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________________________________________________________________________________ 

 

Abstract 

 

 A new simple density-based method is proposed for approximate phase envelope 

construction of constant composition multicomponent mixtures. The phase envelope is traced in the 

molar density-temperature plane (with a unique saturation temperature at given mixture molar 

density) and the pressure is calculated explicitly from the equation of state (EoS). The computational 

procedure is very easy to implement and a reduced system of only three equations must be solved for 

three variables (molar densities of feed and incipient phases and temperature), irrespective of the 

number of components in the mixture. The EoS must not be solved for volume and the elements of 

the Jacobian matrix have simple forms; the partial derivatives of fugacity coefficients with respect to 

compositions are not required. A simple and computationally inexpensive correction procedure 

highly improves results by updating the reference conditions at each point on the phase envelope. 

Simple equations for calculation of maximum temperature and pressure points are presented. The 

proposed method was tested for a variety of mixtures, ranging from natural gases to heavy oils, using 

a general form of two-parameter cubic EoS. For usual (closed) phase envelopes, the entire phase 

boundary is remarkably well reproduced. Certain unusual (open-shaped, with a bubble point branch 

extending to infinity) phase envelopes are also entirely traced up to very high pressures, while in 

certain cases the method fails at low temperatures (where the approximation of equilibrium constants 

becomes inadequate), but provides an excellent approximation for a wide temperature range. The 

proposed method is not dependent of the thermodynamic model (any pressure-explicit EoS can be 

used), it is recommended for mixtures with many components and it may be particularly attractive for 

complex EoS.  
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1. Introduction  

 

 Calculation of saturation points is an important type of basic phase equilibrium calculations. 

The phase envelope is a fingerprint of a mixture of given composition. From a computational point of 

view, it is more difficult than phase splitting [1]. The number of solutions is not known in advance; 

the problem can have multiple solutions (i.e., several saturation temperatures at given pressure) or no 

solution (i.e. no saturation pressure for temperatures above the cricondentherm). Moreover, it is a 

priori unknown whether a saturation point is a dew or a bubble point and algorithms may encounter 

convergence problems around critical points if the initialization is poor, or convergence to the trivial 

solution (corresponding to spinodal conditions) may occur. 

 

 Many stand-alone saturation points calculation methods were proposed (Baker and Luks [2], 

Michelsen [3], Nghiem et al. [4], Varotsis [5] and recently Nikolaidis et al. [6]). However, the only 

entirely safe procedure is the automated construction of the phase envelope using continuation 

methods (Michelsen [7], Asselineau et al. [8]); calculations start at an “easy” point where an 

unproblematic convergence is expected, then an extrapolation procedure provides good initial guess 

for Newton iterations. Various implementations were proposed by Li and Nghiem [9], Ziervogel and 

Poling [10], Nichita [11], Venkatarathnam [12], Nikolaidis et al. [13]. 

 

 Saturation point calculations are closely related to the phase stability problem, which consists 

in the minimization of the tangent plane distance (TPD) function [14] to find all stationary points. In 

all saturation points calculation methods, the system of equations contains the zero TPD condition. In 

the conventional PT-based approach, the Gibbs free energy is the central thermodynamic potential; 

volume is a dependent variable and is calculated from the EoS at given pressure, temperature and 

composition. 

 

 In recent years, volume-based methods [15] have received increased attention in the literature 

for solving a variety of phase equilibrium problems at different specifications. In volume-based phase 

equilibrium calculation methods, the Helmholtz free energy is the central thermodynamic potential 

and volume is a primary variable. The EoS is not solved for volume and simpler partial derivatives 

(no implicit functions) are required to assemble Hessian and Jacobian matrices, thus volume-based 

methods are attractive for complex EoS. The pressure is calculated explicitly from the EoS and 

negative pressures are allowed [16-19]. 

 

 For phase stability testing, the first TPD function in terms of component molar densities was 

proposed by Nagarajan et al. [20]. Michelsen [14] expressed the TPD function in mole fractions and 
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molar volume and later Mikyška and Firoozabadi [16] and Castier [21] derived the TPD function in 

terms of mole numbers and volume. Several volume-based phase stability testing methods were 

proposed, at PT or VTN specifications, using global [22,23] and local (modified Newton) 

[16,17,20,21,24] optimization methods. 

 

 In phase envelope construction, a volume-based method was proposed by Kunz et al. [25] 

and very recently a density-based method was presented by Nichita [18]. Molar densities were used 

in various phase envelope construction procedures by Quinones-Cisneros and Deiters [26], Deiters 

[27] and Bell and Deiters [28]. Phase envelopes in the molar density-temperature plane were 

indirectly constructed from phase stability [16,17] or flash calculations [29]. Volume-based methods 

were recently shown (Sandoval et al. [19] and Nichita [30,31]) to be particularly attractive for phase 

envelope construction including capillary pressure, due to the explicit in volume nature of interfacial 

tension models. 

