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Abstract

A common approach to assess the performance of fire insulation panels is the compo-

nent additive method (CAM). The parameters of the CAM are based on the temperature-

dependent thermal material properties of the panels. These material properties can be

derived by calibrating finite element heat transfer models using experimentally measured

temperature records. In the past, the calibration of the material properties was done man-

ually by trial and error approaches, which was inefficient and prone to error. In this con-

tribution, the calibration problem is reformulated in a probabilistic setting and solved using

the Bayesian model calibration framework. This not only gives a set of best-fit parameters

but also confidence bounds on the latter. To make this framework feasible, the procedure is

accelerated through the use of advanced surrogate modelling techniques: polynomial chaos

expansions combined with principal component analysis. This surrogate modelling technique

additionally allows one to conduct a variance-based sensitivity analysis at no additional cost

by giving access to the Sobol’ indices. The calibration is finally validated by using the cali-

brated material properties to predict the temperature development in different experimental

setups.

Keywords: Bayesian model calibration, sensitivity analysis, surrogate modelling, com-

ponent additive method, polynomial chaos expansions.

1 Introduction

Knowledge about the basic behaviour of materials exposed to fire is extremely important to

successfully develop fire safety strategies. Depending on the type and height of buildings,

certain fire requirements need to be fulfilled, e.g. requirements w.r.t. the load-bearing func-

tion (R) and separating function (EI). In case of timber buildings, the performance not only

of the timber members, but also of protective materials such as gypsum plasterboards and
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insulations is of high importance for the fire design of the building structure. These differ-

ent materials are usually combined to build floor and wall elements with different layups,

so-called timber frame assemblies. The separating function of timber frame assemblies is

usually verified using the component additive method (CAM) (Frangi et al., 2010; Mäger

et al., 2017; Just and Schmid, 2018). This method is rather flexible for calculating the sepa-

rating function because it handles arbitrary layups made of various materials and thickness.

Producers of fire protection products (e.g. gypsum plasterboard and insulation) need to de-

termine input factors for the individual materials so that the separating function of a timber

frame assembly with these materials can be verified using the CAM.

Indeed, the same protective material (e.g. a gypsum plasterboard with a given thickness)

contributes differently to the fire resistance of a timber frame assembly in different setups.

The CAM therefore considers (1) the material and thickness of a layer and (2) modification

factors taking into account the neighbouring layers. This leads to a high number of possible

combinations for timber frame assemblies, which cannot all be tested in fire resistance tests.

Therefore, the factors of the CAM are usually derived based on finite element (FE) models

and accompanying fire resistance tests.

Fire resistance tests using the standard EN/ISO temperature time curve according to ISO

834-1:1999 (1999) and EN 1363-1:2012 (2012) constitute the basis for these simulations. In

the fire tests, the temperature is recorded over time inside the specimen at specific distances

to the fire exposed surface. These recordings are used as a reference for FE simulations

of the same setup. Heat transfer models using effective thermal material properties that

depend on the temperature T (specific heat capacity c(T ), thermal conductivity λ(T ) and

material density ρ(T )) are usually employed to simulate the temperature development inside

timber frame assemblies exposed to fire. These material properties are then calibrated such

that the output matches the recorded temperatures. Since these properties are not strictly

physical quantities, they are called effective material properties. They account for not ex-

plicitly modeled effects such as fissures, cracks and moisture flow inside the specimen (Frangi

et al., 2010). Despite these simplifications, using temperature-dependent effective material

properties together with a common heat transfer analysis is appropriate and state-of-the-art

for the calibration of parameters in the CAM. This is especially true since the introduced

simplifications are negligible compared to the simplifications made within the CAM.

The conventional process of determining these effective material properties is slow and

inaccurate as the calibration is usually done manually. All temperature measurements are

averaged, thus eliminating the variability in the material behaviour and not accounting for

it in the calibration. The derivation of thermal material properties is conventionally done as

follows (Mäger et al., 2017):

Step 1 Assume effective thermal material properties and simulate a specific layup with FE

heat transfer models;
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Step 2 Compare the resulting temperatures with the averaged measurements;

Step 3 Iterate Step 1 and Step 2 until the simulation results are similar to the measured

temperatures.

A more rigorous calibration of these effective material properties can be achieved by

parameterizing the thermal time-dependent material properties with a set of model parame-

ters. Through this parametrization the problem of determining the time-dependent effective

material properties is recast as a problem of determining the real-valued parameterizing

model parameters. Then the calibration problem can be posed in a probabilistic setting.

This allows a proper treatment of uncertainties arising from material fluctuations, measure-

ment errors and model insufficiencies. One general way to do this is the so-called Bayesian

inversion framework (Beck and Katafygiotis, 1998; Gelman et al., 2014; Yu et al., 2019).

In this framework, the model parameters are seen as random variables. Instead of trying

to determine one particular value for these parameters, this probabilistic framework deter-

mines the full probability distribution of the model parameters conditioned on the observed

measurements. This distribution contains much more information about the calibrated prop-

erties than the single point estimate from the conventional approach. For example, it allows

computing expected values, maximum a posteriori estimates, confidence intervals on the cal-

ibrated values and the full correlation structure. Furthermore, the calibration can be verified

easily by computing the posterior predictive distribution (Gelman et al., 1996).

To determine the probability distribution of the material properties, it is necessary to

repeatedly evaluate the FE heat transfer model. To reduce the computational burden associ-

ated with repeated model evaluations, it has become customary to replace the computational

forward model with a cheap-to-evaluate surrogate. Therefore, the Bayesian inversion frame-

work is here combined with the polynomial chaos expansions (PCE) surrogate modelling

technique (Sudret, 2007; Blatman, 2009; Guo et al., 2018).

When working with models with multiple input parameters, the question of the relative

importance of individual parameters with respect to the output arises naturally. Quantify-

ing this influence is called sensitivity analysis. One family of approaches are the so-called

variance decomposition techniques (Saltelli et al., 2000; Arwade et al., 2010). These methods

attempt to apportion the variance of the probabilistic model output to the individual in-

put parameters. The Sobol’ indices are one such variance decomposition technique (Sobol’,

1993). Determining the Sobol’ indices is typically computationally expensive, but it has been

shown by Sudret (2006) that they can be computed easily for a PCE surrogate model. Their

computation allows valuable insights into the heat-transfer model’s properties.

In this paper, the material properties of four different gypsum insulation boards (Products

A-D, E1-E4) are calibrated based on fire resistance tests carried out with these materials.

These experimental results are presented and discussed in detail in Section 2. The calibration

is carried out with the Bayesian model calibration framework accelerated by constructing a
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PCE-based surrogate model as detailed in Section 3. Section 4 outlines how the employed

surrogate model can be used to conduct a global sensitivity analysis of the considered com-

putational model. Finally, in Section 5, the calibration is verified using two fire tests that

use two of the calibrated materials (Product C and Product D) in different experimental

setups (V1 and V2).

2 Experiments and modelling

2.1 Experiments

Two fire resistance tests with horizontally oriented specimens constitute the experimental ba-

sis for the analysis in this paper (Just, 2016; Breu, 2016). The unloaded tests were conducted

on the model-scale furnace of SP Wood Building Technology (today’s Research Institute of

Sweden, RISE) and were exposed to the EN/ISO temperature-time curve (EN 1363-1:2012,

2012; ISO 834-1:1999, 1999). Two (V1 and V2, (Breu, 2016)), respectively four (E1 to E4,

(Just, 2016)) different gypsum plasterboard setups with dimensions of 0.4×0.4 m were tested

in each test (Figure 1). Tables 1 and 2 show the layups of the specimens. The space between

and around the specimens was at least 100 mm and was filled with Product D boards to

protect the carrying layer, i.e. the last layer. The carrying layer was a 19 mm particle board

with density ρ = 633 kg/m3 in Test 1 (specimens E1 to E4) and a Product D 15 mm in Test

2 (specimens V1 and V2). Figure 2 shows the specimens of Test 2 during fabrication.

In specimens E1 to E4 (Test 1), five wire thermocouples and one copper disc thermocouple

measured the temperatures at a single interface between the layers. The fluctuations of

the sensor readings can mainly be attributed to variations in the material properties. The

measured temperatures are displayed in Figures 3(a) to 3(d).

In specimens V1 and V2 (Test 2), three wire thermocouples were placed between each

layer. The measured temperatures at the two interfaces 1 and 2 are displayed in Figures 3(e)

and 3(f).

Test 1 and Test 2, with specimens E1-E4 and V1,V2 respectively, were exposed to the

EN/ISO standard temperature-time curve (EN 1363-1:2012, 2012; ISO 834-1:1999, 1999).

The temperature measurements y(s)(t) at each sensor s were collected at N discrete time

steps ti:

y(s) = (y
(s)
1 , . . . , y

(s)
N )ᵀ with y

(s)
i

def
= y(s)(ti) for i = 1, . . . , N, (1)

where ti = iτ and τ = 10 s. For simplicity, the superscript (s) is omitted unless required to

distinguish between individual measurements. Therefore, in the sequel y stands for a vector

of measurements captured by a single sensor.
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Table 1: Specimens E1-E4 (Test 1)

Layer 1 Layer 2

E1 Product A 12.5 mm particle board 19 mm

E2 Product B 9.5 mm particle board 19 mm

E3 Product C 12.5 mm particle board 19 mm

E4 Product D 15 mm particle board 19 mm

Table 2: Specimens V1 and V2 (Test 2)

Layer 1 Layer 2+3

V1 Product C 12.5 mm Product D 2×15 mm

V2 Product D 15 mm Product D 2×15 mm

(a) Test 1, E1-E4 (Breu, 2016) (b) Test 2, V1-V2 (Just, 2016)

Figure 1: Sketch of the experimental setups from Test 1 and Test 2. For more details refer to

the respective publications Breu (2016) and Just (2016).
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Figure 2: Specimens V1 and V2 (on the right), upside-down, exposed surface on top, before

installation of the protection layers around/between the specimens, three wire thermocouples

between each layer;

1: exposed protection layer, 12.5 mm Product C; 2: protection layer 15 mm Product D; 3:

carrying layer 15 mm Product D; around the specimen other protection layers were applied to

protect the carrying layer.

