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On-plate localization and mapping for an inspection robot using
ultrasonic guided waves: a proof of concept

Cédric Pradalier1, Pascal Pomarede1 and Jan Steckel2

Abstract— This paper presents a proof-of-concept for a local-
ization and mapping system for magnetic crawlers performing
inspection tasks on structures made of large metal plates. By
relying on ultrasonic guided waves reflected from the plate
edges, we demonstrate that it is possible to recover the plate
geometry and robot trajectory to a precision comparable to the
signal wavelength. The approach is tested using real acoustic
signals acquired on test metal plates using lawn-mower paths
and random-walks. To the contrary of related works, this paper
focuses on the practical details of the localization and mapping
algorithm.

I. INTRODUCTION

This paper aims at demonstrating the interest of using ul-
trasonic guided waves to support inspection robots operating
on structures made of metal plates. Such structures include
in particular ship outer hulls and large storage tanks, as
depicted in 1. On such a structure, localization with respect
to individual plates can be beneficial to precisely triangulate
defects such as corrosion patches[1], [2] or even attempt
acoustic tomography as in [3]. In combination with odometry
and an external localization system (laser theodolite, Ultra-
Wide Band (UWB) beacons...), this would also lead to
precise absolute localization of the inspection results.

Fig. 1. Typical inspection conditions for magnetic crawlers operating on
a structure assembled out of welded steel plates [Source: RoboPlanet]

On metal plates, Ultrasonic Guided Waves (UGWs) can
mostly be generated using piezo-electric transducers in con-
tact with the plate. When the relation between the frequency,
the plate thickness and the wave velocity is right, these
waves propagate radially around the emitter through the plate
material, like ripples around a stone thrown into a pool. For
metal plates relevant to inspection tasks, frequencies in the
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range of hundreds of kHz are typically appropriate, with
wave length of the order of a few centimeters.

In this paper, we are considering short bursts of a few
wave cycles emitted from a transducer mounted on a mobile
platform. When encountering the plate edges, these waves
are reflected normally and these reflections are measured
by a transducer co-located with the emitter to be converted
into electrical signals. From these signals, it is possible
to identify the reflected waves and from them recover the
distance to the edge. In a practical case, while working on a
rectangular plate, the acquired signal may include reflections
from multiple edges as well as spurious detections. These
sequences of edge detections are essentially range-only mea-
surements to a line. Our intent is to use these ranges to both
reconstruct the geometry of the plate and the localization
of the emitter-receiver device over time. In the robotic
community, this is obviously a SLAM problem with a non-
trivial data-association challenge to identify which edge has
been observed at a given time. Although a number of works
have considered the very similar problem of room shape
reconstruction from acoustic echoes as a SLAM problem,
most of them only consider simulated measurements and do
not describe exhaustively their map management strategies.

In summary, the contributions of this paper are the fol-
lowing:

1) a demonstration of the applicability of a sparsity-based
reconstruction of the arrival times of the ultrasonic
reflections in the plate using an L1-regularized least
squares approach;

2) a demonstration of the applicability of room recon-
struction methodologies to on-plate mapping with a
detailed description of the map management strategy,
from initialization to landmark addition and outlier
removal;

3) a proof-of-concept for the application of FastSLAM[4]
to the context of on-plate localization for inspection
tasks.

II. RELATED WORKS

a) Non-Destructive Evaluation: Ultrasound-based in-
spection technique is the most common tool for Non-
Destructive Evaluation (NDE) on metal plates. In the most
common set-up, the transducers are put in transmission or
in echo mode. In the first one, two transducers are aligned
along the same axis, one transducer is used as an emitter
and the second receives the signal after propagation through
the sample. In the second mode, one transducer acts both as
emitter and receiver and the signal is recorded after reflecting



on the sample. This is typically used with high frequencies
(i.e. 5MHz) for thickness measurements. Alternatively, this
paper consider the use of Lamb waves, a specific type
of UGWs. Those waves propagate along the metal plate,
potentially for large distances. In industry, they have been
used to detect defects in pipelines, rails, or large structures
with success [5], [6], but never deployed on autonomous
mobile systems. Another technique is to use signals obtained
during the inspection from different positions localize defects
using acoustic tomography[1], [2]. This technique is usually
used in the Structural Health Monitoring (SHM) field with
sensors embedded in the structures [7], [8]. However, for
such a technique to work, it is critical to know the location
of the emitters and receivers with a good precision, which is
a challenge for magnetic crawlers operating on an inspected
structure. In general, the use of UGWs for defect detection
is an active area of research in the NDE community, in
particular for acoustic tomography [3] or imaging disconti-
nuities [9]. However, most of this research assumes a known
localization of the emitter and receiver with respect to the
inspected plate, and to the authors’ knowledge, there are
no work considering that the UGWs themselves could both
provide the defect detection capabilities and help inferring
the plate geometry and sensor localization.

