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ABSTRACT
While CMOS technology is currently reaching its limits in power
consumption and circuit density, a challenger is emerging from the
analogy between biology and silicon. Hardware-based neural net-
works may drive a new generation of bio-inspired computers by
the urge of a hardware solution for real-time applications. This pa-
per redesigns a previous proposed electronic neuron (e-Neuron) in
a higher firing rate to reduce the silicon area and highlight a bet-
ter energy efficiency trade-off. Besides, an innovative schematic is
proposed to state an e-Neuron library based on Izhikevichs model
of neural firing patterns. Both e-Neuron circuits are designed using
55 nm technology node. Physical design of transistors in weak in-
version are discussed to a minimal leakage. Neural firing pattern
behaviors are validated by post-layout simulations, demonstrating
the spike frequency adaptation and the rebound spikes due to post-
inhibitory effect in LTS e-Neuron. Presented results suggest that
the time to rebound spikes is dependent of the excitation current
amplitude. Both e-Neurons have presented a fF/spike energy effi-
ciency and a smaller silicon area in comparison to Izhikevichs li-
brary propositions in the literature.

CCS CONCEPTS
• Hardware → Analog and mixed-signal circuit synthesis; Stan-
dard cell libraries; Emerging architectures.
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1 INTRODUCTION
Moore’s law has been a reliable predictor of the pace of electronic
technology advancement [10]. While CMOS technology is currently
reaching its limits in power consumption and circuit density, a chal-
lenger is emerging from the analogy between biology and silicon.
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Biomimetic-hardware may drive a new generation of bio-inspired
computers driven by the urge of a hardware solution for real-time
applications in robotics or in data mining and signal classification.
Flexibility, area, power-efficiency, and reliability are some of the
most significant challenges addressed by such biomimetic-hardware
implementation.

From all biological cells, one of the most intriguing is the neu-
ron, thanks to its memory and computing capabilities. A biologi-
cal neuron membrane potential (Vm) is excited by a current pulse
(Iex) of few hundreds of pico-Amps. Thus, it operates in an aver-
age firing rate (fspike) of few Hz with an energy efficiency (Ee f f) of
2.45 pJ/spike. Such neurons have an average membrane capacitance
(Cm) of 245 pF and operate with an action potential (Vd) of 100 mV
[5]. A specific class of neurons which draws all attention of this pa-
per is the cortex neurons [8]. The reason of such interest is due to
cortex-neuron capabilities in terms of biological sensing and actu-
ation. Biomimetic-hardware characteristics addressed in [5] might
turn in favors of cheap and low-power bio-inspired computers if
fspike andEe f f trade-off is considered. Literature lacks of studies
to address area and power-efficiency challenge, while presenting a
variety of schematics for Izhikevich’s neuron models in lowfspike
operation and pJ/spikeEe f f range [7]. Recently, I. Sourikopouloset
al. have proposed a fJ/spikeEe f f solution for such problem, show-
ing one firing pattern of Izhikevich’s models [12].

This paper aims at a higherfspike and a lowerCm, to minimize
both Ee f f and the silicon area. Starting from [12] proposal, this
paper redesigns such electronic neurons (e-Neuron) and proposes
an innovative e-Neuron schematic. Towards a biomimetic fJ/spike
e-Neuron library, both e-Neurons are analyzed in order to demon-
strate two out of six firing pattern in Izhikevich’s models [8]. Cir-
cuits are designed using 55 nm technology node to explore a high
capacitance density (i.e. 0.2 fF/µm2), and post-layout simulations
are carried out to highlight e-Neuron figure-of-merits.

2 BACKGROUND
2.1 Cortex neurons
Cortex neurons are involved in higher functions such as sensory
perception, generation of motor commands, spatial reasoning, con-
scious thought, and human’s language. Actually, most biologists
agree with the classification of cortex neurons in six most funda-
mental classes of firing patterns observed in the mammalian neo-
cortex [8]. These cortex neurons are:

RS Regular spiking neurons fire tonic spikes with adapting fre-
quency in response to injected pulses of DC current.
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IB Intrinsically bursting neurons generate a burst of spikes at
the beginning of a strong depolarizing pulse of current, then
switch to tonic spiking mode.

