T〈X〉));
• all the internal nodes on a path between C (T〈X〉) and a X-free vertex are

Steiner nodes of degree two;
• and if X ∈ K (G) and it has a X-free vertex then, diam(T〈X〉) = 4.

4 A special rooted clique-tree

We now present Step 1 of our algorithm so as to show all the steps in chrono-
logical order. However, please note that in the next Sec. 5, any clique-tree could
be used. Indeed, we will only start using the peculiar properties of our rooted
clique-tree in Sec. 6.

Step 1 (Construction of the rooted clique-tree). We construct a clique-
tree TG of G that we root in some K0 ∈ K (G). In order to give the main
intuition behind its construction, let us consider an arbitrary maximal clique
Ki that is not the root, and its parent node Kp(i). Let Gi be induced by the
maximal cliques in the subtree of TG rooted at Ki. If G has a 4-Steiner root
then, by heredity, so does Gi. Roughly, we would like to bound the number of
partial solutions for Gi that we will need to store for our dynamic programming
algorithm. By Theorem 3, one first step for doing so would be to force most
vertices in Si := Ki ∩Kp(i) to be Ki-free in the subgraph Gi. More specifically,
for every descendant Kj of Ki in TG we would like to impose Sj 6⊆ Si and
Si 6⊆ Sj

5. However, both objectives are conflicting and so, we need to find a
trade-off. Admittedly, our proposed solution is quite technical.

Given a clique-tree TG of G = (V,E), we say that a minimal separator S
is weakly TG-convergent if there exists some maximal clique KS that is incident
to all edges in

⋃
S′,S⊂S′ ES′ (TG). S is termed TG-convergent if it is weakly TG-

convergent and the maximal clique KS is also incident to all edges in ES (TG).
The relationship between these notions and 4-Steiner roots is as follows:

Lemma 1. Let T be any 4-Steiner root of G, and let S ∈ S (G). If T〈S〉 is a
non-edge star then, S is weakly TG-convergent for any clique-tree TG of G.

Sketch proof. We may assume that S is strictly contained in some minimal sep-
arator S′. By Theorem 2, T〈S′〉 has diameter three. This implies C (T〈S〉) ⊂
C (T〈S′〉). Furthermore, we can prove that S′ is contained in exactly two maxi-
mal cliques Ki,Kj and C (T〈Ki〉)∪C (T〈Kj〉) = C (T〈S′〉). Let us assume w.l.o.g.
that C (T〈S〉) = C (T〈Ki〉). Then, any minimal separator S′′ that strictly con-
tains S is contained in Ki and one other maximal clique KS′′ . Let TG be a
clique-tree of G. We have ES′′ (TG) 6= ∅, and so KiKS′′ ∈ E(TG). By setting
KS := Ki, we get that S is weakly TG-convergent. ut
5 Observe that if Sj ⊂ Si, and |Sj | ≥ 2, then the vertices of Sj are Si-constrained.



The 4-Steiner Root Problem 7

Therefore, weak convergence is a necessary condition for a S ∈ S (G) to be
contained in a star in some 4-Steiner root (that is the hardest case to deal with
in our algorithm). If furthermore there is convergence then, we needn’t store any
costly information about the separators that strictly contain S in the encoding of
partial solutions. Indeed, any “inclusion issue” between S and these separators
can be handled with when we process the maximal clique KS . So, we want to
force weak convergence to imply convergence. Our construction in what follows
applies to any S of size at least three. – For smaller separators, we can use much
simpler counting arguments in order to bound the number of possible partial
solutions that we will need to consider by a constant. See Sec. 6 for details. –

Theorem 4. For any chordal graph G, we can compute in polynomial time a
rooted clique-tree TG where, for any Si := Ki ∩Kp(i):

• If Si is weakly TG-convergent and |Si| ≥ 3 then, Si is TG-convergent;
• Any minimal separator of Gi that is contained in Si is TG-convergent, has

at least three vertices and is strictly contained in a minimal separator of Gi.

