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Abstract: The paper proposes a new real time motion generation technique for a mobile robot, which is 

able to find time-optimal motions along a curved path taking into account capabilities of the driving 

motors and ensuring the wheels rolling without skidding. The problem is converted to a time-optimal 

control of a second-order dynamic system under constraints on the control input, the first derivative of 

output, and mixed constraint on the control variable and the output derivative. After the state space 

discretization, the original problem is presented as a combinatorial one where the desired robot trajectory 

corresponds to a shortest path on the relevant graph. To find this path and ensure its real time 

implementation, a moving window strategy combined with dynamic programming is proposed. 

Advantages of this approach and its suitability to real time control are illustrated by a case study dealing 

the fastest motion of the mobile robot along a sinusoidal path. Copyright © 2019 IFAC 
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1. INTRODUCTION 

Currently, due to significant developments in computational 

geometry and computer vision, essential progress has been 

achieved in the area of mobile robot path planning. Existing 

on-board robot controllers are able to generate the path in real 

time for very complex and partially unknown environment 

(González et al., 2016). In the meantime, the problem of 

time-optimal trajectory planning along the generated path 

received less attention. In literature, existing techniques are 

mostly based on the classical phase-plane method that 

requires some non-trivial actions in the case of complex state-

dependent constraints (Petrinić et al., 2017). On the other 

side, the problem of time-optimal trajectory planning along a 

specified path has been intensively studied in robotics for 

many years. Relative works focused on serial manipulators 

and the desired optimal end-effector motions were generated 

taking into account the velocity/acceleration bounds in the 

joints and physical constraints of the actuating motors 

(Bobrow et al., 1985, Pfeiffer and Johanni, 1987, Shiller and 

Lu, 1992, Yang and Slotine, 1994, Butler et al., 2016). These 

works employ the phase-plane technique and are based on the 

fact that the time-optimal solution is “bang-bang”, i.e. at any 

time instant one of the actuators works at the limit of its 

velocity/acceleration. Because of the geometric limits 

imposed by the specified path, the state vector contains only 

two variables, the distance and the velocity along the path. 

However, the non-linear robotic manipulator kinematics and 

dynamics transform the actuators limits into state-dependent 

constraints on velocity and acceleration along the path. Thus, 

the original problem is converted to the time-optimal control 

of a second-order linear system with nonlinear state-

dependent constraints on velocity/acceleration, where the 

acceleration is also treated as a control input. In the above 

mentioned papers, the authors have presented numbers of 

examples and obtained some important properties of the 

time-optimal control, i.e. multiple-switching between 

acceleration and deceleration, which are not common for the 

second-order dynamic systems studied in the classical control 

theory. Nonetheless, in the frame of the phase-plane method, 

there is no general approach that allows generating multiple-

switching optimal control for the considered problem. 

It is also worth of mentioning that several works dealing with 

time-optimal control of multi-axes CNC machines where it is 

necessary to specify the feedrate variation along a curved 

path yielding minimum traversal time subject to prescribed 

acceleration bounds along each axis. Here, the optimal 

solution also relies on the ‘‘bang-bang’’ principle (Timar et 

al., 2005). More recent results focus on smooth minimum-

time trajectory generation with higher order constraints (i.e. 

axes velocities, accelerations, jerks, etc.) (Bharathi and Dong, 

2016). However, an essential practical difficulty exists in this 

application area, which is caused by common industrial 

practice of approximating free-form curved paths with short 

linear/circular G-code segments. It makes the realization of 

continuously-varying feedrates problematic. The difficulty is 

gradually disappearing when the new CNC machines allow 

the real time interpolation for analytic curves (with complete 

information of the path curvature and the feedrate variation). 

