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1. INTRODUCTION

Many problems in geomechanics such as subsidence, 

sinkholes and collapses, are related to the dissolution of 

soluble rocks. For example rock dissolution may create 

underground voids of large sizes, leading to a potential 

risk of instability or collapse, as illustrated in Fig. 1. 

Since dissolution of porous rocks may cause catastrophic 

damages, it is a major concern in geomechanics field. 

Fig. 1. Land Subsidence (sinkhole) in Central Kansas related 

to Salt dissolution (after USGS water science). 

In many cases, dissolution is driven by an under 

saturated fluid flow. For instance, the subsurface water 

flow or hydraulic conditions through soils and rocks 

determines the onset conditions of geomechanical 

instability. Moreover, the natural or man-made hydraulic 

condition may evolve with time and change in space.  

Dissolution is also used intensively, for example in case 

of solution mining of salt. This industrial process 

extracts underground salt, by injection of fresh water 

through an injection well and extraction of the saturated 

brine at an extraction well. This process is very suitable 

in case of thin salt layer located at great depth. 

The multi-scale and multiphysics features of rock 

dissolution problem raise many questions. The first of 

them concerns the accuracy needed in the description of 

solid-liquid interface recession at the macro-scale level 

(Darcy-scale). To achieve this goal, a precise 

mathematical formalization of physicochemical and 

transport mechanisms at the micro-scale level is 

required. The second one is linked to the description of 

dissolution at large spatial scale (in situ scale, site scale). 

The third one deals with strong physical couplings with 

other processes, in particular, mechanical behaviors of 

rocks.  
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A BSTRACT: 

This paper deals with the problem of the dissolution of soluble underground rocks and the geomechanical consequences such as 

subsidence, sinkholes and underground collapse. In this paper, the rock dissolution and the induced underground cavities are  
modeled using a Diffuse Interface Model. We describe briefly the method. We used to perform the transition (upscaling) from a 
multiphysics problem formulated at the microscopic scale level (pore-scale) to the macroscopic scale level (Darcy-scale). Rock 
material considered in this paper is gypsum, despite that the developed method is also suitable for more soluble rocks. The 
mechanical consequences of dissolution are analyzed for two theoretical configurations, i.e., lens and pillar. 



The main dissolution rate models are often 

phenomenological. They are built at the macroscopic 

scale level. Based on laboratory tests or in-situ 

observations, the phenomenological dissolution models 

are intensively used currently. These approaches may be 

considered as describing in fact dissolution in an average 

sense.  Unfortunately, these phenomenological models 

are unable to take into account accurately the effects of 

natural convection (at pore scale level) and the presence 

of heterogeneity at the microscopic scale, for example. 

This paper, presents these different questions, based on 

theoretical and numerical analyses of several examples. 

The starting point of our dissolution problem is the pore- 

scale description of the dissolving surface and the choice 

of the surface dissolution kinetics, which has been the 

subject of many studies for various dissolving materials, 

mainly in chemical or geochemical scientific domains. 

Generally, the reaction rate, R , applied in the boundary 

condition (of a boundary value problem) for the micro-

scale dissolution problem for soluble rocks like 

limestone, calcite, gypsum, or salt follows a general 

form expressed as (Jeschke et al., 2001; Jeschke and 

Dreybrodt, 2002): 

1

n

eq

C
R k

C

 
= −  

 
In this expression, k is the reaction rate coefficient, C is 

the concentration of the dissolved species and 
eq

C  the 

thermodynamic equilibrium concentration (also named 

solubility). This paper focuses mainly on the dissolution 

of gypsum (CaSO4·2H2O), even if we will sometimes

refer to the dissolution of salt. 

Recall that the Damköhler number (Da) is a 

dimensionless number, which is used in chemical 

engineering to relate the chemical reaction time scale 

(reaction rate) to the transport phenomena rate occurring 

in a system. When Da is very large, for instance through 

a very large value of k , this boundary condition tends to 

the classical equilibrium condition expressed by 

eq
C C= at the solid surface. Assume such an

approximation is valid restricted in our analyses to two 

different approaches for modeling the dissolution 

problem. The first one is an explicit following of the 

fluid-solid interface. This can be done using an Arbitrary 

Lagrangian-Eulerian (ALE) method (Donea et al. 1982). 

