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Abstract

In this paper, we give explicit rates in the central limit theorem and in the almost

sure invariance principle for general Rd-valued cocycles that appear in the study of the

left random walk on linear groups. Our method of proof lies on a suitable martingale

approximation and on a careful estimation of some coupling coefficients linked with the

underlying Markov structure. Concerning the martingale part, the available results in the

literature are not accurate enough to give almost optimal rates whether in the central limit

theorem for the Wasserstein distance, or in the strong approximation. A part of this paper

is devoted to circumvent this issue. We then exhibit near optimal rates both in the central

limit theorem in terms of Wasserstein distance and in the almost sure invariance principle

for Rd-valued martingales with stationary increments having moments of order p ∈]2, 3]

(the case of sequences of reversed martingale differences is also considered). Note also

that, as an application of our results for general Rd-valued cocycles, a special attention is

paid to the Iwasawa cocycle and the Cartan projection for reductive Lie groups.
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1 Introduction

Let G = GLd(R) be the group of invertible real matrices of order d ≥ 2. Denote by ‖ · ‖ the

operator norm on G associated with the euclidean norm on Rd. Let µ be a probability on the

Borel sets of G. Let (Yn)n≥1 be independent identically distributed (iid) variables with law µ. It

is well-known that, if µ admits a moment of order 1 and under some irreducibility assumption

on the support of µ, then the sequence ( 1
n

log ‖Yn · · ·Y1‖)n≥1 converges almost surely to λµ ∈ R
(see for instance Furstenberg and Kesten [16]).

If µ is further assumed to admit exponential moments and to satisfy a proximality property,

Le Page [25] and Guivarc’h and Raugi [18] proved a central limit theorem (CLT) with rate as

well as other probabilistic results, by spectral gap methods. The CLT has been obtained by Jan

[21] under a moment of order 2 + ε, by mean of martingale approximation.

Very recently, Benoist and Quint [1] managed to prove the CLT under a moment of or-

der 2 thanks to an ingenious and explicit martingale-coboundary decomposition. Later, Cuny,

Dedecker and Jan [7] gave a different proof of Benoist-Quint’s result. Using precise controls of

some coupling coefficients of the underlying Markov chain and an explicit martingale approx-

imation, they derived more probabilistic results such as almost sure invariance principles with

rates. Next, Cuny, Dedecker and Merlevède [8] obtained different types of deviation results.

In all the above mentioned works, the first step of the proof consists in reducing the study

to a suitable cocycle on G × X, where X stands for the projective space of Rd. Recall that

σ : G ×X → R is a cocycle if σ(gg′, x) = σ(g, g′ · x) + σ(g′, x) for every g, g′ ∈ G and x ∈ X,

where · denotes an action of G on X. For instance to deal with (log ‖Yn · · ·Y1‖)n≥1, one can use

the cocycle σ(g, x) = log
(‖g · x‖
‖x‖

)
.

The central limit theorem for cocycles benefited from an active research in the last years.

Let us mention, beside [1], [7] and [8], the works of Björklund [5], Benoist and Quint [2] and

Horbez [19].

It happens that the arguments developped in [7] are somewhat general and apply equally

to any cocycle on σ : G × X → Rd (G a locally compact group acting on a compact metric

space X) provided that the action is suitably contracting and that the cocycle is Lipschitz in the

second coordinate with Lipschitz norm σLip(g) satisfying integrability conditions with respect to

µ, see Definition 3.3 and Section 3.2 for more details.

Hence a first goal of the paper is to extend results of [7] to general Rd-valued cocycles. As a

main motivation we have in mind the Iwasawa cocycle to which our results apply and for which

the CLT has been obtained by Benoist and Quint [1] under a moment of order 2. Then, as in
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[7] or [8] many probabilistic results follow: strong laws of large numbers with rate, the CLT

(and its functional form), deviation inequalities. For those results it is not an issue to treat

vector-valued processes. However, there are several results in probability theory that do not

extend easily from the one-dimensional case to the multivariate one. As a matter of fact, for

Rd-valued martingales, no almost sure invariance principle (ASIP) with explicit rate is available

in the litterature. Indeed, the only known rates are of the form O(n1/2−ε) for some ε > 0, see

for instance Morrow and Philipp [30], Monrad and Philipp [29] and Eberlein [15], while in the

one dimensional case, martingales with stationary increments in Lp for some for 2 < p < 4,

satisfy an ASIP with rate o(n1/p
√

log n). A similar rate also holds for p = 4 but no better rate

is available for p > 4.

A second goal of the paper is then to prove an ASIP with explicit rates for Rd-valued mar-

tingales with stationary increments, which is the main technical result of the present work. Our

result hold when the martingales are in Lp for some 2 < p ≤ 3, so that the case 3 < p ≤ 4

remains open, contrary to the one-dimensional case. The method of proof also allows to derive

rates of convergence in the CLT for Rd-valued martingales with stationary increment, in terms of

the Wasserstein distance W1. Using then a suitable martingale approximation, we derive ASIP

with explicit rates for general Rd-valued cocycles.

Let us mention that, to prove the ASIP for cocycles, a second way would be to apply a

multidimensional version of the strong approximation result of Berkes, Liu and Wu [4], as given

in Karmakar and Wu [22]. However, a direct application of this result would not give the good

rate of convergence with respect to the moment of µ (see the introduction of [9] for more details).

Hence an adaptation of the result of [22], similar to what we did in [9] for real-valued cocycles,

would be necessary here, and it is not clear wether this adaptation is feasible or not. Let us also

mention that the ASIP for Rd-valued martingales is interesting in itself, and can be useful in

other situations.

The paper is organized as follows. In Section 2 we state our results for Rd-valued martingales.

In section 3, we describe the type of weakly contractive actions that we shall deal with, and

obtain several preliminary results. Then, we describe the properties that the cocycles should

satisfy to implement the arguments used in [7], and we derive several probabilistic results for

those cocycles, emphasizing the consequences of our martingale results. We conclude Section

3 by an application to the Iwasawa cocycle and to the Cartan projection. The fact that the

Iwasawa cocycle does satisfy our conditions follows from the recent book by Benoist and Quint

[3]. Finally, Section 4 is devoted to the proofs and the appendix contains a useful Fuk-Nagaev

type inequality for martingales.
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2 Rates of convergence in the ASIP and the CLT for Rd-

valued martingales

In this section we consider a stationary sequence of random variables with values in Rd and de-

fined on a probability space (Ω,A,P). Let (Fn)n∈N be a stationary and non-decreasing sequence

of σ-algebras (see e.g. page 10 in [27] for the definition of a stationary filtration). We suppose

that (dn)n∈N is a stationary sequence of martingale differences with respect to (Fn)n∈N, i.e. for

each n, dn is integrable, Fn-measurable and such that E(dn|Fn−1) = 0 P-a.s.

For any random variable X with values in Rd, we shall use the notation (X)i to mean its

i-th coordinate. In addition | · |d means the euclidean norm on Rd.

In this section we give, under projective conditions, rates of convergence in the almost sure

invariance principle for the partial sums associated with a stationary sequence of martingale

differences with values in Rd.

Notation 2.1. For any p > 2, define the envelope norm ‖ . ‖1,Φ,p by

‖X‖1,Φ,p =

∫ 1

0

(1 ∨ Φ−1(1− u/2))p−2QX(u)du

where Φ denotes the d.f. of the N(0, 1) law, and QX denotes the quantile function of |X|, that

is the cadlag inverse of the tail function x→ P(|X| > x).

Remark 2.1. Let a > 1 and p > 2. Applying Hölder’s inequality, we see that there exists a

positive constant C(p, a) such that ‖X‖1,Φ,p ≤ C(p, a)‖X‖a.

Theorem 2.1. Let (dn)n∈Z be a Rd-valued stationary sequence of martingale differences with

respect to (Fn)n∈Z. Let Mn =
∑n

k=1 dk. Let p ∈]2, 3]. Assume that E|d0|pd <∞ and that for any

i, j such that 1 ≤ i, j ≤ d,

∞∑
n=1

1

n3−p/2

∥∥E((Mn)i(Mn)j
∣∣F0

)
− E

(
(Mn)i(Mn)j

)∥∥
1,Φ,p

<∞ , (2.1)

and
∞∑
n=1

1

n1+2/p

∥∥E((Mn)i(Mn)j
∣∣F0

)
− E

(
(Mn)i(Mn)j

)∥∥
p/2

<∞ . (2.2)

Then,

1. For any ε > 0, enlarging Ω if necessary, there exists a sequence (Ni)i≥1 of iid Rd-valued

centered gaussian random variables with Var(N1) = E(d0d
t
0) such that

Mn −
n∑
i=1

Ni =

{
o(n1/p(log n)

p+1
2p

+ε) if p ∈]2, 3[

o(n1/3(log n)1+ε) if p = 3
almost surely .
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2. Enlarging Ω if necessary, there exists a sequence (Ni)i≥1 of iid Rd-valued centered gaussian

random variables with Var(N1) = E(d0d
t
0) such that∥∥∥ sup

1≤k≤n

∣∣Mk −
k∑
i=1

Ni

∣∣
d

∥∥∥
1

=

{
O(n1/p(log n)

p−1
2p ) if p ∈]2, 3[

O(n1/3(log n)2/3) if p = 3
.

Remark 2.2. According to Remark 2.1, if p ∈]2, 3], condition (2.1) is implied by the condition:

for some a > 1,
∞∑
n=1

1

n3−p/2

∥∥E((Mn)i(Mn)j
∣∣F0

)
− E

(
(Mn)i(Mn)j

)∥∥
a
<∞ . (2.3)

Hence, both (2.1) and (2.2) hold as soon as

∞∑
n=1

1

n3−p/2

∥∥E((Mn)i(Mn)j
∣∣F0

)
− E

(
(Mn)i(Mn)j

)∥∥
p/2

<∞ . (2.4)

Let Lip(|·|d) be the set of Lipschitz functions g from Rd to R such that |g(x)−g(y)| ≤ |x−y|d.
For two measures µ and ν on Rd, let

W1(µ, ν) = sup
g∈Lip(|·|d)

(µ(g)− ν(g)) .

Theorem 2.2. Let (dn)n∈Z be a Rd-valued stationary sequence of martingale differences with

respect to (Fn)n∈Z satisfying the assumptions of Theorem 2.1. Let GΣ be a Rd-valued centered

gaussian random variables with Var(GΣ) = E(d0d
t
0) := Σ. Then

∥∥W1

(
Pn−1/2Mn|F0

, PGΣ

)∥∥
1
≤

{
Cn(2−p)/2 if p ∈]2, 3[

Cn−1/2 log n if p = 3
,

where C is a positive constant depending on (p, d) but not on n.

Remark 2.3. It follows from Theorem 2.2 that, for any bounded F0-measurable random variable

Z,

sup
g∈Lip(|·|d)

(
E
(
Zg
(
n−1/2Mn

))
− E(Z)E(g(GΣ))

)
≤

{
Cn(2−p)/2 if p ∈]2, 3[

Cn−1/2 log n if p = 3
.

In particular, taking Z ≡ 1, we obtain that

W1

(
Pn−1/2Mn

, PGΣ

)
≤

{
Cn(2−p)/2 if p ∈]2, 3[

Cn−1/2 log n if p = 3
.

From the above result, proceeding as in [11], one can derive rates in the central limit theorem

with respect to W1 for the normalized partial sums of a large class of stationary sequence of

Rd-valued dependent random variables satisfying some mixingale type conditions. For related

results under other types of dependence conditions, let us mention the paper by Pène [31].
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Remark 2.4 (Reversed martingale differences sequences). Let p ∈]2, 3]. Assume that (dn)n∈Z

is a Rd-valued stationary sequence of reversed martingale differences in Lp with respect to a

stationary and non-increasing sequence (Gn)n∈Z of σ-algebras. This means that for any integer

n, dn is Gn-adapted and E(dn|Gn+1) = 0 a.s. Let Mn =
∑n

k=1 dk. We infer that the conclusions of

Theorem 2.1 and Theorem 2.2 hold for Mn (with Gn+1 in place of F0 in Theorem 2.2) provided

that the conditions (2.1) and (2.2) are replaced by the following ones:

∞∑
n=1

1

n3−p/2

∥∥E((Mn)i(Mn)j
∣∣Gn+1

)
− E

(
(Mn)i(Mn)j

)∥∥
1,Φ,p

<∞ , (2.5)

and
∞∑
n=1

1

n1+2/p

∥∥E((Mn)i(Mn)j
∣∣Gn+1

)
− E

(
(Mn)i(Mn)j

)∥∥
p/2

<∞ . (2.6)

See Section 4.1.5 for a short proof of this remark.

Proceeding, as in [10], this type of result for reversed martingale differences sequences allows

to derive rates in the strong invariance principle for Rd-valued observables of a large class of

dynamical systems (see also [23] where reversed martingale approximations in Rd are provided

that could be used to verify conditions such as (2.5) and (2.6)). This reversed martingale

approximation method allows to derive rates up to n1/3 (up to additional logarithm terms)

which improves, in case of Rd-valued bounded Hölder observables, the rates obtained in [26]

which depend on the dimension d (in particular, when d is large, the rates in [26] are close to

1/2). Note that, for a class of processes with exponential decay of correlations, the rate n1/4+ε

for some ε > 0 can be reached for Rd-valued observables, by using the method developed in [17].

3 Weakly contracting actions

3.1 Definitions and properties

We shall work in the general situation described in section 11 of [3]. At first reading one may

assume that the group F below is trivial (i.e. reduced to its neutral element). In our applications,

F will be trivial as soon as G is connected (see Remark 3.2).