CH Chattering neurons fire high-frequency bursts of spikes with
relatively short inter-burst periods; hence fast rhythmic burst-
ing.

FS Fast spiking neurons fire high-frequency tonic spikes with
relatively constant period.

LTS Low-threshold spiking neurons fire tonic spikes with pro-
nounced spike frequency adaptation (decreasing) and rebound
spikes due to post-inhibitory effect.

LS Late spiking neurons exhibit voltage ramp in response to cur-
rent excitation, resulting in delayed spiking.

Cortex neuron firing patterns are often modeled using the Hodgkin-
Huxley [6] or the Moris-Lecar model [9]. Both most accepted mod-
els behave as non-linear leak integration and firing by exponential
functions of real numbers. In CMOS technology, such behavior is
obtained in weak inversion (subthreshold regime) [4]. Besides, tran-
sistors operating in such regime also take advantage of ultra-low-
power consumption by a supply voltage around±Vd. Drawbacks of
such biomimetic-hardware implementation are obtaining a higher
fspikeand a lowerCm than biological counterparts.

2.2 Silicon neurons
Since 2010, e-Neuron library proposition of Izhikevich’s models
has been interested in the scientific community. V. Ranganet al.
have proposed a current-mirror-based schematic capable to mimic
all classes of firing patterns[11]. Rangan’s proposal achieves a sil-
icon area of 2980µm2 and anEe f f of 1 pJ/spike using MOSIS
90 nm technology. Eventually, this work did not consider aVm

(current-mode circuit) which is an indispensable variable to model
the integrating phase or the polarizing region in biological cell anal-
ogy. Besides, A. Schaiket al. have proposed a Izhikevich neuron
model implementation using two first-order log-domain low-pass
filters and two trans-linear multipliers [14]. Schaik’s proposal achieves
a silicon area of 0.02 mm2, fspike= 40 Hz, and anEe f f = 1 nJ/spike
using AMIS 0.5µm technology. Both have suggested weak inver-
sion operation to mimic Izhikevich’s models behavior.

Later then, a variety of e-Neuron implementations were presented
in [7]. Most of implementations have a smaller silicon area than
Rangan’s or Schaik’s work (around 1000µm2) but achieving an
Ee f f of few pJ/spike in lowfspike (i.e. few Hz range). Demirkol’s
proposal is one of such examples achieving a chip area of 1100
µm2, fspike= 10 Hz, andEe f f = 165 pJ/spike using AMS 0.35µm
process [3].

Recently, X. Wuet al.have included the learning capability based
on resistive synapses in their spiking neuron proposal [15]. Using
class AB-OTAs, Wu’s proposal presented a silicon area of 110 x
110 µm2 andEe f f = 9.3 pJ/spike using 0.18µm CMOS process.
M. Azghadi et al. have improved the learning capabilities using
memristor-based synapses [1]. Using a non-conventional technol-
ogy node, their work presented a silicon area of 600µm2. M. Azghadi
et al. affirmed that power consumption was not the design goal.
Both have neither detailedfspikerange, or Izhikevich’s models math-
ematical behavior (i.e. exponential functions of real numbers) which
requires transistors operating in weak inversion.

I. Sourikopouloset al. has innovated by a biomimetic- and a
simplified-version of FS e-Neurons. Discussing the trade-off be-
tween speed and consumption, biomimetic version achieves an area
of 300 µm2, fspike= 1 kHz, and anEe f f = 40 fJ/spike; simplified
version obtained an area of 35µm2, fspike= 26 kHz, and anEe f f =

4 fJ/spike. Both circuits are implemented using TSMC 65 nm tech-
nology and considered only dynamic power consumption in figure
of merit. This work opens the way to propose an exhaustive library
regarding Izhikevich’s neuron models operating in a higherfspike
with Ee f f in fJ/spike range.