For wheeled mobile robots, the time-optimal control problem 

is usually presented in a slightly different way. It is assumed 

that the path is not known in advance and it is obtained at the 

first stage using relevant geometric algorithms and taking 

into account constraints imposed by dynamic workspace 

obstacles, required path smoothness and nonholonomy of the 

mobile robot (Jacobs and Canny, 1993, Soueres and 

Laumond, 1996). Then at the second stage, a time-optimal 

velocity profile is generated under dynamic constraints from 

the motor physical capacities and also must ensure the wheel 



 

 

     

 

rolling without skidding (Weiguo et al., 1999). The non-

skidding condition can be presented as a non-linear constraint 

imposed on the velocity/acceleration, which leads to the 

problem of optimal control with multiple switchings. In most 

of existing works, the desired time-optimal profiles are 

obtained using the phase-plane technique, which in the case 

of multiple switchings is difficult for algorithmization and 

can be hardly implemented in mobile robot controllers. In our 

previous work (Gao et al., 2019), it was proposed a 

combinatorial technique allowing generating time-optimal 

trajectory with multiple switchings. But, its time efficiency is 

not high enough for real time control. For this reason, this 

work concentrates on improvement of this technique and 

development of relevant algorithms that allow generating in 

real time the optimal motions for any combinations of 

linear/nonlinear constraints on velocity and acceleration.  

2. PROBLEM STATEMENT 

Let us assume that the desired mobile robot path is presented 

in the parametric form and is defined by two continuously 

differentiable functions 

 
max{ ( ), ( ) ; [0, ]}x s y s s s  (1) 

describing evolution of Cartesian coordinates of the reference 

point while driving along the given path, where s  is the 

distance from the origin to the current position (treated here 

as the parameter). Also, let us define the path curvature 

described by the radius function 

 
max( ), [0, ]r s s s  (2) 

which can be computed from ( )x s , ( )y s  using standard 

formulas. The problem is to find the motion law along the 

path ( )s t , 
max[0, ]t t , that ensures the minimum travelling 

time 
maxt  from the initial state (0) 0s   and (0) 0s   to the 

final state 
max max( )s t s  and 

max( ) 0s t   

 
max mint   (3) 

and satisfies certain constraints on the derivatives of ( )s t  

 max max max( ) ; ( ) ; ( ( ), ( ))s t v s t a g s t s t c    (4) 

whose meaning is clarified below. 

The first two of the above constraints describe physical 

limitations of the robot driving motors whose velocity ( )s t  

and torque (transformed into the linear acceleration ( )s t ) are 

bounded and cannot exceed allowable limits maxv  and maxa . 

The third constraint takes into account physical properties of 

the contact “robot wheel – road surface” where the total 

inertia force cannot exceed the friction force. It can be easily 

proved that after some simplifications such condition can be 

presented in the form of 
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where the components on the left-hand side are the lateral 

and longitudinal accelerations respectively, g  is the gravity 

acceleration, and   is the friction coefficient. 

Using terminology from the optimal control theory and 

treating the acceleration as a control input, the considered 

problem can be present as minimization of the cost functional 

 
0

1 min

T

dt   (6) 

subject to the second-order dynamic constraints 

 s u  (7) 

with boundary conditions (0) 0s  ; 
max( )s T s ; (0) 0s  ; 

( ) 0s T   and the algebraic constraints on the control variable 

and one of the state variables 

 
max max;u a s v   (8) 

as well as a mixed constraint imposed on the state variable 

and control 
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where the parameter 
0u g  denotes the maximum 

acceleration bound imposed by the friction. The latter also 

gives some upper bounds for the state variable and control, 

such as 
0u u and 0 ( )s u r s  that may replace the 

previous ones. 

 

Fig. 1. Schematic diagram of a mobile robot model (planar) 

If the last of the above constraints is not active, the optimal 

solution is trivial and can be obtained using conventional 

methods based on “bang-bang” principle. In this case the 

desired motion is obtained by sequentially applying 

accelerations 
max max( , 0, )a a   that produce either the 

trapezoidal or triangular velocity profile. However, generally, 

these constraints may compete to each other and the structure 

of the optimal solution becomes more complicated, which 

creates essential difficulties when generating time-optimal 

motion in real time. It should be mentioned that usually the 

constraint (9) is applied at the reference point of the mobile 

robot, which is the robot model centroid as shown in Fig. 1. 

However in practice, it is necessary to verify this constraint 

for each wheel, so the non-skidding constraint becomes 

slightly stronger. This particularity will be taken into account 

in the proposed motion generation algorithms.  