b) Echo detection: Time delay estimation is often
performed using a matched filter approach, which allows
high-resolution time-delay estimation under the condition
that the signal bandwidth is sufficiently high, and that the
auto-correlation function of the used signals is sufficiently
narrow [10]. Generalizations of the matched filter to over-
come spectral imperfections are often applied in situations
where the signal spectrum is not flat, with the most notable
example of this approach the Generalized Cross Correla-
tion - Phase Transform. The GCC-PHAT approach is the
de-facto standard in time-delay estimation, given that the
signal bandwidth is sufficiently high [11]. More recently,
sparsity-based methods using an L1-regularized least squares
approach have surfaced as super-resolution time-delay esti-
mation, which have been extensively applied to ultrasonic
time-delay estimation [12], [13]. This approach promises the
detection of highly-overlapping reflections, even under low
Signal-to-Noise Ratio (SNR) conditions. In our approach,
we will use this sparsity-based approach to solve the time-
of-arrival estimation problem.

c) Localization and Mapping: Outside of the field
of NDE, the closest problem to on-plate localization and
mapping is acoustic room reconstruction. In this sub-field of
acoustics and signal processing, there are a number of works
trying to reconstruct the shape of a room based on acoustic
echoes. Earlier works (e.g. [14]) assumed that multiple static
sources where located in a polygonal room and that a moving
receiver was collecting data. [15] addressed the problem of a
moving emitter-receiver device to reconstruct a room shape
using a geometric solution. However, it used simulated data
and did not assume any measurement noise. In a ground-
breaking work, [16] showed that SLAM techniques could
be use to estimate the shape of a convex room. This work

however was only tested in simulation, and as a result
assumed that all echoes were matched to room edges and that
no spurious echoes were present. A series of work expanded
on [16]. [17] expresses the problem as an optimization but
is again tested only in simulation and does not address
explicitly the ambiguous matching of measurements to room
walls. In all the works above the map management strategy
is not described exhaustively: in particular they do not
explicit how the geometry of the room is initialized and
how map edges are included when first detected or removed
when proven to be outliers. On a more practical standpoint,
[18] and [19] build on the article above to build a practical
room reconstruction system running on a smart-phone. The
latter would be used to emit sound pulses that would reflect
from the room walls. In [19], a rectangular environment is
assumed, with known sizes, and the focus is on localization.
In [18] on the other hand, both the localization and the wall
estimation are considered with only the first echo but very
little information is given on the map management: when to
add a new wall, how to handle outliers, etc.

In the context of SLAM, data association has always been
a critical steps, as described in reference works such as [20]
or [21]. FastSLAM [4] is an alternative formulation of the
SLAM problem where the state is estimated by sampling
and where each sample contains an estimate of the trajectory
and the map collected along this trajectory. FastSLAM also
allows to handle uncertain data association by including
multiple samples for the various association hypotheses. This
is particularly important for the problem at hand since the
validity of wall hypotheses can sometimes only be estimated
several steps after their initialization. To our knowledge,
FastSLAM has not been used previously in the context of
the acoustic room reconstruction and localization problem.

d) Summary: This work will use UGWs to build on
the room reconstruction techniques within a FastSLAM
framework. While moving an emitter-receiver pair on a metal
plate, this will allow to recover the trajectory of the device
and the geometry of the plate. To support fast and robust echo
detection, we make use of an L1-regularized least squares
approach to signal-delay estimation using a sparse signal
model. This approach allows very accurate time-delay esti-
mation of multiple overlapping reflections to be performed,
even in low SNR conditions. The next section will describe
how these components combine together to demonstrate the
feasibility of using UGW for on-plate localization and plate
geometry inference.