The second approach tackles dissolution using a Diffuse 

Interface Model (DIM) in order to smoothen the solid-

liquid interface with continuous quantities (Anderson et 

al., 1998, Collins et al., 1985, Luo et al., 2012). 

In section 2, the physical and mathematical base of the 

dissolution model is presented. Then the DIM model is 

deduced thanks to a volume averaging theory.  More 

precisely, the mathematical problem is formulated at the 

pore-scale and then upscaled to Darcy-scale in order to 

obtain macroscopic balance laws and the associated 

effective parameters. The workflow is depicted in Fig.2. 

Fig. 2. Problem: From micro-scale to large-scale levels 

We will then discuss the analysis of the dissolution of 

two relatively simple cases. The first one concerns the 

dissolution of a cylindrical gypsum lens located under an 

elastoplastic overburden. We will analyze the evolution 

of the plasticity in the overburden as a function of the 

dissolution of the lens. In this same class of problem, we 

will analyze the subsidence when the lens is close to the 

surface. The second case concerns the dissolution of an 

elastoplastic pillar of cylindrical gypsum. We analyze 

the stability of this pillar according to the intensity of the 

dissolution. We introduce another example, for 

illustration, the effect of dissolution when the 

permeability is a function of the volumetric strain. 

These examples show the potentialities of the approach 

in the conditions of numerical weak or strong coupling 

between the two physics: dissolution and mechanical.   

2. DISSOLUTION MODELS

This section describes first a generic pore-scale 

dissolution model corresponding to dissolution of a 

soluble solid species considered as a single component. 

The approach can be extended easily to a material 

having several components (multi-components). In this 

latter case, the conservation equations (mass, 

momentum, etc.) apply to each component of the 

physical system. The idea or spirit of the method will be 

given about the upscaling of the pore-scale equations to 

derive a macro-scale diffuse interface model will be 

given. This larger scale or Darcy-scale model can then 

be used to model the dissolution of large cavities or 

porous formations. The methodology is available for 

salt, gypsum and even carbonate rocks, provided local 

conditions are compatible with the assumption of a 

pseudo-component. Otherwise, the same methodology 

must be extended to a multicomponents treatment, which 

is beyond the scope of this paper. 

Consider two classes of dissolution models. The first one 

is original dissolution problem corresponding to a sharp 



liquid/solid interface (Fig. 3). In this case the solid-liquid 

interface is defined mathematically by a surface at which 

the liquid concentration is equal to the thermodynamic 

equilibrium concentration. Introduce a scalar phase 

indicator defined in the whole domain (rocks and fluid), 

for example the porosity βε , it has a value of 1 in the

liquid phase and zero elsewhere, with a jump at the 

solid-liquid interface (Fig. 3 (left)). 

Solving the mathematical problem with sharp interface 

requires special front tracking, front marching numerical 

techniques, which are often computationally time 

consuming and are confronted with numerical 

difficulties, in particular in the presence of geometrical 

singularities (near non-soluble layers). These difficulties 

can be circumvented if we do not require an explicit 

treatment of the moving interface. Instead, partial 

differential equations are written for continuous 

variables, such as βε and the mass fraction of species A

in the β-phase(
Aβω ), which lead to a diffuse interface as

illustrated in Fig. 3 (right). 

Fig. 3. Original dissolution model (sharp interface on the left) 

and Diffuse Interface Model (on the right). 

The original solid/liquid dissolution problem can be 

described by classical convective-diffusive mass balance 

and Navier-Stokes (momentum) equations, etc. To 

express the DIM model, we start from these original 

solid/liquid equations to generate averaged or Darcy-

scale equations involving effective coefficients (Luo, et 

al. 2012, Guo et al. 2015) and take into account the 

density variation as a function of concentration. In the 

first subsection, the original model for the dissolution 

problem is introduced. In the second subsection, we 

briefly introduce the upscaling method leading to the 

“Darcy-scale” equations which are used as the basis for 

the DIM formulation. 

2.1. The original multiphase model 

Let us consider a binary liquid phase β containing 

chemical species A and B, and a solid phase σ containing 

only chemical species A.  

Fig. 4: Large-scale (left) and near interface scale(right). 

