
HAL Id: hal-02290370
https://hal.science/hal-02290370

Submitted on 17 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Realtime projective multi-texturing of pointclouds and
meshes for a realistic street-view web navigation

Alexandre Devaux, Mathieu Brédif

To cite this version:
Alexandre Devaux, Mathieu Brédif. Realtime projective multi-texturing of pointclouds and meshes
for a realistic street-view web navigation. 21st International Conference on Web3D Technology, Jul
2016, Anaheim, United States. pp.105-108, �10.1145/2945292.2945311�. �hal-02290370�

https://hal.science/hal-02290370
https://hal.archives-ouvertes.fr


Realtime Projective Multi-Texturing of Pointclouds and Meshes
for a Realistic Street-View Web Navigation

Alexandre Devaux, Mathieu Brédif∗

IGN / SRIG - Laboratoire MATIS - Universite Paris Est - Saint-Mande, FRANCE

Figure 1: Rendering using mesh and pointCloud. a) Projective texturing on simplified planar geometry (point of view one meter distant from
original photography position) b) Original Point cloud c) Projective texturing on Point Cloud. d) Hybrid rendering.

Abstract

Street-view web applications have now gained widespread popular-
ity. Targeting the general public, they offer ease of use, but while
they allow efficient navigation from a pedestrian level, the immer-
sive quality of such renderings is still low. The user is usually stuck
at specific positions and transitions bring out artefacts, in particular
parallax and aliasing. We propose a method to enhance the realism
of street view navigation systems using a hybrid rendering based
on realtime projective texturing on meshes and pointclouds with
occlusion handling, requiring extremely minimized pre-processing
steps allowing fast data update, progressive streaming (mesh-based
approximation, with point cloud details) and unaltered raw data pre-
cise visualization.

Keywords: Image Based Rendering, Projective Texturing, Street-
view, WebGL, Point Based Rendering, GIS

Concepts: •Information systems→Web applications; •Human-
centered computing → Geographic visualization; •Computing
methodologies→ Image-based rendering; Point-based models;

1 Introduction

City models visualization attained the last decade a high level of
quality with realistic fly-throughs even on web platforms. How-
ever, displaying realistic virtual environements of real-world places
at a pedestrian level is still a challenging task. On the one hand,
accurate 3D geometry and calibrated images may be acquired and
used, within an expensive process, to model a high quality environ-
ment with a sufficiently high level of details. On the other hand,
with a more approximate geometry, different image-based render-
ing (IBR) techniques have coped to create satisfying renderings
without requiring a detailed modelisation.

In the early days, Light Field Rendering or Unstructured Lumigraph
Rendering [Buehler et al. 2001] allowed the real-time visualization
of unstructured sets of cameras with or without relying on an ap-
proximate model (so-called geometry proxy). More recently, some

∗E-Mail for all authors:firstname.lastname@ign.fr

impressive results [Chaurasia et al. 2013] have been achieved to
provide plausible free-viewpoint navigation using local warps with
few input calibrated images, which can cope with unreliable geom-
etry. Google Street ViewTM uses a sparse set of panoramic images.
Transitions between captured viewpoints employ cross-fading and
geometry-aware warping to approximate the expected optical flow.
Microsoft PhotosynthTM displays an unstructured collection of pho-
tographs in the reconstructed spatial layout and applies image-space
transformations and blending transitions. Despite their relative sim-
plicity, these systems create reasonably compelling 3D experiences
and they are quite suited for web platforms. The biggest remain-
ing drawback is that such systems typically restrict viewers to be
very close to one of the capture points. They also tend to remove
small depth details such as poles or other light urban furnitures in
the targeted street-view application.

The point-based representation is getting more popular since two
decades, thanks to the progress of Structure From Motion, lidar
technology, and light RGB-D system such as the kinect. The litter-
ature on point-based rendering is therefore pretty dense. The most
trivial way to render point clouds is to use one color per point and
project it to the screen. It usually creates holes and low color reso-
lution even for dense point clouds. The other classical approach is
to mesh the point cloud using [Kazhdan et al. 2006] or 3D Delau-
nay reconstruction offering a hole-free model. Then all images are
generally merged into a texture atlas to get a full-resolution unified
texture. The usual drawback is to add artefacts to the original geom-
etry and it lacks small details. Potree, a popular WebGL pointcloud
renderer, uses an octree to spatialize the data for fast streaming and
add compelling rendering algorithms such as Eye-Dome-Lighting
(EDL) to improve depth perception without the need of normals on
points. Combining point cloud with mesh is less studied. [Pagés
et al. 2015] explored the mixing of meshes with splats creating hy-
brid renderings but the methodology requires heavy pre-processing
such as Poisson reconstruction and geometry shape segmentation.

