
HAL Id: hal-02290637
https://hal.science/hal-02290637

Submitted on 17 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real Time Motion Generation for Mobile Robot
Jiuchun Gao, Anatol Pashkevich, Fabien Claveau, Philippe Chevrel

To cite this version:
Jiuchun Gao, Anatol Pashkevich, Fabien Claveau, Philippe Chevrel. Real Time Motion Generation
for Mobile Robot. MIM 2019 : The 9th IFAC Conference on Manufacturing Modelling, Management
and Control, Aug 2019, Berlin, Germany. �10.1016/j.ifacol.2019.11.179�. �hal-02290637�

https://hal.science/hal-02290637
https://hal.archives-ouvertes.fr

Real Time Motion Generation for Mobile Robot

Jiuchun Gao* Anatol Pashkevich*

Fabien Claveau* Philippe Chevrel*


*Laboratory LS2N, Institute Mines-Telecom Atlantique, Nantes, 44307 France

(e-mails: jiuchun.gao@imt-atlantique.fr, anatol.pashkevich@imt-atlantique.fr,

fabien.claveau@imt-atlantique.fr, philippe.chevrel@imt-atlantique.fr).

Abstract: The paper proposes a new real time motion generation technique for a mobile robot, which is

able to find time-optimal motions along a curved path taking into account capabilities of the driving

motors and ensuring the wheels rolling without skidding. The problem is converted to a time-optimal

control of a second-order dynamic system under constraints on the control input, the first derivative of

output, and mixed constraint on the control variable and the output derivative. After the state space

discretization, the original problem is presented as a combinatorial one where the desired robot trajectory

corresponds to a shortest path on the relevant graph. To find this path and ensure its real time

implementation, a moving window strategy combined with dynamic programming is proposed.

Advantages of this approach and its suitability to real time control are illustrated by a case study dealing

the fastest motion of the mobile robot along a sinusoidal path. Copyright © 2019 IFAC

Keywords: mobile robot, real time control, motion generation, time-optimal systems



1. INTRODUCTION

Currently, due to significant developments in computational

geometry and computer vision, essential progress has been

achieved in the area of mobile robot path planning. Existing

on-board robot controllers are able to generate the path in real

time for very complex and partially unknown environment

(González et al., 2016). In the meantime, the problem of

time-optimal trajectory planning along the generated path

received less attention. In literature, existing techniques are

mostly based on the classical phase-plane method that

requires some non-trivial actions in the case of complex state-

dependent constraints (Petrinić et al., 2017). On the other

side, the problem of time-optimal trajectory planning along a

specified path has been intensively studied in robotics for

many years. Relative works focused on serial manipulators

and the desired optimal end-effector motions were generated

taking into account the velocity/acceleration bounds in the

joints and physical constraints of the actuating motors

(Bobrow et al., 1985, Pfeiffer and Johanni, 1987, Shiller and

Lu, 1992, Yang and Slotine, 1994, Butler et al., 2016). These

works employ the phase-plane technique and are based on the

fact that the time-optimal solution is “bang-bang”, i.e. at any

time instant one of the actuators works at the limit of its

velocity/acceleration. Because of the geometric limits

imposed by the specified path, the state vector contains only

two variables, the distance and the velocity along the path.

However, the non-linear robotic manipulator kinematics and

dynamics transform the actuators limits into state-dependent

constraints on velocity and acceleration along the path. Thus,

the original problem is converted to the time-optimal control

of a second-order linear system with nonlinear state-

dependent constraints on velocity/acceleration, where the

acceleration is also treated as a control input. In the above

mentioned papers, the authors have presented numbers of

examples and obtained some important properties of the

time-optimal control, i.e. multiple-switching between

acceleration and deceleration, which are not common for the

second-order dynamic systems studied in the classical control

theory. Nonetheless, in the frame of the phase-plane method,

there is no general approach that allows generating multiple-

switching optimal control for the considered problem.

It is also worth of mentioning that several works dealing with

time-optimal control of multi-axes CNC machines where it is

necessary to specify the feedrate variation along a curved

path yielding minimum traversal time subject to prescribed

acceleration bounds along each axis. Here, the optimal

solution also relies on the ‘‘bang-bang’’ principle (Timar et

al., 2005). More recent results focus on smooth minimum-

time trajectory generation with higher order constraints (i.e.

axes velocities, accelerations, jerks, etc.) (Bharathi and Dong,

2016). However, an essential practical difficulty exists in this

application area, which is caused by common industrial

practice of approximating free-form curved paths with short

linear/circular G-code segments. It makes the realization of

continuously-varying feedrates problematic. The difficulty is

gradually disappearing when the new CNC machines allow

the real time interpolation for analytic curves (with complete

information of the path curvature and the feedrate variation).

