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NUMERICAL SIMULATION OF FELLER’S DIFFUSION
EQUATION

DENYS DUTYKH*

ABSTRACT. This article is devoted to FELLER’s diffusion equation which arises naturally
in probabilities and physics (e.g. wave turbulence theory). If discretized naively, this
equation may represent serious numerical difficulties since the diffusion coefficient is prac-
tically unbounded and most of its solutions are weakly divergent at the origin. In order
to overcome these difficulties we reformulate this equation using some ideas from the LA-
GRANGIAN fluid mechanics. This allows us to obtain a numerical scheme with a rather
generous stability condition. Finally, the algorithm admits an elegant implementation
and the corresponding MATLAB code is provided with this article under an open source
license.
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1. Introduction

The celebrated FELLER equation was introduced in two seminal papers published by
William FELLER (1951/1952) in Annals of Mathematics [10, 11]. These publications stud-
ied mathematically (and, henceforth, gave the name) to the following equation™:

def
pe + 8. =0, Fat)= -z (yp + npa), (1.1)
of O(- of O(-
where the subscripts ¢, x denote the partial derivatives, i.e. (-); el % () a o % )
x

Two parameters v and > 0 can be time dependent in some physical applications, even if
in this study we assume they are constants, for the sake of simplicity'. Equation (1.1) can
be seen as the FOKKER-PLANCK (or the forward KOLMOGOROV) equation with vz being
the drift and n« being the diffusion coefficients. One can notice also that Equation (1.1)
becomes singular at z = Oand z = + oco. We remind that practically important solutions
to FELLER’s equation might be unbounded near x = 0. In order to attempt at solving
Equation (1.1), one has to prescribe an initial condition p(z, 0) = po(x) presumably
with a boundary condition at x = 0. A popular choice is to prescribe the homogeneous
boundary condition p(0,¢) = 0. For this choice of the boundary condition it is not
difficult to show that the FELLER equation dynamics would preserve solution positivity
provided that po(z) > 0 (see Appendix A for a proof). The solution norm is also
preserved (see Appendix B). Moreover, FELLER using the LAPLACE transform techniques
has shown in [10] that the initial condition pg (z) determines uniquely the solution. In
other words, no boundary condition at x = 0 should be prescribed. This conclusion
might appear, perhaps, to be counter-intuitive.

The great interest in FELLER’s equation can be explained by its connection to FELLER’s
processes, which can be described by the following stochastic differential LANGEVIN equa-
tion:

dXt = —’)/Xtdt + \/QT]Xtth,

of AW
where W, is the standard WIENER process, i.e. & (t) e dtt

is zero-mean (GAUSSIAN

white noise, i.e.

@) =0, (€OE&) = ot — ),

*To be more accurate, W. FELLER studied the following equation [10]:
pi = [azu]  — [(c + bx)u] ,

wherea > 0and 0 < =z < +o00.

"The numerical method we are going to propose can be straightforwardly generalized for this case
when v = «(t) and n = 7 (t). Moreover, FELLER’s processes with time-varying coefficients were studied
recently in [19].

IThe stochastic differential equations is understood in the sense of ITO.
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where the brackets (-) denote an ensemble averaging operator. Then, the Probability
Density Function (PDF) p (x, t; x¢) of the process X (t), i.e.

Pl < X(t) < 2 + dz|X(0) = zo} = p(z, t; 29)dz
satisfies Equation (1.1) with the following initial condition [13]:
po(z) = 0(x — zy), rg € RT.

The point x = 0 is a singular boundary that the process X (f) cannot cross. The FELLER
process is a continuous representation of branching and birth-death processes, which never
attains negative values. This property makes it an ideal model not only in physical, but
also in biological and social sciences [12, 19, 20].

As a general comprehensive reference on generalized FELLER’s equations we can men-
tion the book [18]. Since at least a couple of years there is again a growing interest for
studying equation (1.1). Some singular solutions to FELLER’s equation with constant co-
efficients were constructed in [12| via spectral decompositions. FELLER’s equation and
FELLER’s processes with time-varying coefficients were studied analytically (always using
the LAPLACE transform) and asymptotically in [19].