Some experiments on the perception of visual artifacts in image-
based rendering have been conducted by [Vangorp et al. 2011] in
urban areas and show for example that when cross-fading between
panoramic images, shorter transition durations are preferred. An-
other side effect we discovered is that the eye is more distracted



Figure 2: Overall application pipeline

by deformed textured meshes even though geometrically closer to
reality than by very approximate planar geometries inducing more
parallax effects (fig. 3). Creating a simplified mesh from the point-
cloud using the previously discussed methods requires very refined
algorithms working on high quality point clouds to get acceptable
results inducing also heavier data to be transmitted and rendered.
Another artefact often encountered while creating meshes is the loss
of small details. In our case, we found it very hard to create meshes
that could keep geometry such as vegetation, poles, balconies, and,
more generally, urban furnitures. This is problematic as the user
moves through the streets, as it means that the texture will be pro-
jected on an incorrect geometry, typically flattened on the ground
or façades, inducing an unpleasant rendering (fig. 1.a).

Figure 3: Comparaison of support for projective texturing. Poisson
reconstructed mesh from Lidar (left) and simple planar geometry
(right)

For this reason, a view-dependant projection of oriented images on
a simplified mesh (composed by few quads for the facade and the
road such as LOD1 building model) is a very efficient solution as
a base rendering. Its simplicity makes it extremely fast to stream
and very light to render not to mention its increasing disponibil-
ity as OpenData. Another important feature is that it allows easy
daily update as new data is acquired it is instantly visible without
pre-processing. As in [Brédif 2013], we compute the mesh from
2D building footprints and a low resolution height-map (or Digi-
tal Terrain Model, DTM). We extend this method to the web envi-
ronment by streaming the DTM and the 3D gutter linestrings only
and reconstructing the simplified mesh online (in the client) using
a constrained Delaunay triangulation.

Our main contributions are (i) to add geometric details and refine

occlusion handling, by creating detailed depth maps using the point
cloud (ii) to use realtime projective texturing on both the mesh and
the point cloud to create a compelling view-dependent hybrid ren-
dering that does not rely on any pointcloud or texture atlas pre-
processing. The proposed method thus contributes on reducing par-
allax distortions, blurring, ghosting and popping errors that usually
distort the scene appearance through IBR in a web-friendly manner
as the lightweight base mesh and a low-res projective texture are
streamed almost instantly, producing a reasonnable view (fig. 1.a),
while local pointcloud chunks and higher resolution textures are
streamed, updating continuously the visualization (fig. 1.d).

2 Overview of the method

Working with mobile-mapping acquired data, the application deals
with oriented images taken through the vehicle trajectory, hence a
small number of images usually see the same spot. This specificity
makes projective texturing an adequate choice. The basic applica-
tion pipeline is as follow (fig. 2):

1. Get the building footprints around the viewing position v and
triangulate to create basic geometry proxy (mesh)

2. Get the projective textures {tk} (images and calibration) and
lidar point cloud {cl} close to v.

3. Initialize the depth buffer of each texture tk with a depth-pass
on the base mesh and update it as new chunks cl are received.

4. Hybrid (mesh + point cloud) projective texturing with texture
distortion and occlusion handling support.

3 Point Cloud Visualization Optimization

Raw lidar data comes with a lot of information, such as 3D po-
sition, reflectance, number of echoes, etc but does not bring any
color information. Offline colorization [Waechter et al. 2014] can
provide good results using oriented images with method classically
applied to meshes. Though it usually creates one colour per point
or generate huge texture atlases.

Our method does not need any pre-processing to get very pleasing
point clouds renderings. We rely on the same online projective tex-
turing we use for the mesh hence mutualizing textures for fast web
transmission. Another point to justify the whole methodology of
projective texturing here is that the rendering is perfectly equal to



the original images when viewed from their viewpoint location, and
degrades gracefully in-between viewpoint locations. Pre-processed
textured meshes or point clouds are optimized to provide the best
global representation of acquired data from any point of view which
necessarily distort reality.