2.2 Forward modelling

The experiments described in the previous section were modeled using one-dimensional heat

transfer FE-models. The reduction to a one-dimensional setup is justified, because it is

known that the experimental heat-flux is mostly perpendicular to the exposed surface. The

simulations were conducted using the general purpose finite element software Abaqus (Abaqus

FEA, 2017). The energy input on the heated surface and the losses on the unexposed side

took into account the energy input/loss through convection and radiation.

The radiation temperature was assumed to be equal to the gas temperature and followed

the EN/ISO temperature-time curve EN 1363-1:2012 (2012); ISO 834-1:1999 (1999) on the

exposed side and was constantly 19.5 ◦C on the unexposed side (as in the experiments). The

emissivity was taken as 0.8 and the convection coefficient as 25 W/m2K according to EN 1991-

1-2:2002 (2002). The element size in the FE-mesh was 0.25 mm. The temperature-dependent

material properties of the particle board (Test 1) were taken from Schleifer (2009).

The unknown parameters of interest are the temperature-dependent effective material

properties of the insulation material: the thermal conductivity λ(T ), the heat capacity c(T )

and the material density ρ(T ) of the investigated insulation materials.

With this, the computational forward model is

Y = (Y1, . . . , YN )ᵀ =M(λ(T ), c(T ), ρ(T )), (2)

For every set of material properties, this model returns the temperature evolution at

locations and at times where measurements are available (see Section 2.1).
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(a) E1 (Just, 2016) (b) E2 (Just, 2016)

(c) E3 (Just, 2016) (d) E4 (Just, 2016)

(e) V1 (Breu, 2016) (f) V2 (Breu, 2016)

Figure 3: Summary of the data used for calibration and the underlying ISO temperature ac-

cording to EN 1363-1:2012 (2012); ISO 834-1:1999 (1999).
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Since each of those parameters is a function of the temperature, they cannot be directly

calibrated. Instead, these functions have to be parameterized with a set of scalar parameters,

as described next.

2.3 Parametrization of material properties

The parametrization of the three temperature-dependent material properties (λ(T ), c(T ), ρ(T ))

is a crucial step of the calibration procedure. It consists of specifying a set of parametersXM

that define the shape of the temperature-dependent function that describes each material

property. The choice of these parameters is delicate, as it imposes a certain temperature-

dependent behaviour on the material properties. A priori, there are no physical constraints

on this thermal behaviour besides positivity, so generally, the properties are defined as

λ : [0, 1200◦C]→ R+, c : [0, 1200◦C]→ R+ and ρ : [0, 1200◦C]→ R+.

One further complication lies in the fact that these properties are mere effective properties

and cannot generally be measured. To find constraints on these parameters, it is thus

necessary to rely on previous calibration attempts of gypsum insulation boards (Breu, 2016;

Schleifer, 2009) in conjunction with measurements of certain properties, where available.

By gathering information from such previous attempts, the thermal properties are pa-

rameterized by six parametersXM = (X1, . . . , X6)ᵀ. This parametrization is flexible enough

to enable inference on XM and follows physical and empirical reasoning as described next.

We propose to distinguish two key processes during which the temperature-dependent

material properties change significantly:

First key process When the free water content in the gypsum insulation boards evap-

orates, the latent water content of gypsum, which is composed of sulfate dihydrate

CaSO4 · 2 H2O, evaporates. In this process, evaporation first forms calcium sulfate

hemihydrate CaSO4 · 1/2 H2O (also called bassanite) and then anhydrate III CaSO4.

The evaporation consumes heat, which is modelled as a local increase of the specific

heat capacity, a reduction in the conductivity and a reduction in the material density.

Second key process Thermogravimetric analyses have shown a second peak in the specific

heat due to chemical metamorphosis at elevated temperatures of secondary components

found in the gypsum insulation boards (Schleifer, 2009). This second key process is

modelled as an increase in the material conductivity, a peak in the specific heat and a

further reduction of the material density.

The temperatures at which these two key processes occur cannot be equally well pre-

scribed a priori. While the temperature of the water evaporation is well known to occur at

approximately 100◦C with its main effect taking place at 140◦C until it tails off at 180◦C,

the second key process cannot be characterized this precisely. It is assumed that the second

key process starts at the unknown temperature X1 and ends at 850◦C. Additionally, the
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relative location of its main effect between X1 and 850◦C is parameterized with X2. These

two temperatures heavily influence the evolution of the thermal properties and are thus used

as temperatures of change in all effective material properties.

In the present setting of heated gypsum boards, the initial conductivity at ambient tem-

perature is assumed to be λ(20◦C) = 0.4 W/mK (Breu, 2016). During the first key process,

the conductivity is assumed to linearly decrease to a second value that is parameterized

by X3. Starting with the second key process the conductivity starts to increase linearly to

another value that is parameterized by X4, reached at the highest simulation temperature

of 1200◦C .

Phase changes require a significant amount of energy. To model the energy requirement

associated with the evaporation of water trapped inside the insulation material, the specific

heat c(T ) is modelled with two piecewise linear spikes during both key processes, while being

constant at c = 960 J/kgK (Schleifer, 2009) for the other temperatures. The specific heat at

the peaks is parameterized by X5 for the first process and X6 for the second one.

During the first and second key process, gaseous products are emitted (water and carbon

dioxide respectively) and thus the density of the gypsum ρ(T ) reduces. This density reduction

was studied in Schleifer (2009) and the results are applied here directly. Starting from the

density measured at room temperature ρ0, ρ(T ) linearly reduces during the first key process

to 82%. It then remains constant and linearly reduces further to 77% from the start of the

second key process X1 to the main effect of the second key process. The parametrization of

the material properties is visualized in Figure 4.

To finalize the parametrization, reasonable ranges are defined for all parameters. These

ranges correspond to bounds on the parameters that are the results of prior calibration

attempts along with expert judgement. These ranges are given along with a summary of the

parameters in Table 3 with plots of the resulting temperature-dependent material properties

in Figure 5.

These six parameters are gathered into a vector XM = (X1, . . . , X6)ᵀ, which fully char-

acterizes the temperature-dependent behaviour of the gypsum insulation boards.

2.4 Finite element model

The FE modelM(XM) is considered as a verified simulator for the transient heat propaga-

tion in gypsum insulation panels under fire exposure. This means that the model is assumed

to accurately solve the underlying differential equations posed by the mathematical heat

transfer model. For a review of techniques for rigorous model verification see Oberkampf

et al. (2004); Oberkampf and Roy (2010).

The FE model yields a discretized time-dependent temperature curve XM 7→ Y =

(Y1, . . . , YN )ᵀ for each realization of the parameter vector XM = (X1, . . . , X6)ᵀ that pa-

rameterizes the effective thermal properties λ(T,XM), c(T,XM) and ρ(T,XM). The dis-
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(a) λ(T,X)

(b) c(T,X)

(c) ρ(T,X)

Figure 4: Parametrization of temperature-dependent effective material properties as defined in

Table 3.
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(a) λ(T,X)

(b) c(T,X)

(c) ρ(T,X)

Figure 5: Realizations of temperature-dependent effective material properties in their respective

ranges as defined in Table 3.
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Table 3: Summary of the parameters (X1, . . . , X6)
ᵀ that describe the material properties with

their respective ranges.

Parameter Physical Meaning Range Unit

X1 Start of second key process [300, 800] ◦C

X2 Main effect of second key process [0.1, 1] -

(relative between X1 and 850◦C)

X3 λ(180◦C) and λ(X1) [0.1, 0.25] W/mK

X4 λ(1200◦C) [0.1, 1.2] W/mK

X5 c(140◦C) [1.4 · 104, 6.5 · 104] J/kgK

X6 c(X1 + (850◦C−X1) ·X2) [1 · 103, 8 · 104] J/kgK

cretization of the time steps is identical to the available measurements, so that ti = iτ with

τ = 10 s.

3 Model calibration

The process of finding model parameters so that the model evaluation using this parameter

vector agrees with some observations is called calibration. A general probabilistic framework

for calibration is presented next. For simplicity, it is assumed that only one measurement

series y = y(s) is available for now. This restriction is lifted in Section 5.

3.1 The Bayesian calibration approach

All models are simplifications of reality and all observations made in the real world contain

measurement errors. To explicitly account for this combined mismatch between model output

and observations, one option is to model the discrepancy as an additive mismatch between

the model predictions and the observations:

y =M(XM) +E. (3)

One way to address the calibration problem of determining XM is to formulate it in

a probabilistic setting. The unknown model discrepancy E from Eq. (3) is then seen as a

random vector. Commonly and in this work, E is assumed to follow a zero mean normal

distribution with a covariance matrix parameterized by a set of parameters Xε:

E ∼ N (ε|0,Σ(xε)). (4)

Additionally, in the probabilistic setting, the combined parameter vectorX = (XM,Xε) ∈
DX is assumed to be distributed according to a so-called prior distribution (to be further
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specified)

X ∼ π(x). (5)

Then the discrepancy distribution from Eq. (4) can be used together with Eq. (3) to con-

struct a model giving the probability of the observations given a realization of the parameter

vector. Denoting by x = (xM,xε) a realization of X, this probability as a function of the

parameters is the so-called likelihood function

L(xM,xε;y) = N (y|M(xM),Σ(xε)), (6)

which reads more explicitly:

L(xM,xε;y) =
1

(2π)N/2 det Σ(xε)
exp

[
(M(xM)− y)ᵀΣ(xε)

−1(M(xM)− y)
]
. (7)

With these definitions, it becomes possible to apply the Bayes’ theorem for conditional

probabilities (Gelman et al., 2014):

π(x|y) =
L(x;y)π(x)

Z
, with Z =

∫

DX

L(x;y)π(x) dx, (8)

where π(x) is the prior distribution of the input parameters X, π(x|y) is the posterior

distribution and Z is a normalizing factor called evidence.