III. METHODOLOGY

A. Notations and assumptions

In this paper we are considering a mobile unit transporting
an acoustic emitter-receiver pair on a metal plate. At every
time step k, the emitter sends an acoustic pulse skb (t). Under
mild assumptions of the acoustic properties of the ultrasonic
probing system, we can model the received transducer signal
skr (t) as a linear system through convolution:

sr(t) = x(t) ∗ sb(t) (1)



with x(t) the environments impulse response and sr(t)
hopefully containing information about reflections on the
plate edges. The superscript k is omitted when unambiguous.

We assume that the plate is an homogeneous material
(steel, aluminium,...) of a constant thickness. We assume the
plate to be a convex polygon, but we do not assume it to
be rectangular, even though this is to be expected in any
industrial case. Because the edges are linear, we will also
assume that only the orthogonal reflection of the signal is
picked up by the receiver. Any other reflection may lead to
secondary echoes after bouncing from several edges but these
are neglected in our work.

Out of the reflected signal skr (t), we will denote as
{ri(k), i = 1 . . . n(k)} the set of detected ranges to the plate
edges, assuming that not all the edges are detected all the
time and that spurious detection may be included in the list.

Additionally, because we assume the transducers are car-
ried by a mobile device on the plate, we assume that some
level of odometry is available to estimate the displacement
between measurements. Because the inspection crawlers we
are considering are moving on vertical structures (boat hulls,
storage tanks), they can easily embed an accelerometer
from which the crawler heading with respect to gravity
can be observed with a good enough precision. Also, by
construction, to avoid falling from the inspected structures,
these crawlers have to have an extremely good adherence and
incur very little slippage. We can hence assume the odometry
locally very precise. These two assumptions (known heading
and very precise odometry) are an important distinction with
respect to the room reconstruction works.

In the next section we will describe first how these echoes
can be robustly extracted from the signal and then how they
can be integrated with the proprioceptive measurements into
a localization and mapping framework.

B. Echo detection

One of the key enabling technologies for the on-plate
SLAM approach is the robust and accurate detection of
ultrasonic echoes in the metallic plate. Due to the physics
of the sound propagation in the metallic plate, only signals
with limited bandwidth can be used for probing the underly-
ing material. This limited bandwidth constraint complicates
accurate time-of-arrival estimation for the reflections in the
medium, removing classical signal processing techniques
such as matched filtering from the set of applicable tech-
niques. We apply a super-resolution technique based on
L1-regularized least-squares and the concept of sparsity to
solve this estimation problem. The underlying hypothesis
of this approach is that most of the metal plate does not
reflect the ultrasonic signals, and that only discontinuities
in the medium cause reflections to occur. In that case, the
environment has only a limited number of reflections, and
can be considered sparse.

Under the sparsity assumption of the environment, we can
consider x(t) from eq. 1 to be sparse. After discretization
of the problem, this allows us to cast the following L1-

regularized least squares problem:

min
x
|D · x− sr|22 + λ · |x|1 (2)

with x the discretized vector-representation of the impulse
response x(t) of size [nt × 1], sr the discretized received
acoustic signal of size [nt × 1], where nt is the number of
time-samples used in the discretization process. The vector
norms |a|p denote the Lp-norm of vector-object a, with the
well-known fact that the L1-norm promotes sparsity of the
least-squares solution. The matrix D is called a dictionary
matrix of size [nt×nt], containing time-shifted copies of the
emitted echo signal sb(t):

D =


sb(t) 0 0 ... 0
0 sb(t) 0 ... 0
0 0 sb(t) ... 0
... ... ... ... ...
0 0 0 ... sb(t)

 (3)

This minimization problem is a convex problem which can
easily be solved using open-source toolboxes such as the
Matlab CVX toolbox [22].

C. From echoes to edge hypotheses

A single echo ri(k) provides information about the dis-
tance to an object. As will be described later, this information
is useful to refine the parameters of the edge the echo
reflected from. However, this is too ambiguous to initialize
a new edge: it could be any tangent to the circle centered on
the current pose with radius ri(k).

In [16] on the other hand, the authors show that 2 echoes
taken at different known position are sufficient to define two
line hypotheses: there are only two lines tangent to the two
circles defined by these radius and centered on the known
poses. A third echo can be used to disambiguate between the
two lines if the trajectory is not parallel to the line. Beside
requiring three perception steps and the corresponding delay,
using three echoes requires considering all the O(n3) 3-
tuples.