For wheeled mobile robots, the time-optimal control problem

is usually presented in a slightly different way. It is assumed

that the path is not known in advance and it is obtained at the

first stage using relevant geometric algorithms and taking

into account constraints imposed by dynamic workspace

obstacles, required path smoothness and nonholonomy of the

mobile robot (Jacobs and Canny, 1993, Soueres and

Laumond, 1996). Then at the second stage, a time-optimal

velocity profile is generated under dynamic constraints from

the motor physical capacities and also must ensure the wheel

rolling without skidding (Weiguo et al., 1999). The non-

skidding condition can be presented as a non-linear constraint

imposed on the velocity/acceleration, which leads to the

problem of optimal control with multiple switchings. In most

of existing works, the desired time-optimal profiles are

obtained using the phase-plane technique, which in the case

of multiple switchings is difficult for algorithmization and

can be hardly implemented in mobile robot controllers. In our

previous work (Gao et al., 2019), it was proposed a

combinatorial technique allowing generating time-optimal

trajectory with multiple switchings. But, its time efficiency is

not high enough for real time control. For this reason, this

work concentrates on improvement of this technique and

development of relevant algorithms that allow generating in

real time the optimal motions for any combinations of

linear/nonlinear constraints on velocity and acceleration.

2. PROBLEM STATEMENT

Let us assume that the desired mobile robot path is presented

in the parametric form and is defined by two continuously

differentiable functions

max{ (), () ; [0,]}x s y s s s (1)

describing evolution of Cartesian coordinates of the reference

point while driving along the given path, where s is the

distance from the origin to the current position (treated here

as the parameter). Also, let us define the path curvature

described by the radius function

max(), [0,]r s s s (2)

which can be computed from ()x s , ()y s using standard

formulas. The problem is to find the motion law along the

path ()s t ,
max[0,]t t , that ensures the minimum travelling

time
maxt from the initial state (0) 0s  and (0) 0s  to the

final state
max max()s t s and

max() 0s t 

max mint  (3)

and satisfies certain constraints on the derivatives of ()s t

 max max max() ; () ; ((), ())s t v s t a g s t s t c   (4)

whose meaning is clarified below.

The first two of the above constraints describe physical

limitations of the robot driving motors whose velocity ()s t

and torque (transformed into the linear acceleration ()s t) are

bounded and cannot exceed allowable limits maxv and maxa .

The third constraint takes into account physical properties of

the contact “robot wheel – road surface” where the total

inertia force cannot exceed the friction force. It can be easily

proved that after some simplifications such condition can be

presented in the form of

2
2

2 2()
() ()

()

s t
s t g

r t


 
   

 
 (5)

where the components on the left-hand side are the lateral

and longitudinal accelerations respectively, g is the gravity

acceleration, and  is the friction coefficient.

Using terminology from the optimal control theory and

treating the acceleration as a control input, the considered

problem can be present as minimization of the cost functional

0

1 min

T

dt  (6)

subject to the second-order dynamic constraints

 s u (7)

with boundary conditions (0) 0s  ;
max()s T s ; (0) 0s  ;

() 0s T  and the algebraic constraints on the control variable

and one of the state variables

max max;u a s v  (8)

as well as a mixed constraint imposed on the state variable

and control

2
2

2 2

0
()

s
u u

r s

 
  

 
 (9)

where the parameter
0u g denotes the maximum

acceleration bound imposed by the friction. The latter also

gives some upper bounds for the state variable and control,

such as
0u u and 0 ()s u r s  that may replace the

previous ones.

Fig. 1. Schematic diagram of a mobile robot model (planar)

If the last of the above constraints is not active, the optimal

solution is trivial and can be obtained using conventional

methods based on “bang-bang” principle. In this case the

desired motion is obtained by sequentially applying

accelerations
max max(, 0,)a a  that produce either the

trapezoidal or triangular velocity profile. However, generally,

these constraints may compete to each other and the structure

of the optimal solution becomes more complicated, which

creates essential difficulties when generating time-optimal

motion in real time. It should be mentioned that usually the

constraint (9) is applied at the reference point of the mobile

robot, which is the robot model centroid as shown in Fig. 1.

However in practice, it is necessary to verify this constraint

for each wheel, so the non-skidding constraint becomes

slightly stronger. This particularity will be taken into account

in the proposed motion generation algorithms.