In Figure 4 (right), , ,β βσ βσ∞v v ,w n  represent the

velocity of the fluid far away from the interface, the 

velocity of the phase β  near the interface, the recession

rate, and the normal to the interface, respectively. In the 

following, bold letters indicate either vector or tensor 

variables. 
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Equation 1(a) refers to total mass balance equation for 

the β-phase. Equation 1(b)is the mass balance for species 

A in the β-phase. The general mass balance equation for 

a moving σ-phase is given by equation 1(c). 

In terms of the fluid, we will use the Navier-Stokes 

equations for the momentum balance, i.e.,  

2  p
t

β
β β β β β β βρ ρ ζ

∂ 
+ ⋅∇ = − ∇ + ∇ ∂ 

g
v

v v v (2)

where, βv represents the velocity of the β-phase, pβ∇
the pressure gradient in the β-phase, βζ the dynamic

viscosity of the β-phase and g the gravity vector. At the 

β-σ interface Aβσ , the chemical potentials for each

species should be equal for the different phases. In this 

case and for the special binary case under investigation, 

we have the following equality at a given pressure p and 

temperature T: 

( ) ( ), , , ,   at  
A A A A

p T p T Aβ β σ σ βσµ ω µ ω= (3) 

where, Aσω is equal to 1. It must be emphasized that in

the complete binary case, i.e., when Aσω  is not equal to



1, there is also a relation similar to the above equation 

for the other components. 

This results in the classical equilibrium condition, i.e., 

      at        
A eq

Aβ βσω ω=
where,

eq
ω is the equilibrium concentration for species A. 

From the mass balances for species A and B at the 

β σ− interface and using a theory of diffusion (Taylor

and Krishna, 1993), the mass balance for species A can

then be expressed as follows:

( ) ( ) ( )A

A A A
D

t

β β
β β β β β β

ρ ω
ρ ω ρ ω

∂
+ ∇ ⋅ = ∇ ⋅ ∇

∂
v (4) 

The boundary conditions for the pseudo-component 

mass balance at the solid-liquid interface (of outward 

normal nβσ  can be written as a kinetic condition:

( )( )

( )

n

1 n at  

A A
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where βσw is the interface velocity and M is the molar

weight of the pseudo-component, sk is the reaction rate 

coefficient, n is the nonlinear reaction order. This 

equation can be used to calculate the interface velocity. 

We can remark that in general we have the following 

inequality: βσ β�w v

For gypsum, for instance, the maximum value of 

nβσ βσ⋅ w is about
89.7 10 m / s,−× which is negligible 

compared to seepage velocities in hydrogeology, on the 

order of
5 610 to 10 m / s.− −

A boundary condition 

corresponding to no jump in the tangential velocity has 

to be enforced at Aβσ . Therefore, considering as

negligible the advected normal flux at the solid-liquid 

interface, the former equation is simplified into 

( )n 1 at
A

n

sA

eq

D AM k
β

βσ β βσβ

ω
ρ ω

ω
 

⋅ − ∇ ≈ − −  
 

  (6) 

The recession velocity  βσw  can also be expressed as

follows: 

1
n n

(1 )
A

A

Dβσ βσ βσ β
β

σ β

ω
ρ ω
ρ

⋅ = ⋅∇
−

 w  (7) 

Darcy-scale equations are obtained by upscaling the set 

of pore-scale equations. The reader will find in paper 

(Guo et al., 2016) the details of this change of scale. 

The last equation above relates explicitly the recession 

velocity to the transport flux and can be used to compute 

the interface movement in ALE. The dissolution 

problem is completed with the set of equations to 

describe the boundary and initial conditions of the fluid 

domain. Because of the complex movement of the 

interface, frequent re-gridding is required and the 

resolution near the interface cannot be very fine or else 

creates rapid unacceptable distortion of the mesh. Some 

of the numerical difficulties associated with very sharp 

fronts can be circumvented by using a Diffuse Interface 

Method. Contrary to "sharp methods", a diffuse interface 

method considers the interface as a smooth transition 

layer where the quantities vary continuously. The whole 

domain constituted by the two phases is considered to be 

a continuous medium without any singularities nor a 

strict distinction of solid or liquid (see Fig.3).  

