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Abstract 

This article presents a systematic review on the past developments of Hydrate-Based Desalination process 

using Cyclopentane as hydrate guest. This is the first review that covers all required fundamental data, 

such as multiphase equilibria data, kinetics, morphology, or physical properties of cyclopentane hydrates, 

in order to develop an effective and sustainable desalination process. Furthermore, this state-of-the-art 

describes research and commercialization perspectives. When compared to traditional applications, 

cyclopentane hydrate-based desalination process could be a promising solution. Indeed, it operates under 

normal atmospheric pressure, lower operation energies are required, etc… However, there are some 

challenges yet to overcome. A decision aid in the form of a diagram is proposed for a new cyclopentane 

hydrates-based desalination process. Hopefully, concepts reviewed in this study will suggest new ideas to 

advance technical solutions in order to make commercial hydrate-based desalination processes a reality.  

Keywords: Review, Desalination, Clathrate Hydrates, Cyclopentane Hydrates, Seawater treatment. 

 

1. Introduction 

Seemingly abundant, clean water is a crucial resource for life on our planet. However, due to the 

increasing population, industrialization, global warming, agriculture activities, the shortage of 

clean water has become an urgent issue in many countries, especially in the Middle East and 

Africa [1,2]. Today, more than 1 billion people are denied the right to access clean water and 

about 2.6 billion people lack access to adequate sanitation [3,4]. Dirty water is the world’s 

second biggest children killer [3]. For instance, in the Kingdom of Saudi Arabia (KSA), 60% of 

water demand is provided by desalination, that is to say about 10 Mm
3
/day [5]. Expectations of 

KSA desalination demand in 2050 should be 60 Mm
3
/day. Therefore, while mature technologies 

exist, processes for clean water production need to be optimized in regard to the enormous future 
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demand. Because of the practical unlimited supply capacity of sea-water, desalination has 

become an ever increasingly used method to produce fresh water [6]. A history of desalination 

research literature is detailed in Figure 1. As illustrated in figure, there has been a significant rise 

in research on desalination over the past decades. The most common studied methods have been: 

Thermal distillation, Reverse osmosis, Freezing, and Electro dialysis  [7–10].  

 

 

Figure 1. Frequency of desalination study in literature. Data from Web of Science with the 

keyword “desalination” (09/04/2019). 

 

Recently, Clathrate hydrate–based desalination technique has attracted considerable interest [11–

13]. Clathrate hydrates, or gas hydrates, are ice-like non-stoichiometric crystalline solid 

compounds that contain water molecules forming cages through a hydrogen-bonding system 

enclosing guest molecules, formed under high pressure and low temperature conditions [14]. 

This is usually the case for gaseous guest molecules (CO2, CO, N2, CH4…). Other heavier guest 

molecules can form clathrate hydrates under atmospheric pressure (Cyclopentane (CP), 

Tetrahydrofuran…). Depending on size and nature of the guest molecules, water molecules can 

form different kind of cages that combine to form a crystal lattice according to three well-known 
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structures: I, II, and H. Since water is usually present in the oil and gas flowlines, gas hydrates 

are well known to plug pipelines [14]. Besides, several potential applications of clathrate 

hydrates have been investigated, such as gas storage [15–18], carbon dioxide capture [19,20], gas 

transportation [15,21], gas separation [22,23], air-conditioning [24–26], and of course seawater 

desalination [11,13,27,28].  

Here is how water desalination works with Clathrates. During hydrate formation, water and guest 

molecules are incorporated into a new solid phase. It can be separated and recovered. Moreover, 

salts are excluded from the crystal phase. Therefore water and guest molecules can be retrieved 

after dissociation. If the guest is gaseous at standard conditions, only saturated gas remains inside 

liquid water. Consequently, clean “desalinated” water is obtained. If the guest molecule is not 

under vapor phase after dissociation, clean water is obtain providing that it can be separated after 

dissociation. Usual guest molecules studied for desalination applications are: CH4, CO2, C3H8, 

HCFC R141B, and CP.  

As a matter of fact, gas hydrates-based desalination has been investigated for decades [10,12,29–

38]. Despite that, hydrate-based technology is not used nowadays in desalination plants. There 

are several explanations: mostly energy consumption issues and technology immaturity [35]. 

However, a great deal of research has been done recently, and could provide a base for future 

hydrate-based desalination technology. In some studies, CP is suggested as an adequate guest 

candidate [39–45]. Indeed, CP forms clathrate hydrates with pure water under atmospheric 

pressure at 7°C. Especially, it is not miscible into water (solubility of 0.156 g/L at 25°C [46]). 

Therefore, it can be easily recovered from water after dissociation, and recycled for the 

desalination/cleaning process. 

Note that CP act as a hydrate promoter for other applications, such as carbon capture, as 

described in detail by Herri et al. [22], or Zheng et al. [47]. It is a co-guest used to milder hydrate 

formation conditions when combined to other molecules such as N2 [40,48–50], C3H8 [51], CO2 

[48,49,52–54], CH4 [40,49,55,56], or H2S [56]. Thus, the use of cyclopentane hydrates (CPH) for 

a combined gas capture and desalination process could be applicable and probably more 

interesting energetically.  

Finally, this article provides a comprehensive, but non exhaustive, state-of-the-art review on 

CPH. It objective is to inform the scientific and industrial community the latest advances, and 

establishing the challenges to address when developing CPH-based desalination.  
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2. Phase equilibria of CPH  

Phase equilibrium data of CPH in pure water and in presence of electrolytes are crucial for salt 

removal using CPH. Thermodynamic equilibrium data of CPH has been classified into three 

categories: CP+water, CP+water+electrolytes, and CP+water+other guests.  

 

2.1. Phase equilibrium of CPH in pure water with and without surfactants 

At ambient pressure, CP can form hydrate with pure water from 6.3°C to 7.7°C according to 

literature. The melting point varies in the literature, and can be lowered by adding surfactant 

such as SPAN 80. Table 1 presents literature results.  

 
Table 1. Equilibrium temperature of CPH in pure water at atmospheric pressure with and 

without surfactant 

Authors Publish

ed year 

Value (°C) Method  Citation  

     

Palmer et al.   1950 7.7  Quick 

dissociation 

[57] 

Davidson et al.  1973 7.7 Quick 

dissociation 

[58] 

Fan et al.  1999 7.07 “Pressure 

search” 

procedure 

[59] 

Dendy Sloan et al. 2008 7.7 Quick 

dissociation 

[14] 

Nakajima et al.  2008 6.6, 6.8, 7.1 DSC [60] 

Whitman et al.  2008 7.0 DSC [61] 

Nicholas et al. 2009 7.7 Quick 

dissociation 

[62] 

Zhang et al.  2009 7.02 DSC [63] 
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Sakemoto et al.  2010 7.0
a 

Slow 

dissociation 

[64] 

Dirdal et al.  2012 7.7 Quick 

dissociation 

[65] 

Sefidroodi et al.  2012 7.7 Quick 

dissociation 

[66] 

Ambekar et al.  2012 6.3 (0.1% vol 

Span 80)
+ 

DSC [67] 

Zylyftari et al.  2013 7.11
a 

DSC [68] 

Zylyftari et al. 2013 6.57
b
 (Span 80)

+ 
DSC [68] 

Han et al. 2014 7.8 Quick 

dissociation 

[69] 

Xu et al. 2014 7.7 Quick 

dissociation 

[70] 

Mitarai et al.  2015 7.1
a 

Slow 

dissociation 

[71] 

Martinez de Baños et al. 2015 7.2 * [72] 

Baek et al.  2015  6.7-7.2 (Span 

20, 40, 60, 80)
+ 

DSC [73] 

Brown et al. 2016 7.7 * [74] 

Peixinho et al.  2017 6.7 (no Span 80)
+ 

Quick 

dissociation 

[75] 

  5.7 (0.0001 % 

mass Span 80)
+ 

Quick 

dissociation 

[75] 

  5.5 (0.001 % 

mass Span 80)
+ 

Quick 

dissociation 

[75] 

  7.7 (0.1 % mass 

Span 80)
+ 

Quick 

dissociation 

[75] 

Hobeika et al.  2017 7.0 * [76] 
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Delroisse et al.  2017 7.2
c 

Slow 

dissociation 

[77] 

Ho-Van et al.  2018 7.7
a
 
 

7.1
a
  

Quick 

dissociation 

Slow 

dissociation 

[28] 

Delroisse et al  2018 7.05
d 

Stirred 

calorimetric 

cell 

[78] 

+ 
in the presence of surfactant, * not acknowledge, DSC: Differential Scanning Calorimetry, 

Uncertainty range: 
a 
±0.1°C, 

b
±0.01°C, 

c
±0.2, 

d
±0.5°C.  

 

Table 1 shows that there are actually two ranges of equilibrium temperatures in pure water: 7.7-

7.8°C and 6.6-7.2°C. This can be explained by different experimental procedures used by the 

authors.  

Equilibrium temperatures reported at 7.7-7.8°C range were obtain by quick dissociation method 

[28,65,66,69,79]. Unfortunately, the quick method tends to miss the correct dissociation 

temperature, because of the high dissociation rate. Therefore, the value of equilibrium 

temperature is usually overestimated.    

One seemingly more reliable method is Differential Scanning Calorimetry (DSC) 

[60,61,63,68,73]. Equilibrium temperatures measured by DSC show a temperature range from 

6.6°C to 7.2°C. 

In addition, Sakemoto et al. [64], Mitarai et al [71], Ho-Van et al. [28], and  Delroisse  et al. [77] 

performed slow dissociation method and reported crystallization temperature of CPH of 7.0°C, 

7.1°C and 7.2°C, respectively. The small variations could be attributed to heating rate 

differences. Sakemoto et al. [64], Mitarai et al [71], and Ho-Van et al. [28] used an increment of 

0.1°C/hour, and 0.2°C/hour for Delroisse  et al. [77]. Hence, equilibrium temperature reported by 

Delroisse et al. [77] is slightly higher. In another work, Delroisse et al. [78] reported the 

dissociation temperatures of 7.05°C (280.2 °K) by using a stirred calorimetric cell. Their method 

utilized an agitator to mix the fluid (CP+H2O) in a calorimetric cell instead of static condition, as 

in a normal DSC method. This development is believed to provide more accurate data [78]. 
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Martinez de Baños et al. [72] determined the equilibrium of 7.2°C which is very close to the 

values according to slow dissociation method [28,64,77], and DSC method [60,61,63,68,73].  

Finally, the temperature range 6.6-7.2°C seems to be the most reliable and should be considered. 

Besides, Ambekar et al. [67], Zylyftari et al. [68], Baek et al. [73], and Peixinho et al. [75] 

indicated that the use of a surfactant, such as Span, can reduce CPH equilibrium temperature. 