The probability distributions π(·) in this expression can be interpreted as degrees of belief

about the parameters X (Beck and Katafygiotis, 1998). Low values of the distribution at a

realization X indicate low confidence in this particular value, whereas high values indicate

high confidence. With this interpretation of probabilities, Eq. (8) encodes the shift of belief

about the parameter vector from before X ∼ π(x) to after the observation of experiments

X|y ∼ π(x|y). This process is called Bayesian updating, Bayesian inference or Bayesian

inversion.

As mentioned above, the probability distributions in Bayes’ theorem are named according

to their information content about the parametersX in the setting of the updating procedure:

Prior distribution π(x): this distribution captures the belief about the parameters before

(i.e. prior to) observing data. In the setting of Bayesian updating for model calibration,

it is chosen according to expert opinion and possible prior calibration attempts. A

typical choice is to select a reasonable, although sufficiently large range (lower/upper

bounds) for each parameter.

Posterior distribution π(x|y): the posterior distribution is the conditional distribution of

the parameters given the observations. It can be regarded as the state of information

about the parameters X|y after (i.e. posterior to) making observations.

Thus, the computation of the posterior distribution π(x|y) can be considered as the

solution of the calibration problem. Since it is a probability distribution rather than a

single value, it encompasses all information specified by the prior distribution and the newly
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observed data. Already conceptually it is thus a much broader way of defining calibration

than single value estimators.

Another probability distribution of interest in the Bayesian inference setting is the pos-

terior predictive distribution π(y∗|y). It is defined as

π(y∗|y) =

∫
L(x;y∗)π(x|y) dx. (9)

This distribution expresses beliefs about future (i.e. predictive) observations y∗ given

the already observed ones y. If it is possible to sample from the posterior distribution,

i.e. (xM,xε) ∼ π(x|y), a sample from the posterior predictive distribution is obtained by

drawing

Y postpred ∼ N (y∗|M(xM),Σ(xε)), where (xM,xε) ∼ π(x|y). (10)

The posterior predictive distribution allows to assess the predictive capabilities of the

model following calibration. It contains the uncertainty about the model parameters XM

and the mismatch parameters Xε. Because this distribution is defined in the space where

the data y are collected, it can be used to visually check the calibration results.

3.2 Sampling from the posterior distribution

The analytical computation of the posterior distribution is typically not possible. This is

mostly due to difficulties in evaluating the normalizing constant Z defined in Eq. (8). Its

computation typically relies on estimating an integral in the parameter space, which is in

most cases intractable.

A breakthrough technique called Markov chain Monte Carlo (MCMC) sampling, origi-

nally developed by Metropolis et al. (1953) and Hastings (1970), completely avoids the need

to evaluate this high-dimensional integral. It is a type of stochastic simulation technique that

constructs Markov chains that are guaranteed to produce samples distributed according to

the posterior distribution. Posterior characteristics (e.g. quantities of interest, expected

values, marginal distributions etc.) can then be estimated using this sample.

Following the initial development of the MH algorithm (Metropolis et al., 1953; Hastings,

1970), recent developments to improve the algorithm’s efficiency strived towards adaptive

proposal distributions (Haario et al., 2001; Roberts and Rosenthal, 2009) and the utilization

of gradient information (Rossky et al., 1978; MacKay, 2003). One common flaw of these

algorithms, however, is the requirement to tune them using a set of tuning parameters. This

is a particularly tedious task that is a major source of error in practical applications.

The affine-invariant ensemble sampler (AIES, (Goodman and Weare, 2010)) is a fairly re-

cent MCMC algorithm that performs particulary well in this respect. This algorithm requires

only a single tuning parameter and its performance is invariant to affine transformations of

the target distribution. This property makes it particularly useful for real-world applications,
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where strong correlations between individual parameters often hinder conventional MCMC

algorithms.

The AIES algorithm relies on a set of parallel chains where proposal samples are obtained

by moving in the direction of a randomly chosen conjugate sample from a different chain.

The pseudo-code for the implementation used in this paper is given in Algorithm 1.

A property that makes MCMC algorithms especially suitable for Bayesian computations

is that they do not require the explicit computation of the normalization constant Z (from

Eq. (8)), as only a posterior ratio, called acceptance ratio, is required (Step 9 of Algorithm 1).

In this ratio, Z cancels out. However, the computationally expensive forward model must

be evaluated each time this acceptance ratio is computed. This necessity of many runs of

computationally expensive models has spurred the idea of constructing a surrogate model

that, after successful construction, can be used in the MCMC algorithms in lieu of the

original model, whereby the overall computational burden is reduced to feasible levels.

Algorithm 1 Affine-invariant ensemble sampler (Goodman and Weare, 2010)

1: procedure AIES(x
(1)
0 , . . . ,x

(L)
0 , a, NSteps)

2: for i← 1, NSteps do

3: for l← 1, L do

4: x̃← x
(l)
i−1

5: x∗ ← x
(k)
i−1 with k ∈ {1, . . . , L}\{l} chosen randomly

6: Sample z ← Z ∼ g(z) ∝





1√
z

if z ∈
[
1
a , a
]

0 otherwise

7: x̂← x̃+ z(x∗ − x̃)

8: Sample u← U ∼ U(0, 1)

9: if zM−1 π(x̂|y)π(x̃|y) > u then . M is dimension of x ∈ RM

10: x
(l)
i ← x̂

11: else

12: x
(l)
i ← x̃

13: end if

14: end for

15: end for

16: end procedure

3.3 Surrogate modelling of the temperature time series

Often, sampling based techniques (e.g. MCMC algorithms) are considered infeasible because

of the high number of computationally expensive model runs M(XM) required. Surrogate
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modelling techniques try to solve this problem by constructing a computationally cheap

emulator that can be used instead of the original model.

Non-intrusive approaches to construct surrogate models are solely based on realizations

of the model parameters and corresponding model outputs (Choi et al., 2004). The set of

parameters used for constructing the surrogate is referred to as experimental design, which

means here a set of computer experiments and shall no be confused with physical experiments.

Following the assembly of the experimental design, the constructed surrogate model aims to

approximate the original model predictions denoted by MPC,

MPC(XM) ≈M(XM). (11)

This section details the construction of a surrogate model combining polynomial chaos

expansions (PCE) with the principal component analysis (PCA).

3.3.1 Polynomial Chaos Expansions

Polynomial chaos expansions (PCE) are a surrogate modelling technique that has been used

extensively in the engineering disciplines (Xiu and Karniadakis, 2002; Soize and Ghanem,

2004; Guo et al., 2018) to construct surrogate models of scalar-valued functions of random

variables. A brief introduction to the method is presented next.

Assume a random vector X = (X1, . . . , XM ) with mutually independent components

Xi ∼ πi(xi). Its joint probability density function is thus given by

π(x) =
M∏

i=1

πi(xi). (12)

The functional inner product of two polynomials ψik, ψ
i
l : xi ∈ DXi 7→ R of degree k and

l respectively, is then defined by

〈
ψik, ψ

i
l

〉
πi

def
=

∫

DXi

ψik(xi)ψ
i
l(xi)πi(xi) dxi. (13)

By choosing these polynomials to fulfil
〈
ψik, ψ

i
l

〉
πi

= δk,l, i.e. δk,l = 1 if k = l and 0

otherwise, these polynomials form a family of univariate orthonormal polynomials {ψik}∞k=0.

There exist well-known families of polynomial functions that fulfil the fundamental condition

of Eq. (13) w.r.t. standard parametric probability distributions πi (Askey and Wilson, 1985).

These univariate polynomials can be used to build multivariate polynomials by tensor

product. Introducing the multi-indices α = (αi, . . . , αM ) ∈ NM the latter are defined by:

Ψα(x)
def
=

M∏

i=1

ψiαi
(xi). (14)

It can be shown that the univariate orthonormality property of Eq. (13) extends to the

multivariate case and that the following holds:

〈Ψα,Ψβ〉π
def
=

∫

DX

Ψα(x)Ψβ(x)π(x) dx = δα,β. (15)
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These polynomials {Ψα}α∈NM form a so-called orthonormal basis of the space of square

integrable functions with respect to the probability distribution π(x). Any such function can

be represented by:

f(x) =
∑

α∈NM

aαΨα(x), (16)

where aα ∈ R are the coefficients of the expansion.

In practical applications it is not feasible to compute the infinite number of coefficients

aα ∈ NM . Instead, a truncation scheme is typically proposed that reduces the number of

considered polynomials to a finite set. This truncated set denoted by A ⊂ NM transforms

the equality of Eq. (16) to an approximation

f(x) ≈ fPCE(x)
def
=
∑

α∈A
aαΨα(x). (17)

In regression-based approaches, the coefficient vector a ∈ Rcard(A) is typically estimated

by least-squares analysis, as originally proposed in Berveiller et al. (2006). This corresponds

to selecting a truncation set A (Blatman and Sudret, 2011a) and using an experimental

design X def
= {x(i), i = 1, . . . ,K} to minimize the expression

ã = arg min
a∈Rcard(A)

1

K

K∑

i=1

(
f(x(i))−

∑

α∈A
aαΨα(x(i))

)2

. (18)

By storing the function evaluations at X in a vector Y def
= {f(x(1)), . . . , f(x(K))} the

solution of Eq. (18) reads:

ã = (BᵀB)−1BᵀY, (19)

where B = {Bij def
= Ψj(x

(i)), i = 1, . . . ,K, j = 1, . . . , card(A)} are the evaluations of the

basis polynomials Ψα on the experimental design X .