2.2 Darcy-scale non-equilibrium model 

In the following analysis, the σ-phase is supposed 

immobile, i.e., 0σ =v .

Fig. 5. Averaging volume at pore-scale level and material 

point position vector (left) and three-phase model (the third 

phase may be insoluble species for instance) (right). 

The volume averaging theory (Quintard and Whitaker, 

1994, Whittaker, 1999) will be used to upscale the 

balance equations formulated at the pore-scale (Fig. 5). 

We define the intrinsic average of the mass fraction as 

( )1 1
A A A A

V

dV
V

β

β
β β β β β

β

ω ε ω ω−Ω = = =  r  

and the superficial average of the velocity as 

( )1

V

dV
V

β

β
β β β β βε= = = V v v v r  

where βV  is the filtration velocity and
β

β β=U v  is 

the β-phase intrinsic average velocity. After 

transformation, the averaged form of balance equation of 

species A can be expressed as:  
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The different terms of (a), (b), (c) and (d) express: (a) 

accumulation, (b)convection, (c) diffusion, and (d)the 

phase exchange terms, respectively. After several 

assumptions and some mathematical treatments of the 

different equations, we have the following governing 

equations for the diffuse interface model (DIM) (Luo et 

al. 2012):  

( )
( )( )

* * * *

*

.

1

A

A A A

A eq A

t

β
β β β β β β β β β

β β β

ε ρ ρ ε ρ

ρ α ω
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+ ⋅∇Ω = ∇ ⋅ ∇Ω +

∂
− Ω − Ω

V D
  (9) 

and 

( ) ( )
*

* *

eq A
t

β β
β β β β

ε ρ
ρ ρ α ω

∂
+ ∇ ⋅ = − Ω

∂
V  (10) 

and 

( )*

eq A
t t

βσ
σ σ β β

εερ ρ ρ α ω
∂∂− = = − Ω

∂ ∂
(11) 

where
*

βρ  is such that
*

A Aβ β β β βρ ω ε ρ Ω=  and α  is

the exchange term between the two phases.
*

AβD  is the

macroscopic diffusion/dispersion coefficient : 

( )* I I
TA L T

D

β β

β β β
β

ββ

α α α
τ ε ε

= + + −
V V V

D
V

where the tortuosity, βτ , the longitudinal L
α ,and

transversal, T
α , dispersivities depend on the pore-scale 

geometry. The macroscopic effective coefficients are 

obtained by solving the “closure problems” provided by 

the theory over different types of unit cells 

representative of the porous medium, as illustrated in 

Fig. 6. 

Fig. 6. Examples of 1D, 2D and 3D unit cells (after 

Courtelieris and Delgado, 2012 ) 

Closure problems correspond to an approximate solution 

of the coupled problem: averaged variables/deviations. 

The approximate solution often takes the form of a 

mapping such as  

( )A A eq A
sβ β β β βω ω= ⋅∇Ω + − Ω% b

where 
Aβω%  is the concentration deviation, βb  and sβ  are

the two closure variables. Solving two boundary value 

closure problems for βb  and sβ  allows us to express the

macroscopic effective values according to the 

characteristics at the pore-scale. In other words, the 

physical properties at the macroscopic level are not 

"phenomenological" values but built on the basis of 

physical properties observed ordefined at the 

microscopic scale.In our case, we obtain the effective 

macroscopic diffusion tensor Aβ
*D , the macroscopic 

effective exchange coefficient α  and the effective

density 
*

βρ  such as:

( )1 11
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We observed that when the saturation at a material point 

is reached, then: 

0eq A Cte
t

β
β β

ε
ω ε

∂
= Ω  = ⇔ =

∂
In the case of DIM use, i.e., not a real porous medium 

problem application, the choice of the exchange 

coefficient α  expression as a function of porosity is

more arbitrary.  It must, however, be observed a null 

condition when the material point is considered strictly 

in the fluid phase or strictly in the solid phase. This is 

illustrated in Fig. 7. 