 

 Michelsen [32] proposed a simple approximate method for phase boundary calculations, in 

which a reduced nonlinear system of only two equations with two variables (pressure and 

temperature) is solved. The partial derivatives of the fugacity coefficient with respect to compositions 

are not required. An effective refinement procedure and a very simple correction procedure are 

proposed to improve the accuracy of the approximate method. It is remarkable how good 

approximations of exact phase envelopes are obtained using the simplified method (in Michelsen's 

examples, as well as in other applications of his method to various hydrocarbon mixtures (Pokki [33], 

Gu et al [34]), using a very simple scaling law for equilibrium constants. Some limitations of the 

approximate method are mentioned, such as mixtures with several critical points, mixtures with no 

critical point and some complex mixtures for which the approximation of equilibrium constants is 

inadequate. 

 

 In this work, a simple approximate density-based phase envelope construction method is 

proposed, which can be seen as the density-based counterpart of Michelsen's conventional simplified 

approximate method. A nonlinear system with only three equations and three unknowns (molar 

densities of feed and incipient phase and temperature) must be solved. The EoS must not be solved 

for volume and the elements of the Jacobian matrix are simpler than in the conventional approach. 

 

 This paper is structured as follows. First, Michelsen's approximate phase envelope 

construction procedure is briefly presented, then the proposed density-based method is introduced 

(including the correction step and equations of temperature and pressure extrema) and tested for 

several mixtures with various usual (closed) and unusual (open-shaped) phase envelopes, before 

concluding.  



 4 

 

 

2. Michelsen's PT approximate method 

 

 Michelsen [32] proposed a simple approximate phase envelope construction method, briefly 

presented below, in which a nonlinear system of only two equations is solved for temperature and 

pressure. 

 

 First, let us recall that in conventional PT-based phase stability testing, the TPD function 

(Michelsen [14]) is 

 



nc

i

ii hxD
1

         (1) 

where  

    zx ,,ln,,ln TPfTPfh izii        (2) 

 The idea behind Michelsen’s approximate procedure is to relate approximate equilibrium 

constants, iK  (thus compositions), at any point on the phase boundary, to exact equilibrium 

constants ( *
iK ), calculated at some reference conditions. This is done via the very simple equation 

   *
ii KK          (3) 

or 

 
*lnln ii KK           (4) 

 The scaling exponent is 1  at the reference conditions and 0  at the critical point. The 

equilibrium constants are 

 iii zYK /          (5) 

From Eqs. (4) and (5), the (formal) mole numbers are 

 
*lnlnln iii KzY          (6) 

and the mole fractions in the trial phase are obtained by normalization 

 





nc

i

i

i
i

Y

Y
x

1

         (7) 
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 From Eq. (6) and (7), mole fractions depend only on ,   xx  and further from Eq. (2), 

  ,,TPhh ii . Thus, a single variable (the scaling exponent) replaces the nc compositions used in 

exact methods. 

 Two functions of T, P and were defined [32] 

   0,,
1

1  


nc

i

ii hxPTf        (8) 

and 

   0,,
1

2  


nc

i

ii hzPTf        (9) 

 The function f1 is exactly the TPD function [14] in Eq. (1), which must be zero at saturation 

points. The independent variables are  TTP ln,ln  and  is the specification. 

 The nonlinear system 0f   is solved by the Newton method 

 fJ           (10) 

where the Jacobian matrix J is a [2 × 2] matrix and the residual vector is  Tff 21 ,f . 

 The required partial derivatives are Ti  /ln  and Pi  /ln , the partial derivatives of the 

fugacity coefficient with respect to mole numbers need not be calculated, and the partial derivatives 

with respect to α required in the extrapolation procedure are evaluated numerically. 

 Calculations start at 1  at the reference conditions, with a low pressure dew point or 

bubble point temperature and  is decreased towards 0  at the “critical point” and beyond at 

negative values. Two correction procedures are proposed to update the results if deviations become 

too large. 

 All points on the approximate phase boundary are located inside the two-phase region and 

the phase boundary calculated with the simplified method is exact for a binary mixture, because in 

this case the equality of fugacities for both components is satisfied at the solution of the system [32].  

 

 The simplified procedure is not generally applicable. It may not reproduce accurately bubble 

points at low pressures starting with equilibrium constants from a lower dew point. For certain 

mixtures, calculations cannot be continued at lower temperatures neither without nor with correction, 

since the simple scaling approach is inadequate at these temperature and pressure conditions. An 

example is given for a mixture with liquid demixing at low temperatures, exhibiting a swallowtail 
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pattern. Other limitations  are for mixtures with no critical point or mixtures with multiple critical 

points. 

 

 

3. Density-based approximate method 

 

 Michelsen's conventional (PT-based) simplified approximate approach [31] is formulated in 

a density-based framework, following the recent exact density-based phase envelope construction 

method of Nichita [18]. 

 

 

3.1. Phase stability testing at temperature, volume and moles specifications 

 

 As mentioned before and discussed in detail in Ref. [18], saturation point calculations are 

closely related to phase stability testing and the system of equations in any saturation point 

calculation method must contain the zero-TPD function condition. 

 

 The TPD function in terms of molar densities is (Nagarajan et al. [20]) 

       
   

RT

TPTP
TfTfdTD z

nc

i

izii

,,
,ln,ln,

1

z
z

dd
ddd






   (11) 

where d is the vector of component molar densities in the trial phase,  Tncdd ,...,1d , with  

 ncidx
v

x

V

n
d i

ii
i ,1;         (12) 

and  Tzncz dd ,1 ,...,zd  is the vector of component molar densities of the feed (the phase 

investigated),  

 ncidz
v

z

V

n
d zi

z

i

z

iz
iz ,1;         (13) 

with iiz Fzn  . 