Instead, we decided to use only the last two echoes and
deal with the multiple hypotheses in a later step. There are
several arguments for this choice: first the disambiguation
with 3 echoes is only useful when the path is not parallel
to the edge, which is actually a very common case in a
practical deployment where the robot use its accelerometer
to realize vertical or horizontal transects. Second, even on
a non-parallel path, a clear disambiguation require a large
translation between the second and third echo to compensate
for the perception noise. Last, when moving on a direction
normal to the edge, two measurements are sufficient for a
unique solution. Both cases are illustrated in fig. 2.

Because of our combinatorial generation of edge hypothe-
ses, a method is required to identify inconsistent edges
and remove them. To this end, we take advantage of the
hypothesis that only orthogonal reflections are reaching the
receiver. Hence, with the assumption of a convex plate, if we
consider two edges L1 and L2 observed from pose P and
Pi the projection of P on Li, then L2 cannot intersect the
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Fig. 2. Line hypotheses generated from two measurements at position
Pt−1 and Pt. Left: the robot moves away from the edge and generate a
single hypothesis, right: generic case leading to two hypotheses.

segment [PP1] and L1 cannot intersect the segment [PP2].
If one of this condition is true, then both edges cannot exist
simultaneously on a convex plate because observing one edge
would require the ultrasonic waves to cross the other one,
which is not physically possible. In the following, this test
will be denoted as the consistency check between two edge
hypotheses.

D. FastSLAM integration

FastSLAM[4] is a solution to the simultaneous localization
and mapping problem which is particularly relevant in the
context of uncertain data association. In essence, FastSLAM
relies on a particle filter in the localization space and every
particle holds an hypothesis of the map that can be inferred
from the trajectory of this particle. In order to integrate
FastSLAM into our localization and plate geometry inference
problem, this section will define the particle state, the chosen
map representation, the particle initialization strategy, how
the internal maps are updated and the evaluation of a particle
based on the measured echoes.

1) FastSLAM state: Because of our assumption of a
known orientation, we only consider the sensor coordinates
(x, y) on the plate as system state. Orientation could be
added to the state without significant changes to the frame-
work.

As a map representation, we decided to use a list of infinite
lines represented by an angle and offset. Several options were
considered and ultimately rejected. Inspired from traditional
occupancy grids[23], we first considered storing a grid map
where every cell would represent either the likelihood of
being on an edge or the likelihood of being inside the plate.
Both representations work well in a mapping only framework
but in a SLAM context they lack robustness. Using the edge
likelihood presents a challenge for removing outliers and
artifacts. Using the likelihood of being inside the plate works
well when only using the first echo (i.e. the closest edge) but
does not scale to using echoes from multiple edges. Using a
parameterization as an oriented rectangle was also evaluated
but rejected because first, it only works for rectangles and
second, the estimator tended to forget about one side of the
rectangle when only the other one was observed for too
long. In the end, estimating independent lines offers more
flexibility and provides sufficient information about the plate
geometry. In practice, a line is represented by a pair (θ, b)

that define the line equation:

cos(θ) · x+ sin(θ) · y + b = 0 (4)

A particle Pi can then be described as a trajectory hy-
pothesis associated with an estimated map defined as a set
of lines:

Pi = [(xi, yi)i=1...k, {(θj , bj), j = 1 . . . ni}] (5)

2) FastSLAM initialization: Most of the earlier
papers[16], [17] on room reconstruction do not discuss the
initialization of the Bayesian filter, which is an important
element of a practical implementation. In our case, we
rely on the edge hypotheses generated from section III-C.
After waiting for the second set of range measurements,
we estimate a number of edge hypotheses from which
we extract maximally consistent sets. These sets are built
using a dynamic programming approach inspired from
JCBB/JCDA[20] which will be omitted here for the sake
of page limits. As a result, every particle is initialized by
sampling around the zero position and randomly selecting a
consistent set of edges from the maximally consistent sets.
Including all the edge hypotheses in all the particles would
be a viable alternative given the outlier removal decision
described below. It would however add more ambiguity
than necessary in the estimation.

3) Particle evaluation: Given {ri(k), i = 1 . . . n(k)} the
set of echoes measured at time k, we evaluate a particle
based on its ability to explain the measurements. For a line
Li,j = (θi,j , bi,j) in particle Pi, the expected measured range
is

di,j = | cos(θi,j) · xi + sin(θi,j) · yi + bi,j |

From this range, the likelihood of measurement ri(k) given
Li,j is expected to follow a Gaussian distribution centered
on di,j , with a standard deviation consistent with the echo
detection uncertainty. If the highest likelihood over all the
lines is lower than a threshold, then the measurement is
considered “unexplained” and allocated a low probability P0.