Indeed, hydrate crystallization is usually observed at the water – CP interface, while surfactant 

can modify the interfacial tension force. Hydrate formation is therefore affected by the surfactant 

[68,80]. Karanjkar et al. [81] stated that a mushy and porous structure, showing small needle-like 

crystals, is formed in presence of Span compared to polycrystalline shell structure in the absence 

of any surfactant. This porous structure hydrate may cause a reduction in dissociation point, 

referred to as the Gibbs–Thomson effect [68,82].  

However, in the presence of 0.1% mass Span 80, corresponding to a concentration above Critical 

Micelle Concentration (CMC), the hydrate dissociation temperature is 7.7°C, according to 

Peixinho et al. [75]. At this concentration, surfactants cover the whole water droplet and the 

morphology of the hydrate is hence slightly denser. Consequently, dissociation would require a 

higher temperature [75].  

In terms of pressure dependency, by applying a pressure-search method [83], Fan et al. [59] 

reported that CPH formation conditions are within the temperature range of 0.21-7.07°C for a 

pressure range of 6.9-19.8 kPa. The measured equilibrium data are detailed in Table 2. Fan et al. 

indicated that the quadruple point is 7.07°C at 19.8 kPa involving four phases: liquid water (Lw), 

liquid CP (Lcp), hydrate (H), and vapor CP (Vcp). This point is very close to the equilibrium 

temperature reported elsewhere [58,60,61,63,64,68,73] at atmospheric pressure, involving only 

three phases: Lw - H -Lcp.  

 

In the desalination process, atmospheric pressure condition is more favorable than high pressure 

or even vacuum like conditions.  However, the data reported by Fan et al. [59] are also very 

useful for salt removing from seawater under vacuum especially in association with membrane 

[84] or simply vacuum distillation [85].  

Under higher pressures, Trueba et al. [86] reported  hydrate (H) – aqueous liquid (Lw) – CP-rich 

liquid (La) phase equilibrium data. They indicated that the equilibrium temperature was nearly 

independent of pressure due to the low compressibility of the two fluids and the one solid phase. 
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This indicates that, without any gas molecule, CPH dissociation temperature is almost constant 

with pressure increase [86]. High pressure condition is out of the question in CPH pure based – 

desalination because of a significant increase in the energy required.  

 

Table 2. Three phase (V-Lw-H) equilibrium data of CPH in pure water [59] 

 

Phase Temperature 

(±0.01°C) 

Pressure  

(±0.1kPa) 

   

Lw-H-Vcp 0.21 6.9 

 1.19 8.1 

 2.08 9.2 

 3.34 11.2 

 4.36 13.2 

 5.72 16.3 

   

 6.72 18.9 

Lw- Lcp-H-Vcp 7.07 19.8
* 

* 
Upper quadruple point  

 

 

Table 3. CPH phase equilibrium data at high pressure 

Phase  Temperature 
(±0.02°C) 

Pressure (MPa) 
(±3% of reading) 

   

Lw-H-La 6.75 2.55 

 6.79 5.05 

 6.87 7.55 

 6.85 10.03 

 6.88 12.55 
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2.2. Phase equilibrium of CPH in the presence of salts 

Obviously, to design an actual CPH based-desalination process, it is essential to have sufficient 

phase equilibrium data of CPH in the presence of diverse salts [28]. However, only few 

published datasets are available. 

Zylyftari et al. [68] reported a set of equilibrium data in the presence of NaCl at a wide range of 

concentration, from 0 up to 23% mass by using DSC method. This method was also used by 

Baek et al. [73] for CPH equilibrium at 3.5% mass NaCl concentration.   

Kishimoto et al. [87] used slow stepwise dissociation method to determine the dissociation points 

with an increment of 0.1°C/h at NaCl concentration from 5 to 26.4% mass fraction. Likewise,  

Sakemoto at al. [64] provided results in the presence of 3.5% NaCl and synthetic seawater.  

Delroisse et al. [77] reported 5 dissociation temperatures with NaCl present (0, 1, 2, 3, 4% mass 

NaCl) by using the slow dissociation method with an increment of 0.2°C/hour. Moreover, Ho-

Van et al. [28,88] reported numerous equilibrium data for CPH in the presence of NaCl, KCl, 

NaCl-KCl, CaCl2, Na2SO4, MgCl2, MgCl2-NaCl, or MgCl2-NaCl-KCl under a wide-range of salt 

concentrations.  

CPH equilibrium data in the presence of salts in the open literature are presented in Table 4, and 

Figure 2.  

There are slight variations concerning dissociation temperature at 3.5% NaCl between four 

studies of Han et al. [69], Sakemoto et al. [64], Baek et al. [73], and Ho-Van et al. [28]. Han et 

al. [69] used the quick dissociation procedure leading to a higher value (6.6°C) compared to 

others. Among the three other data, Baek et al. [73] reported the lowest dissociation temperature 

of 4.57°C, while  Ho-Van et al. [28] and Sakemoto et al. [64] recorded 5.0°C and 5.5°C, 

respectively. This is due to the presence of SPAN surfactant, used by Baek et al. [73]. It 

decreased the equilibrium temperature due to Gibbs–Thomson effect [82], as stated by Zylyftari 

et al. [68]. 

In addition, at 3.4% NaCl, Zylyftari et al. [68] reported that the equilibrium temperature of CPH 

is 5.28°C. This value is slightly higher than the value of 5.0°C at 3.5% NaCl provided by Ho-

Van et al. [28]. 
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Table 4. Literatures on equilibrium temperature of CPH in the presence of salts 

 

Salts Salt concentration 

range (% mass) 

Method  Published 

year 

Citation 

 

NaCl 3.5
 

Slow dissociation
a 

2010 [64] 

Synthetic seawater *
 

Slow dissociation
a 

2010 [64] 

NaCl 5-26.4
 

Slow dissociation
a 

2012 [87] 

NaCl 0 – 23
 

DSC
a 

2013 [68] 

NaCl 3.5 Quick dissociation 2014 [69] 

NaCl 3.5 DSC 2016 [73] 

NaCl 0 – 4
 

Slow dissociation
b 

2017 [77] 

NaCl 0 – 23
 

Slow dissociation
a 

2018 [28] 

KCl 0 – 20
 

Slow dissociation
a 

2018 [28] 

NaCl-KCl 0 – 22
 

Slow dissociation
a 

2018 [28] 

CaCl2 0 – 25
 

Slow dissociation
a 

2018 [28] 

Na2SO4 0 – 6 Slow dissociation
a 

2018 [88] 

MgCl2 0 – 20  Slow dissociation
a 

2018 [88] 

MgCl2-NaCl 0 – 22  Slow dissociation
a 

2018 [88] 

MgCl2-NaCl-KCl 0 – 22  Slow dissociation
a 

2018 [88] 

* 2.6518% NaCl, 0.2447% MgCl2, 0.3305% MgSO4, 0.1141% CaCl2, 0.0725% KCl, 0.0202% 

NaHCO3, and 0.0083% NaBr. Uncertainty range:  
a 
±0.1°C, 

b
 ±0.2°C. 
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Figure 2. Equilibrium temperatures of CPH in the presence of salts from literatures 

[28,64,68,77,87,88] 
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The previous comparison indicates that the slow dissociation and DSC methods furnish more 

trustworthy data. Nonetheless, Delroisse et al. [77] offers a 2% NaCl dissociation temperature at 

6.5°C ± 0.2°C. This is higher than the value of 5.9°C ±0.1°C reported by Ho-Van et al. [28]. This 

might be attributed to the higher dissociation rate (0.2°C/hour) used by Delroisse et al. [77] 

compared to Ho-Van et al. [28] (0.1°C/hour). 

Figure 2 also points out that the hydrate formation temperature decreases quickly with increasing 

salt concentration, indicating that salt noticeably inhibits CPH thermodynamic equilibrium. Two 

well-known phenomena, “ion clustering” and “salting-out”, are believed to reduce the hydrate 

formation temperatures, as clearly explained elsewhere  [14,28,89].  

Note bene: salt concentration increases during hydrate formation due to the consumption of pure 

water. When the salt concentration reaches saturation, precipitated salt can appear. Hence, solid 

salts can be recovered at the bottom of the bulk, while CPH lay above the aqueous phase. For 

instance, it happens easily for some salts such as Na2SO4 at 6% mass fraction [88], or PbCl2, 

CaSO4, and Ag2SO4 whose solubilities are very low into water. Therefore, their crystallization 

can occur quickly after CPH formation. 

 

 

 

2.3. Phase equilibria of mixed hydrates containing CP as a co-guest  

Clathrate hydrates can form in the presence of multiple guests beside CP. Therefore, some efforts 

used a secondary guest alongside CP for desalination process (Cha et al. [90], and Zheng et al. 

[47]). Results show that these mixed clathrate hydrates can improve salt removal efficiency 

compared to pure CPH. One promising idea is to combine CP with another guest molecule, and 

by this mean to couple desalination to another hydrate-based application, such as gas capture, gas 

hydrate exploitation (CH4 for instance), or gas separation. Hereby, energy involved in the 

integrated process could be optimized, and salt removal efficiency could increase [20,47,91]. 

Table 5 provides range of thermodynamic equilibrium data of the mixed hydrate containing CP 

as a co-guest. 

