
HAL Id: hal-02290437
https://hal.science/hal-02290437v1

Submitted on 17 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Direct measurement of the spectral dependence of Lamb
coupling constant in a dual frequency quantum

well-based VECSEL
Gaëlle Brévalle, Salvatore Pes, Cyril Paranthoen, Mathieu Perrin, Christophe

Levallois, Cyril Hamel, Alexandru Mereuta, Andrei Caliman, Eli Kapon,
Arthur Vallet, et al.

To cite this version:
Gaëlle Brévalle, Salvatore Pes, Cyril Paranthoen, Mathieu Perrin, Christophe Levallois, et al.. Direct
measurement of the spectral dependence of Lamb coupling constant in a dual frequency quantum
well-based VECSEL. Optics Express, 2019, 27 (15), pp.21083-21091. �10.1364/OE.27.021083�. �hal-
02290437�

https://hal.science/hal-02290437v1
https://hal.archives-ouvertes.fr


Direct measurement of the spectral 
dependence of Lamb coupling constant in a 
dual frequency Quantum Well-based VECSEL 

GAËLLE BREVALLE,1 SALVATORE PES,1 CYRIL PARANTHOËN,1 MATHIEU 

PERRIN,1 CHRISTOPHE LEVALLOIS,1 CYRIL HAMEL,1 ALEXANDRU 

MEREUTA,2 ANDREI CALIMAN,2 ELI KAPON,2 ARTHUR VALLET,3 LAURENT 

CHUSSEAU,3 HERVE FOLLIOT,1 AND MEHDI ALOUINI1,* 

1Univ Rennes, CNRS, Institut FOTON - UMR 6082, F-35000 Rennes, France 
2Laboratory of Physics of Nanostructures, Ecole Polytechnique Fédérale de Lausanne, CH-1015 

Lausanne, Switzerland 
3IES, Université de Montpellier, CNRS, Montpellier, France 

* mehdi.alouini@univ-rennes1.fr 

Abstract: Spectral dependence of Lamb coupling constant C is experimentally investigated in 

an InGaAlAs Quantum Wells active medium. An Optically-Pumped Vertical-External-Cavity 

Surface-Emitting Laser is designed to sustain the oscillation of two orthogonally polarized 

modes sharing the same active region while separated in the rest of the cavity. This laser 

design enables to tune independently the two wavelengths and, at the same time, to apply 

differential losses in order to extract without any extrapolation the actual coupling constant. C 

is found to be almost constant and equal to 0.839 ± 0.023 for frequency differences between 

the two eigenmodes ranging from 45 GHz up to 1.35 THz. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Lamb coupling constant C [1] introduced in 1964 is an important physical parameter in 

multimode lasers as it governs the dynamics of coupled modes. In particular, in dual-

frequency lasers C rules the stability condition as well as the robustness of dual-frequency 

operation. These lasers are attractive sources for optical generation of high-purity Terahertz 

(THz) radiation [2], offering numerous applications including in radio-astronomy [3], 

environmental monitoring [4], communication [5], imaging and sensing in medicine, biology 

[6] and security [7]. In that respect, tunable dual-polarization solid-state lasers with active 

media such as Nd:YAG [8], Yb,Er:Glass [9] and Nd:YVO4 [10] have been realized, alongside 

with the measurement of the Lamb coupling constant. For C < 1, simultaneous oscillation of 

two modes is possible. Nevertheless in practice, the dual-frequency oscillation becomes 

increasingly perturbed as C approaches 1 until reaching bistability when C exceeds 1 [11]. In 

solid-state lasers, C can be quite high, C ~  0.8 in Er,Yb:glass [12,13] and ~0.85 in Nd:YVO4 

[10] or even quite weak : from 0.8 to 0.4 in Nd:YAG depending on the orientation of the 

crystallographic axes with respect to the laser polarizations [14].  