5 A family of subtrees for the Clique-Intersections

Step 2 (Candidate set generation). We exploit a result of Section 3.1 which
states that, for any 4-Steiner root T of G and for any clique-intersection X, the
smallest subtree containing X does not contain any other real nodes. Then,
our goal is, for every X ∈ X (G), to compute a polynomial-size family TX of
“candidate subtrees” whose real nodes are exactly X. Intuitively, TX should
contain all possibilities for T〈X〉 in a well-structured 4-Steiner root T (such a
root must satisfy additional properties given in Sec. 3.2). Note that we only
need to compute this above family for minimal separators and maximal cliques.

5.1 Case of Minimal Separators

The following result serves as a brick-basis construction for computing all the
other families of candidate subtrees.

Theorem 5. In O(n5m)-time we can construct a collection (TS)S∈S(G) such
that, for any well-structured 4-Steiner root T of G, and for any S ∈ S (G), T〈S〉
is Steiner-equivalent to some subtree in TS.

Sketch proof. Let us describe the main difficulty we had to face on in order to
prove this above result. Given S ∈ S (G) the difficulty in generating TS comes
from the bistars (diameter-three subtrees), as a brute-force generation of all
possibilities would take time exponential in |S|. Let X (S) = {X ∈ X (G) |
X ⊂ S, |X| ≥ 2}. Based on a careful analysis of the intersection graph IS =
(X (S) , {XX ′ | X ∩X ′ 6= ∅}), we can bound the number of possible mappings
of the internally S-constrained vertices to the nodes of a bistar by an O(|S|2).
We can also bipartition the sandwiched vertices in such a way that each group



8 G. Ducoffe

should be mapped to a different side of the bistar; each group should in fact
correspond to one of the two maximal cliques containing S. Then, we use the
fact that in a well-structured 4-Steiner root of G, S-free vertices are leaves of
such a bistar with all of them, except maybe one, adjacent to the same central
node. For a fixed mapping of the S-constrained vertices, this only gives us O(|S|)
possibilities in order to map the S-free vertices. Overall, we reduce the number
of possible bistars to an O(|S|5). ut

5.2 Case of a Leaf Node

Theorem 6. Given G = (V,E) and a rooted clique-tree TG of G, let Ki ∈ K (G)
be a leaf. We can construct, in time polynomial in |Ki|, a set Ti of 4-Steiner roots
for Gi := G[Ki] with the following additional property: In any well-structured
4-Steiner root T of G, there exists a T ′i ∈ Ti Steiner-equivalent to T〈Ki〉.

Sketch proof. We use a well-known decomposition of Ki into a unique minimal
separator Si := Ki ∩ Kp(i) and a set of simplicial vertices. Given any fixed
possibility for T〈Si〉, there are O(|Si|) possibilities for T〈Si ∪ C (T〈Ki〉)〉. Then,
we use the fact that all simplicial vertices are Ki-free. Since we already fixed
C (T〈Ki〉), by Theorem 3, there is essentially one way to add the Ki-free vertices
in order to complete the construction (up to Steiner equivalence). ut

5.3 Case of an internal node

Finally, we consider the maximal cliques Ki that are internal nodes of TG. Unsur-
prisingly, several new difficulties arise in the construction of TKi

. Our bottleneck
is solving the following subproblem: compute (up to Steiner equivalence) all pos-
sible central nodes and their neighbourhood in any subtree T〈Ki〉 of diameter
four. We solved this subproblem in most situations, e.g., when there is a mini-
mal separator S ⊆ Ki such that T〈S〉 must be a bistar (diameter-three subtree).
For that, we combine some key arguments in the proof of Theorem 5 with the
transformation techniques that we used in the proof of Theorem 3.

Lemma 2. For any graph G, let S ∈ S (G), let K be a maximal clique con-
taining S and let R, c be such that R ⊂ S and either c ∈ R or c is Steiner. We
can compute in O(nm log n)-time a node c′ with the following properties: For any
well-structured 4-Steiner root T of G s.t. T〈S〉 is a bistar, c ∈ C (T〈S〉)\C (T〈K〉),
and Real(NT [c]) = R, there exists a well-structured root T ′ with the same prop-
erties s.t. C (T ′〈K〉) = {c′}, and distT ′(u, v) ≥ distT(u, v) for every u, v ∈ V ;
moreover, either T ≡G T ′, or

∑
u,v∈V distT ′(u, v) >

∑
u,v∈V distT(u, v).