Recently, the FELLER equation was derived in the context of the weakly interacting
random waves dominated by four-wave interactions [6]. Wave Turbulence® (WT) is a
common name for such processes [23]. In WT the FELLER equation governs the PDF of
squared FOURIER wave amplitudes, i.e.  ~ |a|?. In [6] some steady solutions to this
equation with finite flux in the amplitude space were constructed’. See also [21, Chapter 11]
for a detailed discussion and interpretations.

The behaviour of solutions p (z, t) for large = describes the appearance probability of
extreme waves. In the context of ocean waves, these extreme events are known as rogue
(or freak) waves [9]. In the WT literature, any noticeable deviation from the RAYLEIGH
distribution for x > 1 is referred to as the anomalous probability distribution of large
amplitude waves [6]. For GAUSSIAN wave fields all statistical properties can be derived
from the spectrum. However, the PDFs and other higher order moments are compulsory
tools to study such deviations.

The present study focuses on the numerical discretization and simulation of FELLER
equation. The naive approach to solve this equation numerically encounters notorious
difficulties. The first question, which arises is what is the (numerical) boundary condition
to be imposed at x = 07 Moreover, one can notice that Equation (1.1) is posed on a
semi-infinite domain. There are three main strategies to tackle this difficulty:

(1) Map R on a finite interval [0, ¢]
(2) Use spectral expansions on R (e.g. LAGUERRE or associated LAGUERRE polyno-
mials)

*We could define the Wave Turbulence (WT) as a physical and mathematical study of systems where
random and coherent waves co-exist and interact [23].

TThere is a misprint in [6, p. 366]. To obtain mathematically correct solutions one has to define

ng L 7 61 the line below Equation (14).

gl
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(3) Replace (truncate) R* to [0, L], with L > 1.

In most studies the latter option is retained by imposing some appropriate boundary con-
ditions at the artificial boundary x = L. In our study we shall propose a method,
which is able to handle the semi-infinite domain R without any truncations or simplifi-
cations. Finally, the diffusion coefficient in the FELLER equation (1.1) is unbounded. If

the domain is truncated at + = L, then the diffusion coefficient takes the maximal value

V max el n L > 1, which depends on the truncation limit L and it can become very large

in practice. We remind also that explicit schemes for diffusion equations are subject to the
so-called COURANT-FRIEDRICHS-LEWY (CFL) stability conditions [7]:
Ax?

2Vmax

At <

Taking into account the fact that v ., can be arbitrarily large, no explicit scheme can be
usable with FELLER equation in practice. Moreover, the dynamics of the FELLER equation
spreads over the space R even localized initial conditions. In general, one can show that
the support of p (z, t), ¢ > 0 is strictly larger” than the one of p (x, 0) . It is the so-called
retention property. Thus, longer simulation times require larger domains. For all these
reasons, it becomes clear that numerical discretization of the FELLER equation requires
special care.

In this study we demonstrate how to overcome this assertion as well. The main idea
behind our study is to bring together PDEs and Fluid Mechanics. First, we observe that
the classical EULERIAN description is not suitable for this equation, even if the problem
is initially formulated in the EULERIAN setting. Consequently, the FELLER equation will
be recast in special material or the so-called LAGRANGIAN variables’, which make the
resolution easier and naturally adaptive [14, Chapter 7].

The present manuscript is organized as follows. The symmetry analysis of Equation (1.1)
is performed in Section 2. Then, the governing equation is reformulated in LAGRANGIAN
variables in Section 3. The numerical results are presented in Section 4. Finally, the main
conclusions and perspectives are outlined in Section 5.

2. Symmetry analysis

In general, a linear PDE admits an infinity of conservation laws, with integrating multi-
pliers being solutions to the adjoint PDE [2]. Here we provide an interesting conservation
law, which was found using the GEM MAPLE package [5]:

(B (-5)p), + ®e =0,

*Using modern analytical techniques it is possible to show even sharper results on the solution support,
see e.g. [4].

It is known that both EULERIAN and LAGRANGIAN descriptions were proposed by the same person
— Leonhard EULER.
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where E; (2) e f 1+°° efttz dt is the so-called exponential integral function [1] and the flux
® is defined as

& (z,p) = —pep — x(v El(—vn—x)p + nEl(—%)pm).