 

 The TPD function in Eq. (11) can be used for both VTN (at volume, temperature and moles) 

[16,17,21,23] and volume-based PT phase stability testing [20,22,24]. The volume-based phase 

stability problem is a bound- and linear inequality-constrained minimization of the TPD function 

usually solved by local minimization (using modifications of the Newton method) [16,17,20,21,24], 
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constrained optimization (by formulation of phase stability as a dual optimization problem) [35,36] 

or global optimization methods [22,23]. In phase envelope construction, this TPD function is used in 

Refs. [18,31]. 

 

 In density-based saturation point calculations [18], the system of equations includes the 

equality of fugacities and pressures, which ensures the zero TPD condition. In the temperature-

pressure (or molar density-temperature) plane, the saturation points are the only points where the 

solution of the equation TPD=0 is nontrivial (giving the composition of the incipient phase), 

corresponding to a global minimum of the TPD function. All other stationary points with TPD=0 

(saddle points and maxima) correspond to a trivial solution. A detailed discussion can be found in 

Ref. [18]; see also Refs. [37,38] for the behavior of the TPD surface around saturation points. 

 

 

3.2. Saturation point equations 

 

 The equilibrium constants at the some reference conditions are 

 nci
z

x
K

i

i
i ,1;

*
*          (14) 

 At the solution of exact saturation point calculations, thus at reference conditions, **
ii Yx   

since 1
1

*  

nc

i iY . This last relation is not satisfied on the approximate phase boundary (except at the 

"critical point", where all equilibrium constants equal unity at 0 ). The equilibrium constants at 

any point on the phase boundary are related to those at reference conditions (
*
iK ) by Eq. (4). 

 

 From ddx ii / , component molar densities can be related to 
*ln iK  by 

   *lnlnlnln iii Kzdd       (15) 

where the mixture molar density of the incipient phase is vd /1 . The parameter  corresponds to 

the normalization in Eq. (7) and is given by 

     







 




nc

i

s

ii Kzs
1

*ln        (16) 

where 1s  if calculations are started on the dew point side and 1s  on the bubble point side. 
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 Equation (15) is the key equation in the density-based simplified approach. This means that 

  ,ddd ii , thus the fugacity and pressure of the incipient phase are functions of d, T and . In the 

approximate method, nc variables in the exact density-based method (molar densities) are replaced 

by only two variables,  and d. Since iziz zdd  , the fugacity and pressure of the reference phase are 

functions of dz and T. 

 

 Three functions of molar densities (d and dz), temperature and α are defined as 

          0,ln,,ln,,,,
1

1  


nc

i

ziziiz TdfTdfddTdd    (17) 

          0,ln,,ln,,,
1

2  


nc

i

zizizizz TdfTdfddTdd    (18) 

and  

  
   

0
,,,

,,,3 



RT

TdPTdP
Tdd zz

z      (19) 

 The first two functions correspond to the two functions in the conventional method, Eqs. (8) 

and (9), multiplied by the molar densities d and dz, respectively. The third function is used in the 

pressure equality equation, which closes the system of equations. 

 The nonlinear system of three equations is 

   0           (20) 

where  T321 ,,  . 

 From Eqs. (11), (17) and (19), the TPD function can be written as 

 31 D          (21) 

 Thus, at the solution of the system of equations, the TPD function 0D . The second 

equation ( 02  ) ensures the continuity of the approximate phase boundary at its critical point (as 

in the conventional method [32]), because izi dd   when 0 . 

 

 It is evident that for a binary mixture, Eqs. (17) and (18) ensure the equality of fugacities (as 

in the conventional method [18]) and Eq. (19) ensures the equality of pressures, that is, the simplified 

method is exact in this case. 
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 The results of the density-based method are identical to Michelsen's ones [32], since in both 

conventional and density-based methods, the compositions of the incipient phase depend solely on 

the same approximation of equilibrium constants given by Eq. (4). When Eqs. (17) to (19) are 

satisfied at T and dz, Eqs. (8) and (9) are satisfied at T and ),( TdPP zz . 

 

 

3.3. Resolution of the non-linear system 

 

 The linear system in the Newton method is 

 J          (22) 

 The vector containing the three independent variables is  Tz Tdd ln,ln,ln  and  is 

always the specification. 