No matter the density of the point cloud, setting a unique color per
point will always create a subsampled look compared to the orig-
inal image. We experimented the creation of splats directly in the
GPU in a single pass using barycentric coordinates. When receiving
points from the server, we create for each point a triangle with co-
located vertices but with differing barycentric coordinates so that
splats may be created in the vertex shader (as geometry shaders are
unavailable in WebGL) and change their projected geometry (as el-
lipses) in the fragment shader.

Alternatively to using splats, we propose a perspective-correct pro-
jective texture mapping of point sprites. Similarly, we approximate
the point rendering by a set of planar patches, but instead of ras-
terizing one or two coplanar triangles per point, a point sprite (i.e.
a screenspace square) is used, minimizing the primitive setup and
rasterization workloads. The 3D planar support is left unchanged
as the plane going through the 3D point P and orthogonal to its
normal N . The main idea is to compute the homography H in-
duced by this plane from the synthesized view to the input view
[Hartley and Zisserman 2004]. Using projective geometry nota-
tions, we denote the respective input and synthesized view projec-
tions as p = M(P−C) and p′ = M ′(P−C′) where C,C′ are the
viewpoints, M,M ′ are the view-projection 3x3 matrices and p, p′

are the image coordinates in screen-pixel and texture coordinates
respectively:

H = M ′
(
I +

(C − C′)NT

NT (P − C)

)
M−1

Implementation-wise, this homography may be computed in the
vertex shader, passed as a mat3 varying and evaluated as p′tex =
Hpscreen in the fragment shader. The vertex shader computation is
performed as H =

(
M ′ + E′NT

NT (P−C)

)
M−1 with:

• View uniforms M−1 and C
• Per-texture uniforms M ′ and E′ = M ′(C − C′)
• Per-point attributes P and N (N = P − C by default)

Figure 4 shows the large difference of rendering quality when com-
puting one color per point versus texturing the whole point surface.

Figure 4: Comparaison of point cloud rendering. (left) Basic point
sprites, 1 color per point. (right) Projective textured point sprites

Raw lidar point clouds do not generally come with normals. If un-
available, we could compute a screen-space normal map using a
depth-prepass and a normal-map lookup, which would yield some
side-benefits but would slow down the rendering on light GPU con-
figurations with an extra pass. We propose a much simpler solution
leaving the point sprites at their original behaviour: always facing
the camera with an eye-vector normal approximation. Application-
wise, this introduces a screen-space dilation of the point cloud sup-
port that fills holes and nicely convey the cylindricity on poles
and other thin objects typically acquired by a single lidar scan line
(where a normal has no real meaning). Note in figure 4 how high
resolution projective textures handle well sparse point clouds.

4 Occlusions

A classic artefact when navigating through Street View applications
are bad occlusions handling. Namely, texturing part of the geome-
try with an irrelevant texture. Examples are (i) disocclusions (e.g.
at crossroads, fig. 6), where a disoccluded geometry is textured by a
viewpoint from which it is not visible and (ii) unmodeled geometry
(e.g. poles projected on the ground, fig. 1.a).

4.1 Per-texture Depth Map

We adapted the shadow mapping-like technique from mesh-only
[Brédif 2013] to hybrid rendering (mesh+pointcloud). This is per-
formed by computing an off-line rendering of the scene from each
texture position, creating a depth texture that is pixel-wise aligned
with the (undistorted) input color image (fig. 5). While render-
ing, a simple depth (shadow) test is performed between a textur-
ing depthmap lookup and the depth relative to the sampled texture
viewpoint. This technique is relatively cheap as it only costs a one-
time depth-pass during the initialization phase and a comparison
against a texture sample (i.e. a shadow test) in the rendering phase.

Figure 5: Depth map for one projective texture (right) mixed with
original imagery from other projective textures (left).

4.2 Hybrid View-Dependent Multi-Texture Mapping

Compared to other View-Dependent Multi-Texture Mapping ap-
proaches, we propose two extensions. First, to address the web
context, the projective texture calibrations (position, rotation and
projection matrices) are stored in a PostgreSQL/PostGIS database
with a Node.js frontend, enabling fast queries for nearest textures
from the current view position and pre-fetching based on query re-
gions. Second, the hybrid rendering of an approximate mesh with
a more accurate but incomplete pointcloud renders well the added
pointcloud protrusion details (e.g. balconies, poles...) but not the
depression details where the approximate mesh was overestimated



(windows, doors, insets...). To cope with this issue, the mesh is ren-
dered with an offset (e.g. 1m) that lets points belonging to small
depressions pass the depth test.