3. REAL TIME MOTION GENERATION STRATEGY

In classical control theory, the time-optimal motions for the

second-order dynamic systems are generated using the

conventional phase-plane method, taking into account

specific properties of the optimal control input ()u t . It was

proved that in the simplest case, when only the input

constraint
maxu a is applied to the dynamic system (7), the

optimal control has a “bang-bang” form, where the amplitude

is constant
max()u t a and there is a single switching from

maxu a  to
maxu a  . For the case where both limits

maxu a and
maxs v are considered, the optimal control is

also discontinuous, but it includes an intermediate interval

with () 0u t  ensuring satisfaction of the velocity constraint.

So, there are two switchings here, from
maxu a  to 0u 

and from 0u  to
maxu a  . For these simple cases, the

phase-plane method is efficient. But, as follows from relevant

studies (Bobrow et al., 1985, Petrinić et al., 2017),

application of the additional non-linear constraint similar to

(9) can crucially change the structure of the optimal control

function ()u t , which may include multiple switchings.

To take into account approximately the non-linear constraint

(9) and assume that at any time instant the time-optimal

control operates at the limit of either the control input u or

the admissible velocity s , let us present the modification of

the classical phase-plane method. A basis idea here is to

replace the primary upper bounds on the velocity and

acceleration (8) by new values depending on the current state

of the dynamic system (,)s s . Such way of combination of the

inequalities (8) and (9) yields the modified bounds of the

control input u and the velocity s :

 

 

2
2 2

max max 0

max max 0

ˆ min , ()

ˆ min , ()

a a u s r s

v v u r s

 
  

 



 (10)

that are included in the time-optimal motion planning

algorithm. It is worth of mentioning that this modified phase-

plane technique works perfectly well if the non-linear

constraint (10) is not too hard, and it is satisfied even for the

trajectory segments corresponding to 0u  . However, in the

general case, the constraints (8) and (9) may compete

strongly and the obtained forward and backward trajectories

are not feasible (Gao et al., 2019).

An alternative approach to the time-optimal motion

generation, which is proposed in (Gao, 2018), is based on the

discrete dynamic programming. Because of its universal

nature, this technique is able to take into account all

considered constraints in a similar way and to generate

optimal trajectories of complex structure that include multiple

segments separated by so-called switching points (also

known as discontinuity points, tangent points and singular

critical points (Timar et al., 2005)). In contrast to the phase-

plane method, the dynamic programming considers a set of

feasible trajectories at each time instant, from which the best

one is selected at the final stage. However, as follows from

our study, this approach is rather time consuming while

applied to the entire displacement to be implemented. For

example, in the case of grid 630×100, the total computation

time for the time-optimal trajectory generation in Matlab

R2014b was about two minutes (Intel i5 2.67GHz). For this

reason, a “moving-window” strategy combined with dynamic

programming for the real time optimal motion generation is

proposed in this paper. Similar to the technique presented in

(Gao et al., 2019), this strategy is able to generate feasible

solutions while taking into account all the constraints, but it

is significantly faster.

Fig. 2. Moving window scheme of real-time trajectory

planning for mobile robot

This proposed approach breaks down the full-size problem

into a set of sub-problems. As is shown in Fig. 2, a moving

window is applied segment by segment. For each window, a

developed trajectory planning algorithm (related information

presented in next section) is used to generate the local time-

optimal trajectory. The solution previously generated is

already able to be implemented while the following

computation is still ongoing. This allows implementing the

feasible motion in real-time. In more details, an outline of the

moving window scheme is presented below in the form of

pseudo-codes. The input includes the arrays of displacement

and path curvature{ (), () 1,2,... }S i R i i n , velocity and

acceleration limits, window size “width” and cut point

“cutid”, as well as the discretization step of the velocity “dv”.