For a complete set of echoes, the evaluation of a particle
will then be the product of the likelihood of the n(k)
likelihoods of the independent measurements:

L(Pi) =

n(k)∏
i=1

max

(
P0,max

j
(P (ri(k) | Pi Li,j))

)
In this formulation, the product has n(k) terms which make
the evaluation of different particles comparable. Performing
the product over the set of lines of each particle would result
in a varying number of terms, which is incompatible with
importance sampling.

Note that for the purpose of the map update, if a mea-
surement is considered explained, the index of the line
leading to highest likelihood is recorded as j?k,i. The list of
unexplained measurement is also stored to create additional
line hypotheses.



4) Map update: The map update stage has three purposes,
first for “explained” measurements, the associated line needs
to be updated to account for the new piece of information.
Second, the “unexplained” measurements are used to create
additional line hypotheses. Third, consistency checks are
used to eliminate line hypotheses which are no longer
supported by the observations.

a) Line update: Knowing a measurement ri(k) and its
associated line in particle Pi, Li,j?k,i

, one needs to update
the corresponding (θj? , bj?). The definition of di,j suggest
the use of an Extended Kalman Filter. Even though such
a filter is feasible, the individual measurements can often
be explained equivalently by changing θj? or bj? , which
prevents a precise convergence of the filter. To sidestep this
issue, an alternative is to keep a record of the sensor poses
and ranges associated with this line and use a non-linear
minimization of the following cost function:

Cj?(θ, b) = (6)
k∑

s=1

[
(cos(θ) · xi(s) + sin(θ) · yi(s) + b)

2 − r(s)2
]

Although much more expensive, this approach converges
without bias even when the measurements are taken on a
monotonic walk along the edge.

b) New lines: For unexplained measurements, we need
to combine them with the measurements from the previous
time step to create edge hypotheses (sec. III-C). Every pair
made of one previous measurement and a new unexplained
measurement is used to generate one or two edge hypothe-
ses. All the previous measurements are used for additional
robustness against incorrectly associated measurements at the
previous time step. All these hypotheses are added to the line
set of the current particles.

c) Map clean-up: In a final stage of the map update,
all the lines in a particle line set are checked for pairwise
consistency. If two lines are deemed inconsistent and one
of them has been observed (i.e. associated with a measure-
ment) significantly more than the other since its creation,
then the least observed line is marked for deletion. In our
implementation, this criterion is defined as being observed
two additional times. In this stage we also mark for deletion
lines that were not re-observed enough since their creation.
For instance, we delete a line that is more than 10 step-
old but has been observed less than 3 times. The simple
delayed outlier removal described in this paragraph is what
makes possible the generation of many edge hypotheses from
the set of detected echoes. This is critical since many of
these hypotheses cannot be ruled out until the robot moves
significantly and changes direction. In comparison, in [16]
the authors made the hypotheses of a random walk of the
agent, which is a much more informative path, but also much
less realistic for a robotic crawler.

IV. RESULTS

A. Experimental setup

At the time of this writing, the experimental setup is not
yet integrated on a robotic crawler. Instead, in order to test
our framework in a setup as close as possible from reality,
we used a pair of emitter-receiver piezo-electric transducer
on two different aluminium plates (plate 1: 470x470x5mm
and plate 2: 600x450x6mm) and moved them by hand on
the vertices of a regular grid with 30 to 40mm spacing.
At every position, the response to 10 ultrasonic scans were
averaged and recorded with their acquisition position. A scan
in this context is the emission of two periods of a 100kHz
sine wave and the recording of 400µs of analog signal at
1Msample/second.
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Fig. 3. Experimental setup for metal plate 1. The emitter and receiver
transducer can be seen on the bottom right of the figure.

To simulate a sweep of a plate by a robotic crawler, the
corresponding sequence of measurements is selected from
the database and presented to the SLAM framework, with the
theoretic displacement between grid cells used as odometry.
We believe that, apart from the size of the plates which is
smaller than real ones, this setup is a correct representation
of a real system in terms of signal quality and overall input
precision.