Towards a large-scale spiking neural network, L. Zhanget al.
have made an effort in defining a PVT-robust e-Neurons [16]. A
lower Cm = 1 f F is presented to address area and reliability chal-
lenges. Eventually, e-Neurons operates at 1 V supply, extremely
high fspike, and lower power consumption. Figure of merit values
are not available, and results suggest that Izhikevich’s models math-
ematical behavior (i.e. exponential functions of real numbers) were
not considered. The area is estimated at 150µm2 using 65 nm
CMOS technology.

2.3 Weak Inversion
Weak Inversion (WI) model of saturated MOS transistor is obtained
by integrating the charge conduction for the channel length con-
sidering the minority carriers injected into the channel. Drain-to-
source current relationship is then obtained as [4]:

IDS= I
(

VG,VS
)

− I
(

VG,VD
)

= Ise
VGS
ηφt − Ise

VGD
ηφt

= Ise
VGS
ηφt

(

1−e
−VDS
ηφt

)

, (1)

whereφt is the thermal voltagekT
q ; η is the slope factor 1+ Cd

Cox

(i.e. depletionCd and oxideCox capacitance ratio); andIs is the
specific current. Considering small variations ofVDS, (1) can be
approximated by [12]

IDSi =Gie
VGSi
ηφt VDSi, (2)

where the device conductanceGi for a i transistor can be estimated
as a function of the mobility (µ) and the transistor sizing by

Gi = µCox
φt

2
W
L

. (3)

Another interesting result presented in [12] is the association of
a PMOS (MPi) and a NMOS (MNi) transistors biased in WI, having
drain node connected asVout, gate node asVin, and source node
bias as±Vd. When applying Kirchhoff’s Current Law (KCL) at the
transistors’ drain node of the resultant transconductor, expressing
the currents as in (2), assuming the sameη for both transistors;
the output voltage of the transconductor in static WI regime can be
expressed as:

Vout =−Vd · tanh

(

Vin

ηφt
+

1
2

ln

(

GN

GP

))

. (4)

Equation (4) assumes that the output current of the transconduc-
tor MPi /MNi is negligible. In the circuit schematics studied in this
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Figure 1: Proposed LTS e-Neuron schematic having a FS e-Neuron core highlighted in the gray box (VDD =Vd and VSS=−Vd).

paper, the output current is in fact the gate-leakage of a follow-
ing transconductor (MPi+1/MNi+1 ) playing the role of a load for
MPi /MNi .

State-of-the-art biomimetic-hardware uses capacitors (Ii =C· dVi
dt )

associated to transconductor’s non-linear behavior expressed in (4),
in order to model the leak integration and firing behavior of cor-
tex neurons. Indeed, an e-Neuron is a current-controlled oscillator
having Iex as the control current andVm the spiking output node.
This is obtained from positive feedback association of capacitors
and transconductors.

3 LTS E-NEURON PROPOSAL
Figure 1 illustrates the schematic topology of the proposed biomimetic
neuron. Based on FS e-Neuron highlighted in the gray box [12],
MPNa and MPK transistors biomimic the ionic movement ofNa-
in andK-out the membraneCm. The Iex source models the current
pulse excitation andIL the current leak. Thus, LTS e-Neuron inte-
grates and fires tonic spikes similarly to FS e-Neuron whenIex≥ IL.
To biomimic the post-inhibitory phenomenon, a non-linear RC cir-
cuit is implemented using a diode-connectedMPd transistor and
CK′ . Following subsections will draw a circuit analysis of both e-
Neurons considering transistors in weak inversion.

3.1 FS e-Neuron Analysis
I. Sourikopouloset al. have first demonstrated the fast spiking be-
havior of biomimetic neuron with relatively constant period in [12].
Later, I. Sourikopouloset al.have demonstrated the stochastic reso-
nance behavior of such a neuron [2]. This phenomenon is observed
under a decreasedIex (below a certain critical value), where the neu-
ron fires irregular spikes, switching randomly between resting and
spiking states. According to [8], both characteristics are presented
only for FS neurons, and thus Sourikopoulos’ work is named as FS
e-Neuron in this paper.