Fig. 7. Porous domains: "fluid"-interface-solid and expression 

of volume fractionε  



We must underline that, in the DIM model, there is no 

“pure liquid phase” (Fig. 7) since βε  is used

continuously to represent the fluid as well as the solid 

regions. Therefore, the Navier-Stokes equations are no 

suitable in this situation. Thus, we can adopt a Darcy-

Brinkman model (Brinkman, 1947) to replace Navier-

Stokes equations for the momentum balance equations 

( ) ( ) ( )* 1
0

A

A
P

β β
β β β β β β

β

µ
ρ µ

ε
−

Ω
∆ − ∇ − − Ω ⋅ =V g K V  (12)

where the permeability tensor K is a function of βε . The

Darcy-Brinkman equation will approach Stokes equation 

when K is very large and will simplifies to Darcy’s law 

when K is very small. If inertia terms are not negligible, 

a similar Darcy penalization of Navier-Stokes equations 

may be used. The resulting DIM equations may be 

solved with various numerical techniques, but in this 

paper we will use a COMSOL® implementation. Results 

are presented and discussed in the next section. 

3. DISSOLUTION MODELING WITH GEOMECHANICAL

ISSUES

The goal of this section is to show the potential 

application of the method. Two "theoretical" 

configurations are considered that are sufficiently 

representative of real cases. 

The first case corresponds to the dissolution of a gypsum 

pillar in the presence of continuously flowing water. 

This configuration can be encountered in the case of a 

room with pillars in a flooded gypsum quarry with a 

continuous forced convection of fresh water. The second 

case corresponds to flow induced by a natural hydraulic 

gradient in a porous rock formation that contains a 

gypsum lens. This lens is, for instance, located in a 

porous medium between two layers of marl. 

This study is of direct relevance to gypsum mining and 

natural dissolution of geological formations containing 

gypsum. Gypsum dissolves easily in flowing water, with 

time-scales on the order of years (therefore similar to 

human activity time-scales), so that any gypsum mine 

which becomes flooded on abandonment should be 

subject to a hydrological and geomechanical study. If a 

gypsum mine is fully or partially flooded, a continuous 

saturated or unsaturated flow of fresh water around 

pillars could decrease significantly their cross sections 

through dissolution (near the floor level in case of partial 

flooding) and leads to the pillar failure. 

Whatever the hydrogeological configuration, dissolution 

of gypsum raises the question of consequences in terms 

of geomechanical behavior: surface subsidence, 

sinkholes, caverns or pillar stability, etc. The purpose of 

this section is to present some examples, indeed 

simplified, to illustrate the numerical robustness and the 

potentialities of the numerical dissolution approach 

outlined in the previous sections. 

3.1. Gypsum lens - elastoplastic recovery 

The problem considered is an isothermal dissolution of 

the cylindrical gypsum lens of height 2.5 m and diameter 

of 5 m (Fig. 8). The lens is located between two 

supposed non permeable domains (up and down), in a 

porous medium. The imposed upstream flow (inlet) 

velocity V is equal to 10-6 m/s. The concentration of the 

inlet fluid is zero. All the boundaries of the layer 

containing the lens are zero flux, with the exception of 

the inlet and the outlet boundaries. The permeability K 

of the gypsum rock is 10-15 m2 and that of the 

surrounding medium of 10-12 m2. The fluid dynamical 

viscosity is that of water (10-3 Pa.s). From a mechanical 

point of view, the elastoplastic (Mohr-Coulomb) 

overburden has a Young's modulus of 25 106 Pa, a 

Poisson coefficient of 0.3, a cohesion of 105 Pa and a 

friction angle of 30 °. The Young Modulus of the 

supposed elastic gypsum lens is equal to 35 GPa. 

Fig. 8. Mesh and location of soluble gypsum lens. 

The density of all materials is taken equal to 2000 kg/m3. 

The model has a vertical plane of symmetry passing 

through the middle of the lens (Fig. 8). As a 

consequence we will model only half of the domain. On 

all sides of the model the normal component of 



displacement is zero (roller plane). The only load is 

gravity.  

Fig. 9. Gypsum lens at different times (0, 10, 40 and 50 years). 

In Fig. 9 we have presented the 3D shape of the gypsum 

lens at different times (0, 10, 40 and 60 years). We 

observe a significant reduction in the cross-section 

induced by dissolution. For this particular hydrodynamic 

conditions (Darcy flow, no density effect, etc.) the initial 

cylindrical shape is preserved. Fig. 10 depict the 

evolution over time of a cross section passing through 

the middle of the cylindrical lens. One can also observe 

the circular shape that is preserved and the significant 

decrease of the section with time. 