To assess the accuracy of the obtained polynomial chaos expansion, the so-called gener-

alization error E
[
(f(X)− fPCE(X))2

]
shall be evaluated. A robust error measure can be

obtained by using the leave-one-out (LOO) cross validation technique. This estimator is

obtained by

εLOO =
1

K

K∑

i=1

(
f(x(i))− fPCE

∼i (x(i))
)2
, (20)

where fPCE
∼i is constructed by leaving out the i-th point from the experimental design. After

some algebraic manipulation, it can be shown that the LOO error can be computed as a

mere post-processing of the PCE expansion as follows

εLOO =
1

K

K∑

i=1

(
f(x(i))− fPCE(x(i))

1− hi

)2

, (21)

where hi is the ith component of the vector given by:

h = diag
(
B(BᵀB)−1Bᵀ) , (22)

for more details refer to Blatman and Sudret (2010).
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This section outlined the approach to use PCE for approximating scalar quantities. Since

the heat transfer model Y =M(XM) considered in this paper returns a vector of interface

temperatures at 601 time steps, a pure PCE approach would require the construction of

N = 601 independent polynomial chaos expansions. Instead, a dimensionality reduction

technique on the output is applied before using the PCE technique.

3.3.2 Principal Component Analysis

Because the discretized temperature evolution Y is expected to be rather smooth (see Fig-

ure 11), considerable correlation between the individual time steps is expected. This correla-

tion can be exploited to reduce the dimensionality of the output in the context of surrogate

modelling.

There exist numerous so-called dimensionality reduction techniques (van der Maaten

et al., 2008), one of which is principal component analysis (PCA, Jolliffe (2002)). The latter

utilizes an orthogonal transformation to express Y in a new basis of uncorrelated principal

components Z.

In practice, PCA is carried out by computing estimators of the expectation µY ≈ E [Y ]

and the covariance matrix ΣY ≈ Cov [Y ]. The N eigenvectors of this covariance matrix are

denoted by φp for p = 1, . . . , N . The associated eigenvalue λp corresponds to the variance

of Y in direction of the p-th principal component. Thereby the random vector Y can be

expressed through its N principal components zp(XM) as Y = µY +
∑N
p=1 zp(XM)φp.

The model output can then be compressed to a lower dimensional subspace by retaining

only those N ′ principal components with the highest variance:

Y ≈ Y PCA = µY +
N ′∑

p=1

zp(XM)φp. (23)

The number of terms N ′ is selected such that
∑N ′

p=1 λp = (1 − ε0)
∑N
p=1 λp, with ε0

typically chosen as 0.01. This way, the model output Y ∈ RN can be approximated by

a linear transformation of the principal component vector Z = (z1(XM), . . . , zN ′(XM))ᵀ

thereby reducing the problem dimensionality from N to N ′ � N .

3.3.3 Combining PCA with PCE

The combination of PCA with PCE gives rise to an efficient surrogate modelling technique as

shown originally in Blatman and Sudret (2011b). Constructing N ′ polynomial chaos expan-

sions of each retained principal component zp(XM) ≈ zPCE
p (XM) =

∑
α∈A ãp,αΨα(XM),

together with the PCA formulation from Eq. (23) yields a surrogate model relating the model

parameters to the vector valued time series output of the transient heat transfer problem:

Y ≈MPC(XM)
def
= Y PCA+PCE = µY +

N ′∑

p=1


 ∑

α∈Ap

ãp,αΨα(XM)


φp, (24)
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which can be rewritten by introducing the union set A? def
=
⋃N ′
p=1Ap:

Y PCA+PCE = µY +
∑

α∈A?

N ′∑

p=1

ãp,αΨα(XM)φp. (25)

For compactness, this equation can also be expressed in matrix form by letting Φ =

(φ1, . . . ,φN ′) be a N×N ′ matrix containing the retained eigenvectors φp = (φp1, . . . , φpN )ᵀ.

For the PCE part of the equation the vector Ψ(XM) = {Ψα(XM),α ∈ A?} is introduced

that holds the individual multivariate orthogonal polynomials. Let A be a card(A?) × N ′

matrix that stores the corresponding PCE coefficients, then Eq. (24) can be written as

Y ≈ µY + Φ (AᵀΨ(XM)) . (26)

For completeness, the response can also be expressed for each random variable Yt indi-

vidually. For this, the row vector φrow
t = (φ1t, . . . , φN ′t), taken from the t-th row of the

matrix of eigenvectors Φ, is introduced:

Yt ≈ µYt
+ φrow

t AᵀΨ(XM). (27)

This surrogate model can then be used in lieu of the original computationally expensive

forward model. The evaluation of the surrogate model is orders of magnitude faster than

the original finite element model. For comparison, in our application example a single FE

run takes about 1 min on a conventional computer, while in the same time 107 evaluations

of the surrogate model can be made.

This reduction in computational time is a promising feature of the presented surrogate

modelling technique. It does, however, come at the cost of a series of approximations that

are introduced during the PCA and PCE computation. To ensure confidence in the produced

surrogate model, a general error measure has to be devised. It includes the approximation

error due to the PCA truncation and the truncated polynomial chaos expansion. Such an

error measure η̃ was derived in Blatman and Sudret (2013). For the sake of completeness

the details are given in A.

3.4 Summary of the proposed method

In this section, a procedure to efficiently conduct Bayesian inference with expensive vector

valued models was presented. It is assumed that the parametrization of the temperature-

dependent effective material properties (see Section 2.3) is known. Bayesian inference then

aims at determining the distribution of the parameters X|y ∼ π(x|y) after observations (i.e.

experimental measurements) have been made. A brief step-by-step account of this procedure

is given below for reference:

Step 1 Choose a prior distribution π(x) on X and construct an experimental design X using

K samples from this prior. Evaluate the forward model at X and store the evaluations

in Y.
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Step 2 Approximate M(XM) using the surrogate model MPC(XM) from Eq. (26). This

requires the combination of the dimensionality reduction technique PCA with the PCE

uncertainty propagation technique.

Step 3 Compute the error estimate η̃ from Eq. (49). This error is only valid over the prior

domain. If it is too large, enrich the experimental design by increasing the number of

samples K and restart from Step 1. The size of the admissible error depends on the

application but should typically not exceed 5%.

Step 4 Define a likelihood function L(x;y) from Eq. (7) that captures the discrepancy between

a model run and the observations.

Step 5 Run the AIES defined in Algorithm 1 where the likelihood function uses the surrogate

model MPC(XM) instead of the original model M(XM) to obtain a sample from the

posterior distribution π(x|y).

Step 6 Verify the fit of the calibrated model using a sample from the posterior predictive distri-

bution from Eq. (9). Samples from the posterior predictive distribution can be obtained

by reusing parameter samples distributed according to the posterior distribution from

Step 5.

This method works if the support domain of the prior distribution contains that of the

posterior distribution. In this respect, sufficiently large prior ranges shall be selected based

on the expert’s judgment.

The successful calibration of the parameters through the Bayesian inference approach

gives insight into the model mismatch and correlation structure between individual param-

eters. The distribution of the parameters can further be used in probabilistic analysis using

these models and, given new observations, can be updated to reflect beliefs incorporating

the newly acquired information.

A fundamental ingredient of the presented approach is the necessity to define a parametriza-

tion of the thermal effective material properties as described in Section 2.3. To judge the

quality of the parametrization, it can be helpful to assess the relative importance of a single

model parameter with respect to the output. For this, it is necessary to resort to the field

of sensitivity analysis.

4 Sensitivity analysis

4.1 PCE based Sobol’ indices

Global sensitivity analysis aims at finding which input parameters of a computer model (or

combination thereof) explain at best the uncertainties in the model predictions. In this

respect, variance decomposition techniques rely on assigning fractions of the model output
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variance Var [Y ] = Var [M(X)] to the individual input parameters Xi. For simplicity, in

this section the subscript (·)M from the parameter vector X = XM is dropped.

Consider a scalar-valued computational model M : X ∈ [0, 1]
M 7→ M(X) ∈ R, which

maps a vector of input parameters in the unit hypercube to the real numbers. This com-

putational model can be decomposed into a sum of terms that only depend on a subset of

the input parameters, i.e. a constant M0, univariate functions {Mi(Xi), i = 1, . . . ,M},
bivariate functions etc.

M(X) =M0 +

M∑

i=1

Mi(Xi) +
∑

1≤i<j≤M
Mij(Xi, Xj) + · · ·+M1,2,...,M (X1, . . . , XM ). (28)

This decomposition is called the Hoeffding-Sobol’ decomposition and is unique for any

function M that is square-integrable over the unit hypercube (Sobol’, 1993).

Denoting by u
def
= {i1, . . . , is} ⊂ {1, . . . ,M} a subset of indices, Eq. (28) can be written

in short:

M(X) =M0 +
∑

u⊂{1,...,M}
Mu(Xu). (29)

It can be shown that the terms of this equation called summands, are orthogonal (Sobol’,

1993). The variance of each term Mu(Xu), called partial variance, is obtained by:

Du
def
=

∫

[0,1]card(u)
M2

u(xu) dxu. (30)

Due to the orthogonality of the terms in this equation, the total variance of the model

output D = Var [M(X)] is finally obtained as the sum of the partial variances

D =
∑

u⊂{1,...,M}
Du. (31)

Each partial variance describes the amount of the output variance that can be attributed

to the interaction of the input variables Xu. In particular, Di describes the fraction of the

variance that can be attributed to one input variable Xi taken separately.

Moreover, the total contribution to the variance attributable to a single input parameter

Xi is captured in the sum of the partial variances Du that contain the i-th input variable.

