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ABSTRACT

This paper proposes a novel mixing model that incorporates

spectral variability. The proposed approach relies on the fol-

lowing two ingredients: i) a mixed spectrum is modeled as

a combination of a few endmember signatures which belong

to some endmember bundles (referred to as classes), ii) spar-

sity is promoted for the selection of both endmember classes

and endmember spectra within a given class. This leads to

an adaptive and hierarchical description of the endmember

spectra. A proximal alternating linearized minimization al-

gorithm is derived to minimize the objective function associ-

ated with this model, providing estimates of the bundling co-

efficients and abundances. Results showed that the proposed

method outperformed the existing methods in terms of pro-

moting sparsity and selecting endmember classes within each

pixel.

Index Terms— Hyperspectral imagery, spectral unmix-

ing, endmember variability, sparse unmixing, double sparsity

1. INTRODUCTION

Spectral unmixing is a technique that decomposes a mixed

spectrum into a collection of pure spectra (i.e. endmembers)

and their corresponding proportions (i.e. abundances). Al-

though many studies have developed a great number of spec-

tral unmixing methods, there are still major problems [1, 2].

One of the major problems is caused by spectral variability of

each material class present in an image [3–5]. The spectral

variability of each material class is defined, in this paper, as

endmember variability.

Many spectral unmixing methods that incorporate end-

member variability have been developed [6]. To describe this

endmember variability, a wide and commonly used approach

resorts to multiple endmember spectra within a given class of

materials (i.e. endmember bundles). Endmember bundles can

be collected from field investigation or from the image itself
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using automated endmember extraction methods, e.g., [7].

Multiple endmember spectral mixture analysis (MESMA) is

one of the most successful methods that use endmember bun-

dles [8]. MESMA, however, is computationally expensive

and may be greatly degraded when endmember bundles do

not completely represent true spectral variability within each

class [3].

A new class of methods that incorporate all spectra be-

longing to endmember bundles simultaneously and estimate

their corresponding abundances has been developed [3, 4, 9,

10]. The estimated multiple abundances are summed to gen-

erate a single abundance within each class. These methods

are different from MESMA, which solves a combinatorial

problem, and are computationally feasible. These methods,

however, tend to select a large number of endmember spec-

tra to unmix a given mixed spectrum, leading to multiple

abundances corresponding to the selected endmember spec-

tra. Sparsity inducing regularization (e.g., derived from ℓ1-

norm) has been used to select a fewer number of endmem-

ber spectra and generate a fewer number of abundances for

each pixel [4]. The regularization, however, imposes sparsity

on the selection of spectra, not the selection of classes. This

shows that it ignores the structure of groups in endmember

bundles. A few methods are designed to impose sparsity on

the selection of classes [5, 11]. Although the aforementioned

methods show great potential to achieve good performance

in computationally feasible time, it has several constraints: i)

it is difficult to interpret the physical meaning of the models

because it first generate unrealistic multiple abundances and

sum the multiple abundances for each class, ii) it lacks from

flexibility to describe endmember variability, iii) the methods

do not explicitly generate adaptive endmember spectra used

for unmixing each pixel, like the model-driven methods pro-

posed in [12, 13].

The paper proposes a novel unmixing method that ad-

dresses the aforementioned problems. The proposed method

is inspired by a double sparsity-based method [14]. Indeed,

it captures the hierarchical structure of each endmember

class. It owns the major advantages of providing a phys-

ically meaningful model that is composed of endmember



bundles, bundling coefficients (which relate the spectra to

the endmember classes) and abundances. Moreover, it gen-

erate adaptive endmember spectra incorporating hierarchical

structure for unmixing each pixel. The proposed method is

compared to the state-of-the-art methods using simulated and

real hyperspectral data.