In order to better understand the significance of Lemma 2, assume that T〈S〉
should be a bistar in the final solution we want to compute, and that we al-
ready identified one of its center node c and the set of real nodes R to which c
must be adjacent. What this above property says is that there is essentially one
canonical way to compute the bistar given R and c. The more technical condi-
tion distT ′(u, v) ≥ distT(u, v) is simply there in order to ensure that by doing



The 4-Steiner Root Problem 9

so, we cannot miss a solution of an intermediate problem we call Distance-
Constrained Root (i.e., see Sec. 6). Finally, our condition on the potential
function

∑
u,v∈V distT ′(u, v) increasing ensures that we can repeatedly apply

our “canonical completion” method for arbitrarily many minimal separators S.
By using this above method, we obtain the following intermediate construction:

Lemma 3. For any chordal graph G, let TG be a rooted clique-tree and let Ki be
a maximal clique of G = (V,E) with no Ki-free vertex. In O(|Ki|6 · n3m log n)-
time, we can compute a family Bi with the following special property: For any
well-structured 4-Steiner root T of G where for at least one minimal separator
S ⊂ Ki, T〈S〉 is a bistar, there is a T ′ such that T ′〈Si〉 ≡G T〈Si〉, T ′〈Ki〉 ∈ Bi
and distT ′(r, V (Gi) \ Si) ≥ distT(r, V (Gi) \ Si) for every r ∈ V (T〈Si〉)6.

Note that we do not capture all well-structured roots with this above lemma,
but only those maximizing certain distances’ conditions. In the remaining cases
when there are no minimal separators S that are mapped to a bistar, our con-
struction is less satisfying. Specifically, we are left with some “problematic sub-
sets” called thin branches: with exponentially many possible ways to include
them in candidate subtrees. As a way to circumvent this combinatorial explo-
sion, we also include in TKi

some partially constructed subtrees where the thin
branches are omitted. We will greedily decide how to include the thin branches
in these subtrees at Step 4 (Sec. 7).

6 Deciding the partial solutions to store

Step 3 (Selection of the encodings). For the remainder of the algorithm,
let (Kq,Kq−1, . . . ,K0) be a post-ordering of the maximal cliques (i.e., obtained
by depth-first-search traversal of our rooted clique-tree TG). We consider the
maximal cliques Ki ∈ K (G) sequentially, from i = q downto i = 0. The next
two Sections are devoted to the computation of a subset Ti of 4-Steiner roots for
Gi. Specifically, for any 4-Steiner root Ti of Gi we define the following encoding:

encode(Ti) :=
[
Ti〈Si〉 | (distTi(r, V (Gi) \ Si))r∈V (Ti〈Si〉)

]
.

In what follows, we compute a polynomial-size subset of allowed encodings for the
partial solutions in Ti. That is, we only want to add in Ti some partial solutions
for which the encoding is in the list. Formally, we define an auxiliary problem
called Distance-Constrained Root, where given an encoding as input, we
ask whether there exists a corresponding 4-Steiner root of Gi.

6 Recall that Si and Gi were defined in Sec. 4. By convention, Si = ∅ if Ki is the root.



10 G. Ducoffe

Problem 2 (Distance-Constrained Root).

Input: a graph G = (V,E) with a rooted clique-tree TG, a maximal clique
Kij , a tree TSij

s.t. Real(TSij
) = Sij , and a sequence (dr)r∈V (TSij

) of

positive integers.
Output: Either a 4-Steiner root Tij of Gij s.t. TSij

≡G Tij 〈Sij 〉 and, ∀r ∈
V (TSij

): distTij
(r, V (Gij ) \ Sij ) ≥ dr; Or ⊥ if there is no such a Tij

which can be extended to some well-structured 4-Steiner root T of G.