 

 

 



13 
 

Table 5. Equilibrium conditions of mixed hydrate containing CP as a co-guest 

Note: pure water implies distilled or only under laboratory conditions 

Hydrate formers Aqueous solution 

 

Temperature 

range (K) 

Pressure range 

(Mpa) 

Citation  

Binary      

     

CP – CO2  Simulated produced water: 

8.95 % mass 

280.15 – 289.15 3.1 [90] 

CP – CO2 NaCl: 3.0% mass 271.89 – 292.21 0.55 – 3.59 [47] 

CP – CO2 NaCl: 0, 3.5, 7.0, 10.0, 15, 

25% mass 

269.8 – 292.4 1.18 – 3.33  [92] 

CP – CO2 Pure water 280.16 – 291.57  0.08 – 4.88  [52]  

CP – CO2 Pure water  284.6 – 291.6 0.49 – 2.58 [53] 

CP – CO2 Pure water 275.5 – 285.2 0.42 – 0.59 [20] 

CP – CO2 Pure water 284.3 – 291.8 0.35 – 2.52 [93] 

CP – CO2 Pure water 281.55 – 290.25 0.15 – 1.92  [94] 

CP – CO2 Pure water 283.5– 287.5 0.761– 1.130 [95] 

CP – CH4 NaCl : 0, 3.5, 7.0, 10.0 % 

mass 

284.4 – 301.3  0.480 – 16.344  [96] 

CP – CH4 NaCl : 0, 3.5, 7.0% mass 288.5 – 296.9 3.26  – 1.09  [39] 

CP – CH4 NaCl : 3.5% mass 283.15 – 298.15  0.48 – 10.15 [97] 

CP – CH4 (K
+
 , Na

+
 , Mg

2+
 , Ca

2+
) 

(Cl
-
 ,SO4

2-
) 

292.68 – 295.06 

293.75 – 295.06  

2.50 – 2.51 

2.50 – 2.51  

[98] 

[98] 

CP – CH4 Pure water 282.8 – 300.5  0.157 – 5.426  [40] 

CP – CH4 Pure water 284.8 – 299.3 0.321 – 4.651 [56] 

CP – CH4 Pure water 287.5 – 303.0 0.62 – 8.61 [48] 

CP – CH4 Pure water 286.70 – 300.0 0.48 – 5.69 [41] 

CP – N2 Pure water 282.9 – 289.1       0.641 – 3.496  [40] 

 

CP – N2 Pure water 285.9 – 302.0      1.68 – 24.45  [50] 

 

CP – N2 Pure water 284.7– 296.0      1.27– 10.4 [48] 
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CP –  O2  Pure water 289.4 – 303.3 2.27 – 21.69 [50] 

CP –  O2  Pure water 286.0 – 297.1 1.03 – 9.10 [99] 

CP – Methylfluoride Pure water 287.9 – 305.9 0.138 – 2.988  [100] 

CP – Kr Pure water 283.8 – 308.5 0.116 – 7.664 [101] 

CP – CH2F2 Pure water 280.45 - 299.75 0.027 - 1.544     [102] 

CP – H2 Pure water  280.68 – 283.72  2.70 – 11.09 [63] 

CP – H2 Pure water  281.3 – 288.3 4.34 – 32. [50] 

CP – H2 Pure water  280.83 – 284.01 2.50 – 12.50  [86] 

CP – H2 Pure water  280.70– 284.31 2.463 – 14.005 [103] 

CP – H2 Pure water  283.4 10 [104] 

CP – H2S Pure water 295.4 – 310.0 0.150 – 1.047 [56] 

CP – Light mineral oil  NaCl : 0 – 23% mass 257.8 0– 278.55    0.101325                                                                          

(Atmospheric)  

[68] 

Ternary      

CP – N2 – CH4 Pure water 283.3 – 289.5 0.310 – 1.855  [40] 

CP – N2 – CH4 Pure water 283.4 – 288.1 0.3 – 1.2  [105] 

CP – CH4  –  

Trimethylene sulfide 

NaCl : 0, 3.5, 5, 7, 10% mass 289.01 – 303.77 1.11 – 12.49 [106] 

CP – THF – CO2 Pure water 285.2 – 293.2 0.42 – 2.92 [53] 

CP – THF – CO2 Pure water 274.0 – 289.6 0.29 – 0.97 [20] 

CP –  CO2 – N2  Pure water 286.73 – 293.04 2.00 – 6.51  [107] 

CP –  CO2 – H2  Pure water 284 – 291  1.5 – 7.23 [108] 

CP –  CO2 – H2  Pure water 270.15 – 276.15  2.88 – 4.90  [109] 

CP –  O2 – N2  Pure water 284.0 – 296.2 1.09 – 9.45  [99] 

CP –  O2 – N2  Pure water 281.25 2.49 – 3.95  [110] 

CP – Light mineral oil 

– Halocarbon 27 
NaCl : 0 – 23% mass 

258.67 – 278.54    0.101325                                                                          

(Atmospheric)  

[68] 
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Quaternary      

CP – TBAB – CO2 – 

N2 

Pure water 280.20 – 290.32 2.21 – 5.71 [107] 

CP – nC5H10 – 

Methylbutane – 

Methylpropane 

Pure water 
273.35 – 279.68 5.5×10

3
 – 

19.5×10
3
 

[59] 

CP – CH4 – N2 –  O2 Pure water 288.0 – 293.1 0.89 – 2.60 [111] 

Quinary      

CP – Cyclohexane –  

CH4 – N2 –  O2 
Pure water 278.6 – 286.7 1.99 – 5.08  [111] 



16 
 

 

Figure 3. Equilibrium data of mixed gas hydrates containing CP in literature 
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CP-CO2-0.15 mass NaCl. Zhang et al 2017 CP-CH4-pure water. Chen et al 2010

CP-CH4-0.035 mass NaCl. Chen et al 2010 CP-CH4-0.07 mass NaCl. Chen et al 2010

CP-CH4-0.1 mass NaCl. Chen et al 2010 CP-CH4-pure water. Cai et al 2016

CP-CH4-0.035 mass NaCl. Cai et al 2016 CP-CH4-0.07 mass NaCl. Cai et al 2016

CP-N2-pure water. Jianwei et al 2010 CP-O2-pure water. Jianwei et al 2010

CP-Kr-pure wate.Takeya et al 2006 CP-H2-pure water. Jianwei et al 2010

CP-H2S-pure water. Mohammadi et al 2009 CP-CH4-N2-pure water. Tohidi et al 1997

CP-CH4-TMS-0.035 mass NaCl.Lv et al 2016 CP-CH4-TMS-0.05 mass NaCl. Lv et al 2016

CP-CH4-TMS-0.07  mass NaCl. Lv et al 2016 CP-CH4-TMS-0.1 mass NaCl.Lv et al 2016

CP-THF-CO2-pure water. Herslund et al 2014 CP-CO2-O2-pure water. Tzirakis et al 2016

CP-O2-N2-pure water. Yang et al 2012 CP-TBAB-CO2-N2-pure water. Tzirakis et al 2016

CP-CH4-N2-O2-pure water. Zhong et al 2012
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Table 5 indicates that CO2, CH4, N2, and H2 are the four most common gases used to study mixed 

CPH. As seen from Figure 3, mixed CP-CH4, CP-CH4-O2, CP-CH4-N2, CP-CH4-TMS 

(Trimethylene sulfide) hydrates have been studied in pure water and in brine. Indeed, CH4 is 

valuable fuel. Moreover, it is flammable and dangerously explosive at high pressure, especially 

when air, or just O2, is present. As a result, CH4 is not an auspicious hydrate former for CPH-

based desalination, even though the hydrate formation conditions of the mixed CP-CH4 hydrates 

are systematically milder than those of the mixed CP-CO2, CP-O2, CP-N2, or CP-H2 hydrates in 

fresh water and in brine.   

Figure 3 also shows that CP-Kr and CP-H2S can form mixed hydrates at the most favorable 

conditions [56,101] . However, Kr is a very expensive gas due to costly production process, from 

liquid air by a fractional distillation procedure. Plus, H2S is a toxic, corrosive, and flammable 

gas. These gases cannot be considered as candidates for CPH-based desalination processes.  

Figure 3 further indicates that the hydrate formation conditions of CP-O2, CP-N2, and CP-H2 are 

all much harder to achieve than those of CP-CO2 in pure water. As CO2 is the most common and 

arguably famous greenhouse gas, the disposal of CO2 has become a global concerns issue 

[17,19,112–115]. One of the ways to mitigate CO2 emission is gas hydrate–based capture [116]. 

Furthermore, pressurized CO2 streaming from CO2 emission sources may be favorable for 

hydrate formation and the cost for pressurization can be decreased [117,118].  

Note that CO2 forms hydrate SI in pure water at 278.8 K at 2.33 Mpa according to the study of 

Zhang et al [92]. In the presence of CP, the binary mixture of CP-CO2 can form SII hydrate at 

milder condition (291.3 K at 2.33 Mpa in pure water [92]) compared to the single CO2 gas 

[90,92]. In this case, CP occupies large cages while CO2 molecules occupy small cages. Hence, 

CP-CO2 binary can be used for both desalination [44,47] and carbon capture [20]. Note that, in 

the case of flue gas, mixed CO2-N2-CP hydrates would be formed, and CO2-H2 for pre-

combustion capture. Still, more studies are needed to improve gas hydrate based desalination and 

CO2 capture processes in term of energy requirement, salt removal efficiency, and CO2 storage 

capacity from a gas mixture in brine.  

 

3. Kinetics of CPH formation  

Kinetics is one key parameter for a process design. It is, in the present case, correlated to the rate 

of crystallization, water conversion efficiency, and therefore the number of separating steps, and 
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total operating cost. In this section, all published studies on kinetic of CPH formation are 

collected and investigated.   

Table 6 lists the effects of several parameters on CPH formation kinetics in terms of nucleation 

and growth. In the next subsections, some details are provided to explain these phenomena.  

 

Table 6. The effects of several considerations on kinetic of CPH formation 

Considerations  Nucleation  Growth 

rate  

Citation  

   

Subcooling increase  ↑ ↑ [42,64,68,70–72,76,87,119–125]  

Quantity of CP  ↑ ↑ [42,79,119,120,126,127]  

Agitation speed increase ↑ ↑ [39,60,70,119,124,125,128]  

Use of ‘’Memory effect’’  ↑ NA [61,65,66,72]  

Solid additives ↑ NA [43,61,75,129,130]  

Presence of salts     ↓     ↓  [39,45,68,72,77,87,119]  

 

Presence of surfactants or polymers ↑ ↑ [68,71,74,126,130–136]  

Presence of surfactants or polymers ↓ ↓ [65,74–77,121,131,137–140]  

Presence of THF (0.01 - 0.05 % mass) ↑ ↑ [139] 

Presence of MeOH ↓ ↓ [139] 

Presence of activated carbon particles ↓ ↓ [51] 

Presence of free resins, biding resins, 

and residual Asphaltenes 

 

NA ↓ [141] 

where ↑: increase; ↓: decrease; NA: Not Acknowledge.  

 

3.1 Subcooling and Agitation 

The rates of hydrate nucleation [14,130,142–145] and growth [79,146–153] can be increased 

with the raise of the subcooling. Note that subcooling, ΔTsub, is related to the driving force for the 

crystallization and defined as the difference between the system and the equilibrium temperature 

[87]. 
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Xu et al. [70,124] indicated that the duration of CPH formation from salty water decreases with 

both the increase of subcooling and agitation speed. Martinez de Baños et al. [72] and Ho-Van et 

al [123] reported that the hydrate growth rate is observed to be proportional to subcooling. 

Indeed these conditions enhance mass and heat transfer between water/CP and the driving force 

for the hydrate formation.  

Masoudi et al [79] stated that under mixing condition, the growth rate of CPH (1.9 × 10
−5

–3.9 × 

10
−5 

kg m
−2

s
−
1) is much higher than only flow condition (4.5×10

-6
 kg m

−2
s

−
1). Sakemoto et al. 