 

In semiconductor active media, dual-polarization oscillation has been already 

demonstrated in semiconductor Quantum Well (QW) based Vertical External Cavity Surface 

Emitting Lasers (VECSELs), at 1 μm [15–17], at 852 nm [18,19], as well as at telecom 

wavelengths [20,21]. The use of such semiconductor structures in an external cavity enables 

class-A operation of the laser without relaxation oscillations leading naturally to low intensity 

noise oscillation. Owing to the anticipated high mode coupling, a spatial walk-off between the 

two modes is introduced in the active medium. To the best of our knowledge, the value of the 

coupling constant has been measured indirectly only once in a InGaAs/GaAsP QW based 
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structure [22]. A coupling constant of 0.8 was found by extrapolating the effective coupling 

constant obtained for different spatial separations. This value below 1 states that it is, in 

principle, possible to achieve the dual-frequency mode operation without any spatial walk-off, 

which is the first point that we want to experimentally address in this work. Moreover we 

wish to measure directly this coupling constant and to investigate its dependence with respect 

to the wavelength difference between the two modes. 

We firstly describe the Optically-Pumped (OP) QW-based VECSEL and the experimental 

setup that has been conceived to perform the measurement of C. Secondly, we confirm that a 

dual-frequency operation can be obtained in QW-VECSELs without the need of spatial 

separation between the two modes in the active medium. Finally, we directly measure Lamb 

coupling constant for several wavelength differences, in a range as wide as 10.8 nm. 

 

2. Experimental setup description and dual-frequency operation 

The VECSEL structure comprises an InP-based gain region with 3 groups of 4-2-2 

compressively strained InP/InAlGaAs QWs, which was wafer-fused to 19.5 pairs of 

AlAs/GaAs distributed Bragg reflector (DBR) [23].  Both InP-based active wafer and GaAs-

based DBR wafer were grown separately by MOVPE. The VECSEL sub-cavity length was 

designed for emission around 1540-nm. The measured room temperature photoluminescence 

peak of the InAlGaAs QWs is centered near 1505-nm. After selective removal of the GaAs 

substrate, the DBR-side of the fused-structure was metalized with Ti/Au. The wafer was 

cleaved into ~3x3-mm chips and bonded to a metalized 5x5x0.3-mm diamond chip [24]. The 

InP substrate was then selectively etched. Finally, the ½-VCSEL chip was mounted onto a 

copper heatsink. 

The experimental setup in which this ½-VCSEL structure is implemented is depicted in 

Fig.1. The ½-VCSEL chip is mounted on a Peltier thermo-electric cooler, whose temperature 

is fixed to 20°C for all measurements. A 10 mm-thick YVO4 birefringent crystal cut at 45° 

from its optical axis is inserted inside the cavity in order to introduce a d = 1 mm separation 

between the two orthogonally polarized eigenmodes of the cavity, except on the active 

medium where they overlap. The intensity of these two eigenmodes are noted I1 (1-ordinary 

mode, linearly polarized along the x direction) and I2 (2-extraordinary mode, linearly 

polarized along the y direction), as indicated in the figure. A single-mode pigtailed 

semiconductor diode laser, able to deliver up to 1 W at 975 nm, is used to continuously pump 

the active region of the chip. The linear polarization of the pump is oriented at 45° with 

respect to the x-axis. The pump is placed at an incident angle of 45° with respect to the 

VECSEL cavity axis and focused at the surface of the chip by two lenses. The cavity length is 

set at around 10 cm in order to ensure class-A operation of the laser. Due to the slight optical 

length difference between the two laser arms, the waist of the two orthogonal eigenmodes on 

the chip-side slightly differs from each other. They have been calculated to be ω1 = 30 µm and 

ω2 = 31 µm for a 113 mm-long cavity using the ray transfer matrix method for Gaussian 

modes propagation [25]. The pump beam is thus finely shaped to form an almost circular spot 

with semi-axis of 32 μm and 33 μm inside the active medium. These dimensions ensure that 

the two orthogonally-polarized eigenmodes have sufficient gain to simultaneously oscillate 

(see inset of Fig. 1). Furthermore, it promotes the two eigenmodes to oscillate on the 

fundamental transverse TEM00 profile. 