Let G be a locally compact second countable group. Let s : G → F be a continuous

homomorphism onto a finite group F .

Let µ be a probability on the Borel sets B(G) of G. Let s(µ) := µ ◦ s−1, and ∆µ the support

of s(µ).
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Definition 3.1. We say that µ is F -adapted if ∆µ spans F as a subgroup. We say that µ is

F -strictly aperiodic if it is F -adapted and if the smallest normal subgroup of F a class of which

contains ∆µ is F .

Remark 3.1. Our terminology is different from [3]. Our definition of F -strict aperiodicity

corresponds to their definition of aperiodicity (see Derriennic-Lin [14, Prop. 1.6] for a proof of

the equivalence of the definitions).

Remark 3.2. When F is trivial, µ is automatically F -adapted and F -strictly aperiodic. If G

is connected then s(G) = {eF} (eF is the neutral element of F ). In particular, in that case, if µ

is F -adapted, F must be trivial.

Let X be a compact and second countable metric space on which G acts continuously (we

denote that action by g · x). Assume that X is fibered over F , meaning that there exists

a G-equivariant continuous mapping f : X → F . Recall that G-equivariance means that

f(g · x) = s(g)f(x) for every (g, x) ∈ G×X.

Notice that when X is fibered over F then the sets (Xf)f∈F := (f−1({f}))f∈F are compact

and open and obviously form a partition of F . Those sets are called the fibers.

Before going further, to motivate our definitions, let us describe some situations to which our

results will apply. Take G = GLd(R). Then, it is well known that we have an homeomorphism

G = KN where K = Od(R) is the group of orthogonal matrices of size d and N is the group of

upper triangular matrices of size d with positive entries on the diagonal. We take X := G/N

which is homeomorphic to K (hence compact). Then, if x = kN ∈ X, we set f(x) = sgn det(k),

the sign of the determinant of k. Similarly, for g ∈ G we set s(g) = sgn det(g). The fact that

the conditions imposed below may be satisfied will be explained in Section 3.4.

One may also take G := SLd(R). Then, K = SOd(R) and f and s become trivial.

When G = GLd(R) or SLd(R), one may also take for X the projective space of Rd. This

special case has been handled in [7] and [8].

Definition 3.2. We say that a probability ν on the Borel sets B(X) of X is µ-invariant if∫
G×X

h(g · u)µ(dg)ν(du) =

∫
X

h(u)ν(du) ,

for every bounded Borel function h on X.

For every g ∈ G, set

Lip(g) := sup
x6=y,f(x)=f(y)

d(g · x, g · y)

d(x, y)
, (3.1)

where the supremum is over all x, y ∈ X such that x 6= y and f(x) = f(y).

7



Definition 3.3. Let p ≥ 1. We say that the action of G on (X, d) is weakly (µ, p)-contracting if∫
G

(
log+(Lip(g))

)p
µ(dg) <∞ , (3.2)

where log+(x) = log(max(1, x)), and if there exists n0 ∈ N, such that

sup
x6=y,f(x)=f(y)

∫
G

log
(d(g · x, g · y)

d(x, y)

)
µ∗n0(dg) < 0 . (3.3)

When p = 1 we shall just say that the action is weakly µ-contracting.

Remark 3.3. Notice that the left-hand side in (3.3) may be −∞. Benoist and Quint [3,

Definition 11.1] called an action (µ, γ)-contracting for some γ > 0, if∫
G

(Lip(g))γ µ(dg) <∞ , (3.4)

and

sup
x 6=y,f(x)=f(y)

∫
G

(d(g · x, g · y)

d(x, y)

)γ
µ∗n0(dg) < 1 . (3.5)

Using Jensen’s inequality, one can see that (3.4) implies (3.2) and that (3.5) implies (3.3).

Remark 3.4. Let α ∈ (0, 1], then dα(x, y) := (d(x, y))α defines another metric on X. Let p ≥ 1.

For every α ∈ (0, 1], the action of G on (X, d) is weakly (µ, p)-contracting, for some p ≥ 1 if

only if the action of G on (X, dα) is.

Benoist and Quint [3] proved (see their Lemma 11.5 p. 171) that if the action is (µ, γ)-

contracting, for some γ > 0, then there exists a unique µ-invariant probability on B(X).

We shall prove that their result remains true under the weaker assumption that the action is

weakly µ-contracting. As in [3], the proof makes use of the left (and right) random walk on X.

Let (Ω,F ,P) be a probability space. Assume that there exists (Yn)n≥1 iid random variables

on (Ω,F ,P) taking values in G with common law µ. Define An := Yn · · ·Y1 and Bn = Y1 · · ·Yn
for every n ≥ 1 and A0 = e, where e stands for the neutral element of G.

Proposition 3.1. Assume that the action is weakly µ-contracting and that µ is F -adapted.

Then, there exists a unique µ-invariant probability on B(X).

The proof is based on the following two lemmas. The proofs of the proposition and of the

lemmas below are postponed to Section 4.2.
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Lemma 3.2. Assume that µ is F -adapted. Let ν be a µ-invariant probability on B(X). Then,

ν(Xf ) = 1
|F | for every f ∈ F .

Lemma 3.3. Assume that the action is weakly µ-contracting. Then, there exists ` > 0 such that∑
n≥0

sup
x 6=y,f(x)=f(y)

P
(

log
(d(B2n · x,B2n · y)

d(x, y)

)
≥ −2n`

)
<∞ . (3.6)

Remark 3.5. Of course, since (An)n≥1 has the same law as (Bn)n≥1, the lemma holds with A2n

in place of B2n . However, we shall need the above form in the proof of Proposition 3.1.

We shall see now that for weakly-contracting actions, the trajectories (starting from a same

fiber) of the left random walk on X are almost surely arbitrary close. The next lemma is a

version of Lemma 6 in [7].

Lemma 3.4. Let p ≥ 1. Assume that the action is weakly (µ, p)-contracting. Then, there exists

` > 0, such that∑
k≥1

kp−2 max
k≤j≤2k

sup
x 6=y,f(x)=f(y)

P (log (d(Aj−1 · x,Aj−1 · y)) ≥ −`k) <∞ . (3.7)

Moreover, there exists δ > 0 such that for every x, y ∈ X, with f(x) = f(y),

d(An · x,An · y) = O(e−δn) P-a.s. (3.8)

3.2 Cocycles over weakly contracting actions

Our goal is to obtain limit theorems for cocyles associated with a weakly µ-contracting G-action

on a compact metric space X that is fibered over F , as in the previous section. We shall be

concerned with cocycles taking values in a finite dimensional R-vector space E, equipped with

an euclidean norm | · |E.

Definition 3.4. We say that σ : G×X → E is a cocycle if for every g, g′ ∈ G and every u ∈ X,

σ(gg′, u) = σ(g, g′ · u) + σ(g′, u) . (3.9)

Of course we need some regularity assumptions on the considered cocycles. In order to state

the needed assumptions we shall introduce some notations.

Given a cocycle σ : G×X → E, define, for every g ∈ G,

σsup(g) := sup
x∈X
|σ(g, x)|E , (3.10)

σLip(g) := sup
x 6=y,f(x)=f(y)

|σ(g, x)− σ(g, y)|E
d(x, y)

(3.11)

and κ0(g) := max
(
σsup(g), log(σLip(g)

)
. (3.12)
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Definition 3.5. We say that a cocycle σ : G × X → E has a polynomial moment of order

p ≥ 1 if ∫
G

κp0(g)µ(dg) <∞ . (3.13)

Remark 3.6. Let σ : G × X → E be a cocycle. Let (ei)1≤i≤d be an orthonormal basis of E.

Then, for every 1 ≤ i ≤ d, (g, x) 7→ σi(g, x) := 〈ei, σ(g, x)〉 is an R-valued cocycle and it is not

hard to see that σ has a polynomial moment of order p ≥ 1 if and only if σi has a polynomial

moment of order p ≥ 1 for every 1 ≤ i ≤ d. Because of this it will be sufficient to deal with

R-valued cocycles.

Hence, due to the remark above, we assume that the dimension d = 1 in the remaining of

this subsection.

We first recall the strong law of large numbers for cocyles. This follows here from Theorem

3.9 of [3], using Proposition 3.1.

Proposition 3.5. Assume that the action is weakly µ-contracting and that µ is F -adapted.

Assume moreover that σsup ∈ L1(µ). Then, for every x ∈ X,

σ(An, x)

n
−→
n→∞

∫
G×X

σ(g, x)µ(dg)ν(dx) =: λµ ,

P-a.s. and in L1(P). Moreover, the convergence in L1(P) is uniform over x ∈ X.

For every q > 0, define a non decreasing, concave function Hq on [0, 1] by Hq(0) = 0 and for

every x ∈ (0, 1], Hq(x) =
∣∣ log(xe−q−1)

∣∣−q.
The next result is a version of Lemma 5 of [7]. The proof being identical, it is therefore

omitted.

Lemma 3.6. For every r > 1, there exists Cr > 0 such that for every g ∈ G and every x, y ∈ X,

with f(x) = f(y),

|σ(g, x)− σ(g, y)| ≤ Cr(1 + κ0(g))rHr−1(d(x, y)) . (3.14)

Lemma 3.6 allows us to prove that the almost sure behaviour of the cocycle along the random

walk does not depend on the starting point of a given fiber.

Lemma 3.7. Let p > 1. Assume that the action is weakly (µ, p)-contracting, that µ is F -adapted

and that σ admits a moment of order p. Then, for every x, y ∈ X such that f(x) = f(y),

|σ(An, x)− σ(An, y)| = O(1) P-a.s.

10



Proof. Since σ admits a moment of order p, it is a well-known consequence of the Borel-Cantelli

lemma that κ0(Yk) = o(k1/p) P-a.s. Let x, y ∈ X be such that f(x) = f(y). Let r > 2p/(p− 1).

Using the cocycle property, (3.14) and (3.8), we have, P-a.s.

|σ(An, x)− σ(An, y)| ≤
n∑
k=1

|σ(Yk, Ak−1 · x)− σ(Yk, Ak−1 · y)|

≤ Cr(1 + κ0(Yk))
r

n∑
k=1

Hr−1(d(Ak−1 · x,Ak−1 · y)) ≤ C̃r

n∑
k=1

kr/p

kr−1
≤
∑
k≥1

C̃r
kr(p−1)/p−1

<∞ ,

and the result follows.

Proposition 3.8. Let p > 1. Assume that the action is weakly (µ, p)-contracting, that µ is

F -adapted and that σ admits a moment of order p. Then, for q ∈ [1, p),

∞∑
k=1

kp−q−1 sup
f(x)=f(y)

E (|σ(Yk, Ak−1 · x)− σ(Yk, Ak−1 · y)|q) <∞ , (3.15)

and for q ∈ (0, 1],

∞∑
k=1

kp−2 sup
f(x)=f(y)

E (|σ(Yk, Ak−1 · x)− σ(Yk, Ak−1 · y)|q) <∞ . (3.16)

The proof of the proposition may be done as the proof of Proposition 3 of [7], using Lemmas

3.4 et 3.6.

Proposition 3.8 gives us a control along trajectories starting from a same fiber. To deal with

trajectories starting from arbitrary fibers we shall need the following lemma (see for instance [3,

Lemma 11.6b]).

Lemma 3.9. Assume that µ is F -strictly aperiodic. There exist C > 0 and 0 < ρ < 1 such that

for every bounded function ϕ on F ,

sup
f∈F

∣∣∣∣∣E(ϕ(s(An)−1f
)
− 1

|F |
∑
f′∈F

ϕ(f′)

∣∣∣∣∣ ≤ Cρn sup
f∈F
|ϕ(f)| ∀n ∈ N .

Proposition 3.10. Let p > 1. Assume that the action is weakly (µ, p)-contracting, that µ is

F -strictly aperiodic and that σ admits a moment of order p. Then,∑
k≥1

kp−2 sup
x∈X
|E(σ(Yk, Ak−1 · x))− λµ| <∞ . (3.17)

11



Proof. One easily sees that
(

supx∈X
∣∣E(σ(Yk, Ak−1 · x)) − λµ

∣∣)
k≥1

is non increasing. Hence, it

is enough to prove that ∑
k≥1

kp−2 sup
x∈X
|E(σ(Y2k, A2k−1 · x))− λµ| <∞ .

We shall make use of the following identity based on Lemma 3.2

σ(Y2k, A2k−1 · x) = |F |
∑
f∈F

∫
Xf

ν(dy)σ(Y2k, A2k−1 · x) 1Xf
(Ak−1 · x) .

Notice that Ak−1 ·x ∈ Xf if and only if s(Ak−1)−1f = f(x). Using Lemma 3.9 and independence,

we infer that

|E(σ(Y2k, A2k−1 · x))− λµ|

=

∣∣∣∣∣E
(
|F |
∑
f∈F

∫
Xf

(
σ(Y2k, A2k−1 · x)− σ(Y2k, Y2k−1 . . . Yk · y)

)
1Xf

(Ak−1 · x)ν(dy)

)

+|F |
∑
f∈F

∫
Xf

E
(
σ(Y2k, Y2k−1 . . . Yk · y)

)
ν(dy)

(
E
(
1{f(x)}(s(Ak−1)−1f)

)
− 1

|F |

)∣∣∣∣∣
≤ sup

y : f(y)=f(x)

E (|σ(Yk, Ak−1 · x)− σ(Yk, Ak−1 · y)|) + Cρk−1|F |
∫
G

σsup(g)µ(dg) .