Fig. 10.  Time (0, 20, 30, 40, 50, 60, 65 yrs) evolution of a 

cross section passing through the middle of the cylindrical 

lens.  

Fig. 11. Example of spatial distribution of normalized 

concentration after 20 and 50 years. 

The cover being elastoplastic, creating a cavity induced 

by dissolution may in turn induce plasticity therein. If 

the cavity has a significant size and/or weak mechanical 

properties, the effects of dissolution can result in 

subsidence and ultimately creating a sinkhole. In Fig. 12 

and Fig. 13 we show the spatial distribution of the 

effective plastic strain for 3 times.  Recall the expression 

of effective plastic strain 
epε  :

( )2

3
 ep p p

ij ij
d dε ε ε= 

In Fig. 12 and Fig. 13, we observe the spatial extension 

of plastic strain  in the overburden, function of lens 

dissolution. 

Fig. 12.  Effective plastic strain distribution in the recovery 

after 20, 40, and 60 years. 

Fig. 13.  Isovalues of the effective plastic strain distribution in 

the recovery after 20, 40, and 60 years. 

Finally, we obtain (Fig. 14) the following plasticity in 

the recovery. 



Fig. 14.  Effective plastic strain distribution in the recovery 

after total dissolution of gypsum lens. 

In Fig. 15 we show the time evolution of the volume 

integration of the effective plastic strain: 

_ ep

Overburden

Int EP dvε= 

Fig. 15. Time evolution of the volume integration of the 

effective plastic strain over the overburden. 

The purpose of this integration is not so much to determine a 

particular value from a physical point of view but to show the 

temporal evolution of plasticity in the recovery. This increases 

continuously with time (i.e. with dissolution) and remains 

constant when the gypsum lens is completely dissolved. 

Fig. 16.   3D distribution of vertical displacement when the 

gypsum lens is totally dissolved. 

Fig. 17 show the evolution of vertical displacement w, 

for point A located in the middle of the model and on the 

bottom of recovery and point B located in the middle of 

the model and on the surface.  

Fig. 17.   Vertical displacement w(t) function of time at two 

points A and B. 

We observe that the vertical displacement increases as 

the dissolution progress. In the next subsection we 

consider a weak recovery and a lens located close to the 

surface. 

3.2. Gypsum lens - subsidence 

In this sub-section, we discuss the evolution of 

subsidence as a function of dissolution. We adopt the 

same boundary and initial conditions as before. The lens 

has now a diameter of 7.5 m and is very close to the 

surface (thickness of 5 m). The overburden is assumed 

elastic with a Young's modulus of 5 MPa (Fig. 18). 

Fig. 18.   Model used for the subsidence analysis 

Fig.19 shows the spatial distribution of the vertical 

displacement at the surface for different times. 



Fig. 19.   Spatial distribution of the vertical displacement at 

the surface at t= 20, 40, 60, 100 years. 

We can observe the evolution of subsidence both in its 

form and in its intensity. The relevance of the numerical 

model, although a simple coupling of dissolution and 

mechanical response, resides in the time predictive 

character of the method. The following figures gives 

some qualitative values of the displacement. 

Fig. 20.  Time evolution of the vertical displacement along 

line CD  

Fig. 21.  Time evolution of the derivative respect to x of the 

vertical displacement along line CD  

Fig. 22.  Time evolution of the vertical displacement along 

line AB  

Fig. 23.  Time evolution of the derivative respect to x of the 

vertical displacement along line AB  

In the following subsection we are interested in the 

stability of a gypsum pillar subject to dissolution. 

3.3 Elastoplastic gypsum pillar 

The problem corresponds to an isothermal dissolution of 

a cylindrical gypsum pillar of height 2.5 m and diameter 

5 m (Fig. 24). The pillar is located between two non 

permeable domains (up and down). The imposed 

upstream flow (inlet) velocity V is equal to 10-6 m/s. The 

concentration of the inlet fluid is zero. All the 

boundaries of the layer containing the lens are zero flux, 

with the exception of the inlet and the outlet boundaries. 