Applying KCL at nodesVm andVGK considering the gray-box
schematics in Fig. 1, one gets the system of equations

ICm=INa− IK + Iex− IL,

ICk =IP2− IN2. (5)

Using (2) and (4); assuming transconductors are in static WI regime,
VDD =Vd andVSS=−Vd; the (5) system leads to the following cou-
pling system betweenVm andVGK

Cm
dVm

dt
=GNae

Vd

(

1+tanh

(

Vm
ηφt
+

1
2 ln

(

GN1
GP1

)))

ηφt ·
(

Vd −Vm
)

−GKe
VGK+Vd

ηφt ·
(

Vm+Vd
)

+ Iex−GL ·Vm,

CK
dVGK

dt
=GP2e

Vd

(

1+tanh

(

Vm
ηφt
+

1
2 ln

(

GN3
GP3

)))

ηφt ·
(

Vd −VGK
)

−GN2e
Vd

(

1−tanh

(

Vm
ηφt
+

1
2 ln

(

GN3
GP3

)))

ηφt ·
(

Vd+VGK
)

; (6)

with the parameters being:

• Cm, CK are capacitances;
• Vm, VGK are voltages applied to the respective capacitances’;
• Iex, IL are the excitation and leak currents;
• GL,GNa,GK are the leak, sodium and potassium conductances;
• GPi,GNi ∀i ∈ {1,2,3} are thei-transistor conductances.

Thus, (6) is a time-invariant, first-order, non-linear system re-
lating theVm and theVGK potentials. It depends on ten parame-
ters Iex,GL,GNa,GK ,

(

Gpi,Gni
)

∀i ∈ {1,2,3} when both tempera-
ture (φt = 26 mV) and action potential (Vd = 100 mV) are fixed.
A circuit designer would probably like to solve (6) system using
MatLab, for instance. However, no analytical solution neither any
analytical equilibrium point can be found for such system. In fact,
when considering the exponential argumentVd

ηφt
≈ 5 and noticing

that experimental data ofVm can have the same order of magnitude
asηφt [12], one may conclude that the linearization of tanh

(

x
)

and

e
(

x
)

functions has no physical meaning for this non-linear circuit.

3.2 LTS e-Neuron Analysis
To biomimic the post-inhibitory phenomenon in LTS neurons, the
I ′K current is designed to be a delayed version ofIK . By increasing
the totalIK + I ′K , a pronounced spike frequency adaptation is mim-
icked. Furthermore, rebound spikes due to post-inhibitory effects
will take place whenIex− I ′K = Iex,e f f ≤ IL. Applying KCL at nodes
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Vm andVGK for the LTS e-Neuron, the (5) system turns into

ICm=INa− IK − IK′ + Iex− IL,

ICk+ ICk′ =Ip2− In2. (7)

Thus, the additional currentsI ′K andICk′ are time-dependent model
for the spike frequency adaptation. AssumingC′

K in charged phase
andVSS=−Vd constant, theMPd-CK′ circuit loop is modeled from

ICk′ =CK′

d
(

VGK′

)

dt

≈ e
1

2·η ·GPd ·
(

VGK −VGK′

)

, (8)

whereVGS= VDS= VGK′ −VGK for MPd transistor andMNK′ tran-
sistor gives

IK′ =GK′e
VGK′ +Vd

ηφt ·
(

Vm+Vd
)

. (9)

Similarly to the FS e-Neuron, by expressing the (7) system with
the parameters of the circuit from (8) and (9), one gets (10). Since
VGK′ is dependent on time, the (10) is a time-variant, first-order,
non-linear system relating theVm and theVGK potentials. It depends
on thirteen parametersIex,GL,GNa,GK ,Gpi,Gni∀i ∈ {1,2,3} ,GPd,
CK′ ,GK′ when both temperature (φt = 26 mV) and action potential
(Vd = 100 mV) are fixed. Thus, the additional branch has introduced
a time dependency in the system of equations required to model the
variation of the spiking frequency over time.