[64] and Kishimoto et al. [87] reported that the CPH nucleation location is at the CP-water 

interface because of the low solubility of CP in the aqueous phase. Consequently, agitation is 

needed to increase the kinetic of CPH formation.   

Moreover, Cai et al. [125] observed that the rate of CP-CH4 hydrate formation improves with the 

increase of the agitation rate. Indeed, this increase can lead to smaller CP droplets, as well as the 

splitting of hydrate shells covering CP droplets. Ergo, this enhances the CP-water contact area 

and then enhances the hydrate formation rate. 

 

3.2 Addition of CP 

Corak et al. [42] and Lim et al. [126] showed that the kinetic of CPH depends strongly not only 

on subcooling, but also on the quantity of CP. Faster growth was ascertained by increasing 

amount of CP. In fact, increasing the quantity of hydrate former improves mass transfer, 

diffusion and consequently escalates the number of nucleation locations for hydrate formation. 

However, for desalination, CP quantity needed to be minimized in accordance with other 

important parameters, in order to reduce the total cost.    

 

3.3 “Memory effect’’ 

“Memory effect’’ corresponds to the empirical reduction of induction time by using a solution 

that has already formed crystals. This has been observed and used in laboratories to reduce 

drastically the induction time, especially for crystallization without agitation in small reactors. 

Some authors have  investigated the influence of this phenomenon on hydrate formation 

[14,65,142,154–157]. Sefidrood et al.[66] concluded that the “memory effect” could enhance the 

nucleation of CPH formation. Using a small quantity of water from dissociated CPH at a 

temperature 2-3°C above the equilibrium, the CPH formation rate was observed to be much 
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faster than starting from fresh water. Consequently, in desalination, a small amount of the melted 

water from dissociation step can be recycled to the next CPH formation step in order to reduce 

the induction time. Of course, this is not a problem in case of a continuous process, or in 

presence of seeds. 

 

3.4 Solid kinetic additives 

Some kind of solids such as ice, silica gel, silica sand, rust, chalk, or clay have been studied to 

reduce hydrate nucleation time [37,65,158–161]. Zylyftari et al. [129] reported CPH formation at 

the ice – CP – brine phase contact line, which is believed to improve kinetics of hydrate 

crystallization [129]. Karanjkar et al [130] observed that, in this case, there is no induction time 

and nucleation takes place instantaneously as ice dissociates into free water. This fresh free water 

is then converted totally into CPH. Moreover, Li et al [43] indicated that addition of graphite 

promotes CPH formation. The graphite particles are composed of many flat carbon sheets 

(graphenes) that can provide heterogeneous sites for both ice and hydrate nucleation [43].  Other 

studies using nanoparticules can also be found, but not in presence of CP [162–164]. Nanofluids 

enhance crystallization kinetics as well [165].  

 

3.5 Influence of salts 

It is known that inorganic mineral salts affects significantly not only thermodynamics of CPH 

but also the kinetics of hydrate formation [39,146]. In the presence of salts, the equilibrium 

temperature is further shifted lower [14,28,64,68,72,77,88,89]. This leads to less subcooling, 

reducing hydrate growth and preventing the final water-to-hydrate conversion.  

Kishimoto et al. [87] described that the nucleation and the growth rates of CPH are slowed down 

with increasing salt concentrations at a given subcooling.  Moreover,  Cai et al [39] reported that 

the mixed CP-methane hydrate growth rate in NaCl solution is systematically lower than that in 

pure water for any salt concentrations. Indeed, during hydrates formation in brine, ions are 

mostly excluded and then accumulate at the vicinity of growing solid hydrate. Therefore, it could 

locally lower the driving force for hydrate growth. This is called the concentration polarization 

effect [39]. 
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Finally, the quantity of accumulated salt considerably depends on the kinetic of hydrate 

formation and the speed of stirring. Consequently, the concentration polarization effect can be 

reduced by enhancing the mixing to transport salt away from the growing crystal. 

 

3.6 Interfacial effects, surfactants 

Hydrate formation kinetics is also deeply related to surface phenomena [143,166–170]. 

Interfacial tension of liquid-liquid or liquid-gas system plays a crucial role on the mass and heat 

transfers. Some additives, which affect the interfacial tension, can be used as a promotor while 

others can be used as an inhibitor for hydrate formation.   

It is known that CP is a hydrophobic hydrocarbon. Hence it is immiscible with water. Therefore, 

complete conversion of water (or CP) into CPH is hard to achieve. This issue can be remedied by 

adding a small quantity of certain surfactants to the process [68,132,134,135,166]. Of course, it 

is then difficult to separate fresh water from liquid CP afterward. 

Erfani et al. [134] investigated the effects of 14 surfactants and polymers on CPH formation. The 

results showed that the addition of surfactants can highly decrease the induction time and 

enhance the hydrate formation rate. Furthermore, Lauryl Alcohol Ethoxylates with 8 ethoxylate 

groups (LAE8EO), TritonX-100 and Nonyl Phenol ethoxylates with 6 ethoxylate groups 

(NPE6EO) were found to be the best additives to increase the kinetic of hydrate formation. 

Erfani et al. [134] demonstrated that surfactants generating oil in water emulsion improved the 

kinetic of hydrate formation better than those generating water in oil emulsion.  

Lo et al. [166] declared that CPH growth rate is higher in presence of sodium dodecyl sulfate 

(SDS) and dodecyl-trimethylammonium bromide (DTAB) than without surfactant. 

Likewise, Karanjkar et al. [130] and Zylyftari et al. [68] reported that Span 80 promotes CPH 

formation. However, Peixinho et al [75] observed the opposite. They witnessed that addition of 

surfactant Span 80 (0.0001, 0.01, 0.1% mass) into water, to form water in oil emulsion, decreases 

kinetic time for hydrate formation. According to them, surfactant Span 80 molecules cover the 

CP-water interface and inhibit water and CP diffusion. Thus, the CPH formation is prevented.  

This variation of the influence of Span 80 on kinetics could be attributed to differences in the 

experimental systems. For instance, Zylyftari et al [68] studied the CPH formation in the 

hydrate-forming emulsion, while Peixinho et al [75] studied CPH formation in one water drop in 

CP phase without agitation.  
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Brown et al [74] reported that the CPH shell thickness is not modified when surfactants are 

introduced into the system. This study reveals that they have different effects on the growth rate: 

Dodecylbenzenesulfonic acid at a concentration of 10
-6 

mol/L (DDBSA) and Tween at 10
-4

 

mol/L decrease slightly the growth rate, while DDBSA at 10
-4

 mol/L and Tween at 10
-8

 mol/L 

slightly increase the growth rate.  

Delroisse et al. [77] indicated that the average lateral growth of CPH in the presence of 0.1% and 

1% of surfactant DA 50 (benzyl-dodecyl-dimethylazanium chloride, C21H38ClN) is about twice 

lower compared to pure water system.  

Furthermore, Zhang et al. [140] indicated that polyvinyl pyrrolidone (PVP) and 

polyvinylcaprolactam (PVCap) acted as inhibitors on CPH formation. In fact, PVP and PVCap 

prevented CP diffusion from the bulk to the hydrate surface. This hence decreases the growth 

rate of CPH.  Hobeika et al. [76] showed that, with PVP, PVCap, or vinylpyrrolidone/vinyl-

caprolactam copolymer VP/VCap present, the CPH growth rate is much lower compared to pure 

water. Therefore larger subcooling is required. Moreover, among these three polymers, PVCap 

was found to be best to prevent hydrate formation.   

Dirdal et al. [65] investigated the inhibition efficacy of various of kinetic hydrate inhibitors 

(KHIs) of CPH formation under atmospheric pressure. Their results exhibited that, in the range 

of 100-200 ppm, considerable smaller quantities of KHIs are needed to prevent CPH formation 

than standard gas hydrate formation. Furthermore, Abojaladi et al [138] studied the performance 

of surfactants (cation, non-ionic, and anion surfactants) as low dosage hydrate inhibitors (LDHI) 

and anti-agglomerants (AAs) by considering CPH formation. Their results showed that no link 

was found between hydrophilic-lipophilic balance (HLB) value and AA performance. In 

addition, it was found that anionic surfactants perform insufficiently, whilst cationic surfactants 

exposed favorable performances in dispersing hydrate crystals.    

To sum up, in desalination, surfactants which promote hydrate formation and/or reduce the 

induction time such as LAE8EO, TritonX-100, NPE6EO, SDS, DTAB, Span 80, DDBSA and 

Tween at appropriate concentrations are advantageous. However, since their presence makes the 

hydrate former difficult to separate after dissociation, their use probably bring more drawbacks 

than advantages. 
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3.7 Liquid co-guests influence 

Li et al. [139] indicated that the presence of 0.01-0.05% mass THF increases CPH formation 

rate. Moreover,  Mohamed et al. [171] observed that the addition of THF to the CPH system, 

either with or without surfactants (Span 20, Tween 20), enhances the kinetics of CHP formation. 

They stated that THF, a highly soluble molecule into water, is a better kinetic additive than Span 

20 or Tween 20. Unfortunately, it is difficult to separate THF from water for its reuse in 

desalination applications. Therefore, use of THF is not recommended in CPH-based desalination 

processes. 

 

3.8 Other inhibitors 

Li et al. [139] elucidated that Rhamnolipid bio-surfactant (product JBR 425) and Methanol 

inhibit CPH formation. Moreover, Baek et al. [51] demonstrated that activated carbon particles 

act as a kinetic inhibitor for the mixed hydrate of CP and propane. At 1%mass of activated 

carbon particles, the particle layer covers the whole interface between hydrate formers and water, 

preventing mass transfer and diffusion. Therefore, hydrate growth is retarded compared to pure 

mixed hydrate without activated carbon particles.  

Finally, Morrissy et al. [141] indicated that free resins (FR), binding resins (BR), and residual 

asphaltenes (RA) in the crude oil reduce CPH film growth rate with a trend in following order: 

RAs > BRs > FRs. Above a given concentration threshold, these additive species are suspected 

to settle at the water/CP interface. Consequently, this prevents the growth of CPH crystals [141].  

 

3.9 Conclusion on kinetics 

Table 6 reveals that there have been several methods to increase the hydrate formation rate such 

as increasing subcooling, quantity of CP, agitation speed, using memory effect, using 

heterogeneous nucleation by ice or graphite, and addition of appropriate surfactants. 