The symmetry group of point transformations can be computed using GEM package as
well. The infinitesimal generators are given below:

El == @ta
EQ :p@pa
e 7! oyt vyt
23:—79t+e7x91—e“/p9p,
et et

E4 = T.@t + e'ytx@x —

&, = e(V+C)tM<1 + E, 1, i)ef% D, ,
Y n

EG - e(V-ﬁ-c)tu(l + E’ 1, H)e_% _@p’
Y n

where ¢ € R, M(a, b, z) and U (a, b, z) are KUMMER special functions [1, 17] (see also
Appendix C). The corresponding point transformations, which map solutions of (1.1) into
other solutions, can be readily obtained by integrating several ODE systems (we do not
provide integration details here):

(taxap) = (t + 517x>p)>

(t,z,p) = (t, z,e2p),

(t,z,p) — (% In(esy + e, ﬁre’ﬂx’ (1 + egve‘”)p>,
) N B 8472xe”t
(t,z,p) — <t - In(1 — gwevt)’m’e n(1 — gwev)_p)’
(t,z,p) (t,:c,p +oes M(1 + 5 1, %)e'y,]xwL(erc)t)’

(top) = (top + e U(1 + ! %)e—”ﬁ”+(v+c)t>_

The first symmetry is the time translation. The second one is the scaling of the dependent
variable (the governing equation is linear). Symmetries 3 and 4 are exponential scalings.
Two last symmetries express the fact that we can always add to the solution a particular
solution to the homogeneous equation to obtain another solution. For instance, the solu-
tions invariant under time translations (£,) are steady states and their general form is the

following:
x

p(z) = e‘%(% El(_%) + %), (2.1)
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where ¢ 5 are ‘arbitrary’ constants, which have to be determined from imposed conditions.
Of course, they should be chosen so that the resulting steady solution is a valid probability
distribution. It is not difficult to check that the imposed flux § on the steady state solution
is equal to €1 n. Please, notice also an important property of the exponential integral
function, which is useful in manipulating its values for negative arguments:

6lim0E1(x + i0) = Ey(z) ¥ in = — Ei(—x) F im, x < 0,
_)

where Ei (z) is the following exponential integral:

z t
Ei(z) —/ %dt.

Thus, Ei(z) = —E;(—z) for x < 0. The last relation can be also extended to the
entire complex plain:
. 1 1 1
Ei(z) = —E;1(—2) + 5 Inz — 5 ln(—) — In(—=2), z € C.
z

We provide here also the general solutions invariant under the symmetry (&,):
p(z, t) = (‘52 — €1t + % ln:c) e

and under symmetry (&,):
p(z, t) = (‘51 + Cot + % ln:c) et

These solutions might be used, for example, to validate numerical codes.

3. Reformulation

By following the lines of [14, Chapter 7|, we are going to rewrite FELLER’s Equation (1.1)
with the so-called LAGRANGIAN or material variables. The main advantage of this formu-
lation consists in the fact that we can handle infinite domains without any truncations,
transformations, etc. It becomes possible to carry computations in infinite domains. Our
domain is semi-infinite (x € R ™) with the left boundary = 0 being a reflection point.

As the first step, we introduce the distribution function associated to the probability
density p(z, t):

def v
2@t [ pe v (3.1)
0
The same can be done for the initial condition as well:
def

2ofe) 2 [ po©dc. po e WE R,
0
We notice also two obvious properties of the function & (z, t):

0.2 (x,t) = p(a,t), limo,@(:c, t) =0, lim £ (z,t) = 1.

r — 400
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Due to the positivity preservation property (see Appendix A) the function & (z, t) is
non-decreasing in variable x . Thus, we can define its pseudo-inverse*:

2 [0,1]xRT — RT,

which is defined as
Z(P,1) = inf{€ € RY|P(E¢t) = D).
Similarly, the initial condition does possess a pseudo-inverse as well:
= def

Zo(2) = imf{€ € RY | P(¢) = 2}, (3-2)

)
such that 27 (£, 0) = 2, (2).
If FELLER equation (1.1) holds in the sense of distributions, then the following equation
holds as well:

Py — x|y P+ ngﬂx] — 0. (3.3)
along with the initial condition
P(r,0) = Py(x).