Theorem 7. Given G = (V,E) chordal and a rooted clique-tree TG as in The-
orem 4, let Ki be an internal node with children Ki1 ,Ki2 , . . . ,Kip . If we can
solve Distance-Constrained Root in time P (n, |Sij |) for some polynomial
P then, we can compute in time O(n|Ki|5P (n, |Ki|)) a family Ti1 , Ti2 , . . . , Tip of
4-Steiner roots for Gi1 , Gi2 , . . . , Gip , respectively, such that:

1. For any j ∈ {1, 2, . . . , p}, |Tij | = O(|Sij |5);

2. For any well-structured 4-Steiner root T of G, there exists a T ′ such that:
T〈Ki〉 ≡G T ′〈Ki〉, T ′〈V (Gij )〉 ∈ Tij for any j ∈ {1, 2, . . . , p}, and distT ′(r, V (Gi)\
Si) ≥ distT(r, V (Gi) \ Si) for any node r ∈ V (T〈Si〉).

Sketch proof. We process the children nodes Kij sequentially by non-decreasing
size of the minimal separators Sij . For that, we start constructing the family
TSij

of Theorem 5, and we consider the subtrees TSij
∈ TSij

sequentially. We

divide the proof into several cases depending on |Sij | and on diam(TSij
).

Case |Sij | ≤ 2. There can only beO(1) different possibilities for the distances
(dr)r∈V (TSij

). We could solve Distance-Constrained Root for all these pos-

sibilities, thereby obtaining the family Tij . But in fact, this seemingly simple
case hides a time bomb that will detonate during the second part of the proof
(i.e., when we consider larger minimal separators). To understand why through
an example, let us assume the existence of a large separator Sik of which every
vertex is also a cut-vertex. Then, one possibility for TSik

is a star with a Steiner
central node. For every leaf-node v of that star, let us consider a maximal clique
Kij s.t. Sij = {v}. The star TSik

can only be compatible with solutions Tij s.t.
distTij

(v, V (Gij ) \ {v}) ≥ 5 − distTSik
(v, Sik \ {v}) = 3. In particular, we may

have up to two compatible solutions Tij , and that gives us in turn two different
possibilities for the constraint distTik

(v, V (Gik)\Sik). But then, since this is true

for any v ∈ Sik , we are left with 2|Sik
| possibilities for the distance constraints

(dr)r∈V (TSik
)! We can resolve this issue by always choosing any compatible so-

lution which maximizes distTij
(v, V (Gij ) \ {v}). Specifically, if Sij = {v} is a

cut-vertex then, we only keep in the family Tij the partial solution maximizing
distTij

(v, V (Gij ) \ Sij ). In the same way, if Sij = {u, v} and TSij
is an edge

then, we only need to keep two solutions, namely: among all those maximiz-
ing distTij

(v, V (Gij ) \ Sij ) (resp., distTij
(u, V (Gij ) \ Sij )) the one maximizing

distTij
(u, V (Gij ) \ Sij ) (resp., distTij

(v, V (Gij ) \ Sij )).



The 4-Steiner Root Problem 11

Case |Sij | ≥ 3. The processing of large minimal separators Sij is more
intricate. For a fixed TSij

we define a family of shorter encodings with only

|Sij |O(1) possibilities, that essentially summarizes at “guessing” the central nodes
of T〈Ki〉 and T〈Kij 〉. Assuming a correct guess of these above central nodes, for
any partial solution Tij that is compatible with TSij

, we show how to extract

a constant-number of distance constraints from encode(Tij ), in such a way that
all other constraints can be retrieved from those O(1) that we keep in the short
encoding or proved to be irrelevant. Overall, we show that it is sufficient to store
only one solution per possible short encoding. For the purpose of illustration, let
us focus on the case when TSij

is a star (the case of bistars is similar, but simpler).

We first assume that no minimal separator of Gij contains Sij . We may further
assume that no minimal separator of Gij can be contained in Sij (otherwise, by
the second property of Theorem 4 such separators should have size at least 3,
whereas since TSij

is a star they should have size at most 2). In our first subcase,

we assume that the center c of the star will not end in C
(
Tij 〈Kij 〉

)
. Then, we

prove that for every leaf v of the star except maybe one, distTij
(v, V (Gij ) \

Sij ) = distTij
(c, V (Gij ) \Sij ) + 1 (two distances to store in the short encoding).