Nevertheless, the methods of increasing subcooling and agitation speed consume much more 

energy than other methods. Moreover, increasing the quantity of CP is also a costly method 

because the huge quantity of seawater or salt water employed in a real facility. The uses of 

memory effect and/or heterogeneous nucleation by ice or graphite are probably favorable 

techniques to improve CPH kinetic due to low cost and operating simplicity. Appropriate 

surfactants could give the impression of being good method because of their high capability to 
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enhance kinetics of CPH formation. However, their use is a significant issue in water/CP 

separation since an emulsion is formed. 

 

4. Physical properties of CPH  

Crystal morphology is another important aspect of hydrate-based technologies [148], and of 

course CPH-based desalination [64]. Indeed, CPH crystal shape strongly influences the kinetics 

of the formation process and it should be taken into account in designing equipment such as 

reactors and transportation devices. Adhesion, cohesion, rheology, interfacial tension, yield 

stress, and shell property are also useful common properties of hydrates. These are essential 

factors that affect CPH transportation in the process. In this section, morphology and physical 

properties of CPH in the open literature are classified and presented.  

Table 7 provides different properties of CPH in the literature. The following subsections look at 

different parameters in detail. 

 Table 7. CPH physical properties studied in the literature 

Properties   Citation  

Morphology  [42,45,64,71,74–77,87,122,126,127,129,131,171–174]  

Adhesion  [42,62,80,175–180]  

Cohesion   [74,137,141,175,177,181,182]  

Rheology   [68,173,183–185]  

Interfacial tension   [68,73,74,76,77,80,122,131,134,166,169,170,175,177,179,181]  

Yield stress  [68,172] 

Hydrate density   [14,60,76,77]  

 

Wettability   [77,81,123] 

 

Shell property  [74] 

Heat of formation  [60,78,130,186,187] 

Heat capacity   [186] 

Torque   [174] 
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4.1 Morphology 

Hobeika et al. [76] reported that the growth rate and morphology of CPH remarkably depends on 

subcooling. CPH grow slowly with some large crystals present at low subcooling, while CPH 

grow quicker with many small crystals under high subcooling. Furthermore, the morphologies of 

CPH are different when additives like PVP, PVCap, or VP/VCap are present. In this case, CPH 

particles are thinner, less glassy, and more fragile.  

Sakemoto et al. [64] and Kishimoto et al. [87] pointed out that the morphology of the individual  

CPH crystals in water, seawater and brine at any NaCl concentration are comparable at a similar 

subcooling. Moreover, the size of the CPH crystals are smaller at higher subcooling [87]. In 

addition,  Mohamed et al. [171] reported that the nature of surfactants affects the morphology of 

CPH. Delroisse et al. [77] studied the morphology of CPH at different surfactant DA 50 

concentrations. Their results showed that at 0.01% mass DA 50, small hairy hydrate crystals with 

a large quantity of needles and some many-sided shapes were observed. At 0.1 and 1% mass DA 

50, smaller hydrate crystals with many-sided, three-sided, and sword-like shaped were observed. 

This was attributed to differences in the configuration of the surfactant molecules absorbed on 

hydrate surface, due to differences in surfactant concentration tested.    

Mitarai et al [71] elucidated that, with Span surfactant present, the individual CPH crystals had a 

larger size compared to those in the system without Span surfactant. Their results also indicate 

that Span has two effects: inhibition of hydrate agglomeration; enhancement of hydrate 

formation.  

Lim et al. [126] showed that adding SDS can modify the CPH hydrate crystal morphology. 

Indeed, with SDS present, the same length rectangular tree-like or fiber-like crystals were 

observed from hydrate deposit.  

 

4.2 Adhesion 

Aspenes et al. [175] investigated adhesion force between CPH and solid surface materials. Their 

results showed that the force of adhesion depend on the surface materials and the presence of 

water. Low free energy surface solids lead to the lowest adhesion. The hydrate-solid surface 

adhesion was more than 10 times stronger than hydrate–hydrate adhesion. Adding petroleum 

acids declined adhesion, while the presence of water-dissolved oil phase improved adhesion. In 

addition, water-wet solid surfaces were found to have the strongest adhesion.    
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Nicholas et al. [62] revealed that adhesion between CPH and carbon steel was found to be 

significantly weaker than CPH – CPH particles and were also lower than ice – carbon steel. 

Aman et al. [177] reported that CPH adhesion forces are 5 to 10 times stronger for calcite and 

quartz minerals than stainless steel, and adhesive forces are strengthened by 3 – 15 times when 

delaying surface contact time from 10 to 30 seconds. Finally, Aman et al. [176] demonstrated 

that hydrate adhesion drops significantly with Span 80, polypropylene glycol, or naphthenic acid 

mixture present in a mineral oil and CP continuous phase.  

 

4.3 Cohesion 

Brown et al. [182] observed that, at different temperatures, longer annealing time led to lower 

cohesive force. Indeed, annealing step disrupts micropores or capillaries in hydrate structures, 

where free water is transported from the hydrate core to the outer surface. This diminishes the 

water layer favorable for cohesion.  

Aman et al. [181] determined cohesion force for CPH in water, hydrocarbon, and gas bulk 

phases. Their results showed that cohesion is different in various phases. Cohesion in gas phase 

is roughly twice and six times stronger than that in the hydrocarbon phase and in the water phase, 

respectively.  Furthermore, Aman et al. [80] reported that cohesion force of the CPH particles  is 

9.1 ± 2.1 mN/m and 4.3 ± 0.4 mN/m at around 3°C in the gas phase (N2 and CP vapor) and in the 

pure liquid CP phase, respectively. 

 

4.4 Interfacial tension  

Aman et al. [169] affirmed that the interfacial tension of CPH – water and CPH – CP is 0.32 ± 

0.05 mN/m and and 47 ± 5 mN/m, respectively. Brown et al. [74] indicated that the addition of 

Tween 80 leads to a remarkable drop in interfacial tensions at high concentrations above critical 

micelle concentration (CMC) in a water bulk phase. Nonetheless, dodecylbenzenesulfonic acid 

(DDBSA) showed no dependence of interfacial tension under concentrations below the CMC.  

Moreover, Delroisse et al. [77] concluded that, in presence of DA 50, the interfacial tension 

between CPH and water increases while the interfacial tension between CPH and CP diminishes.  

 

 

 



27 
 

4.5 Rheology 

In term of CPH rheology, Karanjkar et al. [183] indicated that CPH slurry viscosity is 

proportional to the water volume fraction. Slurry viscosity decreases (1-3 Pa.s at 8 °C) with 

increasing of subcooling (below freezing ice temperature). This is explained by ice formation. 

Indeed, more ice was observed in the CPH slurry system at lower temperatures (higher 

subcooling) than at higher temperature (lower subcooling), resulting in lower viscosity.   

Moreover, at Span 80 concentrations of 0.5-5% (v/v), viscosity was found to be lower due to the 

accessibility of extra quantity of Span 80 molecules (oil-soluble surfactant) which can adsorb 

onto the CPH interface and weaken CPH-CPH interactions. Therefore, Span 80 can increase the 

flowability as an anti-agglomerant at high concentrations.  

In addition, when introducing ice to the system to induce hydrate crystallization, Zylyftari et al. 

[129] observed that the viscosity of the mixture increases faster than by introducing CPH.  

Finally, since high viscous hydrate slurry requires much more energy to be transported, methods 

to reduce viscosity, such as the use of surfactants or especially CPH seeds, are recommended in 

CPH-based desalination. 

 

4.6 Yield stress 

Ahuja et al. [172] determined that the yield stress of CPH slurry rises quickly from 5 Pa to 4600 

Pa when increasing the water volume fraction (ϕ) from 16% to 30% above a critical water 

fraction (ϕc) of 15%.  A power dependence of the yield stress of CPH and slurry viscosity on 

water volume fraction was also found, scaling as (ϕ- ϕc)
2.5

.  

Zylyftari et al. [68] reported that, at low water conversions (< 27%vol), the yield stress is quite 

small (10
-1

 Pa). At higher water conversions (42-81%vol), yield stress increases to 100 Pa. It 

reaches to a maximum of 145 Pa at 81%vol conversion. The behavior of yield stress as a 

function of the water to CPH conversion exhibits a similar tendency as the viscosity. This also 

illustrates the effect of capillary bridges between CPH particles. At 81% water conversion, the 

yield stress is maximum (145 pa), showing the optimal number of capillary bridges and CHP 

surface required to have the strongest network structure.  
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4.7 Density 

Sloan et al. [14], Delroisse et al [77], Hobeika et al. [76] and Nakajima et al. [60] indicated that 

CPH density is about 950 to 960 kg/m
3
. At standard conditions, this value is between the density 

of brine (>1000 kg/m
3
) and CP (751 kg/m

3
). Thus, CPH floats on water and sinks in liquid CP.   

 

4.8 Wettability and shell properties 

Delroisse et al. [77] reported that CPH is CP – wettable with surfactant DA 50 present. However, 

Karanjkar et al. [81] indicated that in the presence of Span 80, CPH is water – wettable. This 

requires selecting the appropriate surfactants to be used in desalination to optimize hydrate 

separation from the aqueous and also CP phases.  

Brown et al. [74] investigated the effect of surfactants on CPH shell properties. It was found that 

the addition of DDBSA and Tween 80 changed the CPH properties. Indeed, the CPH shells, with 

DDBSA and Tween 80 present, require a much lower perforation than for pure CPH. This 

indicates that adding these surfactants weaken the CPH shell strength. 

 

4.9 Thermodynamic properties  

Two thermodynamic parameters including heat of formation and heat capacity have been well 

reported in literature [60,78,130,186,187]. These two parameters are crucial for the design and 

optimization of CPH-based desalination [186].  

The value of heat of formation (kJ/mole of water) varies according to authors: 4.84 [130,187]; 

5.098 [186]; 6.786 [78]. The CPH heat capacity was firstly approximated from the heat 

capacities of THF and propane hydrate according to He el al. [186] as follows: 

CP= -124.33+3.2592T+2×10
-6

T
2
-4×10

-9
T

3
 where T is the absolute temperatures (K).  

 

4.10 Torque  

The agglomeration phenomena of hydrate crystals are important in hydrate-based desalination 

since they are related to the transport of hydrate in the desalination process. The torque value is 

one of the common factors that represent the agglomeration of hydrate [89,138,159,184,188]. 

Delroisse et al [174] reported that, without biodegradable anti-agglomerant (called AA-LDHI 

[174]) in a stirred-tank reactor, the torque of CPH increases progressively to 0.3N.m until the 

agitator stopped at 550 min (approximately 0.7N.m). It is because of the significant increase in 
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viscosity after the crystallization onset, when CPH crystals agglomerated via capillary bridges. In 

addition of 0.1% AA-LDHI, the torque drops significantly, about ten times. Furthermore, in the 

presence of AA-LDHI, when CPH crystallization started, the torque grows slightly from 0.025 

N.m to 0.035 N.m and then remains nearly constant. The results indicate that the added AA-

LDHI disperses CPH particle (average diameter of 380 ± 150 μm [174]) and reduce their 

agglomeration during crystallization. Consequently, this is expected to facilitate the transport of 

CPH crystals in desalting processes.  