Then, the result follows from (3.15) with q = 1. �

It is also possible to prove the following version of Proposition 4 of [7]. Define for every

integer j and every x ∈ X, X̃j(x) := σ(Yj, Aj−1 · x)− λµ.

Proposition 3.11. Let p > 2. Assume that the action is weakly (µ, p)-contracting, that µ is

F -adapted and that σ admits a moment of order p. Then∑
k≥1

kp−3 sup
f(x)=f(y)

E
(∣∣∣X̃2

n(x)− X̃2
n(y)

∣∣∣) <∞ , (3.18)

and for every γ < p− 3 + 1/p,∑
k≥1

kγ sup
f(x)=f(y)

sup
k≤j<i≤2k

E
(∣∣∣X̃i(x)X̃j(x)− X̃i(y)X̃j(y)

∣∣∣) <∞ . (3.19)

Proposition 3.12. Let p > 2. Assume that the action is weakly (µ, p)-contracting, that µ is

F -strictly aperiodic and that σ admits a moment of order p. Then,∑
k≥1

kp−3 sup
x∈X

∣∣∣∣E (X̃2
k(x))−

∫
X

E(X̃2
k(y))ν(dy)

∣∣∣∣ <∞ , (3.20)
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and for every γ < p− 3 + 1/p,∑
k≥1

kγ sup
x∈X

sup
k≤j<i≤2k

∣∣∣∣E(X̃i(x)X̃j(x)
)
−
∫
X

E
(
X̃i(y)X̃j(y)

)
ν(dy)

∣∣∣∣ <∞ . (3.21)

The proof is similar to that of Proposition 3.10, hence is omitted.

Finally, we state without proof the following version of Lemma 13 of [7].

Lemma 3.13. Let p ≥ 2. Assume that the action is weakly (µ, p)-contracting, that µ is F -

adapted and that σ admits a moment of order p. Then

sup
f(x)=f(y)

‖σ(An, x)− σ(An, y)‖1 = O(1)

for r ∈ (1, 2],

sup
f(x)=f(y)

‖σ(An, x)− σ(An, y)‖r =

O(1) if r ≤ p− 1

O
(
n(r+1−p)/r) if r > p− 1,

and for p ∈ [2, 3],

sup
f(x)=f(y)

‖σ(An, x)− σ(An, y)‖p = O
(
n1/p

)
.

Remark 3.7. If F is trivial, in particular (see Remark 3.2) ifG is connected, then the proposition

holds with supx,y∈X rather than supf(x)=f(y).

3.3 Rates of convergence in the CLT and the ASIP

Thanks to the results of the previous section we can obtain many probabilistic results, as in [7]

or [8].

Let p ≥ 1. With the notations and definitions of the previous section, assume that the action

of G on X is weakly (µ, p)-contracting, that µ is F -strictly aperiodic and that σ is a R-valued

cocycle admitting a moment of order p. Then, the conclusion of Theorems 1 and 2 of [7] hold

provided that Sn,x is replaced with σ(An, x).

If we consider an Rd-valued cocycle, d ≥ 2, only the items (i) and (ii) of Theorem 1 of [7]

holds without any change. To extend their item (iii) to an Rd-valued cocycle, an application of

our Theorem 2.1 gives the following.
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Theorem 3.14. Let p ∈]2, 3]. Assume that the action is weakly (µ, p)-contracting and that µ is

F -strictly aperiodic. Let W0 be a random variable, with law ν, independent from (Yn)n≥1. Let σ

be an Rd-valued cocycle admitting a moment of order p. Then the series of matrices

Σ = Var(σ(Y1,W0)) + 2
∞∑
k=2

Cov(σ(Y1,W0), σ(Yk, Ak−1W0)) (3.22)

converges absolutely. Moreover,

1. For any ε > 0, enlarging Ω if necessary, there exists a sequence (Ni)i≥1 of iid Rd-valued

centered gaussian random variables with variance Σ such that

σ(An,W0)− nλµ −
n∑
i=1

Ni =

{
o(n1/p(log n)

p+1
2p

+ε) if p ∈]2, 3[

o(n1/3(log n)1+ε) if p = 3
almost surely .

2. Enlarging Ω if necessary, there exists a sequence (Ni)i≥1 of iid Rd-valued centered gaussian

random variables with variance Σ such that∥∥∥ sup
1≤k≤n

∣∣∣σ(Ak,W0)− kλµ −
k∑
i=1

Ni

∣∣∣
d

∥∥∥
1

=

{
O(n1/p(log n)

p−1
2p ) if p ∈]2, 3[

O(n1/3(log n)2/3) if p = 3
.

Moreover an application of our Theorem 2.2 (see Remark 2.3) gives the following result

concerning rates in the CLT in terms of Wasserstein distance of order 1.

Theorem 3.15. Let p ∈]2, 3]. Assume that the action is weakly (µ, p)-contracting and that µ

is F -strictly aperiodic. Let W0 be a random variable, with law ν, independent from (Yn)n≥1.

Let σ be an Rd-valued cocyle admitting a moment of order p. Let νn be the distribution of

n−1/2(σ(An,W0)− nλµ), and let Σ be defined by (3.22). Then

W1(νn, PGΣ

)
≤

{
Cn(2−p)/2 if p ∈]2, 3[

Cn−1/2 log n if p = 3
,

where C is a positive constant depending on (p, d) but not on n.

It is unclear, and probably not true in general, whether the above results hold for (σ(An, x))n≥1

(for every x ∈ X) rather than (σ(An,W0))n≥1. However, when F is the trivial group, using Lem-

mas 3.7 or 3.13, one sees that the above results hold true for (σ(An, x))n≥1, for every x ∈ X (the

same normal variables being used for all x).
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3.4 Applications to the Iwasawa cocycle for reductive Lie groups

In this section, we shall give a general situation to which the previous sections apply.

Our presentation will borrow notations as well as results from the monograph by Benoist and

Quint [3]. We refer to [3] for any complements on the topic discussed in that section. However,

for the sake of clarity, we shall not cover the generality treated in [3]. In particular, we shall

only condider algebraic groups over the field of real numbers, while the results presented here

extend to local fields modulo several technical issues.

We give the definition of the Iwasawa cocycle in a general setting and we will make explicit

all the objects in the particular case of the d-dimensional linear group.

Let G be a reductive algebraic real Lie group with lie algebra g. Recall that G is said to be

reductive if its unipotent radical, that is the greatest connected normal subgroup of G whose

elements are unipotent, is reduced to {e}, where e stands for the neutral element of G. Recall

also that G is algebraic if it is the set of solutions of a (finite) system of polynomial equations

(over R).

Define the killing form on g× g by

killing(x, y) := tr(ad x ad y) ∀x, y ∈ g .

Let K be a maximal compact subgroup of G with Lie algebra k. Let s be the orthogonal space

of k for the killing form and let a be a Cartan subspace of s, that is a is a commutative subalgebra

of s whose elements are diagonalizable over R and which is maximal with those properties. Let

A := exp a be the corresponding connected lie subgroup of G.

Let U be a maximal unipotent subgroup of G that is normalized by A. Let P := NG(U) be

the normalizer of U in G.

Denote by Gc, Kc and Pc the respective connected components of G, K and P .

We have the Iwasawa decomposition (the proof is sketched page 130 of [3])

G = KPc = KAU . (3.23)

The compact space P := G/Pc is known as the flag variety of G. Given η = kPc with k ∈ K
and g ∈ G, there exists a unique element z of a such that gk ∈ Kexp z U . We denote by σ(g, η)

that unique element.

Then, σ is a continuous cocycle known as the Iwasawa cocycle. It is related to the Cartan

projection that we shall introduce now.

Let Σ be the set of roots associated with a, that is, denoting by a∗ the dual vector space of

a,
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Σ := {α ∈ a∗ − {0} : gα 6= {0}} ,

where

gα := {y ∈ g : ∀x ∈ a, adx(y) = α(x)y} .

Let Σ+ be the set of positive roots associated with U , that is, if u stands for the lie algebra of

U , Σ+ is characterized by

u = ⊕α∈Σ+gα .

Define then a+ := {x ∈ a : ∀α ∈ Σ+, α(x) ≥ 0}. We have the Cartan decomposition (see

also page 130 of [3])

G = Kexp a+Kc .

Finally, define the Cartan projection as follows: for every g ∈ G, let κ(g) be the unique

z ∈ a+ such that g ∈ K exp z Kc.

For people not familiar with Lie groups we consider now the case where G = Gld(R), d ≥ 2,

and describe the different spaces introduced above.

In that case, one may take K = Od(R) the orthogonal group, A the group of invertible

diagonal matrices of size d with positive entries, U the group of upper triangular matrices whose

diagonal terms are all 1 and P the subgroup of invertible upper triangular matrices.

Let us describe the corresponding Lie algebras are. We have g = Md(R), the set of matrices

of size d. Then, the Killing form is given by killing(M,N) = 2d tr(MN) − 2trMtrN for every

M,N ∈ g. Then, k = {M ∈ g : M = −M t} the set of antisymmetric matrices; s is the

set of symmetric matrices of size d and a the set of diagonal real matrices of size d. Then,

Gc = {M ∈ G : detM > 0}, Kc = SOd(R) and Pc is the group of upper triangular matrices

with non-negative entries on the diagonal.

Finally, the set of positive roots is given by Σ+ = {αij : 1 ≤ i < j ≤ d} where for

M = diag(am)1≤m≤d, αij(M) = ai − aj and u is the set of upper triangular matrices with

vanishing diagonal. In particular, a+ consists of the set of diagonal matrices with entries in

non-increasing order.

In this case, the Iwasawa decomposition may be seen as a by-product the Gram-Schmidt

orthonormalization algorithm. Indeed, if M ∈ G then M sends the canonical basis to a non nec-

essarily orthonormal basis. Orthonormalizing the latter thanks to the Gram-Schmidt algorithm

one sees that there exists an upper triangular matrix T with positive diagonal coefficients such

that MT sends the canonical basis to an orthonormal basis, i.e. MT ∈ Od(R).
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The Cartan projection also has a nice interpretation in this case. It may be seen as a by-

product of the polar decomposition. In particular, for every M ∈ G there exist unique matrices

K,K ′ ∈ Od(R) and A ∈ G such that detK ′ = 1, A is diagonal with positive diagonal coefficients

in non decreasing order. The coefficients (λi)1≤i≤d of A are the square roots of the eigenvalues

of M tM . Hence, κ(M) = diag (log λi)1≤i≤d.

Let us come back to the general case. It follows from section 13.1 of [3] that P may be

endowed with a metric d compatible with the quotient topology on P . The metric is defined by

(13.3) (notice that in our situation, i.e. G is a real algebraic Lie group, Θ = Π, where Π is the

set of simple roots, that is the roots of Σ+ that are not the sum of two roots of Σ+). Moreover,

P is fibered over F where F := G/Gc (see page 142 of [3]. The group F is finite by Lemma 6.21

of [3].

It follows from (13.4) of [3] that there exists C,D > 0 such that

d(g · x, g · y) ≤ CeD|κ(g)|ad(x, y) ∀g ∈ G, ∀x, y ∈ P ,

where | · |a is an euclidean norm on a. In particular, for every g ∈ G,

Lip(g) ≤ CeD|κ(g)|a .

Definition 3.6. Following [3, Section 9], we say that a Borel probability measure on G is Zariski

dense if the subsemigroup Γµ spanned by the support of µ is G.

If µ is a Zariski dense Borel probability measure on G, then (13.10) of [3] holds, which means

exactly that (3.3) is satisfied. In particular, for a Zariski dense Borel probability measure µ on

G, the actions of G on P is weakly (µ, p)-contracting for some p ≥ 1, as soon as∫
G

|κ(g)|pa µ(dg) <∞ . (3.24)

In order to apply our results, it remains to control the Iwasawa cocycle. It follows from (8.16)

and (13.5) of [3], that there exist C,D > 0 such that

|σ(g, η)|a ≤ C|κ(g)|a ∀g ∈ G, η ∈ P
σLip(g) ≤ CeD|κ(g)|a ∀g ∈ G .

In particular, σ admits a moment of order p, for some p ≥ 1 as soon as (3.24) holds and our

results apply.
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Theorem 3.16. Let G be a reductive algebraic Lie group. Let µ be a Zariski dense Borel

probability measure on G that is F -strictly aperiodic. Let σ be the Iwasawa cocycle and κ be the

Cartan projection as above. Assume that (3.24) holds for some p ∈ (2, 3], and let Σ be defined

by (3.22). Then,

1. For any ε > 0, enlarging Ω if necessary, there exists a sequence (Ni)i≥1 of iid a-valued

centered gaussian random variables with variance Σ such that

∣∣Vn − n∑
i=1

Ni

∣∣
a

=

{
o(n1/p(log n)

p+1
2p

+ε) if p ∈]2, 3[

o(n1/3(log n)1+ε) if p = 3
almost surely ,

where (Vn)n≥1 is either of the processes (σ(An,W0) − nλµ)n≥1), (κ(An) − nλµ)n≥1 or

(σ(An, x)− nλµ)n≥1 for a given x ∈ P.