The sum of these partial variances normalized by the total variance is called the i-th total

Sobol’ index and is defined as

STi
def
=

1

D

∑

u⊃{i}
Du. (32)

It is noted here that the sum of all total Sobol’ indices, i.e.,
∑
i∈{1,...,M} S

T
i , is larger than

one because the same interaction effect contributes to multiple total Sobol’ indices. Usually

the integral in Eq. (30) can be computed through Monte Carlo integration. However, if the

model M is expressed in an orthogonal basis (as is the case for PCE, Eq. (16)), the Sobol’

indices can be computed analytically by post-processing the PCE coefficients aα (Sudret,

2006, 2008):

STi =
1

D

∑

α∈Ai>0

a2α, with Ai>0 = {α ∈ A : αi > 0}, (33)
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i.e. Ai>0 is the set of multivariate polynomials that are non-constant in the i-th input

parameter Xi. For scalar-valued models, this yields a measure of the variance fraction that

can be attributed to a certain input parameter. In the following section, this concept is

extended to models with multiple outputs.

4.2 PCA-based Sobol’ indices

In the present paper models with multiple outputs (i.e. time-series of computed temperatues)

are considered. By using a surrogate model that combines PCE with PCA, as discussed in

Section. 3.3.3, the total Sobol’ indices for each output vector component (i.e. time step) can

also be computed analytically (Marelli and Sudret, 2015; Nagel, Rieckermann, and Sudret,

Nagel et al.).

For this, the partial variances of the model response components Yt are computed by

using the expression from Eq. (27). The total Sobol’ index for the t-th component of the

output random vector then reads

STi,t = 1−
∑
α∈A?

i=0

(∑N ′

p=1 φptãp,α

)2

∑
α∈A?

(∑N ′

p=1 φptãp,α

)2 . (34)

where A?i=0 is the subset of A? for which αi = 0. The interested reader is referred to B for

the derivations.

5 Results

In this section, the procedure presented in Sections 3 and 4 is applied to calibrate the

temperature-dependent material properties of gypsum based insulation boards. The ex-

perimental data stems from experiments conducted by Breu (2016) and Just (2016) that

were presented in Section 2.1. As explained in Section 2.3, the material properties are pa-

rameterized with a set of 6 parameters. In the Bayesian inference framework introduced

in Section 3.1, determining the posterior distribution of these parameters constitutes the

calibration of the temperature-dependent material properties.

To further investigate the effects of the introduced parametrization, the surrogate models

MPC(XM) used for calibration are reused to conduct time-dependent sensitivity analyses

(Section 4). These analyses show the influence each model parameter Xi has on the simu-

lation output. They deliver valuable insights and can be used to further refine the model

parametrization.

Finally, the calibrated time-dependent material properties are validated by simulating

insulation panels in a different measurement setup and comparing these simulation results

with actual measurements.
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5.1 Calibration of material properties for gypsum boards

In this section the general calibration procedure from Section 3.4 is applied to the specific

problem of calibrating heat transfer models describing the experiments of specimens E1-E4

(Test 1) presented in Section 2.1.

The model parameters XM are assumed to be priorly independent and uniformly dis-

tributed with the lower and upper bounds (xi and xi respectively) defined by the ranges

given in Table 3. The prior distribution of the model parameters is thus given by

π(xM) =
6∏

i=1

U(xi;xi, xi). (35)

Since multiple measurements y(s) are available for each experiment, the formulation for

the likelihood Eq. (6) has to be slightly adapted. Under the assumption of independence

between the individual measurement locations, it can be written as the product

L(xM,xε;y) =
S∏

s=1

N
(
y(s);MPC(xM),Σ(xε)

)
, (36)

which generalizes Eq. (6) where only a single time series of measurements was consid-

ered. Consequently, the posterior distribution obtained from Bayes’ theorem should strictly

be written as π(x|y(1), . . . ,y(S)), but for notational simplicity the superscript (s) is again

dropped.

The covariance matrix Σ(xε) is parametrized by

Σ(xε) = {Σ(xε)ij
def
= σiσjR(ti, tj , θ), i, j = 1, . . . , N}, (37)

where we choose a so-called Matérn 5/2 autocorrelation function (h = ti − tj):

R(h, θ) =

(
1 +

√
5|h|
θ

+
5h2

3θ2

)
exp

(
−
√

5|h|
θ

)
. (38)

In this autocorrelation function, θ is the correlation length and σi is the standard devi-

ation at the i-th time step. To reduce the number of calibration parameters, it is assumed

that the standard deviation σ(t) follows a degree-6 polynomial function

σ = (σ1, . . . , σN ), with σi
def
= σ(ti) =

6∑

k=0

$kψk

(
2
ti − t1
tN

− 1

)
, (39)

where ψk is the k-th Legendre polynomial (defined over [−1, 1]) and $k are the coefficients to

be calibrated. As a summary, there are 8 parameters to define our discrepancy term, namely

{$0, . . . , $6} which define the non-stationary variance of the model discrepancy, and the

autocorrelation length θ. Using the notation from Section 3.1, we pose Xε = ($0, . . . , $6, θ).

To complete the prior information, a uniform distribution is assumed for the discrepancy

parameters with non-restrictive bounds. A summary of the full prior distribution is given in

Table 4.
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(a) π(xM|y)

(b) π(xε|y)

Figure 6: Univariate and bivariate marginals from the posterior distribution of the model pa-

rameters π(xM|y) and discrepancy parameters π(xε|y) calibrated using the data from Product

A (E1). The vertical line (dot) indicates the MAP parameter xMAP defined in Eq. (40).
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Table 4: Summary of the prior distribution π(x) =
∏14
i=1 = πi(xi) for the parameter vector

X = (X1, . . . , X14)
ᵀ

πi(xi) µ σ c.o.v. units

XM : X1 U(300, 800) 5.50 · 102 1.20 · 101 2.18 · 10−2 ◦C

X2 U(0.1, 1) 5.50 · 10−1 5.10 · 10−1 9.27 · 10−1 -

X3 U(0.1, 0.25) 0.175 6.58 3.76 · 101 W/mK

X4 U(0.1, 1.2) 0.65 17.8 2.74 · 101 W/mK

X5 U(1.4 · 104, 6.5 · 104) 3.95 · 104 1.21 · 102 3.07 · 10−3 J/kgK

X6 U(103, 8 · 104) 4.05 · 104 1.51 · 102 3.73 · 10−3 J/kgK

Xε : X7 U(0, 20) 1.00 · 101 2.40 2.40 · 10−1 ◦C

X8 U(−20, 20) 0 3.40 - ◦C
...

...
...

...
...

...

X13 U(−20, 20) 0 3.40 - ◦C

X14 U(0, 50) 2.50 · 101 3.80 1.52 · 10−1 s

Figure 6 shows the resulting sample points of the posterior distribution obtained for an

exemplary calibration run for the E1 setup. This sample was produced using the previously

presented AIES algorithm (Algorithm 1).

Despite the broad information contained in the full posterior plot, one is often inter-

ested in the set of parameters that best describe the observations. In accordance with the

Bayesian interpretation of probabilities, this parameter set is located at the maximum value

of the posterior distribution (maximum a posteriori, MAP). It can be found by solving the

optimization problem

xMAP = arg max
x

π(x|y). (40)

This problem can be approximately solved by picking the parameter point from the

available posterior sample that maximizes the unnormalized posterior distribution π̃(X|y) =

L(x;y)π(x) ∝ π(x|y). The resulting maximum a posteriori estimator is also shown in

Figure 6.

The calibrated posterior parameters for Product A (E1) are summarized in Table 5. It

gives an overview of the calibrated parameters, including a set of summary statistics.

A major advantage full samples have compared to point estimators is that they allow

investigating characteristics of the posterior distribution. This provides a fuller picture of the

calibrated parameter vector,e.g. by showing dependence between individual parameters Xi,

allowing the computation of confidence intervals or revealing problems with identifiability.
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Table 5: Posterior statistics for the calibration with Product A (E1). The values are computed

from the available posterior sample and include the MAP estimate, the empirical mean µ̂,

the empirical 95% confidence interval, the empirical standard deviation σ̂, and the empirical

coefficient of variation c.o.v.
def
= σ̂/µ̂. The prior statistics are shown in Table 4.

MAP µ̂ 95% conf. interval σ̂ c.o.v.

X1 6.91 · 102 6.81 · 102 [5.29 · 102, 7.88 · 102] 6.60 · 101 9.70 · 10−2

X2 5.08 · 10−1 5.65 · 10−1 [1.48 · 10−1, 9.60 · 10−1] 2.27 · 10−1 4.01 · 10−1

X3 0.185 0.183 [0.167, 0.196] 6.99 · 10−3 3.82 · 10−2

X4 0.799 0.798 [0.410, 1.15] 0.199 2.49 · 10−1

X5 3.77 · 104 3.75 · 104 [3.46 · 104, 4.14 · 104] 1.58 · 103 4.21 · 10−2

X6 2.25 · 104 2.17 · 104 [3.55 · 103, 4.65 · 104] 1.10 · 104 5.09 · 10−1

X7 8.56 8.62 [7.99, 9.25] 3.36 · 10−1 3.89 · 10−2

X8 4.53 · 10−1 4.58 · 10−1 [1.99 · 10−1, 7.25 · 10−1] 1.33 · 10−1 2.90 · 10−1

X9 1.35 1.36 [1.59, 1.13] 1.79 · 10−1 5.87 · 10−2

X10 2.39 2.41 [2.69, 2.14] 2.11 · 10−1 3.92 · 10−2

X11 2.46 2.46 [2.19, 2.75] 1.43 · 10−1 5.84 · 10−2

X12 5.06 · 10−1 5.29 · 10−1 [2.34 · 10−1, 8.29 · 10−1] 1.56 · 10−1 2.95 · 10−1

X13 2.07 · 10−1 2.16 · 10−1 [3.93 · 10−1, 4.96 · 10−2] 1.33 · 10−1 2.75 · 10−1

X14 2.76 · 101 2.77 · 101 [2.67 · 101, 2.86 · 101] 4.87 · 10−1 1.76 · 10−2

Additionally, the full parameter distribution explains why it can be hard to calibrate

with the conventional approach. When strong correlations exist, such as for X3 and X5 in

Figure 6, it is hard to move to a better guess by changing just one parameter.