 

4.11 Conclusion on CPH physical properties 

In many cases, adding surfactants modifies morphology and physical properties of CPH in 

aqueous solution. The choice of appropriate kind and amount of surfactants could be favorable to 

the improvement of CPH kinetics and transport.    

Besides, some issues on the use of surfactants should be prudently considered. Since they are 

soluble into water, and enhance CP solubility into water, it is very difficult to recover them by a 

simple physical method as decanting. Indeed, some techniques for removal surfactants from 

water could be applied such as nano-filtration [189], activated carbon/ultrafiltration hybrid 

process [190], coagulation [191,192], or constructed-wetland-treatment systems [193]. Bio-

surfactants are also a good suggestion for CPH-based desalination since they promote hydrates 

formation and they are degradable [174,194,195]. However, the use of surfactants still needs 

more efforts to purify the dissociated water and increases the total operating cost. Therefore, 

minimizing quantity of the surfactants is one of the requirements for feasible CPH – based salt 

removal process. 

 

5. Influence of operating conditions on CPH–based desalination efficiency  

Gas hydrate formation involves high pressure conditions, and therefore appropriate equipments 

are required to design a hydrate–based process. Indeed, operating costs could be significantly 

higher compared to standard processes (distillation, reverse osmosis…). This cost drawback is 

the reason hydrate-based desalination has not been commercialized yet. As discussed earlier, the 

use of CP as guest for desalination in combination with other applications, such as gas 

capture/separation, or cold energy storage (see later in section 6.2), might be advantageous or 

profitable. 
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Remember that, with CP, hydrate crystallization occurs at only one bar under normal 

atmospheric pressure. In addition, CP can be recovered easily after hydrate dissociation since it 

is not miscible into water. This simplicity is an enormous advantage, and this is probably why 

CPH-based desalination is still of interest in the scientific community. 

Recently, the use of CPH for desalination has been investigated at both laboratory and pilot 

scales [42,43,69,119,124,186,188,196–198] considering three main concerns: yield of 

dissociated water from CPH, water conversion to hydrate, and salt removal efficiency. The 

effects of mentioned considerations on CPH-based desalination process are detailed in Table 8.  

 

Table 8. Effect of various considerations on CPH-based desalination process  
 

Considerations  Yield of 

dissociated 

water 

Water 

conversion to 

hydrate 

Salt removal 

efficiency 

Citation 

Quantity of CP: 

 

+ CP concentration  in 

 

 1 – 5 mol% range: ↑ 

 

0.9 – 2.3 mol% range: ↑ 

 

+ Water cut in 

 

 20 – 60 vol % range:  ↑ 

 

70 - 90 vol % range: ↑ 

 

 

 

 

NA  

 

 

NA 

 

 

↑ 

 

↓ 

 

 

 

 

↑ 

 

 

↑ 

 

 

NA  

 

NA  

 

 

 

 

NA 

 

 

Fluctuated 

 

 

↓ 

 

↑ 

 

 

 

 

[69] 

 

 

[42] 

 

 

[119] 

 

[119] 

Agitation:  

300 – 500 rpm range: ↑ 

 

300 – 600 rpm range: ↑ 

 

600 rpm  

 

↑ 

 

NA  

 

NA 

 

NA  

 

↑ 

 

NA 

 

↓ 

 

NA  

 

↑ 

 

[119] 

 

[124,197] 

 

[43] 

Operating temperature:  

0.95 – 3.95°C  range: ↑ 

 

-2° – 2°C range: ↑ 

 

0.4 – 2.4 °C  range: ↑ 

 

↓ 

 

NA  

 

NA 

 

NA  

 

↓ 

 

↓ 

 

↑ 

 

NA  

 

↓ 

 

[119] 

 

[124,197] 

 

[42] 

Salinity:  

3 – 5% mass NaCl range: ↑ 

 

 

↓ 

 

 

NA  

 

 

↑ 

 

 

[119] 
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0.17 – 5%  mass NaCl range: ↑ NA  ↓ 

 

NA  [124,197] 

 

 Use of graphite ↑ 

 

NA ↑ 

 

[43] 

Use of filtering 

 

NA  NA  ↑ [69,124,196,197]  

Use of centrifuging 

 

NA  NA  ↑ [69] 

Use of washing 

By 3.5 % mass brine water  

 

By fresh water  

 

By fresh water  

 

By DI water 

 

By filtered water  

 

↑ 

 

↑ 

 

NA  

 

NA  

 

NA 

 

NA  

 

NA  

 

NA  

 

NA  

 

NA  

 

↑ 

 

↑ 

 

↑ 

 

↑ 

 

↑ 

 

[119] 

 

[119] 

 

[69,196]  

 

[124,188,197] 

 

[124,197] 

 

Ratio of washing 

water/dissociated water (g/g) 

0.1 – 0.5 range: ↑ 

 

0.5 – 1.2 range: ↑ 

0.02 – 0.03 range: ↑ 

 

0.03-0.05 range: ↑ 

 

0 – 0.035 range: ↑ 

 

0.035 – 0.05  range: ↑ 

 

 

Fluctuated 

  

Fluctuated 

 

NA  

  

NA 

 

NA  

 

NA 

 

 

NA  

 

NA  

 

NA  

 

NA 

 

NA  

 

NA  

 

 

↑ 

 

Fluctuated  

 

↑ 

 

↓ 

 

↑ 

 

↓ 

 

 

[119] 

 

[119] 

 

[69] 

 

[69] 

 

[196] 

 

[196] 

Use of sweating 

 

NA  NA  ↑ [69] 

Use of gravitational separating 

 

NA  NA  ↑ [124,197] 

 

Use of spray injecting 

 

Use of tube injecting 

NA  

 

NA 

↑ 

 

↑ 

NA  

 

NA 

[124,197] 

 

[124,197] 

 where ↑: increase; ↓: decrease, NA: Not Acknowledge   
 

Removal efficiency, yield of dissociated water, water conversion to hydrate, ratio of washing 

water/dissociated water (g/g), CP concentration, and water cut were calculated as follows: 

Yield of dissociated water =  
m1

mo
 ×100% or = 

V1

Vo
 ×100%    (1)  
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where mo/Vo are the mass/volume of initial salt solution, and m1/V1 are the mass/volume of 

melted water [43,119].  

Water conversion to hydrate = 
mc

mo
 ×100%      (2)    

where mc is the mass of water converted to hydrates [42,69,124,196,197].  

Salt removal efficiency = 
C0 - C

1

C0
 ×100%       (3)   

where C0 is weight percent of NaCl in prepared brine and C1 is that in dissociated water 

[42,43,69,119,124,196,197].  

Ratio of washing water/dissociated water = 
m2

m1
 ×100%    (4) 

where m2 is the mass of water used for washing [119] 

CP concentration = 
nCP

nbrine
 ×100%         (5) 

where nCP is the mole number of CP and nbrine  is the mole number of initially prepared brine 

[42,69]. This is somewhat related to another parameter in the literature, the “Water cut”.  

Water cut = 
Vbrine 

Vbrine +VCP

×100%         (6) 

where Vbrine  is the volume of initially prepared brine and VCP is the volume of CP [119] 

 

In the next sections, some details are provided to explain the effects of some considerations on 

the CPH-based desalination process. 

 

5.1 Quantity of CP. 

Water cut can be used to indicate quantity of CP as described by Equation (6). When water cut 

increases, quantity of CP then decreases because these two parameters are inversely proportional 

to each other.  

Table 8 illustrates that the water conversion into hydrate increases by raising the CP 

concentration in the system [42,69]. Also, the salt removal efficiency varies irregularly from less 

than 70% to close to 90% when increasing CP concentration from 0.9 to 2.3 mol % [42].    

Moreover, the water cut can affect the yield of dissociated water and the salt removal efficiency 

differently [119]. The yield of dissociated water first augments significantly with water cut from 

20% to 60% while the removal efficiency declines inappreciably. When the water cut is in 60% - 

90% range, the yield tends to lessen considerably while the removal efficiency is slightly 

improved. To summarize, the removal salt efficiency for different water cut varies from 75% to 

85%. This demonstrates that, compared to high water cut systems (>80 vol% water or <5 mol%  
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CP [42,69]), extra CP addition in brine could considerably improve the yield of dissociated water 

while the removal efficiency undergoes a relatively minor change.  

The effect of CP quantity on the hydrate formation rate is described in elsewhere 

[42,119,126,127]. It was found that excess CP can increase notably the kinetics of hydrate 

formation, and hence the conversion of water to hydrate and the yield of dissociated water.  

 

5.2 Agitation 

Change in flow condition, or shear rate, is observed using various stirring rates. This leads to 

different mass and heat transfer rates in the system. Table 8 shows that boosting the agitation rate 

promotes water conversion and yield of dissociated water, as examined by different authors 

[39,43,60,70,119,124,125,197]. However, this comes with a decrease in salt removal efficiency 

[119]. Indeed, higher agitation rates may enhance the reaction kinetic and hence cause formation 

of smaller hydrate crystals with larger specific surface area. As a hydrate surface is hydrophilic, 

more salt ions tend to attach on the crystal surfaces, leading to a difficult separation of brine from 

hydrate [119].  

The way CP is introduced into a system can also change the hydrate formation kinetics. Xu et al 

[124,197] declared that, by using the CP spray injection method, higher water conversion can be 

achieved, due to the smaller CP droplets created by the spray injection. However, a pump is 

hence needed for CP injection in this case, thus more energy is required.  

 

5.3 Operating temperature 

Table 8 indicates that the operating temperature affects strongly water conversion to hydrate, 

yield of dissociated water, and removal efficiency. At higher operating temperature, the hydrate 

formation rate decreases due to decrease in the driving force (here subcooling). Thus, both water 

conversion and yield of dissociated water are reduced with higher operating temperature 

[42,119,124,197]. 

However, two different observations in purification efficiency when increasing operating 

temperature were reported by Beak et.[42] and Lv et al.[119].  

One the first hand, Beak et al. elucidated that, at operating temperature of 2.4°C, the purification 

is less efficient than at 0.4°C. This is attributed to higher attractive force between CPH particles. 

Certainly, adhesion forces between CPH particles increase linearly with rising temperature [199]. 
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Thus, at higher temperatures, growing CPH crystals adhere to each other in a stronger framework 

than at lower temperatures. Consequently, more brine is trapped between CPH crystals, and a 

post-treatment method, such as centrifuging, is required.  