At this point it is worth to notice that it is necessary to close the cavity with a planar output 

coupler on the side where the two eigenstates are spatially separated, to ensure that both 

modes are resonant after one cavity round-trip. The stability of the plane-plane resonator is 

then ensured by an intracavity fused silica bi-convex lens with a focal length of f = 20 mm, 

placed at 28 mm from the VECSEL chip. To force the single-frequency oscillation of the two 



eigenmodes, and thus reach a truly dual-frequency emission, a 100 µm-thick fused silica 

etalon with a reflectivity Reta = 30% on both sides is inserted in each arm. Both etalons are 

mounted on a rotation stage which, in addition, allows independent tuning of the emission 

wavelength of the corresponding eigenmode. A pinhole is also inserted between the active 

medium and the intra-cavity lens, i.e. where the two modes are spatially superimposed, in 

order to filter out any residual high-order transverse mode and ensure a perfect overlap of the 

two modes. To lower down as much as possible the optical losses, all the intra-cavity elements 

inserted in the laser resonator have been anti-reflection coated at the emission wavelength of 

the VECSEL. We also selected a planar output coupler with a relatively high reflectivity, of 

R = 99.5%. Two razor blades, mounted on two piezo-actuators allow introducing diffraction 

losses (a fraction of percent) on one arm without affecting the other (and vice versa). A low 

frequency sinusoidal voltage (fPZT = 15-30 Hz) is applied to the piezo-actuators to slightly 

modulate the intensity of one eigenmode around its steady-state, as it will be further discussed 

in Section 3.  

The analysis part of the experimental setup is depicted in Fig. 1. It includes a second 

YVO4 birefringent crystal, similar to the first one, used to spatially recombine the two 

eigenmodes. After a collimating lens and a 50/50 beam splitter, part of the signal is coupled 

into a single-mode fiber and sent to a spectral analysis line composed of an optical spectrum 

analyzer (OSA) and a 7 GHz free spectral range scanning Fabry-Perot interferometer (FPI). 

The FPI enables monitoring the proper single frequency operation of each mode of the 

VECSEL and in particular to check that no mode-hopping occur during measurements. A 

linear polarizer, placed before the injection lens, allows discriminating between the two 

eigenmodes. The remaining part of the signal is sent to a polarizing beam splitter (PBS), 

which separates the two eigenmodes towards two balanced InGaAs photodiodes (PD1 and 

PD2, respectively) connected to a digital oscilloscope. A half-wave plate is inserted in front of 

the PBS for calibration purpose. By rotating this waveplate, the two polarizations are 

commutated in the two detection arms. Any residual gain/efficiency unbalance between the 

two arms is then measured and taken into account in the measurements.  

 

 

Fig. 1. Experimental setup used to perform the coupling constant measurements in the 

1.54 µm-emitting dual-frequency QW-VECSEL. L: lens, D: diaphragm, BC: YVO4 

birefringent crystal, PZT: piezo-actuator, B: razor blade, E: etalon, OC: planar output coupler, 

BS: beam splitter, LP: linear polarizer, FPI: Fabry-Perot interferometer, OSA: optical spectrum 
analyzer, HWP: half-wave plate, PBS: polarizing beam splitter, PD: balanced InGaAs 

photodiode. Index 1 and 2 are referred to the two orthogonally-polarized eigenmodes, 

respectively ordinary and extraordinary. 

Without etalons the laser naturally operates in the longitudinally multimode regime, 

characterized by a wide emission spectrum centered at 1540 nm (see left-hand inset of Fig. 

2a). In this condition, the laser exhibits a threshold at around 200 mW. Due to the numerous 

components inside the cavity, the total emitted power reaches only 14.7 mW for 1050 mW of 



pump power (black curve of Fig. 2a). The insertion of the two etalons on both arms of the 

cavity forces the VECSEL to oscillate in the dual-frequency regime (see optical spectrum in 

red inset of Fig. 2a). The maximum achievable output power becomes 3.6 mW (red curve in 

Fig. 2a), whereas the threshold is slightly increased to 220 mW. Single-frequency operation of 

each mode is confirmed by the FPI spectrum shown in the inset of Fig. 2b, indicating the 

simultaneous lasing of the ordinary and extraordinary eigenmodes, which in illustration are 

separated by Δλ = 8.38 nm around the central emission wavelength. 