Figure 6: View-dependent texturing with (bottom) and without
(top) occlusion handling.

5 Results and Limitations

The use of both a simplified mesh planar geometry and a point
cloud offers a compelling visualization. As we said earlier they
are combining in such a way to enhance realism. However, as we
use simplified planar geometry computed from external databases
(building footprints), its geometry can have an important shift with
mobile mapping geometry. One way to deal with that is to bun-
dle adjust the mesh geometry using trajectory information if avail-
able. As we load oriented images, they have absolute position in-
formations and usually comes with height above ground informa-
tion. Hence we can adjust the local altitude of the mesh with this
information creating a local Digital Terrain Model (DTM), again,
without preprocessing. Another way is to analyze the point cloud
estimating the minimal height of the points gives already enough in-
formation to adjust the height of the mesh. Those are classical prob-
lematics when dealing with different sources of geospatial data.

6 Conclusion

The solution proposed in this paper contributes to web immersive
navigation system enhancing its realism while keeping precise data
representation. It can be improved in different ways. Even if there
is a need to keep access to raw lidar point clouds for professional
usage, pre-processing it for visualization aspect will lighten it for
streaming as splats precomputing can save a lot of bandwith in
streaming and in GPU memory. We are currently working on im-
proving the streaming of the data, investigating with Shape Re-
source Container (SRC) [Limper et al. 2014] which offers great
optimization for textured mesh level of detailed transmission and
could also work for splats.

Acknowledgements

The implementation of this work and a sample dataset are available
with an open source license at https://github.com/iTowns

References

BRÉDIF, M. 2013. Image-based rendering of lod1 3d city models
for traffic-augmented immersive street-view navigation. ISPRS
Annals of Photogrammetry, Remote Sensing and Spatial Infor-
mation Sciences 1, 3, 7–11.

BUEHLER, C., BOSSE, M., MCMILLAN, L., GORTLER, S., AND
COHEN, M. 2001. Unstructured lumigraph rendering. In Pro-
ceedings of the 28th Annual Conference on Computer Graphics
and Interactive Techniques, ACM, New York, NY, USA, SIG-
GRAPH ’01, 425–432.

CHAURASIA, G., DUCHENE, S., SORKINE-HORNUNG, O., AND
DRETTAKIS, G. 2013. Depth synthesis and local warps for plau-
sible image-based navigation. ACM Trans. Graph. 32, 3 (July),
30:1–30:12.

HARTLEY, R. I., AND ZISSERMAN, A. 2004. Multiple View Ge-
ometry in Computer Vision, second ed. Cambridge University
Press, ISBN: 0521540518.

KAZHDAN, M., BOLITHO, M., AND HOPPE, H. 2006. Poisson
surface reconstruction. In Proceedings of the Fourth Eurograph-
ics Symposium on Geometry Processing, Eurographics Associa-
tion, Aire-la-Ville, Switzerland, Switzerland, SGP ’06, 61–70.

LIMPER, M., THÖNER, M., BEHR, J., AND FELLNER, D. W.
2014. Src - a streamable format for generalized web-based 3d
data transmission. In Proceedings of the 19th International ACM
Conference on 3D Web Technologies, ACM, New York, NY,
USA, Web3D ’14, 35–43.

PAGÉS, R., GARCÍA, S., BERJÓN, D., AND MORÁN, F. 2015.
Splash: A hybrid 3d modeling/rendering approach mixing splats
and meshes. In Proceedings of the 20th International Conference
on 3D Web Technology, ACM, New York, NY, USA, Web3D ’15,
231–234.

VANGORP, P., CHAURASIA, G., LAFFONT, P.-Y., FLEMING, R.,
AND DRETTAKIS, G. 2011. Perception of visual artifacts in
image-based rendering of façades. Computer Graphics Forum
(Proceedings of the Eurographics Symposium on Rendering) 30,
4 (07), 1241–1250.

WAECHTER, M., MOEHRLE, N., AND GOESELE, M. 2014. Let
there be color! Large-scale texturing of 3D reconstructions. In
ECCV 2014, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars,
Eds., vol. 8693 of Lecture Notes in Computer Science. Springer
International Publishing, 836–850.