Equation (3.3) can be readily obtained by exploiting the obvious property p(z,t) =
0, P (z, t). In Appendix A we show that zero value of the solution p (z, t) is repulsive.
Thus, 0, Z (x,t) = p(z, t) > 0, V(z,t) € (]R*)z. Thus, the implicit function
theorem [24, 25| guarantees the existence of derivatives of the inverse mapping 2" (£, t).
Let us compute them by differentiating with respect to &2 and t the following obvious
identity:
P (X (P, 1), t) = P.
Thus, one can easily show that

ox 1 ox 0P

0 0, P’ o 0,P
Using these expressions of partial derivatives, we derive the following evolution equation
for the inverse mapping 2" (£, ) :

O\ 1
vt . vt Z 2 —
(' 2), + 2-[net(55) |, =0 (3.4)
The last equation can be rewritten also by introducing a new dynamic variable:

V(P 1) = X ( DY), V(PO = X(P,0). (3.5)

It is not difficult to see that Equation (3.4) becomes:

0¥\ 1

. vt 22 —

Y, + U [ne <a,@> ]y 0. (3.6)

The last equation will be solved numerically in the following Section.

*This mapping is sometimes called the reciprocal mapping [14] or an order preserving string [3].
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3.1. Numerical discretization

Earlier we derived Equation (3.4), which governs the dynamics of the pseudo-inverse
mapping 2 (£, -). The initial condition for Equation (3.4) is given by the pseudo-inverse
(3.2) of the initial condition &, (z). We discretize Equation (3.4) with an explicit dis-
cretization in time since it yields the most straightforward implementation.

The first step in our algorithm consists in choosing the initial sampling interval. We make
this choice depending on the provided initial condition. Typically, we want to sample only
where it is needed. Thus, it seems reasonable to choose the initial segment [0, ¢(] with £,
being the leftmost location such that

1 — gzo(ﬁo) < tol.

In simulations presented below we chose tol ~ O (107°). Then, we choose the initial
sampling {%ko}gzo € [0,0p] € RT,with 2 = 0and 29 = (y. It is desirable
that the initial sampling be adapted to the initial condition, since errors made initially
cannot be corrected later. We define also &, = 22, (2°). We stress out that {g@ k} ;:7: 0
stand for a discrete cumulative mass variable and, thus, they are time independent.

More generally, we introduce the following notation:

def

= (P tn,  k=0,1,...,N,

with t7 < nAt,n € N and At > 0 is a chosen time step”. We introduce also similar

notation for the dynamic variable:

def

Now we can state the fully discrete scheme for Equation (3.6):

@kn+1 - @kn N e“/t" @kn A{@kJr% B At@kié (3 7)
At 77 A t@k @]::_1 _ @kn @kn _ @kn_l ) .
withn > 0,k = 0,1,..., N — 1 and
def def
A,@]Hl = Pr1 — P, A,@k_l = Py — Pr_1.
2 2

The quantity A2, can be defined as the arithmetic or geometric mean of two neighbouring

discretization steps AZ 1 :
k+ )

def A,@]Hl + A'@kfl def
AP, = 2 5 2 AP, = \/A@Hl.A,@

1.
2 k=3
*We present our algorithm with a constant time step for the sake of simplicity. However, in realistic

simulations presented in Section 4 the time step will be chosen adaptively and automatically to meet the
stability and accuracy requirements prescribed by the user.
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To be specific, in our code we implemented the arithmetic mean. The fully discrete scheme
can be easily rewritten under the form of a discrete dynamical system:

AP AP
" k+ 5 k=5
yntl = g — pAte’t” k 2 — 2 > 0.
k k n € A (@k {@kﬁr ) @kn g/kn @kn— ) }’ n

Remark 1. We would like to say a few words about the implementation of boundary condi-
tions. First of all, no boundary condition is required on the left side, where &' = %" =
0. On the right boundary we prefer to impose the homogeneous NEUMANN-type boundary
condition, which yields the exact ‘mass’ conservation at the discrete level as well. Namely,

at the rightmost cell we have the following fully discrete scheme:

n Y
@n-l—l — gyn At vyt N . 2 2
N N + n € A@N @]\? _ @]\?71 ) n 07

def PN — PN_2

with AP § = . As a result, we obtain the exact conservation of ‘mass’
at the discrete level:

N N
NAP 2y = Y AP 2, Yn € N,
k=0 k=0

To summarize, our numerical strategy consists in:

(1) We compute the pseudo-inverse of the initial data po (x) to obtain 2 (£, 0) =
Y (£2,0).