2. Enlarging Ω if necessary, there exists a sequence (Ni)i≥1 of iid Rd-valued centered gaussian

random variables with variance Σ such that∥∥∥ sup
1≤k≤n

∣∣Vk − k∑
i=1

Ni

∣∣
a

∥∥∥
1

=

{
O(n1/p(log n)

p−1
2p ) if p ∈]2, 3[

O(n1/3(log n)2/3) if p = 3
,

where (Vn)n≥1 is either of the processes (σ(An,W0) − nλµ)n≥1) or (κ(An) − nλµ)n≥1. If

moreover G is connected or G = GLd(R), then we also have

sup
x∈X

∥∥∥ sup
1≤k≤n

∣∣σ(Ak, x)− kλµ −
k∑
i=1

Ni

∣∣
a

∥∥∥
1

=

{
O(n1/p(log n)

p−1
2p ) if p ∈]2, 3[

O(n1/3(log n)2/3) if p = 3
.

Remark 3.8. The almost sure set in Item 1. above depends on x when Vn = σ(An, x).

Theorem 3.17. Let G be a reductive algebraic Lie group. Let µ be a Zariski dense Borel

probability measure on G that is F -strictly aperiodic. Let σ be the Iwasawa cocycle and κ be the

Cartan projection as above. Assume that (3.24) holds for some p ∈ (2, 3], and let Σ be defined

by (3.22). Let GΣ be an a-valued centered gaussian random variables with variance Σ. Then

W1(Pn−1/2Vn , PGΣ

)
≤

{
Cn(2−p)/2 if p ∈]2, 3[

Cn−1/2 log n if p = 3
,

where C is a positive constant depending on (p, d) but not on n and (Vn)n≥1 is either of the

processes (σ(An,W0)−nλµ)n≥1), (κ(An)−nλµ)n≥1. If moreover G is connected or G = GLd(R),

then we also have

sup
x∈X

W1(Pn−1/2(σ(An,x)−nλµ), PGΣ

)
≤

{
Cn(2−p)/2 if p ∈]2, 3[

Cn−1/2 log n if p = 3
,
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4 Proofs

All along the proofs we denote by C a numerical constant which may vary from line to line

and which may depend on d and p but not on n. We shall also denote sometimes by Ei the

conditional expectation with respect to Fi.

4.1 Proofs of the results of Section 2

4.1.1 Preliminaries

Let Σ = E(d0d
t
0). Suppose that Σ is nonnull (otherwise there is nothing to prove since the dk’s

are all almost surely equal to zero). Since Σ is symmetric and positive-semidefinite, it follows

that there exists a d-dimensional orthogonal matrix P such that

Σ = PDP t ,

with D = Diag(λ1, . . . , λd) where the λi’s are the eigenvalues of Σ ranking in the non-increasing

order. All these eigenvalues are reals and non-negative. Let m ∈ {1, . . . , d} be the number

of eigenvalues that are positive and ∆ = Diag(λ1, . . . , λm, λm, . . . , λm) (i.e. the d-dimensional

diagonal matrix such that the first m diagonal elements are equal to the first m diagonal elements

of D and the others to λm). Denote by Jm the d-dimensional diagonal matrix such that the first

m diagonal elements are equal to 1 and the others to 0. Since D = ∆1/2Jm∆1/2,

Σ = P∆1/2Jm∆1/2P t .

Setting Γ = Diag(λ
−1/2
1 , . . . , λ

−1/2
m , λ

−1/2
m , . . . , λ

−1/2
m ) (i.e. the inverse of ∆1/2) and A = ΓP t, it

follows that

AΣAt = Jm ,

since PP t = P tP = Id where as usual Id denotes the identity matrix on Rd. Note that A is

invertible and A−1 = P∆1/2. For any integer k, let now

mk = Adk .

Note that (mn)n∈N is a Rd-valued stationary sequence of martingale differences with respect to

(Fn)n∈N such that E|m0|pd < ∞ and satisfying E(m0m
t
0) = Jm. Hence, clearly, (m0)i = 0 a.s.

for any i = m + 1, . . . , d. For any integer k, let now d′k be the Rm-valued random vector whose

components are equal to the m-first components of mk, that is

d′k =
(
(mk)1, . . . , (mk)m

)t
.
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Clearly, (d′n)n∈N is a Rm-valued stationary sequence of martingale differences with respect to

(Fn)n∈N such that E|d′0|pm <∞ and satisfying E(d′0(d′0)t) = Im. Let M ′
n =

∑n
i=1 d

′
i.

A common key result for the proofs of Theorems 2.1 and 2.2 is the following lemma: Let

Lip(| · |m,F0) be the set of measurable functions g : Rm × Ω → R with respect to the σ-fields

B(Rm) ⊗ F0 and B(R), such that g(·, ω) ∈ Lip(| · |m) and g(0, ω) = 0 for any ω ∈ Ω. For the

sake of brevity, we shall write g(x) in place of g(x, ω).

Lemma 4.1. Under the assumptions of Theorem 2.1, setting Tn =
∑n

i=1Ni where (Ni)i≥1 is a

sequence of iid Rm-valued centered gaussian random variables with Var(N1) = Im, we have

sup
g∈Lip(|·|m,F0)

E(g(M ′
n))− E(g(Tn)) ≤

{
Cn(3−p)/2 if p ∈]2, 3[

C log n if p = 3
,

where C is a positive constant depending on (p,m) but not on n.

4.1.2 Proof of Theorem 2.1

The construction of the approximating sequence of Gaussian random variables uses the ideas

developed in the proof of Theorem 2.1 in Merlevède and Rio [28].

Let (m(L))L∈N be a sequence of non-negative integers that will be specified later but such

that m(L) ≤ L. Let

Ik,L =]2L + (k − 1)2m(L), 2L + k2m(L)] ∩ N and Uk,L =
∑
i∈Ik,L

d′i , k ∈ {1, · · · , 2L−m(L)} .

Let PUk,L|F2L+(k−1)2m(L)
be the conditional law of Uk,L given F2L+(k−1)2m(L) and N2m(L) denote the

N (0, 2m(L)Im)-law. The probability space is assumed to be large enough to contain a sequence

(δi)i∈Z of iid random variables uniformly distributed on [0, 1], independent of the sequence (di)i∈Z

(otherwise we enlarge it). According to Rüschendorf [32] (see also Theorem 2 in [13]), there exists

a Rm-valued random variable Vk,L with law N2m(L) , measurable with respect to σ(δ2L+k2m(L)) ∨
σ(Uk,L) ∨ F2L+(k−1)2m(L) , independent of F2L+(k−1)2m(L) and such that

E
(∣∣Uk,L − Vk,L∣∣m) = E

(
W1(PUk,L|F2L+(k−1)2m(L)

,N2m(L))
)

(4.1)

= E sup
f∈Lip(|·|m)

(
E
(
f(Uk,L)|F2L+(k−1)2m(L)

)
− E(f(Vk,L))

)
,

where we recall that Lip(| · |m) is the set of functions from Rm into R that are 1-Lipschitz with

respect to the euclidian norm | · |m on Rm. From Point 2 of Theorem 1 in [13], the following

inequality holds:

E
(
W1(PUk,L|F2L+(k−1)2m(L)

,N2m(L))
)

= sup
g∈Lip(|·|m,F2L

)

E(g(U1,L))− E(g(V1,L)) .
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Hence, using Lemma 4.1, we have that for any L ∈ N and any k ∈ {1, · · · , 2L−m(L)},

E
(∣∣Uk,L − Vk,L∣∣m) ≤

{
C2(3−p)m(L)/2 if p ∈]2, 3[

Cm(L) if p = 3
, (4.2)

where C is a positive constant depending on (p,m) but not on (k, L).

By induction on k, the random variables (Vk,L)k=1,...,2L−m(L) are mutually independent, inde-

pendent of F2L and with law N2m(L) . Hence we have constructed Gaussian random variables

(Vk,L)L∈N,k=1,...,2L−m(L) that are mutually independent. Now we construct a sequence (Zi)i≥1 of

iid standard Gaussian random vectors in Rm. For any L ∈ N and any k ∈ {1, · · · , 2L−m(L)} the

random variables

(Z2L+(k−1)2m(L)+1, . . . , Z2L+k2m(L))

are defined in the following way. If m(L) = 0, then Z2L+k2m(L) = Vk,L. If m(L) > 0, then by the

Skorohod lemma [33], there exists a measurable function g from Rm × [0, 1] in (Rm)⊗2m(L)
such

that, for any pair (V, δ) of independent random variables with respective laws N2m(L) and the

uniform distribution over [0, 1], g(V, δ) = (N t
1, . . . , N

t
2m(L)) is a Gaussian random vector with iid

components such that V = N1 + · · ·+N2m(L) a.s. Next we set

(Zt
2L+(k−1)2m(L)+1, . . . , Z

t
2L+k2m(L)) = g(Vk,L, δ2L+(k−1)2m(L)+1) .

We have then constructed a sequence (Zi)i≥2 of iid standard Gaussian random vectors in Rm

such that, for any L ∈ N and any k ∈ {1, · · · , 2L−m(L)},

Vk,L =
∑
i∈Ik,L

Zi a.s.

To complete the construction of the sequence (Zi)i≥1, it suffices to consider a Rm-valued standard

Gaussian random vector Z1 independent of (di, δi)i∈Z which is always possible by enlarging

enough the underlying probability space.

Let us now complete the proof of Theorem 2.1. First, for any k ≥ 1, we set

Yk = A−1Z ′k where Z ′k = (Zt
k,0d−m)t ,

0d−m denoting the row vector of dimension d −m whose all components are equal to 0. Since

Var(Z ′k) = Jm, we get that

Var(Yk) = A−1Jm(A−1)t = Σ .

So, (Yi)i≥1 is a sequence of iid centered Gaussian random vectors in Rd with covariance matrix
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Σ. Note that

sup
k≤n

∣∣Mk −
k∑
i=1

Yi
∣∣
d

= sup
k≤n

∣∣A−1
( k∑
i=1

mi −
k∑
i=1

Z ′i
)∣∣
d

≤ ‖A−1‖2 sup
k≤n

∣∣ k∑
i=1

mi −
k∑
i=1

Z ′i
∣∣
d

=
√
λ1 sup

k≤n

∣∣ k∑
i=1

d′i −
k∑
i=1

Zi
∣∣
m
,

where for the last inequality we have used the fact that

‖A−1‖2 =
√
ρ((A−1)tA−1) =

√
ρ(∆1/2P tP∆1/2) =

√
ρ(∆) =

√
λ1 .

Above and in the rest of the paper, for any B ∈ Mn(C), the notation ρ(B) means the spectral

radius of B. To prove the theorem, it suffices then to show that

sup
k≤n

∣∣ k∑
i=1

d′i −
k∑
i=1

Zi
∣∣
m

= o(n1/p(log n)a), almost surely , (4.3)

for a suitable a. With this aim, set Sj =
∑j

i=1 d
′
i and Tj =

∑j
i=1 Zi and let

DL := sup
`≤2L
|

2L+`∑
i=2L+1

(d′i − Zi)|m . (4.4)

Let N ∈ N∗ and k ∈]1, 2N+1]. We first notice that DL ≥ |(S2L+1 − T2L+1) − (S2L − T2L)|m, so

that, if K is the integer such that 2K < k ≤ 2K+1, |Sk−Tk|m ≤ |d′1−Z1|m+D0 +D1 + · · ·+DK .

Consequently since K ≤ N ,

sup
1≤k≤2N+1

|Sk − Tk|m ≤ |d′1 − Z1|m +D0 +D1 + · · ·+DN . (4.5)

In addition, the following decomposition is valid:

DL ≤ DL,1 +DL,2 , (4.6)

where

DL,1 := sup
k≤2L−m(L)

∣∣∣ k∑
`=1

(U`,L − V`,L)
∣∣∣
m

and DL,2 := sup
k≤2L−m(L)

sup
`∈Ik,L

∣∣∣ ∑̀
i=inf Ik,L

(d′i − Zi)
∣∣∣
m
.

End of the proof of Item 1. Let ε > 0 and

ap =
1

2
+

1

2p
+ ε if p ∈]2, 3[ and a3 = 1 + ε.
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From (4.4) and (4.5), it follows that the proof of Item 1 will be complete if we can show that,

for any L ∈ N,

DL,1 = O(2L/pLap) and DL,2 = O(2L/pLap) a.s. (4.7)

As we shall see below, this will be achieved by selecting the sequence (m(L))L≥0 as follows in

the construction of the iid gaussian vectors (Yi)i≥1 as described above: set bp = 1
p

if p ∈]2, 3[ and

b3 = 1 and

m(L) =
[2L

p
+ bp log2 L

]
, so that

1

2
22L/pLbp ≤ 2m(L) ≤ 22L/pLbp , (4.8)

square brackets designating as usual the integer part and log2(x) = (log x)/(log 2).

To prove the first part of (4.7), note that, by (4.2) and the selection of m(L), we get that,

for any c > 0,

P
(
DL,1 ≥ c2L/pLap

)
≤ c

2L/pLap

2L−m(L)∑
`=1

E
(∣∣U`,L−V`,L∣∣m) ≤ C

2L

2L/pLap
2(1−p)m(L)/2(1+1p=3m(L))

≤ C

Lap+(p−1)bp/2
(1 + 1p=3L) .

Hence, for any c > 0,

P
(
DL,1 ≥ c2L/pLap

)
≤ C

L1+ε
,

which together with the Borel-Cantelli lemma implies the first part of (4.7).