 

 The elements of the [3 × 3] Jacobian matrix are 

 
 









nc

i iz

z
i

z d

P
d

RTd
J

1

1
11

1

ln
      (23a) 

 
d

P

RT

d

d
J









 1

1
12

ln
       (23b) 

 


























nc

i

izi
i

T

f

T

f
dT

T
J

1

1
13

lnln

ln
     (23c) 

 
z

zz

z d

P

RT

d

d
J









 2

2
21

ln
       (23d) 

 
 









nc

i i

iz
d

P
d

RTd
J

1

2
22

1

ln
       (23e) 

 


























nc

i

izi
iz

T

f
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f
dT

T
J

1

2
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lnln

ln
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z

zz

z d

P

RT

d

d
J











ln
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31        (23g) 
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J







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 






 

















T

PP

T

P

T

P

RT
J zz1

ln

3
33       (23i) 

 

 The equations used in the differentiation process are 

 i
i d
d

d






ln
         (24) 

(from Eq. 15), the symmetry of second order derivatives of the Helmholtz free energy with respect to 

mole numbers and volume written as 

 nci
d

P

dRTd

f

i

i ,1;
1ln










       (25) 

and from Euler theorem on homogeneous functions (the chemical potential and pressure are 

homogeneous function of first order, see Ref. [18]) 

 ncj
d

P

RTd

f
d

jj

i
nc

i

i ,1;0
1ln

1













      (26) 

and 

 0
1











 d

P
d

d

P
d

i

nc

i

i         (27) 

 

 The above equations are valid for any EoS; the required partial derivatives are Tf i  /ln , 

TP  / , dP  / and idP  / ; note that the partial derivatives of fugacities with respect to molar 

densities, ji df  /ln , are not required. For a general form of two-parameter cubic EoS used in this 

work, containing the Soave-Redlich-Kwong (SRK) EoS [39] and the Peng-Robinson (PR) EoS 

[40,41], these partial derivatives (having quite simple forms) can be found in Ref. [18]. The partial 

derivatives in the density-based method are much simpler than those in the conventional (pressure-

based) approach for any EoS (since no implicit functions are involved in the differentiation). 

 

 The thermodynamic functions (fugacity and pressure) and their partial derivatives are usually 

expressed (and coded in phase equilibrium packages and simulators) as functions of mole numbers, 

volume and temperature, which are the natural variables for a pressure-explicit equation of state. In 

the density-based method, the functions and derivatives are in terms of component molar densities 

and temperature. However, due to homogeneity properties, as shown in Nichita [17,18], there is no 

need to recast the EoS in terms of molar densities, and existing routines can be used to calculate the 

required functions and partial derivatives. The relations to pass from partial derivatives of pressure 
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with respect to mole numbers and volume to those with respect to di and d, respectively, using the 

homogeneity properties of pressure, are given in Ref. [18]. 

 

 Concerning the summations in Eqs. (23a) and (23e), at least for cubic EoS, they can be 

replaced by a mixed partial derivative formally similar to dP  /  (in a sense similar to "mixed 

volumes" [42]). Also the sums in Eqs. (23e) and (23f) can be replaced by quantities with a simpler 

expression than that of Tf i  /ln . 

 

 

3.4. Phase envelope construction 

 

 The phase envelope construction procedure is similar to that in the exact density-based 

method [18] (which follows Michelsen's framework [7]), except for variable selection; in the exact 

method the specification variables are selected according to their sensitivity, while here the scaling 

factor  is always the specification. High quality initial estimates required for full Newton iterations 

are obtained by cubic extrapolation [7,18]. 

 

 The linear system 

 







ξ
J          (28) 

is solved for sensitivities of the independent variables with respect to variations of . 

 The Jacobian matrix is already evaluated for the solution of the last point, an LU 

decomposition available from the resolution of the linear system (Eq. 22) at the last iteration. Only 

the elements of the RHS vector in Eq. (28) are additionally required in extrapolation steps.  

 The partial derivatives  /ln if  are calculated numerically. The derivative  /P  can be 

calculated analytically (it is related to idP  /  using the chain rule and Eq. 15). 

 

 At the first point on the phase envelope, an exact (full), dew point (DP) or bubble point (BP) 

temperature calculation is performed at a low pressure (e.g. 10 bar) , that is at "easy" conditions 

where no convergence problems are expected. Compositions are initialized using Wilson's relation 

[43] for ideal equilibrium constants. This initial point corresponds to 1 . Afterwards, the scaling 

exponent is decreased. If calculations start from an initial DP, 0  on the DP side, the sign changes 

when the “critical point” is crossed and 0  on the BP side of the saturation curve; starting from an 

initial BP, the opposite sign corresponds to each part of the phase boundary. 
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 The remaining part of the phase envelope can be easily traced starting from the reference 

point in the opposite direction with 1  (i.e., the lower dew point curve at low feed molar density if 

started from the DP side). 

 

 

3.5. Correction  

 

 In the conventional simplified method, Michelsen [32] proposed two procedures to update 

results if deviations become too large.  

 

 The first one is a refinement procedure and it consists in solving a nonlinear system of nc+2 

equations using partial Newton iterations (exhibiting linear convergence). This kind of procedure can 

be readily adapted to the present density-based method, using nc+3 variables (the three variables in 

the approximate method and nc logarithms of the equilibrium factors). 

 

 The second one (adopted in this work) is a very simple correction procedure that does not 

require additional calculations. It consists in updating the reference equilibrium constants using 

information from the last calculated point, according to 

     


 ,,ln,ln
1

ln * TdTdK izizi       (29) 

where the fugacity coefficients are iii Pxf /  and iiziK  / . 

 As will be seen later in numerical examples, this very simple correction procedure proves to 

be very effective in the density-based approach (as also observed in the conventional PT approach 

[32,33]) and a high accuracy can be obtained even when the approximate method without correction 

gives important deviations from the exact phase envelope. 