(2) This initial condition % (2, 0) is evolved in (discrete) time using an ezplicit march-
ing scheme in order to obtain numerical approximation to % (£, t),t > 0.

(3) The variable 2" (£, t) is recovered by inverting (3.5), i.e.

D(Pt) = e Y (D, 1),

(4) Thanks to (3.1) we can deduce the values of p (27 (2, t), t) € [0, 1] by applying
a favourite finite difference formula™.

Working with the pseudo-inverse allows to overcome the issue of the retention phenomenon,
which manifests as the expanding support of p (x, t) for positive (and possibly large) times
t > 0,t > 1, since the computational domain was transformed to [0, 1]. This method
is the LAGRANGIAN counterpart of the moving mesh technique in the EULERIAN setting
[15, 16].

A simple MATLAB code, which implements the scheme we described hereinabove, is
freely available for reader’s convenience at this URL address:

https://github.com/dutykh/Feller/

*In our code we employed the simplest forward finite differences and it lead satisfactory results. This
point can be easily improved when necessary.
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4. Numerical results

In this Section we validate and illustrate the application of the proposed algorithm on
several examples. However, first we begin with a straightforward validation test. The only
difference with the proposed above algorithm is that we are using a higher order adaptive
time stepping for our practical simulations. The explicit first order scheme was used to
simplify the presentation. In practice, much more sophisticated time steppers can be used.
For instance, we shall employ the explicit embedded DORMAND-PRINCE RUNGE-KUTTA
pair (4, 5) [8] implemented in MATLAB under the ode45 routine [22]. Conceptually, this
method is similar to the explicit EULER scheme presented above. It conserved all good
properties we showed, but it provides additionally the higher accuracy order and totally
automatic adaptivity of the time step, which matches very well with adaptive features of
the LAGRANGIAN scheme in space. The values of absolute and relative tolerances used in
the time step choice are systematically reported below.

4.1. Steady state preservation

In order to validate the numerical algorithm we have at our disposal a family of steady
state solutions (2.1). Hence, if we take such a solution as an initial condition, normally the
algorithm has to keep it intact under the discretized dynamics. The parameters 7, v of the
equation, those of the steady solution and numerical parameters used in our computation
are reported in Table 1. The initial condition at ¢ = 0 along with the final stateat t = T
are shown in Figure 1. Up to graphical resolution they coincide completely. We can easily
check that during the whole simulation the points barely moved, i.e.

| 2°(T) — 2(,0) | ~ 0.008577...

We can check also other quantities. For instance, & (&, t) is preserved up to the machine
precision. If we reconstruct the probability distribution p (x, t), we obtain:

lp(,T) — p(-,0)]| =~ 0.003051...

The last error comes essentially from the fact that we apply simple first order finite differ-
ence to reconstruct the variable p (x, t) from its primitive & (z, t). We can improve this
point, but even this simple reconstruction seems to be consistent with the overall scheme
accuracy. Thus, this example shows that our implementation of the proposed algorithm is
also practically well-balanced [14], since steady state solutions are well preserved.

4.2. Transient computations

In this Section we present a couple of extra truly unsteady computations in order to
illustrate the capabilities of our method. Namely, we shall simulate the probability distri-
butions emerging from a family of initial conditions (normalized to have the probability
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Parameter Value
Drift coefficient, ~ 1.0
Diffusion coeflicient, n 1.0
Integration constant, € 0.0
Integration constant, €’ g =10
Final simulation time, T’ 10.0
Number of discretization points, N 500
Absolute tolerance, tol, 107°
Relative tolerance, tol, 107°

Table 1.

Numerical parameters used in the steady state computations.

Initial condition
Numerical solution

Figure 1. Comparison of a steady state solution of class (2.1) att =
10. They are indistinguishable up to the graphical resolution, which

t = T =
validates the solver.

distribution):

x T — z

e 791

e

po(l‘) = X
o1 + 0g9e€e°2

20

The primitive of the last distribution can be easily computed as well:

T

o1e °1 + oge

)

T2

]

o1 + oqe°2

0 and at
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Parameter Ezxpanding experiment ‘ Confining experiment
Drift coefficient, —0.1 0.5
Diffusion coefficient, n 1.0 1.0
Final simulation time, T’ 3.0 12.0
Number of discretization points, N 100 100
Initial condition parameter, o 2.0 2.0
Initial condition parameter, oo 1.0 1.0
Initial condition parameter, x 3.0 3.0
Absolute tolerance, tol , 1075 1075
Relative tolerance, tol, 1075 1075

Table 2. Numerical parameters used in unsteady computations.