The algorithm output is the optimal trajectory “VS”. The total

procedure is composed of three basic steps. The first step

defines the initial state, including the position, velocity and

the distance to the end point. At the second step, a window

with the desired size is applied starting from the second path

point (since the starting point is known). A trajectory

Algorithm : real time motion generation
Input: Array of displacement – S(i), size 1×n

Array of radius – R(i), size 1×n

Maximum velocity / acceleration – vm / am

Window entire width – width, integer number

Executed segment width – cutid, integer number

Velocity increment step – dv

Output: Optimal trajectory states – VS

Notations: Displacement to end point – d2e

 Minimum distance for decelerating – ds

 Initial state – ini, size 1×3

 Displacement for window – dis(i), size 1×width

 Radius for window – rs(i), size 1×width

Function: Motion planning for one window – DP_ planning

(1) Set d2e:= max(S); VS:= [0,0]; ini:= [VS, R(1)]; i:= 2;

 ds: = 0.5*vm*vm/am;

 (2) While d2e>1.5*ds

 Set dis: = S (i:width+i-1); rs: = R(i:width+i-1);

 [vs] = DP_ planning (ini, dis, dv, rs, vm, am);

 VS : = [VS; vs(1:cutid)];

 ini : = [vs(cutid), rs(cutid)];

 d2e := d2e-(s(i+cutid -1)-s(i-1));

 i:= i+cutid;

 End
(3) Set dis := S(i:end); rs := R(i:end);

 [vs] = DP_ planning (ini, dis, dv, rs, vm, am);

 VS = [VS; vs];

planning function “DP_ planning” is invoked to generate the

optimal solution for this window. Then, the generated

trajectory is split into two parts at the “cutid” position. The

former section is remained and the latter is removed. After

that, the window is moved to the “cutid” position and the

same operation is applied again. This process is repeated if

the robot is not approaching to the final point. At the third

step, the last window is applied to generate the trajectory

ending with zero velocity at the final position.

4. MOTION PLANNING USING DISCRETE DYNAMIC

RROGRAMMING FOR ONE SEGMENT

For one window (one segment), the motion generation

problem is solved using discrete dynamic programming

technique. To present the problem in a discrete way, let us

sample the allowable domain of the velocity and

displacement max[0,]v v and max[0,]s s with the steps

v and s

()

()

; 0,1,...

; 0,1,...

k

i

v k v k m

s i s i n

  

  
 (11)

where maxv v m  and maxs s n  . Then, for each path

point we can generate a number of the mobile robot states

with all possible velocities, i.e.
(,) () ()(,);i k i k is v s k  C .

While considering the path points are ordered in time, the

original sequence of is described by presented equations may

be converted into a directed graph presented in Fig. 3. It

should be noted that some of the states generated by previous

equation should be excluded from the graph. These

inadmissible states are not connected to any neighbor. It is

clear that due to time-irreversibility, the allowable

connections between the graph nodes are limited to the

subsequent configuration states
1(,) (, 1)i ik i k i C C , and the

edge weights correspond to the minimum travelling time.

Fig. 3. Graph-based presentation of the discrete search space

for real-time trajectory planning

Using the discrete search space, the considered problem can

be transformed to the searching of the shortest path on the

above presented graph. In the frame of this notation, the

desired solution can be represented as the sequence

2 1(0,1) (,2) (, 1) (0,){ } { } ...{ } { }
nk k n n   C C C C . The distance

between subsequent nodes can be evaluated as the

displacement time in the following way:

1 1(,) (, 1) 1(,) 2() ()

i i i ik i k i i i k kdist s s v v
    C C (12)

The latter allows us to present the objective function

(travelling time) as follows

1

1

(,) (, 1)

1

(,)
i i

n

k i k i

i

T dist








 C C (13)

that depends on the indices 1 2 1, ,... ,n nk k k k . It should be

noted that the applied method of search space discretization

automatically takes into account the velocity constraints, but

the acceleration constraints must be examined as follows

 1 max()i iv v t a    (14)

where
1(,) (, 1)(,)

i ik i k it dist
   C C . Additionally, the non-

skidding condition (5) for each wheel should be also verified

for computing the edge weights as follows

 2 2 2()i i
a v R g   (15)

where can be estimated from (14).

After discretization, the problem is converted to a

combinatorial one, which can generally be transformed to the

classical shortest path search on the graph. However, the

straightforward approach is extremely more time-consuming

than dynamic programming based technique (Gao, 2018).

The developed algorithm breaks down the full-size problem

into a set of sub-problems, aiming at finding the shortest path

Algorithm: DP based technique

Input: Matrix of states –C(k,i) of size m×n

Array of radius –R(i) of size 1×n

Output: Minimum path length –Dmin

 Optimal path indices –k0(i), i = 1,2,…n

Notations: Distance matrix –D(k,i) of size m×n

 Pointer matrix –P(j,i-1) of size m×n

Functions: Distance between nodes –dist (C(k1,i1), C(k2,i2))

Skidding test for a node –skid (C(k,i), R(i))

Acceleration test for nodes –acc (C(k1,i1), C(k2,i2))