2. MULTIPLE ENDMEMBER UNMIXING

2.1. Multiple endmember mixing model

The proposed model relies on the definition of 3 components

representing endmember bundles, bundling coefficients and

abundances. According to this model, each endmember bun-

dle is mixed to provide a suitable and adaptive endmember

spectrum used to unmix a given pixel. The proposed multiple

endmember mixing model (MEMM) is defined as follows:

yi = EBiai + ni (1)

where yi ∈ R
L×1 is the mixed L-spectrum of the ith pixel,

E ∈ R
L×N is composed of N distinct spectral signatures

representing endmember bundles, Bi ∈ R
N×K gathers so-

called bundling coefficients which decompose the endmem-

ber signatures according to the endmember bundles for the

considered pixel, ai = [a1i, . . . , aKi]
T
∈ R

K×1 is the abun-

dance fractions at the pixel, ni ∈ R
L×1 represents noise in

the pixel, L is the number of bands and K is the number of

endmember classes. The endmember bundles E are defined

as follows

E =
[

E1 | E2 | · · · | EK

]

(2)

where Ek ∈ R
L×Nk represents a set of endmember spectra

characterizing the kth class, Nk is the number of endmember

spectra in the kth class and N is the total number of endmem-

ber spectra of all classes with N =
∑K

k=1 Nk. To enforce the

bundle structure, the bundling coefficients Bi associated with

the pixel is defined as the following block-diagonal matrix

Bi =











b1i 0N1
· · · 0N1

0N2
b2i · · · 0N2

...
...

. . .
...

0NK
0NK

· · · bKi











(3)

where bki ∈ R
Nk is the bundling coefficients for the kth

class at the pixel and 0Nk
∈ R

Nk is the Nk-dimensional

vector whose components are zeros. Each bundling coef-

ficient must be nonnegative and the bundling vector bki is

expected to be sparse. Indeed multiple endmember spectra

within each class are usually redundant and only a few end-

member spectra within each class should be enough to unmix

a pixel. This property can be induced by considering the fol-

lowing bundling constraints

Bi $ 0 and ‖Bi‖0 =

K
∑

k=1

‖bki‖0 ≤ s (4)

where ‖ · ‖0 is the ℓ0-norm that counts the number of nonzero

elements and s is the maximum number of nonzero elements

in Bi, i.e., the maximum number of endmembers to be used

within each class to describe the pixel. The abundance non-

negativity constraint (ANC) and the abundance sum-to-one

constraint (ASC) are usually imposed. In addition, in this

work, complementary sparsity is imposed on each abundance

vector, i.e.,

∀k, ∀i, aki ≥ 0, and

K
∑

k=1

aki = 1, ‖ai‖0 ≤ q (5)

where q is the number of endmember classes to be used to

decompose the image pixel.

2.2. Algorithm

Unmixing according to the proposed MEMM can be formu-

lated as the minimization problem

min
Bi,ai

1

2
‖EBiai − yi‖

2
2

s.t. ∀k, ∀i, aki ≥ 0,
K
∑

k=1

aki = 1, ‖ai‖0 ≤ q,

Bi $ 0, ‖Bi‖0 ≤ s.

(6)

This minimization problem is similar to the double sparsity-

inducing method proposed in [14]. Using an alternative for-

mulation, the minimization problem can be written as the fol-

lowing non-convex minimization problem:

min
Bi,ai

{J (Bi, ai) = f(Bi, ai) + h(Bi) + g(ai)}

with

f(Bi,ai) = 1
2‖EBiai − yi‖

2
2 (7)

h(Bi) = ιR+
(Bi) + λb‖Bi‖0 (8)

g(ai) = ιS(ai) + λa‖ai‖0 (9)

where λa and λb are parameters which control the balance

between the data fit and the sparsity, ιC(x) is the indicator

function on the set C, i.e., ιC(x) = 0 when x ∈ C whereas

ιC(x) = ∞ when x /∈ C, and S is the set defined by the ASC

and ANC. Solving this optimization problem is challenging

since the the regularization functions h and g are nonconvex

and nonsmooth. It can be tackled thanks to the proximal al-

ternating linearized minimization (PALM) [15]. With guaran-

tees to converge to a critical point, PALM iteratively updates

the parameters ai and Bi by alternatively minimizing the ob-

jective function with respect to (w.r.t.) these parameters, i.e.,



by solving the following proximal problems

B
(t+1)
i ∈min

Bi

h(Bi) + 〈Bi −B
(t)
i ,∇Bi

f(B
(t)
i , a

(t)
i )〉

+
ct
2
‖Bi −B

(t)
i ‖22

a
(t+1)
i ∈min

ai

g(ai) + 〈ai − a
(t)
i ,∇ai

f(B
(t+1)
i , a

(t)
i )〉

+
dt
2
‖ai − a

(t)
i ‖22

(10)