We design two different experiments in silico to show two completely different behaviours of
solutions to FELLER equation (1.1) depending on the sign of the drift coefficient 7. These
will constitute additional tests for the proposed numerical method. In both cases, the
initial positions of particles are chosen according to the logarithmic distribution (lLogspace
function in MATLAB) on the segment [0, 20]. This choice is made to represent more
accurately the exponentially decaying initial condition since the errors made in the initial
condition cannot be corrected in the dynamics.

4.2.1 Expanding drift

If the drift coefficient v < 0, this term will cause FELLER’s equation (1.1) to transport
information in the rightward direction. This situation is quite uncomfortable from the
numerical point of view since the initial condition expands quickly towards the (positive)
infinity. We submitted our method to this case. All numerical and physical parameters are
provided in Table 2 (the middle column). The initial condition along with the probability
distribution at the end of our simulation are shown simultaneously in Figure 2(a,b) in
CARTESIAN and semi-logarithmic coordinates correspondingly. As expected, the support
of the initial condition more than triples from¢ = 0tot = T = 3.0. We remind that
the diffusion and drift coefficients are proportional to  and the scheme handles the growth
of these terms automatically. The smooth decay of the solution on the semi-logarithmic
plot (see Figure 2(b)) shows the absence of any numerical instabilities. The trajectory of
grid nodes is shown in Figure 2(¢). One can see that points follow the expansion of the
solution. Nevertheless, they concentrate in the areas where the probability takes significant
values.
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1F 7 100
09 Initial condition | . Initial condition
’ Numerical solution ot - Numerical solution |
08 | 1
07 f
- 3 S 4p2
Al06 [: Al k
o054 = 403
A : 8
Eoah =
% : 20 4
03 o
: 109
01 | §
o . R ‘ ‘ : ‘ ‘ ‘
0 10 20 30 40 50 60 0 10 20 30 40 50 60
z T
(a) (b)
3
2.5 T
2 i
t
1.5 7
1 |
0.5 T
o 1 1 1
0 20 30 40 50 60
xT
(c)

Figure 2. Numerical result of the expanding experiment with negative drift

v = —0.1 < 0: (a) initial and terminal states of the numerical discretized
solution; (b) initial and terminal states of the numerical discretized solution in
semi-logarithmic coordinates; (c) trajectories of grid nodes. All numerical
parameters for this computation are reported in Table 2 (middle column).

4.2.2 Confining drift

In the case of the positive drift coefficient v > 0, the FELLER dynamics gets even more
interesting since we have two competing effects:
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(1) Positive drift moving information towards the origin x = 0,
(2) Diffusion spreading solution towards the positive infinity.

It might happen that both effects balance each other and result in a steady solution.
Such a simulation is presented in this Section. The numerical and physical parameters
are given in Table 2 (the right column). The initial condition along with the probability
distribution at the end of our simulation are shown simultaneously in Figure 3(a,b) in
CARTESIAN and semi-logarithmic coordinates respectively. The trajectories of grid nodes
are shown in Figure 2(¢). One can see the rapid initial expansion stage, which is followed
by a stabilization process, when we almost achieved the expected steady state. Again, the
grid nodes trajectories show excellent adaptive features of the numerical scheme: at the
end of the simulation the relative density of nodes turns out to be preserved. The semi-
logarithmic plot shown in Figure 3(b) shows that the numerical solution is free of numerical
instabilities. The obtained steady solution will be preserved by discrete dynamics thanks
to the well-balanced property demonstrated in Section 4.1.

5. Discussion

Above we presented some rationale about the discretization, existence and uniqueness
theory for FELLER’s equation. The main conclusions and perspectives are outlined below.