In conclusion, the reduction of the standard deviation in all posterior parameters in con-

junction with the unimodal posterior distribution can be seen as an indicator of a successful

calibration.

5.2 Discussion of the calibration results

The results of the proposed calibration procedure for four different insulation materials are

discussed next. The materials are all characterized by the temperature-dependent material

properties (λ(T,XM), c(T,XM), ρ(t,XM)). The calibration results for Product A are sum-

marized in Figure 7 and Table 5. In C the results of the remaining products are presented.

The discussion in this section refers to them at times. In this section we use the notation
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Xprior def
= X and Xpost def

= X|y to more clearly distinguish between the prior and posterior

random variables.

For each material, Figures (a) and (b) show the temperature-dependent conductivity λ(T )

and heat capacity c(T ). Since the full posterior distribution of the parameters is inferred, the

plots do not only show one line for prior and posterior, but 1,000 samples each. The shown

curves result from prior parameter draws Xprior ∼ π(x) (i.e. before calibration), posterior

parameter draws Xpost ∼ π(x|y) (i.e. after calibration) and the MAP parameter xMAP

(see Eq. (40)). The calibrated density ρ(T ) is not shown, since its two governing parameters

X1 and X2 can be seen also in the plots of the calibrated λ(T ) and c(T ). It is obvious that

the posterior samples have a smaller variance than the prior samples since the bandwith of

the 1,000 curves is much smaller.

A plot of the model predictions together with the measured data y is presented in Fig-

ures (c). These plots show runs of the surrogate model before calibration (MPC(Xprior))

and confidence intervals CI of the predictions Y postpred of the surrogate model following

calibration (see Eq. (9)). The MAP parameter xMAP is propagated through the surrogate

and the response of the original finite element model for xMAP is also plotted. Additionally,

samples from the posterior are used to show the calibrated discrepancy standard deviation

σ(Xpost) (see Eq. (39)).

To emphasize the reduction in uncertainty by the presented calibration procedure, addi-

tionally posterior distributions of the predicted temperature at snapshot times t = 20 min

and t = 30 min are shown in Figures (d) and (e). These plots show kernel density esti-

mates of the output probability density function of the surrogate model before calibration

MPC
t (Xprior) and after calibration Y postpred

t at the respective times t. Additionally, the

measured data y and the MAP predictions are displayed. These plots are now discussed in

more detail.

The distributions of X3 (conductivity between 180◦C and the start X1 of the second

key process) and X5 (distribution of the heat capacity at 140◦C), show a large variance

reduction. This means that the information gained about these parameters through the

conducted calibration is high.

Generally, it can be expected that the heat capacity and the conductivity correlate, since

a higher heat flow due to a higher conductivity can be compensated by a higher heat capacity,

resulting in the same temperature profile. This is indeed the case for the parameters X3 and

X5 as well as for X4 and X6 (which describe the conductivity and the heat capacity at higher

temperatures), as seen in Figure 6. The effect of this correlation and its compensation effect

can be seen by comparing Figure 13 (E2) to Figures 7 (E1), 15 (E3) and 17 (E4). Despite the

fact that parameters X4 and X6 show a higher posterior variance for specimens E1, E3 and

E4 than for E2, the variance of the resulting model predictions (Figures (c)) is comparable.

Despite the fact that the shown prior thermal material properties in Figures (d) and (e)
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are based on the same prior assumptions for the parameters {Xi, i = 1, . . . , 6}, the modes

of the prior distributions estimated from MPC
t (Xprior) are significantly different for the

individual specimens. This is caused by two factors: (1) the variable layer thickness and

(2) the parametrization. The layer thickness influences the measured temperature simply

by the fact that the further inside the specimen the measurement is placed, the colder it

is at a certain time. This can easily be seen by comparing the different Figures (c), from

9.5 mm (Figure 13) to 12.5 mm (Figures 7 and 15) to 15 mm (Figure 17). Additionally,

parameter X1, the start time of the second key process, is responsible for the large variance

of the start time of the temperature increase after the 100◦C plateau. For higher values of

X1, the plateau is longer and the temperature increase starts later. Thus if the snapshots

(Figures (d) and (e)) are taken where most prior temperatures are still at the plateau, the

probability density functions have positive (right) skew. The later the snapshot is drawn,

the more negatively skewed is the probability density function and the larger its variance

gets.

Product B (E2) is the only product where the conductivity decreases after 400°C and

where there is hardly a second key process according to the posterior curves. This shows

that this product is made of a significantly different material.

Generally, all posterior predictive distributions π(y∗|y) agree well with the measurements.

This suggests that the used heat transfer model with the chosen parametrization is sufficiently

accurate to reproduce the observations.

The calibrated temperature-dependent material properties show a higher variance reduc-

tion at lower temperatures. This is mostly due to the maximum system temperature at

40 min being only 885◦C as seen in Figure 3.

It can be clearly seen in Figures (c) that the calibrated discrepancy standard deviation

σ(Xpost) varies similarly across all four experiments. It is influenced by two factors: (1) the

temperature variance from the data series y(s) (i.e. the individual sensor recordings) and

(2) model insufficiencies that hinder a fully accurate reproduction of the data. The latter

can be reduced by changing the parametrization: an additional model parameter between

approximately 200◦C and 400◦C could reduce the calibrated mismatch standard deviation

for the temperature increase after the 100◦C plateau. This temperature range currently lacks

an independent parameter.

5.3 Time-dependent sensitivity analysis

Using the PCA+PCE surrogate model and the derivations from Section 4, the constructed

surrogate model of the temperature evolution can be reused to compute the time-dependent

Sobol’ indices as measures for the individual model parameters’ importance across the sim-

ulation time.

The time-dependent Sobol’ indices STi were computed for all four surrogate models con-
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(a) Realizations of the conductivity λ(X) (b) Realizations of the heat capacity c(X)

(c) Model predictions and calibrated discrepancy standard deviation

(d) Model predictions at t = 20 min (e) Model predictions at t = 30 min

Figure 7: Calibration results for Product A 12.5 mm insulation (E1), experiments conducted by

Just (2016).
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structed for the experimental setups E1-E4. They are displayed in Figures 8 for Product

A. In C the results of the remaining products are presented. The discussion in this section

refers to them at times.

Generally there is no single parameter that clearly dominates the simulation output

across the whole simulation time range. Instead, most parameters have a clear time range

where they are important and other time ranges where their influence can be neglected. All

parameters show a similar behaviour across the four models.

At early simulation times before t = 15 min, the Sobol’ indices ST3 and ST5 clearly

dominate the sensitivity analysis across all four models. These indices correspond to the

parameters X3 (low to mid temperature conductivity) and X5 (specific heat capacity at T =

140◦C). This is not surprising, because the system temperature is monotonously increasing

and low temperature effects like these are expected to have a higher impact at earlier times.

The Sobol’ index ST3 carries on to influence the simulation at later times, while ST5 decreases

in importance towards the end of the simulation.

Starting from t = 15 min, the Sobol’ indices ST1 , ST4 and ST6 become dominant. This can

be explained similarly, since they influence the mid to high temperature behaviour. X1 is the

start of the second key process and thus heavily influences the high temperature behaviour

of all temperature-dependent material properties. X4 (high temperature conductivity) and

X6 (specific heat capacity at the second key process) are the high temperature material

properties and as such are more important at later time steps of the simulation.

The second key process results in a temperature plateau (like the one at 100◦C). Because

this process occurs at temperatures higher than the maximum temperature reached at the

measurement location, the process has no direct effect there. The system does, however,

reach higher temperatures at locations closer to the exposed surface and it is there that the

second key process influences the system behaviour. As can be seen from the results of the

sensitivity analysis, the magnitude of the second key process (X6) significantly influences

the temperatures at the measurement location due to the locally lower thermal diffusivity.

However, the temperature where this peak in the thermal diffusivity appears (X2), is not so

important.

5.4 Validation of the calibration using V1-V2

So far, all presented results were related to the experiments Test 1 (specimens E1-E4) de-

scribed in Section 2.1. It was shown that the calibrated material properties for the examined

materials can be used to conduct computer simulations that agree well with the same ex-

perimental observations that were used for calibration (Section 5.1). Before these calibrated

material properties can be used to make predictions about the material behaviour in other

experimental setups, validation experiments need to be carried out to judge the accuracy for

the new intended use (Oberkampf and Roy, 2010).
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Figure 8: Time-dependent total Sobol’ indices STi for the surrogate model of Product A (E1).

In this work, the results from Test 2 (specimens V1 and V2) are used for this purpose

(see Figure 3(e) and 3(f)). These tests were conducted using two of the materials for which

calibrated material properties were obtained (Product C (E3) and Product D (E4)). To

validate the calibration results, the posterior predictive distribution of this setup needs to

be computed. It is defined identically to Eq. (9) and samples from it can be drawn by

Y postpred ∼ N (y|MTest 2(xM),Σ(xε)), where xpost
M ∼ π(xM|yTest 1), (41)

where the subscripts Test 1 and Test 2 were introduced to distinguish between quantities

and models belonging to the respective setups. In this sense, MTest 2(XM) refers to the

finite element model predicting the heat evolution in the two interfaces of Test 2 and yTest 1

are measurements from Test 1.

Using parameters calibrated in Test 1 for the predictions in Test 2 requires careful con-

sideration of the implications. On the one hand, the model parameters XM of the insulation

products can be reused without further considerations (since this is the point of the vali-

dation). On the other hand, parameters related to the discrepancy model Xε cannot be

transferred so easily.