 

 

3.6. Temperature and pressure extrema 

 

 The slope of the tangent to the phase boundary at any point can be easily calculated exactly, 

using only partial derivatives with respect to temperature and molar density. The slope of the tangent 

to the phase boundary in the d-T plane is 

 

1

,,,,





































zdddTzz T

D

d

D

d

T
       (30) 
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where   ,,, TddDD z  and the condition for a temperature extremum in the d-T plane (the 

cricondentherm or a minimum in temperature as in some open-shaped phase envelopes; a 

temperature minimum, as well as a second temperature maximum can occur for mixtures with double 

retrograde behavior) is 

 0

,,
















dTzd

D
         (31) 

where 

  3111
31

,,

1
JJ

dddd

D

zzzdTz




























     (32) 

 The pressure corresponding to a temperature extremum in the T-P plane is calculated 

explicitly from the EoS. 

 The slope of the tangent to the phase boundary in the T-P plane can be easily calculated 

using the available partial derivatives from 

 

1































TP P

D

T

D

T

P
        (33) 

 The condition of pressure extrema in the T-P plane (the cricondenbar or a minimum in 

pressure in some open-shaped phase envelopes), that is, 0/  TP , is 

 0












PT

D
         (34) 

where 

 























































,,,,, d

z

dTzddP T

d

d

D

T

D

T

D

z

     (35) 

and the required partial derivatives are 

  3313
31

,,

1
JJ

TTTT

D

dd z


























     (36) 

and  

 

1

,,,












































dT,z

z

d,d

z

d

z

d

P

T

P

T

d

z

      (37) 
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 All the partial derivatives with respect to molar density and temperature required in the 

extremum criteria are already calculated in the resolution of the nonlinear system, thus the 

derivatives  



,,

/
dTzdD  and  PTD  /  can be easily calculated at practically no computational 

cost at any point on the phase envelope. Any change of sign is recorded, and the approximate 

location of an extremum is calculated by cubic interpolation using two neighboring points on each 

side. Note that at the critical point, the numerator of zdT  /  is also zero (for the trivial izi dd  ) but 

there is no sign change; at the cricondentherm point, the sign changes for nontrivial molar densities. 

 

 

4. Results and discussion 

 

 The proposed simplified density-based phase envelope construction method is applied to 

various hydrocarbon mixtures. Mixture compositions, component properties and non-zero binary 

interaction parameters (BIPs) are given in the supplementary material. A general form of two-

parameter cubic EoS is used, including the Soave-Redlich-Kwong (SRK [39]) EoS and the Peng-

Robinson (PR [40,41]) EoS. Exact phase envelopes are (or were already) calculated with the recently 

proposed density-based method [18]. 

 

 Calculations are performed starting from both DP and BP initial (reference) points (saturation 

temperature at a low pressure; the initial pressure is 10 bar in all examples), without and with the 

simple correction procedure given by Eq. (29). 

 

 

4.1. Usual (closed) phase envelopes 

 

 The first mixture is a seven component natural gas containing normal alkanes and nitrogen 

from Michelsen [14], denoted here M7. Composition, component properties, and non-zero BIPs of 

N2 with hydrocarbon components are taken from Ref. [44] and listed in Table S1. The SRK EoS is 

used. 

 

 The phase envelopes (without correction) are plotted in Fig. 1a (in the d-T plane) and Fig 1b 

(in the T-P plane). At the scale of these figures, there is no distinction between exact and 

approximate phase boundaries. The exact and approximate (without correction) key points on the 

phase boundary, that is, critical, cricondentherm and cricondenbar points (obtained starting from both 

DP and BP reference points), are given In Table 1, showing an excellent agreement, as well as a 
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comparison with Michelsen's results [32] (given in in parenthesis; very small differences may be due 

to slightly different component properties and/or BIPs). 

 

 The second test mixture (denoted MY10) is a ten-component synthetic oil containing normal-

alkanes (Metcalfe and Yarborough [45]). Mixture composition, component properties and the non-

zero BIPs (taken from Hoteit and Firoozabadi [46]) are listed in Table S2. The PR EoS is used. 

 

 The phase envelopes (without correction) are drawn in Fig. 2a (in the d-T plane) and Fig 2b 

(in the T-P plane). The approximate phase boundaries cannot be distinguished from the exact one at 

the scale of these figures. The critical points (exact and approximate without correction), given in 

Table 2, show a very good agreement for calculations started from both initial points (DP and BP). 

The deviations in the cricondentherm point temperature are 0.1 K (approximate) and 0.02 K (with 

correction) and deviations in the cricondenbar point pressure are 0.036 bar (approximate) and 0.015 

bar (correction). 

 

 The next two mixtures (an oil and a gas-condensate) are taken from Sherafati and Jessen [47] 

and are denoted here SJ15 Oil and SJ15 GC. Mixture compositions are described with 15 

components; component properties and non-zero BIPs can be found from Ref. [47] and are listed in 

Table S3. The SRK EoS is used. The critical points of the two mixtures are listed in Table 3, exact 

and approximate without (A-DP and A-BP) and with correction (AC-DP and AC-BP), starting from 

both DP and BP reference points. For the gas condensate mixture, he deviations are of about 2 K and 

2 bar (A-DP) and of about 5 K and 5 bar (A-BP) for the approximate method; however, the 

agreement is excellent if the correction is applied. 