Cm
dVm

dt
=GNae

Vd

(

1+tanh

(

Vm
ηφt
+

1
2 ln

(

GN1
GP1

)))

ηφt ·
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Vd −Vm
)

−GKe
VGK+Vd

ηφt ·
(

Vm+Vd
)

−GK′e
VGK′ +Vd

ηφt ·
(

Vm+Vd
)

+ Iex−GL ·Vm,

CK
dVGK

dt
=GP2e

Vd

(

1+tanh

(

Vm
ηφt
+

1
2 ln

(

GN3
GP3

)))

ηφt ·
(

Vd −VGK
)

−GN2e
Vd

(

1−tanh

(

Vm
ηφt
+

1
2 ln

(

GN3
GP3

)))

ηφt ·
(

Vd+VGK
)

−CK′

d
(

VGK′

)

dt
(10)

In fact, simulation experiments could prove thatVGK ≈ −Vd be-
ing almost constant over time during the integration phase, and only
spiking in firing phase. Therefore, one may solve (8) verifying that
VGK′

(

t
)

depends on previous value ofIex
(

i−1
) according toCK′

charge and discharge cycles. The delay characteristic introduced by
the additional branch could be given by a time constant

τ =
CK′

e
1

2·η ·GPd

. (11)

Consequently, the settling time (i.e. 5τ) of MPd-CK′ circuit is the
time required to the frequency adaptation (decrease), assuming a
dischargedCK′ (i.e.Iex0=0 ). Assuming a chargedCK′ (i.e.Iex

(

i−1
)

,

0 ), the settling time ofMPd–CK′ circuit is the time required to
rebound spikes due to post-inhibitory effect in LTS e-Neuron. To
conclude, the voltage-value charged inCK′ actually biomimics the
memory information of previous excitation (Iex

(

i−1
)

) depending
on the charge of the capacitanceCK′ and its ability to discharge
itself throughout time.

3.3 e-Neuron physical design
I. Sourikopouloset al.have proposed a first sizing of FS e-Neuron
in 65 nm technology node [12]. Silicon area is dominated by the
total capacitance value, depending on the capacitance density in the
according node (i.e. 0.2 fF/µm2) [2]. The 55 nm technology node,
used in this paper, is only a shrink down node of 65 nm technology
using a 0.9 optical-lens reduction factor with similar capacitance
density. From [12],fspike andEe f f trade-off can be improved by
increasingfspike. In this case, static energy consumption is reduced
when fspike increases, and dynamic energy consumption is also re-
duced when total load capacitance decreases (i.e.Cm) to reach a
higher fspike. To find such a better trade-off, a designer could use
(3) to resizeMNi andMPi transistors from Fig. 1.

LTS e-Neuron design is carried out aiming a higher-fspike, as also
FS e-Neuron proposed in this paper. Considering aIex pulse width
of 1 ms,MPd-CK′ circuit is sized for aτ ≈ 40 µs havingGK =GK′

for simplicity. After some design-of-experiments, Table 1 presents
the final e-Neuron circuit sizing. Indeed, layout constraints were
considered in choosingCm, CK , CK′ to improve circuit fill-factor.
To reduce process variability, dummy-capacitors were added in the
layout andCm, CK , CK′ were positioned in a common-centroid to
minimize mismatch.

Likewise, one may argue that transistors should be inter-digitized
to minimize gate resistance and reduce transistor mismatch. This
common sense in circuit layout also increases the area of the de-
pletion region of weak inverted transistors leading to an increasing
bulk-leakage current. TheGL conductance, see Fig. 1, is not im-
plemented in both e-Neurons, but it represents the total area of such
depletion region. TheIL is the sum ini of bulk-leakage current from
all i-transistors. Bottom-line, it will be required a higherIex in inte-
grating phase, if inter-digitization layout technique is used. Besides,
it is expected that LTS e-Neuron requires a higherIex due to the ad-
ditional area of theMPd depletion region.

Still, temperature variation represents a major limitation for tran-
sistors operating in WI regime. Studies have proved that leakage
current is exponentially dependent on temperature; and it doubles
for every 10◦C increase in temperature [13]. Thus,IL shall increase
over temperature enabling e-Neuron firing in a higherIex,min, and
increasing static energy consumption. Temperature variation is be-
yond the scope of this paper.