One the second hand, Lv et al.[119] showed that the salt removal efficiency improves when 

increasing operating temperature from 0.95 to 3.95°C (or 274.1 – 277.1K). It was found that the 

residual salinity is likely to be strongly related to the shapes and size of hydrate crystals. 

Kishimoto et al. [87] specified that the size of the hydrate crystals diminished with subcooling 

increase.  

Moreover, by using the FBRM probe, Lv et al.[119] indicated that the median chord length of 

CPH particles after 8h formation at 0.95 °C (274.1 K) is 22.16 μm, while, particles formed at 

3.95°C (277.1 K) under the same other conditions exhibited a median chord length of 34.15 μm. 

Thus, it was supposed that at higher operating temperature (or lower subcooling), hydrate 

particles are bigger with a smaller specific surface area favorable to salt removal [119].  

To sum up, in order to clarify the effect of operating temperature on the purification efficiency, 

more data at a varied range of operating temperature and salt concentration would be needed.  

 

5.4 Salinity 

Table 8 shows that the salt removal efficiency increases slightly with the salinity increase, while 

both water conversion to hydrate and yield of dissociated water appear to decrease considerably 

[119,124,197]. Indeed, when there is uptake in salt concentration, the driving force for hydrate 

formation decreases [28,119,124,197]. This reduces the CPH formation rate [39,68,87,119]. As a 

result, less water converts into hydrate under higher salt concentrations.  

Moreover, an enhancement in purification efficiency at high operating temperatures can be 

attributed the CPH crystals size change. Indeed, the hydrate formation kinetics decreases as salt 

concentration increases [39,68,87,119]. Thus, bigger hydrate particles with a smaller specific 

area are likely to form. Consequently, there is less brine trapped between CPH crystals.   

 

5.5. Solid additives 

As aforementioned, the addition of some solid additives can promote CHP formation  

[43,61,75,129,130]. Moreover, Li et al [43] reported that the addition of graphite not only 

enhances CPH formation but also boosts the salt removal efficiency. They indicated that the 
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surface functional groups of graphite improve both hydrate nucleation and growth of CPH. 

Moreover, the hydrophobic surfaces of graphite could inhibit hydrate aggregation and make 

hydrate crystal particles more porous. Consequently, the trapped salt ions can be removed more 

easily by centrifuging process, thus increasing the salt removal efficiency [43]. In addition, in 

presence of graphite, the prolongation of hydrate formation improved the desalting efficiency 

[43]. The hydrophobic behavior of graphite is believed to play a crucial role in this improvement 

[43]. These findings present interesting perspectives for the use of graphite or carbon material 

surfaced in the development of CPH-base desalination techniques.  

 

5.6 Post-treatment methods 

In order to remove salts trapped onto the hydrate surfaces, some post-treatment methods are 

introduced, such as filtration, centrifuging, sweating, gravitational separation, and washing. 

Several studies concluded that all these techniques can enhance profoundly the salt removal 

efficiency [69,119,124,196,197]. 

About 60-63% of NaCl from the feed solution was removed after CPH formation with only 

vacuum filtration [69,196]. It means that the treated water still contained a high level of NaCl. 

Obviously, this level of water purification is insufficient for desalination, so further post-

treatments are needed. 

Han et al. [69] demonstrated that centrifuging can enhance salt removal efficiency up to 96%. 

However, centrifuging is very expensive for mass treatment. Sweating by melting the impure 

zone over time can be a potential process to enhance salt removal. Nonetheless, it reduces the 

quantity of water retrieved. Moreover, this process is time consuming, hence an optimal time 

should be determined for the sweating of CPH crystal [69].  

Washing is also an effective approach to enhance salt removal  [69,119,124,196,197]. The source 

of the wash can be fresh, DI water, filtered water, or even brine water. The effect of washing 

water/produced water ratio on salt removal was remarkable. Han et al. [69,196] indicated that the 

optimal ratio of washing water/ produced water is approximately 0.03 (g/g) with a salt removal 

efficiency above 90%. Lv et al. [119] suggested that this value should be 0.5 (g/g) in order to 

remove enough salt from CPH crystals. However, this value is extremely high for industrial 

scales. Therefore, more investigation is required to optimize this ratio in order to meet the 

requirement of water purification and reduce the costs of desalination process.  
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Finally, forthcoming research should combine optimization of both kinetics of CPH formation 

and the salt removal efficiency [119]. Post-treatment methods may include filtration or 

pelletizing (squeezing) at first step [11,13] in order to facilitate CPH separation from aqueous 

solution and transportation to dissociation devices. Furthermore, to meet potable water standards, 

several existing technologies like washing and sweating are needed to remove entrapped salt ions 

on the crystal surfaces. Of course, optimizations on these technologies are also required for the 

economy feasibility of the desalting process.  

 

6. Comparison to other desalination technologies 

6.1 Comparison to traditional technologies 

Other processes such as multi-stage flash distillation (MSF), multiple-effect distillation (MED), 

solar thermal distillation (SD), freezing, reverse osmosis (RO), ecletro-dyalysis (ED), ion-

exchange desalination (IE), and adsorption have been investigated, and industrially used, for 

seawater desalination [6,10,27,36,118,200–214].  

Table 9 presents a comparison between diverse technologies based on four criteria: Thermal 

Energy consumption, electrical energy consumption, production cost, and product water salinity. 

Also, note that, in the case of clathrates, different formers can be used. Therefore, there are other 

opportunities than CPH to consider when discussing hydrate-based desalination. Consequently, a 

short comparison between different clathrate formers will be presented in the next section. Table 

9 illustrate of what can be expected with other clathrate than CPH. 

In term of purification level, MSF, MED, RO, adsorption, or clathrate hydrate technique can 

produce water with salinity lower than 10 ppm. Of course, this value varies according to the 

procedure and technology. For hydrate-based desalination, Subramani et al. [10] estimated that 

the technique can reach 100% salt removal in theory. However, such quality should not be 

expected. For instance, McCormack et al [32] obtained fresh water with a salinity of 100 ppm by 

using HCFC 141b (Dichloromonofluoroethane – CCl2FCH3) clathrates. In a patent, Mottet [198] 

evaluates that the salinity for the treated water via CPH crystallization to be 1000 ppm. By using 

a new batch-wise displacement washing technique in CPH-based desalting process, Cai et al 

[188] obtained fresh water with a salinity less than 10 ppm (<0.001% mass). Accordingly, in 

other efforts, Han et al. [69,196] and Lv et al. [119] indicated that CPH-based desalination 
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technology can produce water with a salinity from 700-4400 ppm. Recently, Xu et al [197] and 

Li et al [43] reported values of 700 ppm and 4008 ppm, respectively.  

Note that, according to World Health Organization (WHO), the palatability of water with a total 

dissolved solids (TDS) level less than 600 mg/l is generally considered to be good; drinking-

water becomes significantly and increasingly unpalatable at TDS levels greater than 1000 mg/l 

[215]. Remember that seawater has an average of 35000 ppm TDS [210,216]. The high TDS 

value (here salinity) of product water via CPH-based desalination is strongly related to the salts 

trapped in the hydrate crystals [6,10,27,36,118,200–214]. This requires efforts on post-treatment 

process to completely remove trapped salt and therefore achieve product water with quality that 

meets the WHO drinking-water criterions. 

  

Table 9. A comparison in energy consumption, production cost and product water quality 

between desalination technologies 

Desalination 

technology 

Thermal energy 

consumption 

(kWh/m
3
) 

Electrical energy 

consumption 

(kWh/m
3
) 

Production cost 

($/m
3
) 

Water salinity 

(ppm) 

MSF 52.78-78.33[200]  15.83-23.5 [200] 0.52-1.75 

[200][217] 

1.0785 [218] 

0.77-1.64 [207] 

10 [200] 

     

MED 40.28-63.89 [200] 12.2-19.1 [200] 0.52 -8.0 [200] 

0.87-1.95 [207] 

10 [200] 

     

SD 0 [200,210] 0 [200,210] 1.3-6.5 [200] 

3.9 [210] 

80 [210] 

     

Freezing * 9-11[219] 0.93 [219,220] 100 [210] 

     

RO 4.1 [5] 4.0 [5] 

3-7 [221] 

8.2-9.0 [207] 

0.85 [206,211] 

0.45-1.72 [200] 

0.64-0.76 [207] 

35 [5,205] 

400-500 [200] 

10 [210] 

     

ED * 2.64-5.5 [200] 0.6-1.05 [200] 150-500 [200] 

     

IE * 1.1 [210] 

0.29-1.04 [222] 

1.05 [210] 13 [210] 

     

     

Adsorption * 1.38 0.18 [207] 7.54 [207] 
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[10,204,207] 

 

10 [210] 

Up to 100% 

rejection [10] 

     

CPH * 0.35 [186] * < 10 [184] 

1000 [198] 

 700-4400 

[69,119,196] 

4008 [43] 

700 [197] 

Other 

Clathrates 

 

HCFC 141b 

hydrates 

 

 

Propane 

hydrates 

 

CO2 hydrates 

 

 

 

CO2+CP 

hydrates 

 

 

 

 

* 

 

 

 

* 

 

 

* 

 

 

 

* 

 

 

 

1.58 [32,210] 

 

 

 

0.60-0.84 [35] 

 

 

* 

 

 

 

* 

 

 

 

0.63 [32,210] 

0.46-0.52 [10] 

 

 

2.76 [211] 

1.11 [223] 

 

* 

 

 

 

* 

 

 

 

100 [32,210] 

Up to 100% 

rejection [10] 

 

100-500 [224] 

 

 

7665 [11] 

1100 [13] 

23270 [90] 

 

8055 [90] 

* Not Acknowledge  

 

In terms of energy consumption, Table 9 indicates that clathrate hydrate, adsorption, SD, or IE 

technology require the lowest amount of energy ( 2kWh/m
3
), whilst MSF, MED, and Freezing 

consume an energy almost more than 10 kWh/m
3
. The lower energy required in clathrate 

techniques compared others is related to its low phase change enthalpy. As clarified in Table 10, 

HCFC 141b hydrate or CPH requires a smaller energies (5.74 or 4.84 kJ/mol water, respectively) 

compared to freezing water (6.02 kJ/mol) or water evaporation (40.7 kJ/mol) [69,130,187].  