The discrepancy term captures measurement noise and model inadequacy and is assumed

to follow a zero mean normal distribution (Eq. (4)). It cannot be directly applied in drawing

predictive quantities as neither the measurement noise nor the model inadequacy can be

expected to be identical between the two setups. Therefore, simplifying assumptions about

the discrepancy covariance matrix Σ(xε) have to be made.

The only information available about the discrepancy covariance matrix are the calibra-

tion results of E1-E4 (Section 5.1). There it was parameterized as described in Eq. (37).

Across all posterior parameter distributions, the MAP estimator of the correlation length

parameter θ = X14 was ∼ 30 s. The discrepancy standard deviation σ(t), however, did not
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yield such a uniform result as can be clearly seen from Figures 13 to 17. To still param-

eterize the covariance matrix in the predictive draws from Eq. (41), a conservative choice

of θ = 30 s and a constant σ(t) = 10◦C is thus made. This corresponds to setting the

discrepancy parameter vector to

xε = (10◦C, 0, 0, 0, 0, 0, 0, 30 s) (42)

Figures 9 and 10 show the resulting confidence intervals from the posterior predictive

distribution Y postpred defined in Eq. (41) for interface 1 and 2 of Test 2. To show the

agreement of the predictions with the measurements, yTest 2 are displayed as well. The

figures contain one time-temperature plot in Figures (a) and summary statistics of the model

predictions in Figure (b) at snapshot times t = 20 min and t = 30 min respectively.

Generally the simulations agree remarkably well with the experimental observations, but

there are also time intervals, where small differences between the predicted and observed

temperature evolutions are visible. The predictions at large time instants, which are of

interest in practice, appear excellent.

6 Summary and conclusion

In this paper, a procedure to calibrate temperature-dependent effective material properties

of fire insulation panels was presented. Available experimental temperature measurements

were modelled using a 1D finite element heat transfer model. Because the associated material

properties vary with temperature, they were parameterized using a set of model parameters.

The actual calibration was then carried out using the well-known Bayesian inference frame-

work. The necessary sampling from the posterior distribution was conducted with the ad-

vanced AIES (Affine invariant ensemble sampler) MCMC algorithm. In an effort to reduce

the computational burden from the required repeated finite element simulations, a surro-

gate model of the heat transfer problem was constructed by combining polynomial chaos

expansions (PCE) with the principal component analysis (PCA) technique. This surrogate

model offered the possibility to additionally conduct a sensitivity analysis using the time-

dependent Sobol’ indices at no additional computational cost. Finally, the calibration was

validated using a secondary set of experiments.

The proposed approach is superior to the previously used brute-force calibration approach

because it automates the process, clearly defines the discrepancy and explicitly considers the

uncertainties present in the model and measurements. Accordingly, it does not only deliver a

single best fit property, but returns the full multivariate distribution of the calibrated prop-

erties and allows the computation of confidence intervals. Furthermore, the used Bayesian

framework is a natural way to update information through the use of conditional random

variables. It is well suited for engineering problems, where often expert knowledge is available

that thereby can be directly integrated into the calibration procedure. However, it needs to
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(a) Model predictions

t = 20 min t = 30 min

( ◦C) Interface 1 Interface 2 Interface 1 Interface 2

83.4 240.6 90.8 382.8

y
(s)
t 85.8 227.1 94.5 369.0

85.7 216.6 94.2 385.6

µ̂ 70.1 185.4 84.0 370.7

σ̂ 10.7 18.1 10.2 20.3

(b) Statistics of model predictions at two snapshot times

Figure 9: Validation of the calibrated material properties of Product C and Product D using

measurements from Test 2 (V1) including the empirical mean µ̂ and the empirical standard

deviation σ̂.
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(a) Model predictions

t = 20 min t = 30 min

( ◦C) Interface 1 Interface 2 Interface 1 Interface 2

75.3 129.0 88.9 283.0

y
(s)
t 76.2 131.5 92.7 291.6

77.2 127.9 90.4 274.8

µ̂ 65.9 127.8 76.6 243.2

σ̂ 9.9 9.7 9.7 12.9

(b) Statistics of model predictions at two snapshot times

Figure 10: Validation of the calibrated material properties of Product D using measurements

from Test 2 (V2) including the empirical mean µ̂ and the empirical standard deviation σ̂.
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be considered that depending on the application less general calibration procedures might

be more suitable (Mottershead et al., 2011; Patelli et al., 2017).

A valuable side product of the presented surrogate modelling technique is the free compu-

tation of the time-dependent Sobol’ indices. This sensitivity analysis offers valuable insight

into the time-dependent effect of the used parametrization.

Finally, it is worth emphasizing that the proposed method, which combines surrogate

modelling (PCE) with dimensionality reduction (PCA), an advanced MCMC algorithm

(AIES) and global sensitivity analysis is general and can be applied to any calibration prob-

lem involving complex computer codes. All the algorithms used are available in the UQLab

uncertainty quantification software (Marelli and Sudret, 2014), especially the recently devel-

oped Bayesian inversion module (Wagner et al., 2019).
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A Surrogate model approximation error

The following approximation error η̃ was originally derived in Blatman and Sudret (2013).

The surrogate model from Eq. (26) has a total L2-approximation error that can be written

by denoting the 2-norm as ||·||2 by

ε = E
[∣∣∣∣Y − Y PCA+PCE

∣∣∣∣2
2

]
(43)

= E
[∣∣∣∣(Y − Y PCA

)
+
(
Y PCA − Y PCA+PCE

)∣∣∣∣2
2

]
. (44)

Through the Cauchy-Schwarz inequality this error is bounded by

ε ≤
(√

E
[
||Y − Y PCA||22

]
+

√
E
[
||Y PCA − Y PCA+PCE||22

])2

(45)

def
= (
√
εPCA +

√
εPCE)

2
. (46)

PCA error εPCA: this incorporates the error from estimating the mean µY and covariance

matrix ΣY of the response as well as the dimensionality reduction error from leaving

out N − N ′ dimensions. The former is neglected in this paper and for the latter the

sum of the discarded eigenvalues λp can be directly used:

εPCA ≈ ε̃PCA =
N∑

p=N ′+1

λp. (47)
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PCE error εPCE: this is the error of the polynomial chaos approximation. It can be es-

timated as the sum of the individual LOO errors for the N ′ scalar-valued principal

component PCE’s:

εPCE ≈ ε̃PCE =
N ′∑

p=1

εp,LOO. (48)

For practicality a relative error measure η is preferred. This can be obtained by dividing

the estimator of the absolute error bound by an estimator of E
[
||Y ||22

]
, such as the trace of

its estimated covariance matrix Tr(ΣY ):

η̃ =

(√
ε̃PCA +

√
ε̃PCE

)2

Tr(ΣY )
. (49)

(a) Relative error η̃ of surrogate for increasing exper-

imental design size K and included principal com-

ponents N ′.

(b) Comparison of forward model with surrogate

model.

Figure 11: Convergence diagnostics for the surrogate model for setup E1, with K = 1,000 and

N ′ = 4.

Figure 11 shows the resulting error estimate for a set of experimental designs and included

principal components using the setup E1. Additionally, the actual and surrogate model are

run for a set of parameters and plotted for comparison.
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B Derivation of PCA-based Sobol’ indices

This appendix contains the derivations for PCA-based Sobol’ indices. To simplify the deriva-

tions, we introduce the notationX∼i = (X1, . . . , Xi−1, Xi+1, . . . , XM )ᵀ to denote the random

vector that contains all but the i-th random variable Xi. In the following derivations, the

subscript in the expectation and variance operators EXi
and VarXi

denotes the variable(s)

with respect to which expectation and variance are computed, i.e. EXi
[·] def

=
∫

(·)πi(xi)dxi.
The total Sobol’ index STi,t for the t-th element of a vector valued model output Y =

(Y1, . . . , YN )ᵀ is defined as

STi,t =
EX∼i

[VarXi
[Yt]]

Var [Yt]
= 1− VarX∼i

[EXi
[Yt]]

Var [Yt]
. (50)

This can be used to write an expression for the variance of the expectation VarX∼i
[EXi

[Yt]]

of the t-th model output as

VarX∼i
[EXi

[Yt]] = EX∼i

[
(EXi

[Yt])
2
]
− (EX∼i

[EXi
[Yt]])

2
(51)

= EX∼i

[
(EXi

[Yt])
2
]
− (EX [Yt])

2
. (52)

By introducing the expression for the surrogate model from Eq. (27) and the fact that

the expectation of the t-th response is EX [Yt] ≈ µYt
, the following is obtained:

VarX∼i
[EXi

[Yt]] = EX∼i

[
(EXi

[µYt
+ φrow

t AᵀΨ(X)])
2
]
− µ2

Yt
(53)

= EX∼i

[
(µYt

+ φrow
t AᵀEXi

[Ψ(X)])
2
]
− µ2

Yt
(54)

= EX∼i

[
µ2
Yt

+ 2µYtφ
row
t AᵀEXi [Ψ(X)]

+ (φrow
t AᵀEXi

[Ψ(X)])
2 ]− µ2

Yt
.

(55)

Because the expectation of all principal components vanishes (AᵀE [Ψ(X)] = E [Z] = 0),

one can write

VarX∼i [EXi [Yt]] = EX∼i

[
(φrow

t AᵀEXi [Ψ(X)])
2
]
. (56)

By switching to the summation notation, this can also be written as

VarX∼i
[EXi

[Yt]] = EX∼i





 ∑

α∈A?