 

 

     

 

3. REAL TIME MOTION GENERATION STRATEGY 

In classical control theory, the time-optimal motions for the 

second-order dynamic systems are generated using the 

conventional phase-plane method, taking into account 

specific properties of the optimal control input ( )u t . It was 

proved that in the simplest case, when only the input 

constraint 
maxu a  is applied to the dynamic system (7), the 

optimal control has a “bang-bang” form, where the amplitude 

is constant 
max( )u t a  and there is a single switching from 

maxu a   to 
maxu a  . For the case where both limits 

maxu a  and 
maxs v  are considered, the optimal control is 

also discontinuous, but it includes an intermediate interval 

with ( ) 0u t   ensuring satisfaction of the velocity constraint. 

So, there are two switchings here, from 
maxu a   to 0u   

and from 0u   to 
maxu a  . For these simple cases, the 

phase-plane method is efficient. But, as follows from relevant 

studies (Bobrow et al., 1985, Petrinić et al., 2017), 

application of the additional non-linear constraint similar to 

(9) can crucially change the structure of the optimal control 

function ( )u t , which may include multiple switchings.  

To take into account approximately the non-linear constraint 

(9) and assume that at any time instant the time-optimal 

control operates at the limit of either the control input u  or 

the admissible velocity s , let us present the modification of 

the classical phase-plane method. A basis idea here is to 

replace the primary upper bounds on the velocity and 

acceleration (8) by new values depending on the current state 

of the dynamic system ( , )s s . Such way of combination of the 

inequalities (8) and (9) yields the modified bounds of the 

control input u  and the velocity s : 
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that are included in the time-optimal motion planning 

algorithm. It is worth of mentioning that this modified phase-

plane technique works perfectly well if the non-linear 

constraint (10) is not too hard, and it is satisfied even for the 

trajectory segments corresponding to 0u  . However, in the 

general case, the constraints (8) and (9) may compete 

strongly and the obtained forward and backward trajectories 

are not feasible (Gao et al., 2019). 

An alternative approach to the time-optimal motion 

generation, which is proposed in (Gao, 2018), is based on the 

discrete dynamic programming. Because of its universal 

nature, this technique is able to take into account all 

considered constraints in a similar way and to generate 

optimal trajectories of complex structure that include multiple 

segments separated by so-called switching points (also 

known as discontinuity points, tangent points and singular 

critical points (Timar et al., 2005)). In contrast to the phase-

plane method, the dynamic programming considers a set of 

feasible trajectories at each time instant, from which the best 

one is selected at the final stage. However, as follows from 

our study, this approach is rather time consuming while 

applied to the entire displacement to be implemented. For 

example, in the case of grid 630×100, the total computation 

time for the time-optimal trajectory generation in Matlab 

R2014b was about two minutes (Intel i5 2.67GHz). For this 

reason, a “moving-window” strategy combined with dynamic 

programming for the real time optimal motion generation is 

proposed in this paper. Similar to the technique presented in 

(Gao et al., 2019), this strategy is able to generate feasible 

solutions while taking into account all the constraints, but it 

is significantly faster.  

 

Fig. 2. Moving window scheme of real-time trajectory 

planning for mobile robot 

This proposed approach breaks down the full-size problem 

into a set of sub-problems. As is shown in Fig. 2, a moving 

window is applied segment by segment. For each window, a 

developed trajectory planning algorithm (related information 

presented in next section) is used to generate the local time-

optimal trajectory. The solution previously generated is 

already able to be implemented while the following 

computation is still ongoing. This allows implementing the 

feasible motion in real-time. In more details, an outline of the 

moving window scheme is presented below in the form of 

pseudo-codes. The input includes the arrays of displacement 

and path curvature{ ( ), ( ) 1,2,... }S i R i i n , velocity and 

acceleration limits, window size “width” and cut point 

“cutid”, as well as the discretization step of the velocity “dv”. 