 

 The phase envelopes of the SJ15 Oil are drawn in Fig. 3a (in the d-T plane) and Fig 3b (in 

the T-P plane) and those of the SJ15 gas condensate in Fig. 4a (d-T plane) and Fig 4b (T-P plane); 

again, at the scale of the figures no distinction can be observed between exact and approximate phase 

boundaries for the two reservoir fluids. Michelsen [32] presented an example in which the 

approximate phase envelope of a heavy oil did not match the exact one at low temperatures (starting 

from DP). For the SJ15 Oil, at low temperatures, the maximum difference between exact and 

approximate bubble point pressures at a given temperature (starting from DP) is less than 0.8 bar 

(without correction) and practically identical (with correction). Note that for the SJ15 gas condensate, 

the three heaviest pseudo-components are present in trace amounts; it appears that neither the 

stability of the algorithm (because the phase envelopes are completely smooth) nor the accuracy of 

the results is affected. 
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 For the SJ15 oil, without correction the cricondentherm (with 0.005 K) and the cricondenbar 

(with 0.03 bar) are very close to the exact ones and these points and are practically identical with 

correction. For the SJ15 gas condensate, the deviations without correction are also small (of about 

0.001 K for the cricondentherm and 0.09 bar for the cricondenbar). 

 

 

4.2. Unusual (open-shaped) phase envelopes 

 

 Certain mixtures exhibit an unusual open-shaped phase envelope, with a bubble point branch 

at low temperatures extending to infinity (a minimum in pressure may exist). The application of the 

simplified phase envelope construction method to mixtures with an open-shaped phase envelope was 

not addressed by Michelsen [32]. Obviously, in this case one can easily start calculations only from a 

DP reference point (there is no low pressure BP temperature for such mixtures). 

 

 The Stenby et al. [48] oil mixture (denoted S10) exhibits an open-shape phase envelope with 

a minimum in pressure at low temperatures in the T-P plane. The mixture has 10 components. Feed 

compositions, component properties and non-zero BIPs are taken from Ref. [49] and listed in Table 

S4. The PR EoS is used. 

 

 The phase envelopes of the S10 Oil are plotted in Fig. 5a (in the d-T plane) and Fig 5b (in 

the T-P plane); the phase boundary is accurately reproduced on the dew point side and on a portion 

beyond he critical point. A detail in the T-P plane (around the pressure minimum) is given in Fig. 6, 

showing some deviations of the approximate method without correction and the excellent agreement 

with the exact phase boundary if the correction is applied. 

 

 The critical points of the S10 oil are listed in Table 4. Even without correction, exact and 

approximate critical points are in very good agreement. The differences in the cricondentherm and 

cricondenbar points are of 0.005 K and 0.55 bar, respectively (with correction); these points are 

practically identical with correction. 

 

 At about T= 236 K (near the minimum in pressure in the T-P plane) divergence occurs (for 

=-2.59) and calculations cannot be continued below this temperature, whether the correction is 

applied or not. A similar behavior of the conventional PT simplified method was reported [32] for a 

mixture with liquid demixing at low temperatures. 
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 Looking at the dependence of exact equilibrium constants on feed molar density (not shown), 

it appears that the equilibrium constants along the phase boundary are not monotonic functions of dz 

(exhibiting extrema for all components, between dz=7 Kmol/m
3
 and

 
dz=7.3 Kmol/m

3
; for some 

components second extrema occur at higher molar densities); thus, at high dz, the scaling of Ki's by 

Eq. (3), giving a monotonic dependence of Ki on  (thus on dz, which is a monotonic function of ), 

is inadequate in this case. 

 

 At the reservoir temperature, T=344.23 K, bubble point pressure differences are of 0.95 bar 

(without correction) and 0.009 bar (with correction). 

 

 Even though the approximate method is unable to represent the branch at low-temperatures 

and high pressures, a large portion of the phase envelope is reproduced with high accuracy if the 

correction is applied. 

 

 The next mixture, denoted here MF7+ N2, taken from Mikyška and Firoozabadi [16], was 

obtained by combining an oil mixture described with seven components and pseudo-components 

with nitrogen. Feed compositions, component properties and non-zero BIPs are taken from Ref. [16] 

and listed in Table S5. The PR EoS is used. 

 

 The phase envelopes (exact and approximate without and with correction) are plotted in Fig. 

7a (in the d-T plane) and Fig 7b (in the T-P plane). Significant deviations from the exact phase 

boundary are observed for the approximate method without correction. However, if the correction is 

applied, an excellent agreement is observed along the entire phase envelope, up to very high 

pressures (at α=-0.329 and P=5561 bar, the difference in bubble point temperatures is less than 0.1 

K). A detail of the phase boundaries around the critical region in the T-P plane is given in Fig. 8. 

 

 The critical points (exact and approximate without/with correction) are listed in Table 5. 

Significant deviations of the approximate critical point are observed (about 25 K and 55 bar) without 

correction; there is an excellent agreement if the correction is applied (the differences are 0.01 K and 

0.02 bar). The approximate and exact cricondentherm points differ by only 0.03 K and are practically 

identical with correction. 