N ′∑

p=1

φptãp,αEXi
[Ψα(X)]




2

 . (57)

Because the inner sum is only over the coefficients φptãp,α, this can be further simplified

by substituting cα
def
=
∑N ′

p=1 φptãp,α to obtain:

VarX∼i
[EXi

[Yt]] = EX∼i



( ∑

α∈A?

cαEXi
[Ψα(X)]

)2

 (58)

= EX∼i



( ∑

α∈A?

cαEXi
[Ψα(X)]

)
 ∑

β∈A?

cβEXi
[Ψβ(X)]




 (59)

=
∑

α,β∈A?

cαcβEX∼i
[EXi

[Ψα(X)]EXi
[Ψβ(X)]] . (60)
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Due to the orthonormality of the polynomial basis {Ψα}α∈A? , the conditional expectation

in this equation can be expressed analytically as

EX∼i [EXi [Ψα(X)]EXi [Ψβ(X)]] = δα,β,i

with δα,β,i =





1, if α = β and αi = 0,

0, otherwise.

(61)

Therefore, the variance of the conditional expectation from Eq. (50) becomes

VarX∼i
[EXi

[Yt]] =
∑

α∈A?
i=0




N ′∑

p=1

φptãp,α




2

, (62)

where A?i=0 = {α ∈ A? : αi = 0} is the subset that contains only those polynomials Ψα with

αi = 0. For completeness the total variance in the denominator of Eq. (50) reads:

Var [Yt] =
∑

α∈A?




N ′∑

p=1

φptãp,α




2

. (63)

The total PCA-based index for the t-th component of the output vector Y is thus obtained

by plugging these results into Eq. (50):

STi,t = 1−
∑
α∈A?

i=0

(∑N ′

p=1 φptãp,α

)2

∑
α∈A?

(∑N ′

p=1 φptãp,α

)2 . (64)
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Table 6: Posterior statistics for the calibration with Product B (E2). The values are computed

from the available posterior sample and include the MAP estimate, the empirical mean µ̂,

the empirical 95% confidence interval, the empirical standard deviation σ̂, and the empirical

coefficient of variation c.o.v.
def
= σ̂/µ̂. The prior statistics are shown in Table 4.

MAP µ̂ 95% conf. interval σ̂ c.o.v.

X1 5.38 · 102 5.05 · 102 [4.25 · 102, 5.79 · 102] 4.25 · 101 8.41 · 10−2

X2 3.97 · 10−1 4.02 · 10−1 [3.37 · 10−1, 4.75 · 10−1] 3.65 · 10−2 9.07 · 10−2

X3 0.224 0.226 [0.217, 0.239] 5.39 · 10−3 2.38 · 10−2

X4 0.107 0.115 [0.1, 0.138] 1.12 · 10−2 9.74 · 10−2

X5 5.12 · 104 5.16 · 104 [4.93 · 104, 5.37 · 104] 1.14 · 103 2.21 · 10−2

X6 1.08 · 103 1.08 · 103 [1.00 · 103, 1.30 · 103] 8.20 · 101 7.56 · 10−2

X7 8.80 8.83 [8.30, 9.40] 2.83 · 10−1 3.21 · 10−2

X8 2.02 2.04 [2.30, 1.78] 1.95 · 10−1 4.28 · 10−2

X9 1.17 1.15 [1.39, 0.91] 1.81 · 10−1 0.70 · 10−1

X10 5.17 · 10−1 5.34 · 10−1 [0.75, 3.39 · 10−1] 1.56 · 10−1 1.31 · 10−1

X11 4.27 4.29 [3.93, 4.67] 1.93 · 10−1 4.50 · 10−2

X12 1.89 1.90 [2.14, 1.68] 1.78 · 10−1 4.16 · 10−2

X13 4.04 · 10−1 4.22 · 10−1 [2.04 · 10−1, 6.41 · 10−1] 1.11 · 10−1 2.63 · 10−1

X14 2.64 · 101 2.64 · 101 [2.56 · 101, 2.71 · 101] 3.81 · 10−1 1.44 · 10−2

C Additional results

This section presents the calibration and sensitivity analysis results for Product B, Product

C and Product D.
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Figure 12: Time-dependent total Sobol’ indices STi for the surrogate model of Product B (E2).

Table 7: Posterior statistics for the calibration with Product C (E3). The values are computed

from the available posterior sample and include the MAP estimate, the empirical mean µ̂,

the empirical 95% confidence interval, the empirical standard deviation σ̂, and the empirical

coefficient of variation c.o.v.
def
= σ̂/µ̂. The prior statistics are shown in Table 4.

MAP µ̂ 95% conf. interval σ̂ c.o.v.

X1 5.50 · 102 5.63 · 102 [4.63 · 102, 7.10 · 102] 6.25 · 101 1.11 · 10−1

X2 8.36 · 10−1 7.93 · 10−1 [4.24 · 10−1, 9.95 · 10−1] 1.60 · 10−1 2.01 · 10−1

X3 0.165 0.160 [0.133, 0.184] 1.28 · 10−2 7.98 · 10−2

X4 0.648 0.701 [0.539, 0.93] 0.106 1.51 · 10−1

X5 2.16 · 104 2.06 · 104 [1.64 · 104, 2.49 · 104] 2.18 · 103 1.06 · 10−1

X6 1.05 · 104 1.12 · 104 [3.99 · 103, 2.65 · 104] 4.99 · 103 4.44 · 10−1

X7 1.08 · 101 1.08 · 101 [9.95, 1.17 · 101] 4.53 · 10−1 4.18 · 10−2

X8 1.43 1.39 [1.03, 1.72] 1.80 · 10−1 1.30 · 10−1

X9 1.32 1.31 [1.56, 1.06] 1.82 · 10−1 6.20 · 10−2

X10 1.62 1.62 [1.90, 1.36] 2.00 · 10−1 5.51 · 10−2

X11 1.58 1.65 [1.37, 1.94] 1.53 · 10−1 9.29 · 10−2

X12 2.15 2.24 [1.89, 2.63] 1.94 · 10−1 8.64 · 10−2

X13 1.25 1.24 [1.43, 1.05] 1.44 · 10−1 5.19 · 10−2

X14 3.06 · 101 3.06 · 101 [2.94 · 101, 3.18 · 101] 5.93 · 10−1 1.94 · 10−2
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(a) Realizations of the conductivity λ(X) (b) Realizations of the heat capacity c(X)

(c) Model predictions and calibrated discrepancy standard deviation

(d) Model predictions at t = 20 min (e) Model predictions at t = 30 min

Figure 13: Calibration results for Product B 9.5 mm insulation (E2), experiments conducted by

Just (2016).

41



Figure 14: Time-dependent total Sobol’ indices STi for the surrogate model of Product C (E3).

Table 8: Posterior statistics for the calibration with Product D (E4). The values are computed

from the available posterior sample and include the MAP estimate, the empirical mean µ̂,

the empirical 95% confidence interval, the empirical standard deviation σ̂, and the empirical

coefficient of variation c.o.v.
def
= σ̂/µ̂. The prior statistics are shown in Table 4.

MAP µ̂ 95% conf. interval σ̂ c.o.v.

X1 7.07 · 102 6.90 · 102 [6.41 · 102, 7.43 · 102] 2.62 · 101 3.79 · 10−2

X2 9.82 · 10−1 8.07 · 10−1 [5.42 · 10−1, 9.95 · 10−1] 1.25 · 10−1 1.55 · 10−1

X3 0.157 0.155 [0.14, 0.173] 9.21 · 10−3 5.93 · 10−2

X4 1.16 1.06 [0.843, 1.2] 9.75 · 10−2 9.16 · 10−2

X5 2.04 · 104 2.08 · 104 [1.81 · 104, 2.42 · 104] 1.70 · 103 8.16 · 10−2

X6 5.18 · 103 4.91 · 103 [1.60 · 103, 8.17 · 103] 1.64 · 103 3.34 · 10−1

X7 8.15 8.39 [7.77, 8.99] 3.28 · 10−1 3.91 · 10−2

X8 2.88 2.97 [2.61, 3.33] 1.86 · 10−1 6.28 · 10−2

X9 6.76 · 10−1 7.09 · 10−1 [4.65 · 10−1, 9.73 · 10−1] 1.31 · 10−1 1.84 · 10−1

X10 1.67 1.69 [1.90, 1.49] 1.57 · 10−1 4.14 · 10−2

X11 0.76 0.75 [0.91, 5.75 · 10−1] 1.25 · 10−1 0.75 · 10−1
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(a) Realizations of the conductivity λ(X) (b) Realizations of the heat capacity c(X)

(c) Model predictions and calibrated discrepancy standard deviation

(d) Model predictions at t = 20 min (e) Model predictions at t = 30 min

Figure 15: Calibration results for Product C 12.5 mm insulation (E3), experiments conducted

by Just (2016).
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Figure 16: Time-dependent total Sobol’ indices STi for the surrogate model of Product D (E4).

Beck, J. L. and L. S. Katafygiotis (1998). Updating models and their uncertainties. I:

Bayesian statistical framework. Journal of Engineering Mechanics 124 (4), 455–461.

Berveiller, M., B. Sudret, and M. Lemaire (2006). Stochastic finite elements: a non intrusive

approach by regression. European Journal of Computational Mechanics 15 (1-3), 81–92.

Blatman, G. (2009). Adaptive sparse polynomial chaos expansions for uncertainty propaga-

tion and sensitivity analysis. Ph. D. thesis, Université Blaise Pascal, Clermont-Ferrand.
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(a) Realizations of the conductivity λ(X) (b) Realizations of the heat capacity c(X)

(c) Model predictions and calibrated discrepancy standard deviation

(d) Model predictions at t = 20 min (e) Model predictions at t = 30 min

Figure 17: Calibration results for Product D 15 mm insulation (E4), experiments conducted by

Just (2016).

45



Choi, S., R. Grandhi, R. Canfield, and C. Pettit (2004). Polynomial chaos expansion with

Latin Hypercube sampling for estimating response variability. AIAA Journal 45, 1191–

1198.

EN 1363-1:2012 (2012). Feuerwiderstandsprüfungen - Teil 1: Allgemeine Anforderungen.
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