Reduce the static energy consumption is the key to improveEe f f
even further and to enable e-Neuron to fire with a smallerIex,min ≥
IL. Since static energy consumption does not scale withfspike, phys-
ical design shall not neglect described phenomenon. To the best of
our knowledge, these layout considerations for weak inverted tran-
sistors is first presented in this paper.

4 POST-LAYOUT RESULTS
The e-Neuron circuit layouts are omitted for lack of space. FS e-
Neuron has an area of 85µm2 and LTS e-Neuron has 120µm2.
One might notice that capacitorsCm, CK , CK′ take most of the lay-
out area. By increasingfspike, this paper heads toward a large-scale
integration challenge using smaller capacitors. The area of designed
e-Neurons are one order of magnitude smaller than [7], and slightly
bigger than reported in [12].
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Table 1: Sizing of e-Neuron circuits in W x L for MNi and MPi
and in number of cells x unity capacitance for Ci .

MN1 180 nm x 55 nm MP1 121.5 nm x 55 nm
MN2 121.5 nm x 55 nm MP2 1080 nm x 55 nm
MN3 121.5 nm x 55 nm MP3 180 nm x 55 nm
MNK 1800 nm x 55 nm MPNa 720 nm x 55 nm
Cm 9 x 931 aF CK 16 x 931 aF

MNK′ 1800 nm x 55 nm MPd 450 nm x 9000 nm
CK′ 11 x 931 aF

Post-layout simulations carried out to validate the biomimetic
behavior by a fixed pulse width of 5 ms and an increasingIex am-
plitude from few pico-amps. WhenIex≤ IL, the leak integration is
negligible and e-Neuron fires atfspike after that point. Post-layout
results reveal anIL of 22 pA for FS and of 132 pA for LTS. Figure 2
illustrates thefspikepattern for both e-Neurons excited by a current
pulse of 30 pA for FS and of 150 pA for LTS. It is observed a tonic
fspike≈ 20 kHz for both e-Neurons. As expected,fspike of LTS e-
Neuron decreases over time, achieving a final value of 5 kHz after
0.2 ms.
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Figure 2: Post-layout transient simulation results for both e-
Neurons excited by a current pulse, being: (a) a Iex of 30 pA
for FS and (b) of 150 pA for LTS. A tonic fspike≈ 20 kHz is
observed for both e-Neurons, and spike frequency adaptation is
achieved for LTS e-Neuron after 0.2 ms.

To demonstrate the spike frequency adaptation and the rebound
spikes due to post-inhibitory effect, a piecewise linearIex pulse is
applied to both e-Neurons. Figure 3(a) presents the estimatedfspike
response over time for piecewise linearIex pulses. Four different
amplitudes are considered in [30 pA, 45 pA, 60 pA, 75 pA] for FS,
and in [150 pA, 225 pA, 300 pA, 375 pA] for LTS e-Neuron.Iex

amplitude range under study is considered in increasing (regions
from a to d) and decreasing (regions fromd to g) manners. FS e-
Neuron, in dashed-gray line, shows tonic spikes with relatively con-
stant period validating the Izhikevich’s model. LTS e-Neuron, in
continuous black line, highlights a frequency adaptation (decreas-
ing) among regions froma to d. However, rebound spikes due to
post-inhibitory effect are observed among regions fromd to g.
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Figure 3: Post-layout simulations demonstrates the spike
frequency adaptation and the rebound spikes due to post-
inhibitory effect. (a) The fspikeresponse over time for piecewise
linear Iex pulses [30 pA, 45 pA, 60 pA, 75 pA, 60 pA, 45 pA,
30 pA] for FS (dashed-gray line) and [150 pA, 225 pA, 300 pA,
375 pA, 300 pA, 225 pA, 150 pA] for LTS e-Neuron (continuous
black line). (b) The Vm spiking behavior during Iex decreasing
pulse regions for LTS e-Neuron.