 

 The last mixture examined here (denoted LF12) is a North Sea (Lille Frigg field) gas-

condensate fluid [50]. Mixture composition described by 12 components (5 individual components 

and 7 pseudo-components), as well as component properties and non-zero BIPs taken from Ref. [49] 
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and listed in Table S6. This mixture exhibits an open-shaped phase envelope (confirmed by 

experimental data [50]) with no critical point. The PR EoS is used. 

 

 The phase envelopes (exact and approximate without and with correction) are plotted in Fig. 

9a (in the d-T plane) and Fig 9b (in the T-P plane). The difference in cricondentherm point 

temperatures is 0.005 K (without correction). Divergence occurs for this mixture at T=279 K 

(without correction) and T=321 K (with correction) and calculations cannot be continued below these 

temperatures. For this kind of mixture, equilibrium constants do not all tend to unity and  remains 

positive along the phase envelope; the dependence of Ki vs. dz (not shown) exhibit extrema for all 

components except nitrogen. While without correction important deviations are observed, the phase 

envelope is reasonably reproduced down to the temperature of the divergence point if the correction 

is applied (dew point pressure differences are not exceeding 1 bar above 335 K, for pressures up to 

650 bar). 

 At the reservoir temperature, T=398.15 K, the differences in dew point pressures with and 

without correction are 0.0015 bar and 22.3 bar, respectively. At a lower temperature, T=340 K, the 

differences between exact and approximate dew point pressures are 0.55 bar with correction and 67 

bar without correction.  

 

 As mentioned before, for binary mixtures, the results of the density-based approximate 

method are exact (as in the conventional approach). Moreover, in the binary case the number of 

variables is the same (three) for both exact [18] and proposed approximate methods; there is still an 

advantage of the simplified method, that is, the partial derivatives of fugacity with respect to mole 

numbers are not required. The simplified method was also tested for all binary mixtures from Ref. 

[18], including the C1-nC4 mixture (exhibiting double retrograde behavior) and the C1-He mixture 

(with a very sharp shape in the T-P plane). 

 

 In all test examples, it is remarkable how the entire phase envelope (for closed envelopes), or 

at least a major part of it (for open-shaped envelopes), is reproduced with a high accuracy by solving 

only a [3×3] reduced system of equations and using a very simple scaling law to relate equilibrium 

constants at any point on the phase boundary with exact equilibrium constants calculated at some 

reference conditions. 

 

 The limitations of the proposed method are the same as in conventional PT Michelsen's 

formulation, that is, for mixtures with no critical point, mixtures with multiple critical points and 

mixtures with complex phase envelopes (such as envelopes exhibiting a swallowtail pattern at low 

temperatures) [32]; however, it was shown here that even for mixtures with no critical point, a large 
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part of the phase boundary (that of interest in reservoir engineering problems) can be accurately 

reproduced. The simplified method also fails to trace the entire phase boundary down to low 

temperatures for certain mixtures with open-shaped phase envelopes (e.g. mixture S10). For all these 

situations, the scaling relation for equilibrium constants is not adequate on the entire molar density-

temperature range (as discussed for two test examples). 

 

 The results of the simplified approximate method can be seen as excellent initial guesses for 

exact saturation point calculations at specific points on the phase envelope; the convergence requires 

only a few iterations. The proposed method is recommended for mixtures with many components (as 

for instance hydrocarbon reservoir fluids with a detailed composition or mixed feeds with hundreds 

of components in refining and processing) since the dimension of the system of equations is reduced 

to three, irrespective of the number of components and the resolution of large systems is avoided. A 

general form of two-parameter cubic EoS was used in this work, but the calculation framework is not 

model-dependent. The simplified density-based approach may be attractive for complex EoS, for 

which root finding and root selection procedures can be problematic and partial derivatives can be 

difficult to obtain.  

 

 

5. Conclusions 

 

 A new simple approximate density-based method is proposed for phase envelope 

construction of constant composition complex multicomponent mixtures, which can be seen as a 

density-based counterpart of Michelsen’s conventional PT approximate method. 

 

 At any individual point on the phase boundary, equilibrium constants are related via a simple 

scaling equation to those calculated at some reference conditions. To calculate saturation points, a 

[3×3] reduced system of three equations must be solved for only three variables (molar densities of 

feed and incipient phase and temperature), irrespective of the number of components in the mixture. 

The specification is always the scaling factor of equilibrium constants along the phase boundary. 

 

 The EoS must not be solved for volume and the elements of the Jacobian matrix have simple 

forms (simpler than in the conventional PT approach and in the full density based approach); 

moreover, the partial derivatives of fugacity with respect to mole numbers are not required. Simple 

equations for calculation of maximum temperature and pressure points are presented. 
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 Since the approximate method may introduce in some cases noticeable deviations from the 

exact phase boundaries for certain mixtures, a simple and computationally inexpensive correction 

procedure highly improves the accuracy of the method. 

 For open-shaped phase envelopes, the approximate method either fails or is not accurate at 

low temperatures (without correction), but a large portion of the envelope is very well reproduced if 

the correction procedure is applied. However, for certain open-shaped phase envelopes, the entire 

saturation curve is reproduced up to very high pressures. 