The permeability K of the gypsum is 10-15 m2 and that of 

the surrounding medium is 10-12 m2. The dynamical 

viscosity of the fluid is that of water (10-3 Pa s). The 

elastoplastic (Mohr-Coulomb) gypsum pillar has a 

Young's modulus of 35 109 Pa, a Poisson coefficient of 

0.3, a cohesion of 4 106 Pa and a friction angle of 35 °. 

The overburden is supposed elastic. 



Fig. 24. Gypsum pillar model 

Fig. 25. shows the development of the plastic 

deformation in the pillar for three instants (1, 5 and 10 

years). For reasons of symmetry of the problem we have 

represented only 1/2 pillar. 

Fig. 25. Evolution of Plastic deformation in the pillar for 

three times (1, 5 and 10 years).  

The plastic strain evolves in space but also in intensity. 

Fig. 26. shows plasticity after 15 years of continuous 

dissolution. 

Fig. 26. Plasticity after 15 years of continuous 

dissolution. 

The Fig. 27. Shows plasticity after 20 years of 

continuous dissolution. 

Fig. 27. Plasticity after 20 years of continuous 

dissolution. 

Fig. 28. depicts the time evolution of the vertical 

displacement of the material point (bullet in the domain). 

Fig. 28. Time evolution of the vertical displacement of 

the material point symbolized in red in the figure. 

Several conclusions can be drawn from this. The first is 

that the nature of changes in the vertical displacement 

and its rate of change according to dissolution gives us 

an indication of the time when failure is effective. The 

second information is we also know when it will happen. 
In terms of forecasts, we anticipate and quantify the 

effects of dissolution. 

3.4 Permeability, plasticity and dissolution mode 

In the first modeling we used an isotropic elastoplastic 

model for gypsum. No mechanical volumetric strain 

Vε was taking into account in the permeability. In

this section, we present results obtained using a model 

propose by Chin et al. (2000): 



The porosity and permeability are as follows: 
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where n is range from 5 to 10. Introducing this 

expression in gypsum permeability law we obtain the 

plastic distribution represented inf Fig. 30. 

Fig. 30. Plastic distribution and shape of the pillar. 

We observe that dissolution is increase at the top and 

base of the pillar. The barrel shaped pillar is less stiff 

and weaker as shown in Fig. 31. 

Fig. 31. Time evolution of the vertical displacement of the 

material point symbolized in red in the figure (Fig. 28) 

Ina relevant coupling we may formulate the expression 

permeability as a function of the dissolution process and 

to the mechanic volumetric strain: 

( ( , ), )VK K tε ω ε≡

4 CONCLUDING REMARKS 

In this paper, we have discussed the problem of the 

dissolution of rock materials and rock formations, with a 

focus on gypsum. A modeling approach is developed 

using a weak coupling (impact of dissolution on 

mechanical behavior) between dissolution and 

geomechanical behavior. Note that the purpose of this 

article is to present an approach that can describe the 

dissolution of solids. 

The theoretical examples treated in this article and the 

materials analyzed, illustrate the methodology. It must 

be underline that the fields of application of the DIM 

method are much broader. 

The dissolution model is based on a macro-scale or 

Darcy-scale model obtained by upscaling the 

microscopic scale or pore scale equations. The change of 

scale is based on a volume averaging theory and allows 

to relate explicitly the form of the macro-scale equations 

and the effective properties to the pore-scale physics. 

The application to several problems typically 

encountered in engineering show the importance of 

coupling between transport including dissolution and 

geomechanics. 

This weakly coupled approach of dissolution and 

geomechanics allowed us to obtain already interesting 

results in terms of risk analysis. Better accuracy, or 

further applications, would require the introduction of a 

stronger coupling between geomechanics and 

dissolution. We expect to integrate in the short term a 

strong coupling between dissolution and geomechanics, 

mainly in the context of leaching. In the case of matrix 

dissolution, work is under way to describe dissolution of 

multi-scale heterogeneous media. In such a 

configuration, the key problem for a relevant coupling is 

the description of the evolution of the mechanical 

behavior of the material. For porous materials, 

dissolution results in a reduction-modification of the 

limits of the domain but also into a modification of the 

pore space. This latter mechanism, depending on its 

intensity, can radically change the behavior of the 

material (modulus, yield surface, flow rule, etc.) and 

pose a difficult challenge for the development of a 

model. 
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