Optimization w.r.t. Bi: To optimize only w.r.t. the diagonal

entries in Bi, the objective function can be rewritten with the

following decomposition

f(bi, ai) =
1

2
‖Uibi − yi‖

2
2

h(bi) = ιR+
(bi) + λb‖bi‖0

where

Ui = [E1 ⊙ a1i| · · · |EK ⊙ aKi]

bi =
[

bT
1i,b

T
2i, · · · ,b

T
Ki

]T
.

This leads to the following updating rule

min
bi

h(bi) +
ct
2
‖bi − (b

(t)
i −

1

ct
∇bf(b

(t)
i , a

(t)
i ))‖22

where ∇bi
f(b

(t)
i , a

(t)
i ) = UT

i (Uibi − yi). Using similar

computations as in [15], this can be conducted as

b
(t+1)
i ∈ proxh

ct/λb
(b

(t)
i −

1

ct
∇bi

f(b
(t)
i ,a

(t)
i ))

where ct = γm‖UT
i Ui‖F represents a step size for each

iteration. The proximal operator associated with f can be

computed using the approach [15]. Finally, the bundling

matrix Bi can be reconstructed as Bi = blkdiag(bi) where

blkdiag(·) generates the block diagonal matrix Bi from the

vector bi.

Optimization with respect to ai: To optimize w.r.t. ai, the

objective function can be rewritten using the decomposition

f(Bi, ai) =
1
2‖Siai − yi‖

2
2

g(ai) = ιS(ai) + λa‖ai‖0

where Si = EBi. Thus, updating the abundance vector can

be formulated as

min
ai

g(ai) +
dt
2

∥

∥

∥

∥

ai −

(

a
(t)
i −

1

dt
∇ai

f(B
(t+1)
i , a

(t)
i )

)∥

∥

∥

∥

2

where ∇ai
f(B

(t+1)
i , a

(t)
i ) = ST

i (Siai − yi). Using the

proximal operator, this can be written as

a
(t+1)
i ∈ prox

g
dt/λa

(

a
(t)
i −

1

dt
∇ai

f(B
(t+1)
i , a

(t)
i )

)

(11)

where dt = γa‖S
T
i Si‖F represents a step size for each it-

eration. Moreover the proximal mapping associated with g
can be performed using the method developed in [16]. The

pseudocode for MEMM-based unmixing is shown in Algo. 1.

Algorithm 1 Algorithm for MEMM-based unmixing

1: Input : yi,E

2: Initialization: a
(0)
i and B

(0)
i .

3: Main procedure:

4: while the stopping criterion is not satisfied do

5: b
(t+1)
i ← proxhct/λb

(b
(t)
i − 1

ct
∇bi

f(b
(t)
i ,a

(t)
i ))

6: B
(t+1)
i = blkdiag(b

(t+1)
i )

7: a
(t+1)
i ← prox

g
dt/λa

(a
(t)
i − 1

dt

∇ai
f(B

(t+1)
i , a

(t)
i ))

8: end while

9: Output : a
(t+1)
i ,B

(t+1)
i

3. EXPERIMENTS

3.1. Experiments using simulated data

Simulated data: The performance of the proposed method

has been evaluated thanks to simulated data generated as

follows. First, K = 5 spectra have been selected from

the USGS library to define the classes. Second, Nk = 20
(k = 1, . . . ,K) endmember spectra have been syntheti-

cally generated for each endmember class using the approach

in [17]. Third, a number of endmember classes and a number

of endmember spectra within each class have been randomly

determined to define the mixture. Forth, a mixed spectrum

has been generated by a linear combination of randomly

selected endmember spectra within each selected class and

randomly generated abundances. Finally, Gaussian random

noise has been added to the generated mixed spectrum with a

signal-to-noise ratio 40dB. This process has been repeated to

generate a set of 100 mixed spectra.