The algorithm output is the optimal trajectory “VS”. The total 

procedure is composed of three basic steps. The first step 

defines the initial state, including the position, velocity and 

the distance to the end point. At the second step, a window 

with the desired size is applied starting from the second path 

point (since the starting point is known). A trajectory 



 

 

     

 

Algorithm : real time motion generation 
Input: Array of displacement – S(i), size 1×n 

Array of radius – R(i), size 1×n 

Maximum velocity / acceleration – vm / am 

Window entire width – width, integer number 

Executed segment width – cutid, integer number  

Velocity increment step – dv 

Output: Optimal trajectory states – VS 

Notations: Displacement to end point – d2e 

 Minimum distance for decelerating – ds  

 Initial state – ini,  size 1×3 

 Displacement for window – dis(i),  size 1×width 

 Radius for window – rs(i),  size 1×width 

Function: Motion planning for one window – DP_ planning 

(1) Set d2e:= max(S);   VS:= [0,0];    ini:= [VS, R(1)];    i:= 2; 

            ds: = 0.5*vm*vm/am;  

 (2) While d2e>1.5*ds 

            Set  dis: = S (i:width+i-1);   rs: = R(i:width+i-1); 

            [ vs ] = DP_ planning ( ini, dis, dv, rs, vm, am); 

            VS : = [VS; vs(1:cutid)]; 

            ini  : = [vs(cutid), rs(cutid)];       

            d2e := d2e-(s(i+cutid -1)-s(i-1)); 

            i:= i+cutid; 

      End 
(3) Set  dis := S(i:end);  rs := R(i:end); 

     [ vs ] = DP_ planning ( ini, dis, dv, rs, vm, am); 

     VS  = [VS; vs]; 

 

planning function “DP_ planning” is invoked to generate the 

optimal solution for this window. Then, the generated 

trajectory is split into two parts at the “cutid” position. The 

former section is remained and the latter is removed. After 

that, the window is moved to the “cutid” position and the 

same operation is applied again. This process is repeated if 

the robot is not approaching to the final point. At the third 

step, the last window is applied to generate the trajectory 

ending with zero velocity at the final position. 

 

4. MOTION PLANNING USING DISCRETE DYNAMIC 

RROGRAMMING FOR ONE SEGMENT 

For one window (one segment), the motion generation 

problem is solved using discrete dynamic programming 

technique. To present the problem in a discrete way, let us 

sample the allowable domain of the velocity and 

displacement  max[0, ]v v  and max[0, ]s s  with the steps 

v  and s  

 
( )

( )

; 0,1,...

; 0,1,...

k

i

v k v k m

s i s i n

  

  
 (11) 

where maxv v m   and maxs s n  . Then, for each path 

point we can generate a number of the mobile robot states 

with all possible velocities, i.e.
( , ) ( ) ( )( , );i k i k is v s k  C .   

While considering the path points are ordered in time, the 

original sequence of is described by presented equations may 

be converted into a directed graph presented in Fig. 3. It 

should be noted that some of the states generated by previous 

equation should be excluded from the graph. These 

inadmissible states are not connected to any neighbor. It is 

clear that due to time-irreversibility, the allowable 

connections between the graph nodes are limited to the 

subsequent configuration states 
1( , ) ( , 1)i ik i k i C C , and the 

edge weights correspond to the minimum travelling time. 

 

Fig. 3. Graph-based presentation of the discrete search space 

for real-time trajectory planning 

Using the discrete search space, the considered problem can 

be transformed to the searching of the shortest path on the 

above presented graph. In the frame of this notation, the 

desired solution can be represented as the sequence

2 1(0,1) ( ,2) ( , 1) (0, ){ } { } ...{ } { }
nk k n n   C C C C . The distance 

between subsequent nodes can be evaluated as the 

displacement time in the following way: 

 
1 1( , ) ( , 1) 1( , ) 2( ) ( )

i i i ik i k i i i k kdist s s v v
    C C  (12) 

The latter allows us to present the objective function 

(travelling time) as follows 

 
1

1

( , ) ( , 1)

1

( , )
i i

n

k i k i

i

T dist








 C C  (13) 

that depends on the indices 1 2 1, ,... ,n nk k k k . It should be 

noted that the applied method of search space discretization 

automatically takes into account the velocity constraints, but 

the acceleration constraints must be examined as follows 

 1 max( )i iv v t a     (14) 

where 
1( , ) ( , 1)( , )

i ik i k it dist
   C C . Additionally, the non-

skidding condition (5) for each wheel should be also verified 

for computing the edge weights as follows 

 2 2 2( )i i
a v R g     (15) 

where can be estimated from (14). 