Otherwise, c ∈ C
(
Tij 〈Kij 〉

)
. Our previous formula for distTij

(v, V (Gij ) \ Sij )

stays true unless v is also contained in a minimal separator of Gij . In this latter
case, such a minimal separator must overlap Sij , and so we can prove that we
always have distTij

(v, V (Gij ) \ Sij ) = 1. Finally, we assume that a minimal

separator of Gij contains Sij . We derive from both properties of Theorem 4
that c ∈ C

(
Tij 〈Kij 〉

)
and Sij is TG-convergent, with KSij

= Kij . In particular,

Sij 6⊆ Si, and so, |Sij ∩ Si| ≤ 2. Recall that we started by guessing C (T〈Ki〉)
and C

(
T〈Kij 〉

)
. We include in our short encoding from the previous case the

distances distTij
(v, V (Gij ) \ Sij ), v ∈ Sij ∩ (Si ∪ C (T〈Ki〉)), plus some fixed

additional constraints that are derived from the smaller separators contained in
Sij . We stress that this approach could not work with an arbitrary TG. ut

7 The dynamic programming

Step 4 (Greedy strategy). While we execute Step 3 for its father node Kp(i),
we compute forKi a polynomial-size subset of allowed encodings for the 4-Steiner
roots of Gi which we want to compute. For all the constraints in such encodings,
we are left to decide whether there exists a 4-Steiner root of Gi which satisfies
all of them (i.e., we must solve Distance-Constrained Root).

Theorem 8. For every strongly chordal graph G, let ||G|| :=
∑

Ki∈K(G) |Ki|.
Let TG be a rooted clique-tree as in Theorem 4 and let Ki ∈ K (G). There is
some polynomial P such that, after a pre-processing in time O(n||Gi||5P (n)),
we can solve Distance-Constrained Root for any input TSi

, (dr)r∈V (TSi
) in

time O(P (n)).

Sketch proof. If Ki is a leaf of TG then, we construct the family given by The-
orem 6. We keep the trees Ti ∈ Ti that satisfy the constraints we have. From



12 G. Ducoffe

now on, let us assume Ki is internal with children Ki1 ,Ki2 , . . . ,Kip . We start
by computing Ti1 , Ti2 , . . . , Tip as in Theorem 7. We also need to construct a rep-
resentation of the family TKi , as sketched in Sec. 5.3. Roughly, the elements in
this representation are of the form (TYi , Ci) where Yi ⊆ Ki and Ci must represent
the center of T〈Ki〉 (missing vertices of Ki \ Yi are supposed to be located in
thin branches). This ends the pre-processing step for Ki. In what follows let TSi

and (dr)r∈TSi
be fixed. In order to solve Distance-Constrained Root, we

start by enumerating all pairs (TYi , Ci). Our construction ensures that Si ⊆ Yi
and so, we can check whether TSi ≡G TYi〈Si〉. If this not the case then, we
can withdraw this pair and continue. Due to lack of space, we now only sketch
the case Yi = Ki (no thin branch). For every r ∈ TSi

we check whether we
have: distTYi

(r,Ki \ Si) ≥ dr (otherwise, we violate our distances’ constraints).
In the same way, for every j ∈ {1, . . . , p}, we remove from Tij any partial solu-
tion Tij s.t. either Tij 〈Sij 〉 6= TYi〈Sij 〉 or the distances’ constraints are violated.
We finally explain how to greedily construct a solution (if any), starting from
Ti := TYi

. The procedure is divided into a constant number of phases. Every
time we complete one of these phases, we select a Tij ∈ Tij , for some j, then we
remove from all other Tik ’s the uncompatible partial solutions.

Phase 1: Processing the cut-vertices. We consider all the indices j s.t.
Sij = {v} is a cut-vertex. There is one solution left in Tij , so we need to add it.

Phase 2: Processing the edges. We consider all the indices j s.t. Sij = {u, v}
and TYi〈Sij 〉 is an edge. We show that we can almost proceed similarly as for
Phase 1 provided we know which among u or v will be closest to V (Gi)\V (Gij )
in a final solution. Therefore, computing this information is the main objective
of this phase. In general, we will pick a vertex of Sij which is the closest to Ci,
but several cases need to be considered before we can validate such a choice.