Validation of methods: The proposed method has been com-

pared with fully constrained least squares (FCLS) [18], sparse

unmixing by variable splitting and augmented Lagrangian

(SUnSAL) [18]) and methods based on sparse representa-

tions, namely, group lasso and elitist lasso [5]. Note that a

single abundance within each class has been estimated by

summing multiple abundances for each class in the methods

for comparison. Abundances estimated by the methods have

been validated using the following 3 different criteria. To

evaluate the quality of the reconstruction, one defines the

signal-to-reconstruction error (SRE) as [18]

SRE ≡ E
[

‖a‖22
]

/E
[

‖a− â‖22
]

(12)

where a is vectorized true abundances of all pixels, â is vec-

torized estimated abundances of all pixels. To evaluate the



sparsity level (SL) induced by the methods, one monitors [19,

20]

SL ≡
1

P

P
∑

i=1

‖âi‖0. (13)

where âi is the estimated abundances of the ith pixel, P is the

number of pixels. Finally, one considers the distance between

the two actual and estimated supports [20, 21])

DIST ≡
1

P

P
∑

i=1

max
(

|Si|, |Ŝi|
)

− |Si ∩ Ŝi|

max
(

|Si|, |Ŝi|
) . (14)

where Si and Ŝi are the true and estimated supports of the ith
pixel, i.e., the sets of index of nonzero values in ai and âi of

the pixel, |S| represents the total number of elements in the

set S and ∩ denotes the intersection operation. DIST aims

at evaluating whether the methods correctly select the com-

bination of endmember classes. Finally, parameters required

for the methods have been empirically adjusted to reach the

highest SRE.

Criteria FCLS SUNSAL Group lasso Elitist lasso MEMM

SRE 25.805 25.7331 26.2155 25.7959 26.1051

SL 3.45 3.62 4.22 4.95 2.35

DIST 0.3208 0.3592 0.4353 0.5033 0.0592

Table 1: SRE, SL and DIST estimated by the 5 methods.

Results: SRE, SL and DIST have been calculated from abun-

dances estimated from the 5 methods and are reported in

Table 1. MEMM produces consistent SRE compared with

other methods. However, MEMM significantly outperforms

the state-of-the-art methods in terms of SL and DIST. This

shows that MEMM could promote more sparsity than other

methods while selecting more appropriate combination of

endmember classes.

3.2. Experiment using real hyperspectral data

Validation of methods: A 40 × 40-pixel subset of the real

Pavia University hyperspectral image has been considered to

evaluate the relevance of the proposed MEMM. In this im-

age, four spatially isolated materials are present and mixed

pixels are located only on the boundary of these materials.

Note that multiple endmember spectra are expected to coexist

within each class. Endmember bundles extracted by the N-

Dimensional visualizer in ENVI are shown in in Fig. 2 (first

row). The image has been unmixed according to the proposed

MEMM and the compared methods using these 4 pre-defined

endmember bundles.

Results: Abundances estimated by MEMM and other meth-

ods are depicted in Fig. 1. MEMM estimates larger abun-

dances in each spatially discrete region. Endmember bun-

dles show more detailed spectral variability than the original

FCLS SUNSAL Group lasso Elitist lasso MEMM

Fig. 1: Abundances estimated by the 5 methods. Brighter

pixels show large abundances of a material while darker pix-

els show small abundances of a material

Fig. 2: First row represents endmember bundles used for un-

mixing. Second row represents synthetic endmember spectra

generated by MEMM.

endmember bundles used for unmixing (see Fig. 2). This

shows that MEMM successfully promotes sparsity to select

endmember classes while generating adaptive endmember

spectra within each class. This leads to more realistic abun-

dance maps.

4. CONCLUSION

This paper proposed a novel spectral unmixing method that

incorporates endmember variability. The proposed model has

the following advantages compared to the existing methods:

i) it generates physically realistic abundance fractions for

each endmember class, ii) it generates adaptive endmember

spectra for each pixel and iii) it captures a hierarchical struc-

ture of each endmember class. The method showed compa-

rable results for estimating abundances while it outperformed

other methods in terms of selecting a set of endmember

classes within each pixel. Work is underway to develop a

method to extract multiple endmembers within each class.
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