After discretization, the problem is converted to a 

combinatorial one, which can generally be transformed to the 

classical shortest path search on the graph. However, the 

straightforward approach is extremely more time-consuming 

than dynamic programming based technique (Gao, 2018).  

The developed algorithm breaks down the full-size problem 

into a set of sub-problems, aiming at finding the shortest path 



 

 

     

 

Algorithm: DP based technique  

Input: Matrix of states –C(k,i) of size m×n 

Array of radius –R(i) of size 1×n 

Output: Minimum path length –Dmin 

 Optimal path indices –k0(i), i = 1,2,…n  

Notations: Distance matrix –D(k,i) of size m×n 

 Pointer matrix –P(j,i-1) of size m×n 

Functions: Distance between nodes –dist ( C(k1,i1), C(k2,i2) ) 

Skidding test for a node –skid ( C(k,i), R(i) ) 

Acceleration test for nodes –acc (C(k1,i1), C(k2,i2)) 

(1) Set D(k,1):=0; P(k,1):=null; ∀k=1,2,…m 

(2) For i = 2 to n do  

        For k = 1 to m  do 

          For j = 1 to m  do 

      (a) If (acc (C(k,i), C(j,i-1)) = 0) &  

    (skid ( C(k,i), R(i) )=0 ) & (skid ( C(j,i-1), R(i-1) )=0 ) 

                     r(j) := D(j,i-1)+dist ( C(k,i), C(j,i-1) ) 

            else 

                     r(j) := Inf 

            end 

      (b) Set D(j,i) := min(r); P(j,i) := argmin(r); 

(3) Set  Dmin := min( D(k,n) ); k0(n) := argmin(r) 

(4) For i = 2 to n do 

           Set  k0(i-1) := P(k0(i), i)   

 

from the initial 
1( ,1) 1{ , }k kC  to the current 

( , ){ , }
ik i ikC . To 

present the basic idea, let us denote 
,k id  as the length of the 

shortest path connecting the initial node to the current node 

( , ){ }k iC . Then, taking into account the additivity of the 

objective (13), the shortest path for the nodes belong to the 

next layer 
( , 1){ , }k i k C  can be found by combining the 

optimal solutions for the previous layer 
( , ){ , }k i k

C  and the 

distances between the nodes with the indices i  and 1i  . The 

latter corresponds to the formula 

  , 1 , ( , ) ( , 1)min ( , )k i k i k i k i
k

d d dist  


  C C  (16) 

that is applied sequentially starting from the second layer, i.e. 

1,2,... 1i n  . Finally, after selection of the minimum length 

, 1k id 
 corresponding to the final layer and applying the 

backtracking, one can get the desired optimal path in graph. It 

is described by the recorded indices 
1 2 1{ , ,... , }n nk k k k

. 

In more details, an outline of the developed algorithm is 

presented as follows in the form of pseudo-codes. The input 

includes the state matrix { ( , ) 1,2,... ; 1,2,... }C k i k m i n 

containing the information of displacement and velocity, and 

also the array of path radius { ( ) 1,2,... }R i i n . The 

algorithm operates with two tables ( , )D k i  and ( , )P k i  that 

include the minimum distances for the sub-problem of lower 

size (for the path 1i) and the pointers to the previous 

locations respectively. The procedure is composed of four 

basic steps. The first step initializes the distance and pointer 

matrices. In step (2), the recursive formula (16) is 

implemented. The computing start from the second layer and 

it tries all possible connections between the nodes in the 

current layer and the previous one. It includes verifications of 

the non-skidding constraint and acceleration limit in the sub-

step (2a). The sub-step (2b) finds the minimum path from the 

current node ( , )C k i  to the first layer { ( ,1), }C j j  and 

records the reference to { ( , 1), }C j i j   in the pointer matrix. 