We turn now to the proof of the second part of (4.7). With this aim, we set

xL = κ2L/pLap for some κ > 0 ,

and first notice that, by stationarity, for any y > 0,

P(DL,2 ≥ 2y) ≤ 2L−m(L)P
(

sup
`≤2m(L)

|S`|m ≥ y
)

+ 2L−m(L)P
(

sup
`≤2m(L)

|T`|m ≥ y
)
. (4.9)

By Lévy’s inequality (see for instance Proposition 2.3 in [24]),

P
(

sup
`≤2m(L)

|T`|m ≥ xL

)
≤

m∑
i=1

P
(

sup
`≤2m(L)

|(T`)i| ≥ m−1/2xL

)
≤ 2m exp

(
− x2

L

m2m(L)+1

)
. (4.10)

On the other hand, using Proposition 5.1 of the appendix, we get that, for any integer i ∈ [1, d],

there exist two positive constants c1 and c2 such that, for any x > 0,

P
(

sup
`≤n
|(M`)i| ≥ x

)
≤ c1 exp

(
− x2

c2n

)
+ c2nx

−p . (4.11)
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Now note that

sup
`≤2m(L)

|S`|m = sup
`≤2m(L)

|AM`|d ≤ ‖A‖2 sup
`≤2m(L)

|M`|d .

But ‖A‖2 =
√
ρ(PΓ2P t) = λ

−1/2
m . Therefore, applying inequality (4.11), we get

P
(

sup
`≤2m(L)

|S`|m ≥ xL

)
≤

m∑
i=1

P
(

sup
`≤2m(L)

|(M`)i| ≥ (m−1/2λ1/2
m xL

))
≤ c1m exp

(
− x2

Lλm
c2m2m(L)

)
+ c2m

(2+p)/2λ−p/2m 2m(L)x−pL . (4.12)

Starting from (4.9) and considering the upper bounds (4.10) and (4.12), it follows that

P(DL,2 ≥ 2xL) ≤ m(c1 + 2)2L−m(L) exp
(
− x2

Lλm
c(m)2m(L)

)
+ c2m

(2+p)/2λ−p/2m 2Lx−pL , (4.13)

where

c(m) = mmax(2, c2λ
−1
m ) .

For any choice of κ, by the selection of xL and since pap > 1, it follows that
∑

L≥1 2Lx−pL <∞.

On another hand,
x2
L

2m(L)
≥ κ2L2ap−bp = κ2L1+2ε .

It follows that for any κ > 0, ∑
L≥1

2L exp
(
− x2

Lλm
c(m)2m(L)

)
<∞ .

So, overall, starting from (4.13) and using the Borel-Cantelli lemma, we can conclude that the

second part of (4.7) holds. This ends the proof of Item 1.

End of the proof of Item 2. Let ε > 0 and

ap =
1

2
− 1

2p
if p ∈]2, 3[ and a3 = 2/3.

Starting again from, (4.4) and (4.5), it follows that the proof of Item 2 will be complete if we

can show that, for any L ∈ N,

‖DL,1‖1 = O(2L/pLap) and ‖DL,2‖1 = O(2L/pLap) . (4.14)

As we shall see below, this will be achieved by selecting the sequence (m(L))L≥0 as follows in

the construction of the iid gaussian vectors (Yi)i≥1 as described previously: set bp = 1
p

if p ∈]2, 3[

and b3 = −1/3 and

m(L) =
[2L

p
− bp log2 L

]
, so that

1

2
22L/pL−bp ≤ 2m(L) ≤ 22L/pL−bp . (4.15)
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The first part of (4.14) follows by using (4.2) together with the above selection of m(L). To

show the second part of (4.14), we set yL = κ
−1/2
m (log 2)1/22m(L)/2L1/2 where κm = λm/c(m).

Hence, using (4.13), write that

‖DL,2‖1 ≤ yL +

∫ ∞
yL

P(DL,2 ≥ t)dt

≤ C
{
yL + 2Ly1−p

L + 2L−m(L)

∫ ∞
yL

exp
(
− κmt

2

2m(L)

)
dt
}

≤ C
{
yL + 2Ly1−p

L + 2L exp
(
−κmy

2
L

2m(L)

)}
≤ C{yL + 2Ly1−p

L } .

Taking into account the selection of yL and (4.15), Item 2 follows.

4.1.3 Proof of Theorem 2.2

Recall the notations A−1 = P∆1/2 and mk = Adk. Hence, we have

W1(PMn|F0 , PGnΣ
) ≤ ‖A−1‖2W1(P∑n

k=1 mk|F0
, PGnIm

) =
√
λ1W1(P∑n

k=1mk|F0
, PGnJm ) a.s.

Moreover, since E(m0m
t
0) = Jm, we have (m0)i = 0 a.s. for any i = m+ 1, . . . , d. Hence, setting

d′k =
(
(mk)1, . . . , (mk)m

)t
and M ′

n =
n∑
k=1

d′k ,

and noticing that E(d′0(d′0)t) = Im, we have

W1(P∑n
k=1 mk|F0

, PGnJm ) = W1(PM ′n|F0 , PGnIm ) a.s.

From Point 2 of Theorem 1 in [13], the following inequality then holds:

‖W1(PMn|F0 , PGnΣ
)‖1 ≤

√
λ1 sup

g∈Lip(|·|m,F0)

E(g(M ′
n))− E(g(Tn)) ,

where Tn =
∑n

i=1 Ni with (Ni)i≥1 a sequence of iid Rm-valued centered gaussian random variables

with Var(N1) = Im. To end the proof of the theorem, it suffices to use Lemma 4.1.

4.1.4 Proof of Lemma 4.1

Note first that we can assume the sequence (Ni)i≥1 independent of (di)i∈Z. Let us now consider

a m-dimensional standard Gaussian random vector G independent of (Ni)i≥1 and (di)i∈Z. Note

that

sup
g∈Lip(|·|m,F0)

E(g(M ′
n))− E(g(Tn)) ≤ sup

g∈Lip(|·|m,F0)

E(g(M ′
n +G))− E(g(Tn +G)) + 2E|G|m

≤ sup
g∈Lip(|·|m,F0)

E(g(M ′
n +G))− E(g(Tn +G)) + 2

√
m.

25



The lemma is then reduced to prove that

sup
g∈Lip(|·|m,F0)

E(g(M ′
n +G))− E(g(Tn +G)) ≤

{
Cn(3−p)/2 if p ∈]2, 3[

C log n if p = 3
. (4.16)

We now use the Lindeberg method to prove (4.16). With this aim, we introduce the following

notation:

Notation 4.1. Let ϕa be the density of a m-dimensional centered Gaussian random vector with

covariance matrix a2Im and let for x ∈ Rm,

g ∗ ϕa(x, ω) =

∫
g(x+ y, ω)ϕa(y)dy .

For the sake of brevity, we shall write g ∗ ϕa(x) instead of g ∗ ϕa(x, ω) (the partial derivatives

will be taken with respect to x) and set gi,n(x) = g ∗ ϕi,n where ϕi,n = ϕ√n−i+1.

Let

∆i,n(g) = g
(
M ′

i−1 + d′i +
n∑

j=i+1

Nj +G
)
− g
(
M ′

i−1 +Ni +
n∑

j=i+1

Nj +G
)
.

We have

E(∆i,n(g)) = E
(
gi,n
(
M ′

i−1 + d′i
))
− E

(
gi,n
(
M ′

i−1 +Ni

))
Hence, noticing that M0 = 0, the following decomposition is valid:

E(g(M ′
n +G))− E(g(Tn +G)) =

n∑
i=1

E
(
∆i,n(g)

)
. (4.17)

Below we shall also use the following notations.

Notation 4.2. For two positive integers m and n, letMm,n(R) be the set of real matrices with

m lines and n columns. The Kronecker product (or Tensor product) of A = [ai,j] ∈ Mm,n(R)

and B = [bi,j] ∈Mp,q(R) is denoted by A⊗B and is defined to be the block matrix

A⊗B =

 a1,1B · · · a1,nB
...

...

am,1B · · · am,nB

 ∈Mmp,nq(R) .

For any positive integer k, the k-th Kronecker power A⊗k is defined inductively by: A⊗1 = A

and A⊗k = A⊗ A⊗(k−1).

If ∇ denotes the differentiation operator given by ∇ =
(

∂
∂x1
, . . . , ∂

∂xm

)t
acting on the differ-

entiable functions f : Rm → R, we define

∇⊗∇ =
( ∂

∂x1

◦ ∇, . . . , ∂

∂xm
◦ ∇
)t
,
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and ∇⊗k by ∇⊗1 = ∇ and ∇⊗k = ∇⊗∇⊗(k−1). If f : Rm → R is k-times differentiable, for any

x ∈ Rm, let Dkf(x) = ∇⊗kf(x), and for any vector A of Rm, we define Dkf(x).A⊗k as the usual

scalar product in Rmk between Dkf(x) and A⊗k.

For any i ∈ {1, . . . , n}, let

∆1,i,n(g) = gi,n
(
M ′

i−1 + d′i
)
− gi,n

(
M ′

i−1

)
− 1

2
D2gi,n

(
M ′

i−1

)
.N⊗2

i ,

and

∆2,i,n(g) = gi,n
(
M ′

i−1 +Ni

)
− gi,n

(
M ′

i−1

)
− 1

2
D2gi,n

(
M ′

i−1

)
.N⊗2

i .

With this notation,

E
(
∆i,n(g)

)
= E

(
∆1,i,n(g)

)
− E

(
∆2,i,n(g)

)
. (4.18)

By the Taylor integral formula, noticing that E(N⊗3
i ) = 0, we get

∣∣E(∆2,i,n(g))
∣∣ ≤ 1

6

∣∣∣E∫ 1

0

D4gi,n
(
M ′

i−1 + tNi

)
.N⊗4

i dt
∣∣∣ .

But, according to Lemma 5.6 in [12], for any y ∈ Rm and any integer k ≥ 1, there exists a

positive constant ck depending only on k such that

sup
(i1,...,ik)∈{1,...,m}m

∣∣∣ ∂kg ∗ ϕi,n∏k
j=1 ∂xij

(y)
∣∣∣ ≤ ck(n− i+ 1)(1−k)/2 . (4.19)

Therefore ∣∣E(∆2,i,n(g))
∣∣ ≤ 2−1m4c4(n− i+ 1)−3/2 .

Therefore
n∑
i=1

∣∣E(∆2,i,n(g))
∣∣ ≤ 2−1m4c4

n∑
i=1

(n− i+ 1)−3/2 ≤ κ1m
4 . (4.20)

Let now

R1,i,n(g) = gi,n
(
M ′

i−1 + d′i
)
− gi,n

(
M ′

i−1

)
−Dgi,n

(
M ′

i−1

)
.d′i −

1

2
D2gi,n

(
M ′

i−1

)
.d′⊗2
i ,

and

R2,i,n(g) = Dgi,n
(
M ′

i−1

)
.d′i +

1

2
D2gi,n

(
M ′

i−1

)
.d′⊗2
i −

1

2
D2gi,n

(
M ′

i−1

)
.E(N⊗2

i ) .

With this notation,

E(∆1,i,n(g)) = E(R1,i,n(g)) + E(R2,i,n(g)) . (4.21)

By the Taylor integral formula at order two,∣∣E(R1,i,n(g))
∣∣ ≤ ∣∣∣E∫ 1

0

(1− t)
2

(
D2gi,n

(
M ′

i−1 + td′i
)
−D2gi,n

(
M ′

i−1

))
.d′⊗2
i dt

∣∣∣ .
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But, by taking into account (4.19), we infer that, for any t ∈ [0, 1],∣∣D2gi,n
(
M ′

i−1 + td′i
)
−D2gi,n

(
M ′

i−1

))
.d′⊗2
i

∣∣
≤ m(c2 ∨ c3)(n− i+ 1)−1/2

(
min

(
2|d′1|2m, tm1/2(n− i+ 1)−1/2|d′1|3m

))
≤ 2mp/2(c2 ∨ c3)(n− i+ 1)−1/2(n− i+ 1)−(p−2)/2|d′1|pm ,

since p ∈]2, 3]. Therefore, since |d′1|m = |Ad1|d ≤ ‖A‖2|d1|d =
√
ρ(PΓ2P t)|d1|d = λ

−1/2
m |d1|d, it

follows that ∣∣E(R1,i,n(g))
∣∣ ≤ 2−1λ−p/2m mp/2(c2 ∨ c3)(n− i+ 1)−(p−1)/2E(|d1|pd) .

Hence there exists a positive constant κ2 such that, for any positive integer n,

n∑
i=1

∣∣E(R1,i,n(g))
∣∣ ≤ κ2λ

−p/2
m mp/2E(|d1|pd)n

(3−p)/2(1 + 1p=3 log n) . (4.22)

Starting from the decomposition (4.18) and taking into account (4.20), (4.21) and (4.22), it

follows that for any g ∈ Lip(| · |m,F0),∣∣∣ n∑
i=1

E
(
∆i,n(g)

)∣∣∣ ≤ ∣∣∣ n∑
i=1

(E(R2,i,n(g))
∣∣∣+ Cn(3−p)/2(1 + 1p=3 log n) . (4.23)

We handle now the term
∑n

i=1 E(R2,i,n(g)). With this aim, let us first write n in basis 2. Let

r be the unique non-negative integer such that 2r ≤ n < 2r+1. Then, writing n in basis 2, we

have

n =
r∑

k=0

bk(n)2k where br(n) = 1 and bk(n) ∈ {0, 1} for k = 0, . . . , r − 1 .

Let also

nk =
k∑
j=0

bj(n)2j for k = 0, . . . , r − 1 and n−1 = 0 .