 

 For all test examples, it is remarkable how the entire phase envelope is reproduced with a 

high accuracy starting from exact calculations at a single point and using a simple scaling of 

equilibrium constants and a simple correction procedure. The simplified approximate density-based 

method is easy to implement and may be useful for fast generation of phase envelopes for mixtures 

with many components (it avoids the resolution of large linear systems) or for complex 

thermodynamic models. 
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List of symbols 

 

D TPD function in terms of molar densities 

d mixture molar density (incipient phase) 

dz mixture molar density (feed) 

di molar density of component i (incipient phase) 

diz molar density of component i (feed) 

F feed mole numbers 

fi fugacity of component i  

hi given by Eq. (2) 

J Jacobian matrix 

Ki equilibrium constants 

nc number of components 

ni mole numbers of component i (incipient phase) 

niz mole numbers of component i (feed) 

P pressure 

R universal gas constant 

T temperature 

V volume 

v molar volume 

xi mole fraction of component i in the trial phase 

Yi mole numbers of component i in the trial phase 

zi feed composition 

 

 

Greek letters 

 

  scaling exponent of equilibrium constants 

i fugacity coefficient of component i  

ξi independent variables 

i residual 

 

 

Subscripts 

 

i,j component index 

c critical 

spec specification 

z feed 

 

 

Superscripts 

 

T transposed 

* reference conditions 
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Table 1 Key points on phase boundary for M7 mixture (SRK EoS) 

 

Point on phase boundary T/P Exact Approx.-DP Approx.-BP 

Critical T (K) 203.0 (203.1) 203.40 (203.6) 202.75 (202.9) 

 P (bar) 58.84 (58.87) 59.32 (59.48) 58.47 (58.57) 

Cricondentherm T (K) 260.61 (260.3) 260.61 (260.3) 260.56 (260.1) 

 P (bar) 38.80 (38.71) 38.80 (38.60) 38.76 (38.60) 

Cricondenbar T (K) 233.65 (233.4) 233.60 (233.3) 233.68 (233.6) 

 P (bar) 82.71 (82.17) 82.70 (82.17) 82.60 (81.97) 

 

 

Table 2 Critical points for MY10 mixture (PR EoS) 

 

Critical point Exact A-DP AC-DP A-BP AC-BP 

Tc (K) 570.96 570.54 570.88 569.24 570.99 

Pc (bar) 79.89 79.91 79.84 79.86 79.86 

dc (Kmol/m
3
) 2.715 2.723 2.715 2.732 2.714 

 

 

Table 3 Critical points for SJ15 mixtures (SRK EoS) 

 

Mixture Critical point Exact A-DP AC-DP A-BP AC-BP 

 Tc (K) 721.15 719.25 721.34 720.83 721.21 

SJ15 Oil Pc (bar) 114.67 115.35 114.68 114.51 114.67 

 dc (Kmol/m
3
) 2.248 2.271 2.248 2.252 2.251 

 Tc (K) 239.46 241.28 239.56 236.58 239.62 

SJ15 GC Pc (bar) 105.35 107.54 105.26 100.58 105.31 

 dc (Kmol/m
3
) 13.423 13.310 13.429 13.625 13.425 
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Table 4 Critical points for S10 mixture (PR EoS) 

 

Critical point Exact A-DP AC-DP 

Tc (K) 712.21 712.72 712.35 

Pc (bar) 147.96 147.29 147.96 

dc (Kmol/m
3
) 2.912 2.898 2.912 

 

 

 

Table 5 Critical points for MF7-N2 mixture (PR EoS) 

 

Critical point Exact A-DP AC-DP 

Tc (K) 419.67 395.10 419.68 

Pc (bar) 705.44 760.12 705.46 

dc (Kmol/m
3
) 12.620 13.462 12.614 
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Fig. 1 Phase envelopes of M7 mixture. (a) T-d plane; (b) T-P plane 
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Fig. 2 Phase envelopes of MY10 mixture. (a) T-d plane; (b) T-P plane 
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Fig. 3 Phase envelopes of SJ15 Oil. (a) T-d plane; (b) T-P plane 
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Fig. 4 Phase envelopes of SJ15 Gas condensate. (a) T-d plane; (b) T-P plane 
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Fig. 5 Phase envelopes of S10 Oil. (a) T-d plane; (b) T-P plane 
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Fig. 6 Phase envelopes of S10 Oil in the T-P plane (detail) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 34 

 

100

200

300

400

500

600

700

0 5 10 15 20 25

Molar density, Kmol/m3

T
e
m

p
e
ra

tu
re

, 
K

Exact

Approx.

Corr.

CP exact

CP approx.

 
 

(a) 

 

 

0

500

1000

1500

2000

2500

3000

100 200 300 400 500 600 700

Temperature, K

P
re

s
s
u

re
, 

b
a
r

Exact

Approx.

Corr.

CP exact

CP approx.

 
 

(b) 

 

Fig. 7 Phase envelopes of MF7 Oil+N2. (a) T-d plane; (b) T-P plane 
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Fig. 8 Phase envelopes of MF7 Oil+N2 in the T-P plane (detail) 
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Fig. 9 Phase envelopes of LF12 gas condensate. (a) T-d plane; (b) T-P plane 

 