(1) Set D(k,1):=0; P(k,1):=null; ∀k=1,2,…m

(2) For i = 2 to n do

 For k = 1 to m do

 For j = 1 to m do

 (a) If (acc (C(k,i), C(j,i-1)) = 0) &

 (skid (C(k,i), R(i))=0) & (skid (C(j,i-1), R(i-1))=0)

 r(j) := D(j,i-1)+dist (C(k,i), C(j,i-1))

 else

 r(j) := Inf

 end

 (b) Set D(j,i) := min(r); P(j,i) := argmin(r);

(3) Set Dmin := min(D(k,n)); k0(n) := argmin(r)

(4) For i = 2 to n do

 Set k0(i-1) := P(k0(i), i)

from the initial
1(,1) 1{ , }k kC to the current

(,){ , }
ik i ikC . To

present the basic idea, let us denote
,k id as the length of the

shortest path connecting the initial node to the current node

(,){ }k iC . Then, taking into account the additivity of the

objective (13), the shortest path for the nodes belong to the

next layer
(, 1){ , }k i k C can be found by combining the

optimal solutions for the previous layer
(,){ , }k i k

C and the

distances between the nodes with the indices i and 1i  . The

latter corresponds to the formula

  , 1 , (,) (, 1)min (,)k i k i k i k i
k

d d dist  


  C C (16)

that is applied sequentially starting from the second layer, i.e.

1,2,... 1i n  . Finally, after selection of the minimum length

, 1k id 
 corresponding to the final layer and applying the

backtracking, one can get the desired optimal path in graph. It

is described by the recorded indices
1 2 1{ , ,... , }n nk k k k

.

In more details, an outline of the developed algorithm is

presented as follows in the form of pseudo-codes. The input

includes the state matrix { (,) 1,2,... ; 1,2,... }C k i k m i n 

containing the information of displacement and velocity, and

also the array of path radius { () 1,2,... }R i i n . The

algorithm operates with two tables (,)D k i and (,)P k i that

include the minimum distances for the sub-problem of lower

size (for the path 1i) and the pointers to the previous

locations respectively. The procedure is composed of four

basic steps. The first step initializes the distance and pointer

matrices. In step (2), the recursive formula (16) is

implemented. The computing start from the second layer and

it tries all possible connections between the nodes in the

current layer and the previous one. It includes verifications of

the non-skidding constraint and acceleration limit in the sub-

step (2a). The sub-step (2b) finds the minimum path from the

current node (,)C k i to the first layer { (,1), }C j j and

records the reference to { (, 1), }C j i j  in the pointer matrix.

In steps (3) and (4), the optimal solution is finally obtained

and corresponding path is extracted by backtracking.

5. AN APPLICATION EXAMPLE

To evaluate the efficiency of the proposed technique, let us

apply it to the generation of time-optimal motions along a

sinusoidal path whose curvature varies essentially. This path

is presented in Fig. 4 and is described by the parametric

equations x A   and sin()y B   where [0,4] 

and 10A B  . The parameters of the mobile robot included

in the constraints (8) and (9) are assumed to be as follows:

max 10.0 m sv  , 2

max 8.0m sa  , 0.9  and 29.8m sg  .

For this path of length
max 152.72 ms  , the radius of

curvature varies essentially from +10.00 m to the positive

infinity and from the negative infinity to -10.00 m, which

makes the non-skidding constraint (9) active at the path

segments closest to the peak and the bottom.

Fig. 4. A sinusoidal path shape used for motion generation

For this case study, the width of the window was about 15 m,

which is higher than the minimum accelerating/decelerating

distance 6.25 m. The displacement step 0.28ms  and the

velocity step 0.10m sv  . So, the search space of the first

window was discretized with the grid 60×100. The

computing time for the first window in Matlab R2014b was

around 2.1 sec (Intel i5 2.67GHz). Then, all the next

windows started from the 50
th

 point of the previous one, and

the sampling of [0,10]v was replaced by [5,10]v . So,

with the reduced grid 60×50, the computing time for the

following windows is less than 1.0 sec. In total, the

computation time for the entire displacement was about

18.0 sec. It is much more efficient compared to the

computational effort of our previous technique (more than

2 min). In order to meet the requirement of real time, this

Matlab code was also transformed into the C code. In the

environment of C, the computing time for entire displacement

was 0.51 sec and for one window was 0.13 sec.