It follows that

n∑
i=1

E(R2,i,n(g)) =
r∑

k=0

bk(n)

nk∑
i=nk−1+1

E(R2,i,n(g)) =
r∑

k=0

bk(n)
2k∑
i=1

E(Ai,n(g)) , (4.24)

where Ai,n(g) = R2,i+nk−1,n(g) (note that the last inequality above holds because, when bk(n) = 1,

then necessarily nk = 2k + nk−1). Let i ∈ {1, . . . , 2k}. Notice now that, since (d′i)i∈Z is a

martingale differences sequence with respect to (Fi)i∈Z and such that E(d′⊗2
i ) = E(N⊗2

i ), we

have, by setting i(k) = i+ nk−1,

E(Ai,n(g)) =
1

2
E
(
D2gi(k),n

(
M ′

i(k)−1

)
.
(
d′⊗2
i(k) − E(d′⊗2

i(k))
)
.

28



To continue the computations, as in the proof of Proposition 5.1 in [11], we introduce again a

dyadic scheme. With this aim, we introduce the following notations.

Notation 4.3. Set i0 = i− 1 and write i0 in basis 2 (recall that i ∈ {1, . . . , 2k}): i0 =
∑k

i=0 ai2
i

with ai = 0 or ai = 1 (note that ak = 0). Set ij =
∑k

i=j ai2
i, so that ik = 0, and set

ij(k) = ij + nk−1. Let Ij,` =]`2j, (` + 1)2j] ∩ N (note that Ik,1 =]2k, 2k+1]), U
(`)
j =

∑
i∈Ij,` d

′
i,

U
(`)
j,k =

∑
i∈Ij,` d

′
i+k, Ũ

(`)
j =

∑
i∈Ij,` Ni and Ũ

(`)
j,k =

∑
i∈Ij,` Ni+k. For the sake of brevity, let

U
(0)
j = Uj and Ũ

(0)
j = Ũj. Set also Z

(`)
j = E`2j((U

(`)
j )⊗2)− E`2j((U

(`)
j )⊗2).

Since ik = 0, the following elementary identity is valid

E(Ai,n(g))

=
1

2

k−1∑
j=0

E
((
D2gij(k)+1,n

(
M ′

ij(k)

)
−D2gij+1(k)+1,n

(
M ′

ij+1(k)

))
.
(
d′⊗2
i(k) − E(d′⊗2

i(k))
))

+
1

2
E
(
D2gnk−1+1,n

(
M ′

nk−1

)
.
(
d′⊗2
i(k) − E(d′⊗2

i(k))
))

=: E(Bi,n(g)) +
1

2
E
(
D2gnk−1+1,n

(
M ′

nk−1

)
.
(
d′⊗2
i(k) − E(d′⊗2

i(k))
))
. (4.25)

Since D2gnk−1+1,n

(
M ′

nk−1

)
is a random vector which is Fnk−1

measurable, we have

E
(
D2gnk−1+1,n

(
M ′

nk−1

)
.
(
d′⊗2
i(k) − E(d′⊗2

i(k))
))

= E
(
D2gnk−1+1,n

(
M ′

nk−1

)
.Enk−1

(
d′⊗2
i(k) − E(d′⊗2

i(k))
))
.

But, by the martingale property,

2k∑
i=1

Enk−1

(
d′⊗2
i(k) − E(d′⊗2

i(k))
)

= Enk−1

(( 2k∑
i=1

d′i(k)

)⊗2

− E
( 2k∑
i=1

d′i(k)

)⊗2)
.

Taking into account (4.19) and stationarity, we get

∣∣∣ 2k∑
i=1

E
(
D2gnk−1+1,n

(
M ′

nk−1

)
.
(
d′⊗2
i(k) − E(d′⊗2

i(k))
))∣∣∣

≤ c1(n− nk−1)−1/2

m∑
a=1

m∑
b=1

E
(∣∣∣E0

(( 2k∑
i=1

d′i

)
a

( 2k∑
i=1

d′i

)
b

)
− E

(( 2k∑
i=1

d′i

)
a

( 2k∑
i=1

d′i

)
b

)∣∣∣) .
Since (d′i)a = (Adi)a for 1 ≤ a ≤ m and (Adi)a = 0 for m+ 1 ≤ a ≤ d,

m∑
a=1

m∑
b=1

E
(∣∣∣E0

(( 2k∑
i=1

d′i

)
a

( 2k∑
i=1

d′i

)
b

)
− E

(( 2k∑
i=1

d′i

)
a

( n∑
i=1

d′i

)
b

)∣∣∣)
≤ dE

∣∣∣A⊗2
(
E0

(
M⊗2

2k

)
− E

(
M⊗2

2k

))∣∣∣
d
≤ d‖A⊗2‖2E

∣∣∣E0

(
M⊗2

2k

)
− E

(
M⊗2

2k

)∣∣∣
d
.
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But ‖A⊗2‖2 ≤ ‖A‖2
2 ≤ λ−1

m . So, from the above considerations,

∣∣∣ 2k∑
i=1

E
(
D2gnk−1+1,n

(
M ′

nk−1

)
.
(
d′⊗2
i(k) − E(d′⊗2

i(k))
))∣∣∣
≤ c1dλ

−1
m (n− nk−1)−1/2E

∣∣∣E0

(
M⊗2

2k

)
− E

(
M⊗2

2k

)∣∣∣
d
.

Since n ≥ nk−1 + 2k if bk(n) = 1, we get

r∑
k=0

bk(n)
∣∣∣ 2k∑
i=1

E
(
D2gnk−1+1,n

(
M ′

nk−1

)
.
(
d′⊗2
i(k) − E(d′⊗2

i(k))
))∣∣∣

≤ C
r∑

k=0

bk(n)2−k/2E
∣∣∣E0

(
M⊗2

2k

)
− E

(
M⊗2

2k

)∣∣∣
d

≤ C2(3−p)r/2
r∑

k=0

2−
(

2− p
2

)
kE
∣∣∣E0

(
M⊗2

2k

)
− E

(
M⊗2

2k

)∣∣∣
d
.

But, by the subadditivity of the sequence
(
E
∣∣E0

(
M⊗2

k

)
−E

(
M⊗2

k

)∣∣
d

)
k≥1

, condition (2.1) implies

that ∑
k≥0

2−
(

2− p
2

)
kE
∣∣∣E0

(
M⊗2

2k

)
− E

(
M⊗2

2k

)∣∣∣
d
<∞ .

(See for instance Remark 2.6 in [11]). Hence,

r∑
k=0

bk(n)
∣∣∣ 2k∑
i=1

E
(
D2gnk−1+1,n

(
M ′

nk−1

)
.
(
d′⊗2
i(k) − E(d′⊗2

i(k))
))∣∣∣ ≤ Cn(3−p)/2 . (4.26)

Starting from (4.23) and taking into account (4.24), (4.25) and (4.26), the proof of the lemma

will be complete if we can prove that for any g ∈ Lip(| · |m,F0),

∣∣∣ r∑
k=0

bk(n)
2k∑
i=1

E(Bi,n(g))
∣∣∣ ≤ Cn(3−p)/2(1 + 1p=3 log n) . (4.27)

Let i ∈ {1, . . . , 2k} and note that ij 6= ij+1 only if aj = 1, then in this case ij = `2j with ` odd.

It follows that

2
2k∑
i=1

E(Bi,n(g)) =
k−1∑
j=0

∑
`∈Ik−j,0
` odd

E
((
D2g`2j+nk−1+1,n

(
M ′

`2j+nk−1

)
−D2g(`−1)2j+nk−1+1,n

(
M ′

(`−1)2j+nk−1

))
.
∑

{i:ij=`2j}

(
d′⊗2
i(k) − E(d′⊗2

i(k))
))
.
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Note that {i : ij = `2j} = Ij,`. Now by the martingale property,

E`2j+nk−1

( ∑
i∈Ij,`

(
d′⊗2
i(k) − E(d′⊗2

i(k))
))

= E`2j+nk−1
((U

(`)
j,nk−1

)⊗2)− E((U
(`)
j,nk−1

)⊗2) := Z
(`)
j,nk−1

.

Consequently

2
2k∑
i=1

E(Bi,n(g)) =
k−1∑
j=0

∑
`∈Ik−j,0
` odd

E
((
D2g`2j+nk−1+1,n

(
M ′

`2j+nk−1

)
−D2g(`−1)2j+nk−1+1,n

(
M ′

(`−1)2j+nk−1

))
.Z

(`)
j,nk−1

)
=

k−1∑
j=0

∑
`∈Ik−j,0
` odd

E
((
D2g`2j+nk−1+1,n

(
M ′

`2j+nk−1

)

−D2g`2j+nk−1+1,n

(
M ′

(`−1)2j+nk−1
+

`2j∑
v=(`−1)2j+1

Nv+nk−1

))
.Z

(`)
j,nk−1

)
,

since (di)i∈N and (Ni)i∈N are independent. Note that Z
(`)
j,nk−1

is a m2-dimensional random vector.

Let then introduce the following notation: (Z
(`)
j,nk−1

)a,b is the (a − 1)m + b-th coordinate of the

vector Z
(`)
j,nk−1

. By using this notation and (4.19), it follows that

2
∣∣∣ 2k∑
i=1

E(Bi,n(g))
∣∣∣ ≤ max(2c2, c3)×

k−1∑
j=0

∑
`∈Ik−j,0
` odd

(n− `2j − nk−1)−1/2

×
m∑

a,b=1

E
(
|(Z(`)

j,nk−1
)a,b|min

(
1, (n− `2j − nk−1)−1/2

m∑
c=1

∣∣(U (`−1)
j,nk−1

− Ũ (`−1)
j,nk−1

)c
∣∣)) .

But, since p ∈]2, 3],

E
(
|(Z(`)

j,nk−1
)a,b|min

(
1, (n− `2j − nk−1)−1/2

m∑
c=1

∣∣(U (`−1)
j,nk−1

− Ũ (`−1)
j,nk−1

)c
∣∣))

≤ (n− `2j − nk−1)−(p−2)/2E
(
|(Z(`)

j,nk−1
)a,b|
( m∑
c=1

∣∣(U (`−1)
j,nk−1

− Ũ (`−1)
j,nk−1

)c
∣∣)p−2)

≤ (n− `2j − nk−1)−(p−2)/2

m∑
c=1

E
(
|(Z(`)

j,nk−1
)a,b
∣∣(U (`−1)

j,nk−1
− Ũ (`−1)

j,nk−1
)c
∣∣p−2

)
,
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which together with stationarity implies that

2bk(n)
∣∣∣ 2k∑
i=1

E(Bi,n(g))
∣∣∣ ≤

≤ max(2c2, c3)
k−1∑
j=0

2k−j−1∑
`=1

bk(n)(n− `2j − nk−1)−(p−1)/2

m∑
a,b,c=1

E
(
|(Z(1)

j )a,b|
∣∣(Uj − Ũj)c∣∣p−2

)
.

Let

Qj =
m∑

a,b,c=1

E
(
|(Z(1)

j )a,b|
∣∣(Uj − Ũj)c∣∣p−2

)
.

Since n ≥ nk−1 + 2k if bk(n) = 1, we get, in case where p ∈]2, 3[,

bk(n)
∣∣∣ 2k∑
i=1

E(Bi,n(g))
∣∣∣ ≤ C

k−1∑
j=0

2−j(p−1)/22(3−p)(k−j)/2Qj .

Consider now the case p = 3. Note that, since bk(n) = 1 implies that nk = nk−1 + 2k, we have

bk(n)
2k−j−1∑
`=1

(n− `2j − nk−1)−1 = 2−jbk(n)

2−j(n−nk−1)−1∑
`=2−j(n−nk)+1

`−1

≤ 2−j+1bk(n)

2−j(n−nk−1)−1∑
`=2−j(n−nk)+1

(`+ 1)−1 ≤ 2−j+1bk(n)
{

log
(n− nk−1

2j
)
− log

(n− nk
2j

+ 1
)}

.

So, overall,

bk(n)
∣∣∣ 2k∑
i=1

E(Bi,n(g))
∣∣∣ ≤ C

{ ∑k−1
j=0 2−j(p−1)/22(3−p)(k−j)/2Qj if p ∈]2, 3[

bk(n)
∑k−1

j=0 2−j
{

log(n− nk−1 + 1)− log(n− nk + 1)
}
Qj if p = 3

.

According to inequality (5.32) in [11], we infer that under conditions (2.1) and (2.2),

E
(
|(Z(1)

j )a,b|
∣∣(Uj − Ũj)c∣∣p−2

)
≤ C2j(1−2/p)‖(Z(0)

j )a,b‖p/2 + C2j(p/2−1)‖(Z(0)
j )a,b‖1,Φ,p .

Hence, if p ∈]2, 3[,

r∑
k=0

bk(n)
∣∣∣ 2k∑
i=1

E(Bi,n(g))
∣∣∣

≤ C

r∑
k=0

2(3−p)k/2 ×
m∑

a,b=1

{ k−1∑
j=0

2−2j/p‖(Z(0)
j )a,b‖p/2 +

k−1∑
j=0

2j(p/2−2)‖(Z(0)
j )a,b‖1,Φ,p

}
, (4.28)
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and if p = 3,

r∑
k=0

bk(n)
∣∣∣ 2k∑
i=1

E(Bi,n(g))
∣∣∣ ≤ C

r∑
k=0

bk(n)
{

log(n− nk−1 + 1)− log(n− nk + 1)
}

×
m∑

a,b=1

{ k−1∑
j=0

2−2j/3‖(Z(0)
j )a,b‖3/2 +

k−1∑
j=0

2−j/2‖(Z(0)
j )a,b‖1,Φ,3

}
. (4.29)

But, denoting by α2j ,d = maxk,`∈{1,...,d} ‖E0((M2j)k((M2j)` − E((M2j)k((M2j)`‖p/2, we get

m∑
a,b=1

‖(Z(0)
j )a,b‖p/2 =

d∑
a,b=1

‖E0((AM2j)a((AM2j)b − E((AM2j)a((AM2j)b‖p/2

≤
d∑

a,b=1

d∑
k,`=1

∣∣(A)a,k(A)b,`
∣∣‖E0((M2j)k((M2j)` − E((M2j)k((M2j)`‖p/2

≤ d2

d∑
a,k=1

(A)2
a,kα2j ,d := d2‖A‖2

HSα2j ,d .