Figure 3(b) illustrated theVm spiking behavior duringIex am-
plitude decreasing regions fromd to g. Indeed, LTS e-Neuron does
not spike due to post-inhibitory effect but starts firing at a low-fspike
consistent to value achieved after adaptation. Interesting results are
revealed in Fig. 3(b), suggesting that the time to rebound spikes is
actually dependent toIex pulse variation. The solution of (8) con-
sidering weak inversion is in fact more complicated than a simple



SBCCI ’19, August 26–30, 2019, Sao Paulo, Brazil P. M. Ferreira et al.

200 400 600 800 1000
I
ex

 (pA)

100

200

300

400
F

sp
ik

e (
kH

z)
FS e-Neuron
LTS e-Neuron

(a)

200 400 600 800 1000
I
ex

 (pA)

200

400

600

800

P
R

M
S
 (

pW
)

FS e-Neuron
LTS e-Neuron

(b)

200 400 600 800 1000
I
ex

 (pA)

5

10

15

20

25

E
ef

f (
fJ

/s
pi

ke
)

FS e-Neuron
LTS e-Neuron

(c)

Figure 4: Figure-of-Merits extracted from post-layout simulation results of LTS and FS e-Neurons: (a) fspike, (b) PRMS, and (c) Ee f f .

MPd–CK′ circuit charge and discharge, and Fig. 3(b) results sug-
gests thatGPd is Iex dependent.

Following the Fig. 3(a) insights, it is expected an increasingfspike
asIex increases. Figure 4 illustrates the figure-of-merits of e-Neurons
asIex increases from estimatedIL to 1 nA using a 1 pA linear step.
Figure 4(a) illustrates the growth offspike versusIex. The fspike of
LTS e-Neuron after frequency adaptation is lower thanfspikeof FS
e-Neuron. By setting a higherfspike than found in the literature,
a power consumption increase is expected (i.e. dynamic consump-
tion). Figure 4(b) presents LTS and FS e-Neuron power consump-
tion in the range of few hundreds of pico-Watts. This is a slight
increase compared to best (around 100 pW) in [12]. Despite that,
theEe f f is slightly decreased owing to a higherfspike (around 200
kHz) and specific e-Neuron physical design. Considering static and
dynamic energy consumption, figure 4(c) highlights aEe f f as low
as 2.3 fJ/spike for FS and 3.6 fJ/spike for LTS e-Neurons.

Table 2 summarizes the literature comparison. Obtained area is
limited by technology capacitance density as reported in [12]. How-
ever, fspike is higher than reported values. This design choice leads
to a better trade-off in speed and power consumption. Table 2 high-
lights aEe f f slightly below compared to best in [12], which con-
siders only dynamic consumption. In general, both e-Neurons have
presented anEe f f below e-Neuron library propositions in the state-
of-the-art [7], while ensuring the Izhikevich’s mathematical model-
ing in contrast to simplified neuron in [12].

Table 2: e-Neuron performance comparison.

Ref. This [11] [14] [3] [15] [12]
work

Techn. 55 90 500 350 180 65
(nm) MOS MOS MIS MOS MOS MOS
Area 120† 2980 20k 1100 10k 300∗

(µm2) 85‡ 35⋆

fspike 205 k† 7 k 40 10 NA 1 k∗

(Hz) 360 k‡ 26 k⋆

Ee f f 2.3 f† 1 p 1 n 165 p 9.3 p 40 f∗

(J/spike) 3.6 f‡ 4 f⋆

† LTS; ‡ FS;∗ biomimetic;⋆ simplified

5 CONCLUSIONS
A first step towards an ultra-low-power e-Neuron library, using weak
inversion CMOS 55 nm node, has been achieved. Two e-Neurons
acting as a Fast Spiking (FS) and Low Threshold Spiking (LTS) neu-
rons have been presented. Operating in a higherfspikethan found in
the literature, these e-Neurons meet the trade-off in terms of silicon
area (few tens ofµm2) and energy efficiency (few fJ/spike). For
the LTS e-Neuron frequency adaptation and rebound spikes due to
post-inhibitory effect were carried out. Future works deal with the
four-remaining e-Neurons miming the cortex neuron patterns.
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