B. Echo detection

Figure 4 illustrates the echo detection process. Panel a)
shows the emitted signal, which is a 2-cycle burst at 100kHz.
The reflected signal from the plate structure can be seen in
panel b). It shows the pickup of the emission in the beginning
of the signal, and a reflection due to coupling mismatches.
Then, a series of echoes is apparent. Using the L1-based
approach, the impulse response can be reconstructed (see
panel b, orange trace). The method reconstructs the major
echo components of the impulse response, while ensuring
that the solution is sparse. Panel c) shows the reconstruction
error. The fact that this residual is not zero can be explained
by the fact that the direction-dependent filtering of the
transducer is not taken into account during the reconstruction
phase. However, as the remaining experiments show, this
crude approach to the echo detection process is sufficient
for the plate-estimation algorithm.
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Fig. 4. Illustration of the echo detection process. Panel a) shows the emitted
signal. Panel b) shows the echo signal (blue trace) and the reconstructed
impulse response (orange trace). Panel c) shows the reconstruction residual.
The remaining energy in that residual can be explained by the mismatch in
the used signal model D and the real transducer.

C. Edge hypotheses

Fig. 5 gives an example of computed edges from the
combination of the two first measurements on plate 2. As
can be observed, the number of edge hypotheses is relatively
large but a few of them are definitely good estimates of the
real top and bottom edges. At this position, lateral edges
are not observed correctly. The level of uncertainty in the
putative edges is what calls for the FastSLAM framework
and the delayed decision the validity of the edges.

r(1): 0.1151,
0.1297,
0.1436,
0.3406,
0.3557

r(2): 0.1454,
0.1594,
0.1788,
0.1933,
0.3163,
0.3333,
0.4484

Fig. 5. Edge hypotheses generated on plate 2 from detected echoes r(1)
(blue dot) and r(2) (purple dot), without consistency check. The purple
rectangle is the outline of the true plate.

D. Mapping performance

Figure 6 shows one anecdotal example of a mapping run
on plate 2 by displaying the highest-ranked particle (out of 16
in this case), its line set and its trajectory. The reconstructed
path is clearly visible and the stability of the estimate can
be observed when performing a second sweep of the path
(iterations 225 and 239). The convergence of the estimated
lines to the true plate outline can also be observed, with a

final error in the order of 2cm on the line offsets b (see eq. 4).
Even though this run has a lower precision than the average
case, 2cm is still a very acceptable precision given that the
sensors are positioned by hand and that the wave length in
this plate is approximately 3cm.

1 12 36

124 225 239

Fig. 6. Evolution of the map representation for the highest-ranked particle
at step 1, 12, 36, 124, 225 and 239. The purple frame represent the outline
of the true plate. The red dot is the current estimated sensor pose and the
red line is the history of its estimated trajectory. The darkness of the line
is proportional to the number of times they have been observed.

As a final evaluation, we evaluated the precision and
repeatability of our approach through 100 repetitions in three
scenarios. Scenario 1 and 2 consisted of a lawn-mover path
through the plate 1 and 2. The length of the sweeping
path being 81 steps and 108 steps respectively. In a third
scenario, we used plate 1 and simulated localization and
plate geometry estimation over a random walk. In the three
cases, the real measurements described above were used.
However, a single database of measurements was used for
every repetition. The table below presents a summary of the
resulting precision at different steps in the process. It is clear
that the initial estimates after observing only half of the plate
are still very uncertain for all the scenarios, but at the end
of the simulation all lines from plate 1 are estimated with a
precision consistent with the signal wavelength. The poorer
performance on plate 2 are due to the somewhat larger size
of the plate and to the presence of artificial defects that are
acting as reflectors and creating detection artifacts.

Scenario Angle error [rad] Offset error [m]
Scenario 1, step 50 0.017± 0.057 0.004± 0.032
Scenario 2, step 50 −0.029± 0.154 −0.061± 0.199
Scenario 3, step 50 −0.008± 0.084 −0.031± 0.133

Scenario 1, step 239 0.005± 0.020 0.002± 0.010
Scenario 2, step 239 −0.007± 0.091 −0.015± 0.126
Scenario 3, step 239 −0.001± 0.040 0.002± 0.045

V. CONCLUSIONS

This paper presented a proof-of-concept for a localization
and plate geometry inference framework for a magnetic
crawler performing inspection of structures assembled out
of metal plates. The results show that there is enough infor-
mation in the reflected signals to achieve a good localization
and mapping precision as long as a sufficient coverage of
the plate is performed. The next steps will be to embed
this framework on a robotic platform as presented in fig. 1,
test on larger plate, improve the overall system robustness
and consider an active sensing strategy to recover the plate
geometry faster and even more reliably.
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