Now, since P is orthogonal

‖A‖2
HS = ‖Γ‖2

HS =
m−1∑
i=1

λ−1
i + (d−m+ 1)λ−1

m ≤ dλ−1
m .

So,
m∑

a,b=1

‖(Z(0)
j )a,b‖p/2 ≤ d3λ−1

m α2j ,d .

Similarly, setting β2j ,d = maxk,`∈{1,...,d} ‖E0((M2j)k((M2j)` − E((M2j)k((M2j)`‖1,Φ,p, we get

m∑
a,b=1

‖(Z(0)
j )a,b‖1,Φ,p ≤ d3λ−1

m β2j ,d .

Note now that due to the martingale property conditions (2.1) and (2.2) are respectively equiv-

alent to ∑
j≥0

2j(p/2−2)β2j ,d <∞ and
∑
j≥0

2−2j/pα2j ,d <∞ .

(See Remark 2.6 in [11]). Moreover

r∑
k=0

bk(n)
{

log(n− nk−1 + 1)− log(n− nk + 1)
}

= log(n+ 1)
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and if p ∈]2, 3[,
r∑

k=0

2(3−p)k/2 ≤ Cn(3−p)/2

Starting from (4.28) and (4.29) and considering the above computations, the upper bound (4.27)

follows. This ends the proof of the lemma. �

4.1.5 Proof of Remark 2.4

To simplify, assume that (di)i∈Z is a vector-valued stationary sequence of reversed martingale

differences such that E(d0d
t
0) = I (otherwise we transform the r.v.’s to go back to this case as

done in Section 4.1.1). Let us then prove that if (2.5) and (2.6) are satisfied for some p ∈]2, 3], the

conclusions of Theorem 2.1 hold for Mn. With this aim, we need to construct the approximating

Brownian motion. As in the proof of Theorem 2.1, for L ∈ N, let m(L) ∈ N be such that

m(L) ≤ L, and define

Ik,L =]2L + (k − 1)2m(L), 2L + k2m(L)] ∩ N and Uk,L =
∑
i∈Ik,L

di , k ∈ {1, · · · , 2L−m(L)} .

Let PUk,L|G2L+k2m(L)+1
be the conditional law of Uk,L given G2L+k2m(L)+1 andN2m(L) be theN (0, 2m(L)I)-

law. Assume that the probability space is assumed to be large enough to contain a sequence

(δi)i∈Z of iid random variables uniformly distributed on [0, 1], independent of the sequence (di)i∈Z.

As in the proof of Theorem 2.1, we infer that there exists a Rd-valued random variable Vk,L with

law N2m(L) , measurable with respect to σ(δ2L+k2m(L)) ∨ σ(Uk,L) ∨ G2L+k2m(L)+1, independent of

G2L+k2m(L)+1 and such that

E
(∣∣Uk,L − Vk,L∣∣d) = sup

g∈Lip(|·|d,G2L+2m(L)+1
)

E(g(U1,L))− E(g(V1,L)) .

As, in the proof of Theorem 2.1, by induction on k, we have then constructed Gaussian random

variables (Vk,L)L∈N,k=1,...,2L−m(L) that are mutually independent, and using the Skorohod lemma,

we can construct a sequence (Zi)i≥1 of iid standard Gaussian random vectors in Rd such that,

for any L ∈ N and any k ∈ {1, · · · , 2L−m(L)}, Vk,L =
∑

i∈Ik,L Zi a.s. The proof can be then

completed if one can prove that, in the case of reversed martingale differences, Lemma 4.1 still

holds. In this case, it reads as follows:

Lemma 4.2. Let Tn =
∑n

i=1 Ni where (Ni)i≥1 be a sequence of iid Rd-valued centered gaussian

random variables with Var(N1) = I. Let p ∈]2, 3] and assume that (2.5) and (2.6) are satisfied.

Then, there exists a positive constant C such that, for any positive integer n,

sup
g∈Lip(|·|d,Gn+1)

E(g(Mn))− E(g(Tn)) ≤

{
Cn(3−p)/2 if p ∈]2, 3[

C log n if p = 3.
,
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The proof of this lemma can be easily deduced from the one of Lemma 4.1 by writing

Mn =
∑n

j=1 dj,n where dj,n = dn−j+1 for any j ∈ Z and by noticing that, for any integer

n, (dj,n)j∈Z is a stationary sequence of martingale differences with respect to (Fj,n)j∈Z where

Fj,n = Gn−j+1.

To end the proof of Remark 2.4, it remains to notice that, as in the proof of Theorem 2.2,

Lemma 4.2 immediately leads to the conclusion of Theorem 2.2 for the reversed martingale Mn

with Gn+1 replacing F0. �

4.2 Proof of the results of Section 3

4.2.1 Proof of Proposition 3.1.

The existence of a µ-invariant probability on B(X) is a well-known fact based on the compactness

of X, see for instance Lemma 2.16 of [3]. Hence, we shall only prove uniqueness.

By Lemma 3.3 and the Borel-Cantelli lemma we see that for every x, y ∈ X such that

f(x) = f(y),

d(B2n · x,B2n · y) −→
n→∞

0 P-a.s. (4.30)

Let ν be a µ-invariant probability on X. By Lemma 2.17 of [3], for P-almost every ω ∈ Ω,

there exists a probability νω on X such that for every continuous function ϕ on X, we have∫
X

ϕ(Bn(ω) · x)ν(dx) −→
n→∞

∫
X

ϕ(x)νω(dx) . (4.31)

Let ϕ be a continuous function on X. For every f ∈ F , pick yf ∈ Xf. Using (4.30), combined

with Fubini’s theorem for P⊗ν and the uniform continuity of ϕ, we infer that for P-almost every

ω ∈ Ω we have

|ϕ(B2n(ω) · yf)− ϕ(B2n(ω) · x)| −→
n→∞

0 for ν-almost every x ∈ Xf .

Recall that (Xf)f∈F forms a partition of X and that, by Lemma 3.2, ν(Xf) = 1
|F | for every f ∈ F

Hence, by Lebesgue dominated convergence theorem, using (4.31), we infer that, for P-almost

every ω ∈ Ω,
1

|F |
∑
f∈F

ϕ(B2n(ω) · yf) −→
n→∞

∫
X

ϕ(x)νω(dx) . (4.32)

Let ω be such that (4.32) holds. Since X is compact, there exist (nk)k≥1 and (Zf(ω))f∈F such

that B2nk (ω) · yf −→
k→∞

Zf(ω).

From the previous considerations, we conclude that for every continuous ϕ on X,∫
X

ϕ(x)νω(dx) =
1

|F |
∑
f∈F

ϕ(Zf(ω)) .
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Then, we infer that νω = 1
|F |
∑

f∈F δZf(ω), hence does not depend on ν.

The uniqueness of ν then follows from the fact that for every continuous ϕ on X,∫
X

ϕ(x)ν(dx) =

∫
Ω

(∫
X

ϕ(x)νω(dx)
)
dP(ω) ,

see Lemma 2.19 of [3]. �

4.2.2 Proof of Lemma 3.2.

Let ν be a µ-invariant probability on B(X). Let ψ : F → R. We have∫
G×X

ψ(f(g · x))µ(dg)ν(dx) =

∫
X

ψ(f(x))ν(dx) .

Hence ∫
G

(∑
f∈F

ψ(s(g)f)ν(Xf)

)
µ(dg) =

∑
f∈F

ψ(f)ν(Xf) .

Hence,
∑

f∈F ν(Xf)δf is an s(µ)-invariant probability measure on F . Since s(µ) is adapted it

follows from the Choquet-Deny theorem for compact groups, see for instance [20], (notice that

for finite groups the proof is quite direct) that the latter measure is the Haar measure on F . �

4.2.3 Proof of Lemma 3.3.

Of course, it is enough to prove (3.6) with A2n in place of B2n . Let n0 be the integer appearing

in Definition 3.3.

Set ηn := supx 6=y,f(x)=f(y)

∫
G

log
(
d(g·x,g·y)
d(x,y)

)
µ∗n(dg). Then for every integers k ≥ 1 and ` ∈

[0, n0 − 1], ηkn0+` ≤ kηn0 + η` ≤ kηn0 + max0≤m≤n0 ηm. Since ηn0 < 0, it follows that ηn < 0 for

every n large enough. Hence we may assume that n0 = 2r0 .

Using that A0 = e, we have

log
(d(A2n+r0 · x,A2n+r0 · y)

d(x, y)

)
=

2n∑
k=1

log
( d(A2r0k · x,A2r0k · y)

d(A2r0 (k−1) · x,A2r0 (k−1) · y)

)
As mentionned in Remark 3.3 the right-hand side of (3.3) may be −∞. To take care of that

technical matter let us introduce some R > 0 (that clearly exists) such that

sup
x 6=y,f(x)=f(y)

∫
G

max

(
−R, log

(d(g · x, g · y)

d(x, y)

))
µ∗2

r0 (dg) < 0 .
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Let µ0 := µ∗2
r0 . For every x, y ∈ X and g ∈ G, set

ϕR(g, x, y) := max

(
−R, log

(d(g · x, g · y)

d(x, y)

))
. (4.33)

Set also Vk := Y2r0k · · ·Y2r0 (k−1)+1.

Then, we have

log
(d(A2n+r0 · x,A2n+r0 · y)

d(x, y)

)
≤

2n∑
k=1

ϕR(Vk, A2r0 (k−1) · x,A2r0 (k−1) · y)

=
2n∑
k=1

(
ϕR(Vk, A2r0 (k−1) · x,A2r0 (k−1) · y)−

∫
G

ϕR
(
g, A2r0 (k−1) · x,A2r0 (k−1) · y

)
µ0(dg)

)
+

2n∑
k=1

∫
G

ϕR
(
g, A2r0 (k−1) · x,A2r0 (k−1) · y

)
µ0(dg)

:=
2n∑
k=1

DR,k(x, y) +
2n∑
k=1

ER,k(x, y)

:= MR,2n(x, y) +QR,2n(x, y) .

Notice that (MR,n(x, y))n∈N is a (F2r0n)n∈N-martingale. In order to prove (3.6) it is enough

to prove that for every ε > 0,∑
n≥0

sup
x 6=y,f(x)=f(y)

P(|MR,2n(x, y)| ≥ 2nε) <∞ , (4.34)

and that there exists ˜̀> 0 such that∑
n≥0

sup
x 6=y,f(x)=f(y)

P
(
QR,2n(x, y) ≥ −2n ˜̀

)
<∞ . (4.35)

We first prove (4.35). Set

−2˜̀ := sup
x 6=y,f(x)=f(y)

∫
G

max

(
−R, log

(d(g · x, g · y)

d(x, y)

))
µ∗2

r0 (dg) < 0 .

Since QR,2n(x, y) ≤ −2n+1 ˜̀, P(
(
QR,2n(x, y) ≥ −2n ˜̀

)
= 0 and the result follows.

Let us prove (4.34) (for every ε > 0). Define a function Λ on G by setting Λ(g) :=

max(R, log+ Lip(g)) for every g ∈ G.

Let Γn := ∪2n

k=1{Λ(Vk) > ε2n} and

D′R,k(x, y) := DR,k(x, y)1{Λ(Vk)≤ε2n}

D′′R,k(x, y) := D′R,k(x, y)− E(D′R,k(x, y)|F2r0 (k−1)) .
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Notice that |DR,k| ≤ Λ(Vk)+E(Λ(V0)) and since DR,k is such that E(DR,k(x, y)|F2r0 (k−1)) = 0,

E(D′R,k(x, y)|F2r0 (k−1)) = −E(DR,k(x, y)1{Λ(Vk)>ε2n}|F2r0 (k−1)) .

Hence, using independence,

|E(D′R,k(x, y)|F2r0 (k−1))| ≤ E(Λ(Vk)1{Λ(Vk)>ε2n}|F2r0 (k−1)) + E(Λ(V0))E(1{Λ(Vk)>ε2n}|F2r0 (k−1))

= E(Λ(V0)1{Λ(V0)>ε2n}) + E(Λ(V0))P(Λ(V0) > ε2n) = 3E(Λ(V0)1{Λ(V0)>ε2n}) .

Since Λ ∈ L1(µ0), it follows

|E(D′R,k(x, y)|F2r0 (k−1))| ≤ 3

∫
G

Λ(g)1{Λ(g)>ε2n} µ0(dg) −→
n→∞

0 . (4.36)

Now we have

P(|MR,2n(x, y)| ≥ 2nε) ≤ P(Γn) + P(|
2n∑
k=1

D′R,k(x, y)| ≥ 2nε)

≤ 2nP(Λ(V0) ≥ 2nε) + P
(∣∣ 2n∑

k=1

D′′R,k(x, y)
∣∣ ≥ 2n−1ε

)
+ P

(∣∣ 2n∑
k=1

E(D′R,k(x, y)|F2r0 (k−1))
∣∣ ≥ 2n−1ε

)
.