 

 

Fig. 2. (a) Typical output characteristics of the QW-VECSEL as a function of the incident 

pump power when operating in multi-frequency (black curve) and dual-frequency modes (red 
curve). Corresponding OSA spectra are shown in the insets. (b) Dual-frequency spectrum of the 

two eigenmodes, acquired by the OSA in the case of a wavelength difference Δλ = 8.38 nm (in 

inset the finely-resolved FPI spectrum). 

It is worth mentioning that the simultaneous oscillation of the two modes is achieved with 

a careful balance of optical losses on both arms. To this aim the central position of the razor 

blades is adjusted in order to introduce sufficient optical losses on the dominant eigenmode, 

the residual gain dissymmetry being mainly determined by the natural strain as well as the 

pump induced strain in the QW chip. Thermal fluctuations and mechanical vibrations might 

disrupt such a balance, resulting in the loss of the dual-frequency operation. This first 

observation is also a preliminary indication that the coupling between the two eigenstates is 

relatively strong (C close to 1), as expected in QWs-based active media. This point is further 

discussed in the following section. 

 

3. Measurement of the coupling constant and results 

The rate equations governing the evolution of the intensities I1 and I2 of the two eigenmodes 

in a class-A dual-frequency laser can be written as [26]: 
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where α1  and α2  are the unsaturated gains minus losses for each mode. β  and θ  are 

respectively the self- and cross-saturation coefficients. The steady-state solution of the two 

coupled equations (1a, b) corresponding to the simultaneous oscillation of the two modes 

reads: 
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where K12 and K21 are the cross- to self- saturation ratios and C is the Lamb coupling constant 

defined as [11]: 
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By introducing extra optical losses on the extraordinary mode  we deduce, from Eqs (2a) 

and (2b), the expression of K12 with respect to the variation of I1 and I2: 
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Conversely, K21 is obtained by modulating the losses on the ordinary mode: 
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(4b) 

 

The spatial separation, introduced by the YVO4 crystal, enables us to modulate the optical 

losses of one arm at a time by modulating the position of the razor blade. During the whole 

experiment, the intensity modulation index is kept below 10%, in order to avoid any 

modification of the spatial profile of the beams. The losses are modulated at 19 Hz, thus being 

slow enough compared to the time constants of the laser and allowing us to consider the 

steady-state solutions (2a, b) presented before. The incident pump power is set to 900 mW, 

corresponding to more than four times the threshold pump power, namely a pumping rate 

r = 4.1. The CW output power of each mode ranges from 40 µW to 600 µW depending on the 

mode’s wavelength and the losses introduced to get balanced dual-frequency operation. 

Figures 3(a) and 3(b) show typical experimental traces of I1 and I2 which are in opposite phase 

as expected from the equations (4a) and (4b). Then, by plotting the unmodulated signal versus 

the modulated signal, the respective cross- to self-saturation ratios K12 and K21 are extracted 

from the slopes (see Fig. 3(c)), from which the coupling constant C is calculated. In this 

illustration, a coupling constant of 0.83 is measured for a wavelength difference Δλ between 

the two modes of 2 nm. 



  

 
Fig. 3. Evolution of I1 and I2 observed at the oscilloscope when the modulation losses are 

applied to (a) mode 1 or (b) mode 2 for a wavelength difference of 2 nm. (c) Relative 

unmodulated mode intensity versus the relative modulated mode intensity (δI1,2); the value of 

each slope leads to the respective cross- to self- saturation ratios. 

We have achieved the dual-frequency operation for Δλ ranging from 0.36 nm to 10.8 nm. 