Phase 3: Processing the bistars. We consider all the indices j s.t. TYi
〈Sij 〉

is a bistar. A careful analysis shows that in all cases but one degenerate, we can
select any Tij ∈ Tij s.t. distTij

(Ci, V (Gij ) \ Sij ) is maximized.

Phase 4: Processing the stars. We finally consider all the indices j s.t.
TYi
〈Sij 〉 is a star. Let C

(
TYi
〈Sij 〉

)
= {c}. Due to lack of space, we only de-

scribe the subcase c ∈ Ci, which is simpler7. We first prove that for every
unprocessed Sik 6= Sij , a best possible choice would be to pick a Tij ∈ Tij
s.t. distTij

(C
(
Tij 〈Kij 〉

)
, V (Gij ) \ Sij ) is maximized. However, we also need to

account for the other indices k such that Sik = Sij . For that, let J = {j′ |
Sij′ = Sij}. The solutions Tij′ , j

′ ∈ J that we will choose must have diame-
ter four, and the center nodes vj′ in Tij′ 〈Kij′ 〉 must be pairwise different. We
do a reduction to Maximum-Weight Matching where we create a bipartite
graph with respective partite sets J and all possible central nodes. For every

j′ ∈ J and Tij′ ∈ Tij′ of diameter four, we add an edge {j′, C
(
Tij′

)
} of weight

distTi
j′

(C
(
Tij 〈Kij′ 〉

)
, V (Gij′ ) \ Sij′ ). ut

7 All the missing cases, that includes the addition of thin branches to TYi , are solved
by using the same matching-based approach as in this subcase.



The 4-Steiner Root Problem 13

References

1. S. Arumugam, A. Brandstädt, T. Nishizeki, and K. Thulasiraman. Handbook of
graph theory, combinatorial optimization, and algorithms. 2016.

2. J. Blair and B. Peyton. An introduction to chordal graphs and clique trees. In
Graph theory and sparse matrix computation, pages 1–29. 1993.

3. J. A. Bondy and U. S. R. Murty. Graph theory. 2008.
4. A. Brandstädt and V. Le. Structure and linear time recognition of 3-leaf powers.

Information Processing Letters, 98(4):133–138, 2006.
5. A. Brandstädt, V. Le, and D. Rautenbach. Exact leaf powers. Theoretical Computer

Science, 411(31-33):2968–2977, 2010.
6. A. Brandstädt, V. Le, and R. Sritharan. Structure and linear-time recognition of

4-leaf powers. ACM Transactions on Algorithms (TALG), 5(1):11, 2008.
7. A. Brandstädt and P. Wagner. Characterising (k, `)-leaf powers. Discrete Applied

Mathematics, 158(2):110–122, 2010.
8. T. Calamoneri and B. Sinaimeri. Pairwise compatibility graphs: A survey. SIAM

Review, 58(3):445–460, 2016.
9. M. Chang and M. Ko. The 3-Steiner root problem. In WG, pages 109–120, 2007.

10. G. Ducoffe. Polynomial-time Recognition of 4-Steiner Powers. Technical Report
arXiv:1810.02304, ArXiv, 2018.

11. D. Eppstein and E. Havvaei. Parameterized Leaf Power Recognition via Embedding
into Graph Products. In IPEC’18, pages 16:1–16:14, 2019.

12. M. Fellows, D. Meister, F. Rosamond, R. Sritharan, and J. Telle. Leaf powers and
their properties: Using the trees. In ISAAC, pages 402–413, 2008.

13. T. Jiang, P. Kearney, and G. Lin. Phylogenetic k-root and steiner k-root. In
ISAAC, pages 539–551, 2000.

14. C. Jordan. Sur les assemblages de lignes. J. Reine Angew. Math, 70(185):81, 1869.
15. R. Nevries and C. Rosenke. Characterizing and computing the structure of clique

intersections in strongly chordal graphs. Discr. Applied Math., 181:221–234, 2015.
16. R. Nevries and C. Rosenke. Towards a characterization of leaf powers by clique

arrangements. Graphs and Combinatorics, 32(5):2053–2077, 2016.
17. N. Nishimura, P. Ragde, and D. Thilikos. On graph powers for leaf-labeled trees.

Journal of Algorithms, 42(1):69–108, 2002.


	The 4-Steiner Root Problem 