The obtained time-optimal trajectory is presented in Fig. 5,

which shows that the desired motion is composed of multiple

acceleration/deceleration segments separated by the relevant

number of the switchings, which separate segments with

different active constraints. This result is in good agreement

with physical nature of the problem, which requires reducing

the speed in advance when closing to the path segments with

high curvature to ensure pure rolling of the robot wheels.

Hence, the proposed method allows user obtaining optimal

trajectories in real time for any combination of linear/non-

linear constraints describing limitations of the robot driving

motors without skidding.

Fig. 5. Time optimal motion generated for sinusoidal path

using moving window and discrete dynamic programming:

(a) non-skidding constraint for reference point only;

(b) non-skidding constraint for reference point and wheels.

6. CONCLUSIONS

Recent advances in mobile robotics and increase of their

achievable driving speeds require essential improvement of

existing motion generation algorithms. For this reason, in

addition to the conventional velocity and acceleration

constraints issued from the limited capacity of the driving

motors, the “non-skidding” constraints imposed by the

physical properties of the wheels contacts with the moving

surface must be also considered. Because of the complicated

description, they can be hardly integrated into existing

motion planning algorithms that rely on the phase-plane

method. To overcome this difficulty, the paper proposes a

new technique that allows finding time-optimal motions

along a curved path that takes into account limitations of the

driving motors and also ensures the robot wheels rolling

without skidding. After the state space discretization, the

original problem is presented as a combinatorial one, where

the desired robot trajectory is the shortest path on the relevant

graph. To obtain this path and ensure its implementation in

real time, a moving window strategy combined with dynamic

programming is proposed. This technique allows taking into

account all considered constraints in a similar way and

generating optimal trajectories of complex structure that

include multiple segments separated by switching points.

Advantages of this technique and its suitability to real time

control were confirmed by a case study dealing the fastest

motion of the mobile robot along a sinusoidal path.

REFERENCES

Bharathi, A. & Dong, J. (2016). Feedrate optimization for

smooth minimum-time trajectory generation with higher

order constraints. The International Journal of Advanced

Manufacturing Technology, 82, 1029-1040.

Bobrow, J. E., Dubowsky, S. & Gibson, J. (1985). Time-

optimal control of robotic manipulators along specified

paths. The international journal of robotics research, 4,

3-17.

Butler, S. D., Moll, M. & Kavraki, L. E. (2016). A general

algorithm for time-optimal trajectory generation subject

to minimum and maximum constraints. Workshop on

the Algorithmic Foundations of Robotics, 2016.

Gao, J. (2018). Optimal motion planning in redundant

robotic systems for automated composite lay-up process.

École centrale de Nantes.

Gao, J., Pashkevich, A., Claveau, F. & Chevrel, P. (2019).

Optimal motion generation for mobile robot with non-

skidding constraints. IEEE 2019 International

Conference on Mechatronics. In press.

González, D., Pérez, J., Milanés, V. & Nashashibi, F. (2016).

A review of motion planning techniques for automated

vehicles. IEEE Transactions on Intelligent

Transportation Systems, 17, 1135-1145.

Jacobs, P. & Canny, J. (1993). Planning smooth paths for

mobile robots. Nonholonomic Motion Planning.

Springer.

Petrinić, T., Brezak, M. & Petrović, I. (2017). Time-optimal

velocity planning along predefined path for static

formations of mobile robots. International Journal of

Control, Automation and Systems, 15, 293-302.

Pfeiffer, F. & Johanni, R. (1987). A concept for manipulator

trajectory planning. IEEE Journal on Robotics and

Automation, 3, 115-123.

Shiller, Z. & Lu, H.-H. (1992). Computation of path

constrained time optimal motions with dynamic

singularities. Journal of dynamic systems, measurement,

and control, 114, 34-40.

Soueres, P. & Laumond, J.-P. (1996). Shortest paths

synthesis for a car-like robot. IEEE Transactions on

Automatic Control, 41, 672-688.

Timar, S. D., Farouki, R. T., Smith, T. S. & Boyadjieff, C. L.

(2005). Algorithms for time–optimal control of CNC

machines along curved tool paths. Robotics and

Computer-Integrated Manufacturing, 21, 37-53.

Weiguo, W., Huitang, C. & Peng-yung, W. (1999). Optimal

motion planning for a wheeled mobile robot. Robotics

and Automation, 1999. Proceedings. 1999 IEEE

International Conference on, 1999. IEEE, 41-46.

Yang, H. S. & Slotine, J.-J. E. (1994). Fast Algorithms for

Near-Minimum-Time Control of Robot Manipulators:

Communication. The International journal of robotics

research, 13, 521-532.