5.1. Conclusions

The celebrated FELLER equation was studied mathematically in two seminal papers pub-
lished by William FELLER (1951/1952) in Annals of Mathematics [10, 11]. In particular,
the uniqueness was shown in [11| without any boundary condition required at z = 0.
This result is notable and we use it in our study. The main goal of our work was to present
an efficient numerical scheme, which were able to handle the unbounded diffusion inherent
to Equation (1.1). Moreover, the retention phenomenon causes the solution support to
expand all the time. Thus, if we wait sufficiently long time, it will reach the computational
domain boundaries (since Rt > x was truncated to a finite segment to make the sim-
ulation in silico possible). To overcome this difficulty, we proposed a simple and explicit
LAGRANGIAN scheme using the notion of the pseudo-inverse. In this way, we obtained a
stable numerical scheme (under not so stringent stability conditions), which turns out to
be naturally adaptive as well, since particles move together with the growing support (the
rightmost particle position defines the support) and they tend to concentrate where it is
really needed. The performance of our scheme was illustrated on several examples. We
share also the MATLAB code so that anybody can check the claims we made hereinabove
and use it to solve numerically the FELLER equation in their applications:

https://github.com/dutykh/Feller/
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Figure 3. Numerical result of the confining experiment with positive drift

v = 0.5 > 0: (a) initial and terminal states of the numerical discretized
solution; (b) initial and terminal states of the numerical discretized solution in
semi-logarithmic coordinates; (c) trajectories of grid nodes. All numerical
parameters for this computation are reported in Table 2 (right column).

5.2. Perspectives

All the numerical schemes and results presented in this paper were in one ‘spatial’ dimen-
sion. The FELLER equation considered here is 1—D as well. However, it seems interesting”

*Regardless the physical applications.
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Figure 4. A schematic representation of the situation where the solution p (x, t)
attains a zero value in some point x* > 0.

to consider generalized FELLER equations in higher space dimensions and to extend the
proposed numerical strategy to the multi-dimensional case as well. Another possible ex-
tension direction consists in proposing higher order schemes to capture numerical solutions
with better accuracy with the same number of degrees of freedom. On the more theoretical
side, we would like to obtain an alternative well-posedness theory for FELLER equation by
taking a continuous limit in our numerical scheme.
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A. Positivity preservation

In this Appendix we show the positivity preservation property of the solution p (z, t) to
Equation (1.1). We suppose that initially the solution is non-negative, i.e.

p(#,0) = po(x) >0, V& e R*.

Let us assume that at some positive time ¢t = t* > 0 and in some point x = z* € R™
the solution attains zero value, i.e.

p(x*, t*) = 0.

This situation is schematically depicted in Figure 4.
Equation (1.1) can be rewritten in the non-conservative form:

pe = T [Yps + NPes] + YD + NPa-
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Taking into account the fact that the point z* is a local minimum (p, |+~ = 0), where
the solution takes zero value (p|,- = 0), the last equation greatly simplifies at this point:

pt|x* = $*npmx|m* > 07

since in the minimum p,,|,« > 0. Thus, zero values of the solution are repulsive and
for (at least small) times ¢ > ¢* the function t +— p(z*, t) will be increasing.

B. ‘Mass’ conservation

It is straightforward to show that the L; norm of the solution to Equations (1.1) is
preserved. Indeed, taking into account that the solution p (z, t) > 0 is positive for all
times ¢ > 0 provided that the initial condition po(z) > 0, Vz € R™, we have
|p(z,t)| = p(x,t). By integrating Equation (1.1), we have

8t/ p(z, t)dx + Fzdz = 0.
R+ R+

Taking into account that §|,—o = 0 and the solution p (x, t) is decaying sufficiently fast
as r — —+ oo together with its derivative, we obtain

8t/ p(z, t)de = 0.
R+

In other words,
lp(,t)]|L, = const.

The last constant can be in general taken equal to one after the appropriate rescaling
(provided that the initial condition is non-trivial). It is this scaling, which is assumed
throughout the whole text above. This renormalization is consistent with the ‘physical
sense’ of the variable p being the density of a probability distribution.

C. Kummer functions

The KUMMER functions M (a, b, z) and U (a, b, z) are two linearly independent solutions
of the following ordinary differential equation:

dy? dy
— b — z2) — — =0.
s T ( z) e ay
This equation admits two singular points: z = 0 (regular) and z = +oo (irregular).

There exist a connection between KUMMER and hyper-geometric functions [1].
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