In steps (3) and (4), the optimal solution is finally obtained 

and corresponding path is extracted by backtracking. 

5.  AN APPLICATION EXAMPLE 

To evaluate the efficiency of the proposed technique, let us 

apply it to the generation of time-optimal motions along a 

sinusoidal path whose curvature varies essentially. This path 

is presented in Fig. 4 and is described by the parametric 

equations x A    and sin( )y B    where [0,4 ]   

and 10A B  . The parameters of the mobile robot included 

in the constraints (8) and (9) are assumed to be as follows:

max 10.0 m sv  , 2

max 8.0m sa  , 0.9   and 29.8m sg  . 

For this path of length 
max 152.72 ms  , the radius of 

curvature varies essentially from +10.00 m to the positive 

infinity and from the negative infinity to -10.00 m, which 

makes the non-skidding constraint (9) active at the path 

segments closest to the peak and the bottom. 

 

Fig. 4. A sinusoidal path shape used for motion generation 

For this case study, the width of the window was about 15 m, 

which is higher than the minimum accelerating/decelerating 

distance 6.25 m. The displacement step 0.28ms   and the 

velocity step 0.10m sv  . So, the search space of the first 

window was discretized with the grid 60×100. The 

computing time for the first window in Matlab R2014b was 

around 2.1 sec (Intel i5 2.67GHz). Then, all the next 

windows started from the 50
th

 point of the previous one, and 

the sampling of [0,10]v  was replaced by [5,10]v . So, 

with the reduced grid 60×50, the computing time for the 

following windows is less than 1.0 sec. In total, the 

computation time for the entire displacement was about 

18.0 sec. It is much more efficient compared to the 

computational effort of our previous technique (more than 

2 min). In order to meet the requirement of real time, this 

Matlab code was also transformed into the C code. In the 

environment of C, the computing time for entire displacement 

was 0.51 sec and for one window was 0.13 sec. 

The obtained time-optimal trajectory is presented in Fig. 5, 

which shows that the desired motion is composed of multiple 

acceleration/deceleration segments separated by the relevant 

number of the switchings, which separate segments with 



 

 

     

 

different active constraints. This result is in good agreement 

with physical nature of the problem, which requires reducing 

the speed in advance when closing to the path segments with 

high curvature to ensure pure rolling of the robot wheels. 

Hence, the proposed method allows user obtaining optimal 

trajectories in real time for any combination of linear/non-

linear constraints describing limitations of the robot driving 

motors without skidding.  

 

Fig. 5. Time optimal motion generated for sinusoidal path 

using moving window and discrete dynamic programming: 

(a) non-skidding constraint for reference point only; 

(b) non-skidding constraint for reference point and wheels. 

6. CONCLUSIONS 

Recent advances in mobile robotics and increase of their 

achievable driving speeds require essential improvement of 

existing motion generation algorithms. For this reason, in 

addition to the conventional velocity and acceleration 

constraints issued from the limited capacity of the driving 

motors, the “non-skidding” constraints imposed by the 

physical properties of the wheels contacts with the moving 

surface must be also considered. Because of the complicated 

description, they can be hardly integrated into existing 

motion planning algorithms that rely on the phase-plane 

method. To overcome this difficulty, the paper proposes a 

new technique that allows finding time-optimal motions 

along a curved path that takes into account limitations of the 

driving motors and also ensures the robot wheels rolling 

without skidding. After the state space discretization, the 

original problem is presented as a combinatorial one, where 

the desired robot trajectory is the shortest path on the relevant 

graph. To obtain this path and ensure its implementation in 

real time, a moving window strategy combined with dynamic 

programming is proposed. This technique allows taking into 

account all considered constraints in a similar way and 

generating optimal trajectories of complex structure that 

include multiple segments separated by switching points. 

Advantages of this technique and its suitability to real time 

control were confirmed by a case study dealing the fastest 

motion of the mobile robot along a sinusoidal path. 
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