Table 9 also displays that the production cost for adsorption and clathrate hydrate is much 

smaller than MSF, SD, freezing, and IE technologies. For instance, production costs for HCFC 

141b and propane hydrates are less than 0.6 $/m
3
 and 1.11 $/m

3
, respectively. Otherwise, it is 

between 0.6 and 1.95 $/m
3 

for RO, MED, and ED technologies.  
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The above assessments indicate that clathrate hydrate and adsorption techniques could be able to 

produce high quality fresh water with a low energy consumption ( 2kWh/m
3
) and minimum 

operating cost (less or around 0.6-1.11 $/m
3
). Thus, both clathrate hydrate and adsorption 

technologies could be promissing technologies after proper development compared to 

conventional processes.  

 

However, there are some strong drawbacks concerning the adsorption technique [10]: it requires 

waste heat or renewable energy source for cost-effective desalination. Robustness of silica gel 

adsorber beds is still not known. Data are available only for demonstration-scale projects. Thus, 

this technique still requires more study.  

 

 

6.2 Comparison between Clathrate formers for hydrate-based process 

Concerning hydrate-based approach, the kind of former is crucial. It is one of the most important 

factors in hydrate-based desalination since the operating conditions strongly depend on the guest 

molecules. With a possibility to form hydrate at temperature above 0°C from seawater, CHFC 

141B has been studied for desalination in the last few decades [32,33,225]. However, CHFC 

141B has a solubility of 350mg/l at 15.6
o
C [32] higher than that for CP (156mg/l at 20°C) 

[28,46]. Moreover, HCFC R141B is also very volatile (boiling point of 32.2
°
C) [32]. This leads 

to an ozone-depletion problem when released into the atmosphere [226]. International concern 

over relatively high global warming potential of HCFC has caused some European countries to 

abandon it for many applications such as refrigerants or as a cleaning agent [226]. HCFC 

compounds, such as R141b, are hence restricted by current environmental regulations and are no 

longer practical candidates for a hydrate desalination process, despite their ease of use [33]. 

Recently, He et al [35,227], Nambiar et al [228], and Chong et al [223], proposed a propane-

hydrate based desalination process using LNG cold energy. When compared to MSF, RO, and 

freezing techniques, Babu et al [229] demonstrated that this technology (the HyDesal process) 

can be economically attractive. As shown in Table 9, this process requires a remarkably low 

energy (0.60-0.84 kWh/m
3
) compared to others. The cost of potable water was found to be 

approximately $1.11/m3 with LNG cold energy integration [223]. LNG cold energy from the 

LNG regasification terminals replaces the external refrigeration cycle. Of course, this 
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desalination technique still needs a stable LNG cold energy source. High-pressure devices (0.4 

Mpa) are also required to form propane hydrate. Lastly, it should be noticed that LNG and 

propane are flammable and explosive gases at high pressure. Thus, although its economic 

feasibility, also estimated by Chong et al [223], an industrial-scale testing of this process is not 

yet available.         

In addition, Table 10 shows that CPH have a lower phase change enthalpy compared to CHFC 

141B hydrate, CO2 hydrate, and propane hydrate. The energy required for CPH-based 

desalination is hence likely less than for CHFC 141B hydrate, CO2 hydrate, or propane hydrate 

based desalination.  

Newly, He et al [186] investigated the techno-economic of CPH-based desalination utilizing 

LNG cold energy. Their results indicate that CPH-based desalination technique requires a 

specific energy consumption of 0.35 kWh/m
3
, which is 58% lower than desalting technology 

utilizing propane hydrates. The Fixed Capital Investment (FCI) of the CPH-based desalination 

process was estimated to be $6,113,751 (for 0.75 m
3
/h of pure water) which is again lower than 

with propane hydrates ($ 9.6 million for 1.3 m
3
/h of pure water [223]). Moreover, the FCI 

augments from $6,113,751 to $9,559,668 when decreasing the CPH formation temperature from 

277.15 K to 273.15 K. Finally, He et al [186] stated that the escalation of the water recovery rate 

of the CPH can lead to a decline in the SEC and FCI, and to a rise in the pure water flow rate and 

exergy efficiency. Consequently, improving the water recovery rate of CPH is crucial to enable 

fresh water production from this technique.  

 

Furthermore, based on the fact that CPH-based desalination requires relatively low temperatures 

(less than 7°C) for hydrate nucleation and growth, this desalting technique would be more cost-

effective if we can use the low temperature of actual seawater instead of utilizing a cryostat. For 

that purpose, Li et al [43] worked with actual seawater in winter at -10°C. Their results show that 

the crystallization occurred rapidly over 7h, with a salt removal efficiency of 70% and a water 

conversation rate of 56%. This indicates one more time the economy feasibility of CPH-based 

desalting technique when utilizing cold seawater.    
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Table 10. Latent heat of phase change of several techniques in desalination  

 

Method of desalination Latent heat of phase 

change, kJ/mol 

Citation 

   

CPH 4.84 

 

[69,130,187] 

 

 

CO2 hydrates 

57.7±1.8 to 63.6±1.8 [230] 

53.29 [231] 

66.8 [232] 

Propane hydrates 27 ±0.33 [233] 

Mixed hydrate CP + C3H8 2.23 [51] 

Mixed hydrate CP + CH4 131.70 – 121.74 [41] 

 

Form R141 b hydrate 

6.19 [225,234] 

5.74 [32] 

Freezing water 6.02 [69] 

Water distillation 40.7 [69] 

 

7 Example of CPH technological approach 

Based on the literature, hydrate-based desalination requires a relative low energy and it is 

theoretically more competitive economically than other standard processes (distillation, freezing, 

and RO technologies). To apply that at a commercial and industrial scale, there are still various 

challenges that need to be addressed. One of the most difficult trials concerns the improvement 

of two crucial limiting factors: salt removal efficiency and water to hydrate conversion. As 

detailed in Table 8, these two parameters are usually inversely proportional to each other. There 

is a need to investigate the best method to transport CPH after formation. Filtration and 

pelletizing seem to be appropriate to facilitate this transportation step. A washing method is 

necessary to enhance the salt removal capacity. However, improving the ratio of washing 

water/dissociated water is also required to make this process economical feasible.  
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Utilizing LNG cold energy during the regasification process in the LNG regasification terminals 

for CPH-based desalination is one of the promising approaches to minimize the energy 

consumption and hence Strengthen Energy-Water Nexus [186]. Of course, this technique 

requires more experimental explorations before commercial readily-available in the freshwater 

production industry. 

Furthermore, the idea of combining CO2 capture and desalination can be advantageous when a 

hydrate mixture of CO2 + CP is used. Indeed, merging two energy demanding processes can 

optimize energy use [23,90,92]. However, this procedure is more complicated with the added 

requirements of higher pressure equipment.  

To recap, based on the analysis of all of the articles reviewed, a diagram of CPH-based 

desalination, with all proposed required steps and apparatus, is proposed in Figure 4.   

 

 

 

Figure 4. CPH-based desalination process diagram (inspired by [198]) 

 

Figure 4 presents a continuous system of water treatment. A mixing system is fed with both 

cooled CP and saline solution. This mixer, also called an emulsifier is critical to design as it 

governs the size of the CP droplets in water. The second piece of equipment is crystallizer, where 

the formation of CPH occurs. Since this is a continuous process; there is no induction time to 

consider. However, the residence time to complete hydrate formation in the crystallizer is 

optimized based on the device configuration design in order to reduce the process capital cost. 
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The slurry is then transferred to a decanter, allowing the growth of hydrate particles and the 

separation of different phases, notably the possible precipitation of the salts. Then, the slurry 

filter separates CPH and a concentrated solution. This concentrated solution is waste. However it 

can be partially re-injected to the mixing system if the aim is to produce saturated solution and 

precipitated salts. CPH crystals are melted with a heat exchanger and are introduced in a decanter 

allowing the separation of the CP (on the top) and purified water (on the bottom). The CP is then 

re-used at the beginning of the process in a closed loop. 

A washing step can be also added to the slurry filter. This drives out the concentrated solution 

trapped between CPH particles. Nonetheless, a less concentrated solution is required. This can be 

the initial saline aqueous solution or a fraction of the purified water, depending on the rate of 

purification expected. Although by using a fraction of purified water, while a better purification 

rate can be obtained, unfortunately the yield of the system decreases. 

As seen on figure 4, there are cooling and heating systems in the process. An optimization by 

energy recovery between the two types of heat exchangers could be considered in order to reduce 

the energy consumption still further. 

From a technological point of view, this flow diagram summarizing all required steps and 

apparatus for a CPH based desalination process is inspired by the one proposed by BGH 

Company (France) [198].  

 

According to Mottet [194], here are some advantages to this process: 

 CPH can act as both a water purifier and a concentrator of dissolved materials (salts). 

Interestingly, Ho-van et al [88] reported the precipitation of salts (6% mass Na2SO4 at 

less than 5.3°C) during CPH crystallization. As solid materials, the precipitated salts can 

be then removed easily by a physical method since their high density compared to others 

(CPH, CP, brine).  

 This is a “no discharge method”, since simultaneous production valorized salts and pure 

water 

 High yield, more than 95% 

 This technique can treat highly-salty water (impossible for RO method).  

 No pressure requirement, and reasonable operating temperature from -20°C to 7°C 
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 Less energy consumed than both evaporation and Ice EFC (Eutectic Freeze 

Crystallization) methods.  

 This method is technically more reliable than the Ice EFC as the crystallization of water 

is internal and direct when CP is added.  

 This is a continuous process   

Obviously, before hydrate desalination becomes a practical commercial technology, the vital 

issues of controlled hydrate nucleation, formation rate, phase properties, amount of entrapped 

salt and its  removal efficiency must be thoroughly understood and optimized [33]. As 

aforementioned, CPH has been recently studied in terms of thermodynamic, kinetic, and phase 

properties. A relatively sufficient database of CPH for desalination is now available in the 

literature as provided in this present review. 

    

8 Conclusions 

Numerous investigations have been being conducted on CPH for decades. Records on 

thermodynamic, kinetic, phase properties, and use of CPH for desalination were presented. A 

comparison between CPH based desalination and other techniques has also been provided. After 

analyzing vital factors such as energy consumption, product water quality, and economy of 

desalination plant, conclusions show that Clathrate hydrates present potential for new 

desalination technique. The use of CP as hydrate former is a promising idea, supported by recent 

researches in that field. While hydrate technology has not been yet fully developed in the 

industry, the combination of water desalination to other applications, such as cold energy 

storage, or even gas separation and storage, makes it again an encouraging idea compared to 

other competing technologies like distillation, freezing, and reverse osmosis. Of course, other 

clathrates formers, instead or in addition to CP molecule, could be more suitable for future water 

treatment applications. However, a diagram of CPH based salt removed has been suggested to 

illustrate future directions. Finally, some challenges, such as the best economic compromise 

between salt efficiency and water-to-hydrate conversion need to be addressed before industrial 

development and implantation. 
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