Using (4.36), we see that for n large enough, P(|
∑2n

k=1 E(D′R,k(x, y)|F2r0 (k−1))| ≥ 2n−1ε) = 0.

Hence, for n large enough

P(|MR,2n(x, y)| ≥ 2nε) ≤ 2nP(Λ(V0) ≥ 2nε) +
1

ε22n−2
E(Λ(V0)21{Λ(V0)≤2nε}) .

Then, (4.34) follows from standard computations and the fact that E(Λ(V0)) <∞. �

4.2.4 Proof of Lemma 3.4.

Let n0 be as in Definition 3.3.

Using that (Yn)n≥1 is iid we see that for every k ≤ j ≤ 2k

sup
x,y∈X,x 6=y

P (log (d(Aj−1 · x,Aj−1 · y)) ≥ −`k) ≤ sup
x,y∈X,x 6=y

P (log (d(Ak−1 · x,Ak−1 · y)) ≥ −`k) .

Similarly, for every mn0 ≤ k ≤ (m + 1)n0, for some m ≥ 3, we have (notice that mn0 − 1 ≥
(m− 1)n0 and m+ 1 ≤ 2(m− 1))

sup
x,y∈X,x 6=y

P (log (d(Ak−1 · x,Ak−1 · y)) ≥ −`k)

≤ sup
x,y∈X,x6=y

P
(
log
(
d(A(m−1)n0 · x,A(m−1)n0 · y)

)
≥ −2`(m− 1)n0

)

38



Let k ≥ 1. Proceeding as in the proof of Lemma 3.3, we see that, setting Wk := Ykn0 · · ·Y(k−1)n0+1

and using the notation (4.33),

log (d(Akn0 · x,Akn0 · y))− log (d(x, y))

≤
k∑
j=1

(
ϕR(Wj, A(j−1)n0 · x,A(j−1)n0 · y)−

∫
G

ϕR(g, A(j−1)n0 · x,A(j−1)n0 · y)µ∗n0(dg)

+
k∑
j=1

∫
G

ϕR(g, A(j−1)n0 · x,A(j−1)n0 · y)µ∗n0(dg)

:= Mk +Rk .

Clearly, Rk ≤ −γk where γ := − supx,y∈X,x 6=y
∫
G
ϕR(g, A(j−1)n0 · x,A(j−1)n0 · y)µ∗n0(dg) > 0.

Hence, (3.7) will hold, say with ` = γ/(4n0), if we can prove prove that for every ε > 0,∑
k≥1

kp−2P
(

max
1≤j≤k

|Mj| > εk
)
<∞ . (4.37)

Now, the fact that (4.37) holds for every ε > 0 may be proved as Theorem 4.1 of [8], where

a more general result is obtained.

Hence, the proof of (3.7) is completed and it remains to prove (3.8).

Taking p = 1 in (4.37) and using that, for 2` ≤ k ≤ 2`+1 − 1, P(max1≤j≤2` |Mj| > ε2`) ≤
P(max1≤j≤k |Mj| > εk/2), we infer that∑

k≥1

P
(

max
1≤j≤2k

|Mj| > ε2k
)
<∞ ,

for every ε > 0 and (3.8) follows from the Borel-Cantelli lemma, since Rk ≤ −γk. �

4.2.5 Proof of Theorems 3.14 and 3.15.

Let n ≥ 1. We have

Tn := σ(An,W0)− nλµ =
n∑
k=1

(σ(Yk, Ak−1 ·W0)− λµ) , (4.38)

where all the summands have the same law.

We start by noticing that, by Proposition 3.10 (and Remark 3.6), using that p ≥ 2,∑
n≥1

‖E
(
σ(Yn, An−1 ·W0 |σ{W0}

)
− λµ‖p ≤

∑
n≥1

np−2‖E
(
σ(Yn, An−1 ·W0 |σ{W0}

)
− λµ‖p

≤
∑
n≥1

np−2 sup
x∈X
|E
(
σ(Yn, An−1x

)
− λµ| <∞ . (4.39)
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Hence, by Gordin’s Lp-criteria, we infer that σ(Yn, An−1 ·W0) − λµ = Dn + Rn − Rn−1, where

(Dn)n≥1 is a stationary sequence of martingale differences in Lp and (Rn) is a stationary process

in Lp. Write Mn :=
∑n

k=1Dk and (Mn)i := 〈Mn, ei〉 for 1 ≤ i ≤ d.

Then, it is clearly sufficient to prove the theorems for (Mn)n≥1 instead of (Tn)n≥1. Since we

are back to the study of a martingale with stationary increments, we only have to check the

conditions of Theorems 2.1 and 2.2. In particular, it suffices to check that

∞∑
n=1

1

n3−p/2

∥∥E((Mn)i(Mn)j
∣∣F0

)
− E

(
(Mn)i(Mn)j

)∥∥
p/2

<∞ . (4.40)

Clearly, using the basic equality (a+ b)2 − a2 − b2 = 2ab, the latter holds provided that one

can prove that
∞∑
n=1

1

n3−p/2

∥∥E(M̃2
n

∣∣F0

)
− E

(
M̃2

n

)∥∥
p/2

<∞ ,

for any M̃n ∈ {(Mn)i : 1 ≤ i ≤ d}∪{(Mn)i+(Mn)j : 1 ≤ i < j ≤ d}. In particular, we are back

to prove that (4.40) holds in the case of an R-valued cocycle. As in the proof of Propositions 8

and 9 of [7], taking into account (4.39), it is enough to prove that

∞∑
n=1

1

n3−p/2

∥∥E(T 2
n

∣∣F0

)
− E

(
T 2
n

)∥∥
p/2

<∞ . (4.41)

Then, proceeding as in the proof of Proposition 12 of [7] (based on Proposition 11 there),

making use of (3.17), (3.18) and (3.19), we infer that (4.41) holds. �

4.2.6 Proof of Theorems 3.16 and 3.17.

The case where Vn = σ(An,W0) follows directly from Theorems 3.14 and 3.15. It remains to

prove them for the other possible values of Vn. We shall only complete the proof of Theorem

3.16 since the proof of Theorem 3.17 may be done as the proof of item 2. of Theorem 3.16. The

proofs make use of results from [3].

Let us start by proving Item 1 of Theorem 3.16. It follows from item (d) of Theorem 10.9 of

[3] that P-almost surely

sup
n≥1
|σ(An,W0)− κ(An)|a <∞ .

Hence Item 1 for the Cartan projection follows from the result for (σ(An,W0)−nλµ)n≥1. Similary,

Theorem 10.9 of [3] implies that for every x ∈ P ,

sup
n≥1
|σ(An, x)− κ(An)|a <∞ .
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Hence Item 1 for (σ(An, x) − nλµ)n≥1, for every x ∈ P , follows from the result for (κ(An) −
nλµ)n≥1.

Let us prove Item 2 of Theorem 3.16. By (13.31) of [3], there exist M > 0 and η1, . . . , ηr ∈ P ,

such that, for every g ∈ G there exists i ∈ {1, . . . , r} such that

|σ(g, ηi)− κ(g)|a ≤M . (4.42)

Let (Γi)1≤i≤r be a partition of Γµ such that for every g ∈ Γi (4.42) holds. Let (Nn)n≥1 be the

sequence of iid normal variables appearing in Item 2 and approximating (σ(An,W0))n≥1. Set

Wn :=
∑n

k=1Nk. We have∣∣κ(An)−Wn

∣∣
a

=
∑
f∈F

∑
i∈{1,...,r},: ηi∈Xf

∣∣κ(An)−Wn

∣∣
a
1Γi(An)

≤M +
∑
f∈F

∑
i∈{1,...,r},: ηi∈Xf

∣∣σ(An, ηi)−Wn|a1Γi(An) .

For ηi ∈ Xf write

σ(An, ηi)−Wn =
1

|F |

[ ∫
Xf

(
σ(An, ηi)− σ(An, x)

)
ν(dx) +

∫
Xf

(
σ(An, x)−Wn

)
ν(dx)

]
.

Combining the above estimates and using Proposition 3.13, we infer that there exists K > 0∥∥ ∣∣κ(An)−Wn

∣∣
a

∥∥
1
≤ rK + r‖ |σ(An,W0)−Wn|a ‖1 ,

and the desired result follows.

The case where G is connected follows from Lemma 3.13 (see the remark after the lemma).

The case where G = GLd(R) follows also from Lemma 3.13 once one has noticed that if

ε =



−1 0 . . . . . . 0

0 1 0 . . . 0
...

. . . . . . . . .
...

...
. . . . . . 0

0 . . . . . . 0 1


then f(kPc) = −f(kεPc) and σ(g, kPc) = σ(g, kεPc) for every g ∈ GLd(R) and every kPc ∈ G/Pc.
�
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5 Appendix

The following result is a Fuk-Nagaev type inequality for martingales with moments of order

p ∈]2, 3].

Proposition 5.1. Let (di)i∈Z be a real stationary martingale differences sequence with respect to

(Fi)i∈Z. Let σ denote the standard deviation of d0. Let p ∈]2, 3]. Assume that E|d0|p < ∞ and

that the conditions (2.1) and (2.2) are fulfilled. Let M∗
n = max1≤k≤nMk. Then for any positive

real x,

P(M∗
n ≥ x) ≤ 7× 22p−1/2

(nσ2

x2

)p+1/2

exp
(
− x2

8nσ2

)
+ Cpnx

−p ,

where Cp is a positive constant depending only on p, E|d0|p and on the two series (2.1) and (2.2)

but not on n.

Proof of Proposition 5.1. The proof uses similar arguments as in the proof of Proposition

5.2 in [28].

Let x be a positive real and ϕ be the function from R to R+ defined by

ϕ(t) =
(t− x/2)p+
p(p− 1)

.

Since ϕ is nonnegative and convex, ϕ(Mn) is a submartingale. Consequently Doob’s maximal

inequality entails that

P(M∗
n ≥ x) = P

(
ϕ(M∗

n) ≥ ϕ(x)
)
≤ E(ϕ(Mn))

ϕ(x)
.

Let now Y be a standard gaussian random variable independent of (di)i∈Z. Then

P(M∗
n ≥ x) ≤ 2pp(p− 1)

xp
(
E(ϕ(σ

√
nY )) + E(ϕ(Mn))− E(ϕ(σ

√
nY ))

)
. (5.1)

Since ϕ′′(t) = (t− x/2)p−2
+ , it follows that ϕ′′ is (p− 2) Hölder. Then,

E(ϕ(Mn))− E(ϕ(σ
√
nY )) ≤ sup

f∈Λp

E(f(Mn)− f(σ
√
nY )) ,

where (recall that p ∈]2, 3]) Λp is the class of real functions f which are 2-times continuously

differentiable and such that

|f ′′(x)− f ′′(y)| ≤ |x− y|p−2 for any (x, y) ∈ R× R .

Now denoting by PMn the law of Mn and by Gnσ2 the normal distribution N(0, nσ2) we have

sup
f∈Λp

E(f(Mn)− f(σ
√
nY )) := ζp(PMn , Gnσ2) ,
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that is the Zolotarev distance of order p between PMn and Gnσ2 . Applying Theorem 2.1 in [11],

we derive that, under (2.1) and (2.2), there exists a positive constant Kp depending only on p,

E|d0|p and on the two series (2.1) and (2.2), but not on n, such that

E(ϕ(Mn))− E(ϕ(σ
√
nY )) ≤ Kpn . (5.2)

On an other hand, using the fact that (u+ x/2)2 ≥ ux+ x2/4, we get that

E(ϕ(σ
√
nY )) ≤ e−x

2/(8nσ2)

p(p− 1)

∫ ∞
0

e−xu/(2nσ
2) up

σ
√

2nπ
du .

With the change of variables v = xu/(2nσ2) and since p ∈]2, 3], we derive that

p(p− 1)E(ϕ(σ
√
nY )) ≤ e−x

2/(8nσ2)
(2nσ2

x

)p+1 1

σ
√

2nπ

∫ ∞
0

vpe−vdv

≤ 7

2

(2nσ2)p+1/2

xp+1
e−x

2/(8nσ2) . (5.3)

Starting from (5.1) and using (5.2) and (5.3) we get the result.
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[8] C. Cuny, J. Dedecker and F. Merlevède, Large and moderate deviations for the left random

walk on GLd(R), ALEA Lat. Am. J. Probab. Math. Stat. 14 (2017) 503-527
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[12] J. Dedecker J., F. Merlevède and E. Rio, On strong approximation for the empirical process

of stationary sequences. Ann. Probab. 41 (2013), no. 5, 3051-3696.

[13] J. Dedecker, C. Prieur and P. Raynaud De Fitte, Parametrized Kantorovich-Rubinstein

theorem and application to the coupling of random variables. Dependence in Probability and

Statistics, Lectures Notes in Statistics. 187 (2006), 105-121.

[14] Y. Derriennic and M. Lin, Convergence of iterates of averages of certain operator represen-

tations and of convolution powers, J. Funct. Anal. 85 (1989), no. 1, 86-102.

[15] E. Eberlein, On strong invariance principles under dependence assumptions Ann. Probab.

14 (1986), no. 1, 260-270.

[16] H. Furstenberg and H. Kesten. Products of random matrices. Ann. Math. Stat. 31 (1960)

457469.
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[27] F. Merlevède, M. Peligrad, and S. Utev, Functional Gaussian Approximation for Dependent

Structures. (2019). Oxford Studies in Probability. 6, Oxford University Press.
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