Above 10.8 nm, the edges of the gain spectrum are almost reached (see multi-frequency 

emission on Fig.2a insert) forbidding dual-frequency operation. Some of the spectra acquired 

with the OSA are shown in Fig. 4(a).  The black colored spectrum is related to the ordinary 

mode 1 whose wavelength is fixed to 1535.4 ± 0.2 nm. The blue colored spectrum is related to 

the extraordinary mode 2 whose wavelength is adjusted from 1535.6 nm to 1546.3 nm by 

rotating the etalon located on the extraordinary mode. For these Δλ, we measured the two 

cross- to self-saturation ratios. We witnessed that they evolve in opposite ways, depending on 

the wavelength difference. Moreover, K21 is always superior to K12, as shown in Fig. 4(b) and 

their values are rather different: 1.93 < K21 < 2.81 and 0.29 < K12 < 0.44. K21 is at least 4.3 

times higher than its corresponding K12. Further studies are required to understand the origin 

of this significant dissymmetry between K12 and K21. 

 

 

Fig.4. (a) Emission spectra illustrated for three wavelength differences: 2, 6 and 9.8 nm from 

bottom to up. (b)  Evolution of the two cross- to self-saturations ratios versus the wavelength of 

mode 2. The wavelength of mode 1 is set at 1535.4 ± 0.2 nm. 



From these cross- to self-saturation ratios we calculate the coupling constant with respect 

to Δλ. The results are presented in Fig. 5(a). It turns out that for wavelength differences 

ranging from 0.36 nm to 10.8 nm, the Lamb coupling constant remains constant with a very 

narrow dispersion even though K12 and K21 are wavelength dependent, leading to a mean value 

of 0.839. This constant is very close to that reported value in Ref. [22], despite the different 

nature of active medium material (GaAs-based versus InP-based in this study). At first glance, 

we can notice that this constant could be related mainly to the design of the active gain 

medium (QW) rather than to the nature of the material itself. The stability of such dual-

wavelength laser might be increased using a different design for the gain medium, like 

quantum dots (QDs), as recently proposed in Ref. [27].  

Going further, we acquired a statistically representative number of measurements to ensure 

the accuracy of the value of the coupling constant and to avoid the impact of random 

environmental disturbances on the final value. In that respect, we acquired a total of 168 

values with approximately 10 values per Δλ. The related standard deviation is given by the 

error bars in Figure 5(a) highlighting the accuracy of each measurement. Figure 5(b) 

represents the dispersion of C values regardless the wavelength’s difference between the 

modes, sorted in equal intervals of 0.01. The overall standard deviation  of 0.023 is relatively 

small, showing that the Lamb coupling constant does not depend on Δλ and that C = 0.839 ± 

0.023.  

 

Fig.5.(a) Lamb coupling constant C versus wavelength difference between the two modes. 

Error bars represent the standard deviation of all the values measured for one wavelength 
difference. The dashed line stands for C=0.84. (b) Histogram of the C values with equal 

intervals of 0.01. 

 

4. Conclusion 

In conclusion, we report for the first time to our knowledge the direct measurement of the 

Lamb coupling constant C for an OP-QW-based VECSEL emitting around 1.54 µm. We 

carefully designed the laser cavity to ensure the simultaneous emission of two modes sharing 

the same active region while sufficiently separated in the rest of the cavity to independently 

tune their wavelengths. It allowed us to measure the spectral dependence of the coupling 

constant through the cross- to self-saturation ratios K12 and K21 for a wavelength difference Δλ 

ranging from 0.36 nm and up to 10.8 nm. We found that K21 is always at least 4.3 times higher 

than its corresponding K12, and they both change depending on Δλ. Despite this, their product 

C remains constant and is C = 0.839 ± 0.023. In perspective, the origin of the significant 

difference between the two cross- to self-saturation ratios must be understood. We also 

consider performing the same experiment with QD active media exhibiting wider gains and 

different homogeneous broadening features as compared to QW [28]. Indeed, the Lamb 

coupling constant in QDs might be weaker than in QWs for large spectral separations. 



Accordingly, the implementation of such active media could be of great interest for 

engineering robust dual-frequency class-A VECSEL.  
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