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From Hadamard Expressions to Weighted Rotating

Automata and Back

Louis-Marie Dando, Sylvain Lombardy

LaBRI UMR 5800, Université de Bordeaux, INP Bordeaux, CNRS, Bordeaux, France

Abstract

This paper deals with the conversion of expressions denoting Hadamard series
into weighted rotating automata. We prove that any algorithm converting ra-
tional series into one-way weighted automata can be extended to provide an
algorithm which achieves our goal. We apply this to define the derivation and
the follow automata of a Hadamard expression. Our method may also be used
to extend algorithms which perform the inverse conversion, but it is required to
enhance the algorithm to fulfill some constraints.

Keywords: Weighted automata, Rotating automata, Hadamard product,
Rational series

1. Introduction

Rotating automata are a natural extension of (one-way) automata. They
have been introduced in [12]. Such an automaton can read its input several times
as if this input were a cyclic word endowed with a marker to separate the last
and the first letters. In the Boolean case, i.e. for unweighted rotating automata,
accepted languages are regular languages, but they have been studied (cf. e.g. [7,
11]) since they can be much more succint than NFA, and simpler than two-way
automata. In particular, the intersection of two languages recognised by such
automata can be computed by first reading the input in the first automaton,
and then in the second one: this can be realised with a linear number of states.
These automata are sometimes introduced as restrictions of two-way automata,
but we present them here as an extension of one-way automata, endowed with
rewinding transitions that allow to come back at the beginning of the input.

Like two-way automata, rotating automata may have an infinite number of
computations accepting a given finite word. This may lead to some issues in
the definition of the behaviour of weighted rotating automata, since the weight
of a word accepted by a weighted automaton is the sum of the weights of its
accepting computations. In this paper, we focus on rotating automata with

Email addresses: louis-marie.dando@labri.fr (Louis-Marie Dando),
sylvain.lombardy@labri.fr (Sylvain Lombardy)

Preprint submitted to Elsevier July 20, 2018

© 2018 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0304397518305887
Manuscript_385002351d3d5574c44886f4fd7087c8

http://www.elsevier.com/open-access/userlicense/1.0/
https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0304397518305887
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0304397518305887


weights in rationally additive semirings [5]. In this framework, the behaviour of
rotating automata is always defined.

Moreover, the series realised by these automata are exactly the Hadamard
series [9]. The Hadamard product of two series is the entrywise product, the
Hadamard iteration (that is a pseudo-inverse of the Hadamard product, like
the Kleene star is a pseudo-inverse of the Cauchy product) is the sum of the
Hadamard powers. The set of Hadamard series is the closure of rational series
under sum, Hadamard product and Hadamard iteration. If the semiring of
coefficients is commutative, the Hadamard product of two rational series is
rational, but it is no more the case if the coefficients are not commutative, and,
even in the commutative case, the Hadamard iteration does not preserve the
rationality of series (Example 14 in [2] shows a Q-Hadamard series which is not
rational).

This paper presents a generic framework to extend any algorithm that con-
verts a rational expression to a (weighted) one-way automaton, into an algo-
rithm that converts a Hadamard expression to a rotating automaton. More
precisely, we show that every Hadamard expression E can be rewritten into a
rational expression using a mapping ρ. The conversion of ρ(E) into a (one-way)
automaton by some algorithm σ can be interpreted as a rotating automaton
(mapping r) that realises the series denoted by the original Hadamard expres-
sion E. These transformations are presented in Figure 4. The proof of our main
theorem amounts to prove that this diagram – where J.K is the interpretation of
expressions and | · | is the behaviour of automata – is actually commutative.

We then apply this result to two methods of automata synthesis: the deriva-
tion automaton and the follow automaton. We show that we can deduce rules
from the general setting, that allow in each of these cases to directly handle
Hadamard expressions.

The inverse conversion can also be extended, even if some extra conditions
are required on the algorithm. A variant of the well-known State Elimination
method is described; this variant is used in the core of an algorithm converting
weighted rotating automata into Hadamard expressions.

2. Rational and Hadamard Formal Power Series

Let A be a finite alphabet and let A∗ be the set of words over A, where ε
denotes the empty word. A language over A is a subset of A∗.

A semiring is a set K endowed with two operations, sum and product; both
operations are associative and have distinct neutral elements respectively de-
noted 0K and 1K, the sum is commutative, the product is distributive over the
sum and zero is an annihilator for product. In this paper, we consider rationally
additive semirings as defined in [5].

Definition 1 ([5]). A rationally additive semiring K is a semiring equipped with
a partial summation defined on countable families such that:

Ax1. for finite families, the summation coincide with the sum of the semiring;
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Ax2. for every element x of K, the family of powers of x is summable and this
sum is denoted x∗ (the star of x);

Ax3. if (si)i∈I is a summable family, then for every x in K, (x.si)i∈I and
(si.x)i∈I are summable, and

∑

i∈I

x.si = x(
∑

i∈I

si), and
∑

i∈I

si.x = (
∑

i∈I

si)x; (1)

Ax4. for every countable family (si)i∈I , and every partition of I, I = ∪j∈JIj,
if, for every j in J , rj =

∑

i∈Ij
si is defined, and r =

∑

j∈J rj is defined,

then
∑

i∈I si is defined and equal to r.

Ax5. for every summable family (si)i∈I , and every partition of I, I = ∪j∈JIj,
if, for every j in J , rj =

∑

i∈Ij
si is defined, then r =

∑

j∈J rj is defined

and equal to
∑

i∈I si.

Examples of rationally additive semirings are:

• the Boolean semiring B;

• complete lattices;

• Q+ ∪ {∞};

• the regular languages over a given alphabet;

• (N ∪ {∞},min,+);

• ([0; 1],max, .).

Notice that no ring is a rationally additive semiring. From [5], rationally additive
semirings are Conway semirings, in particular, for every x it holds x∗ = 1K +
x.x∗. In a ring, if the star of 1K was defined, it would imply 0K = 1K.

We consider the set K〈〈A∗〉〉 of formal power series over A∗ with coefficients
in K. A series s in K〈〈A∗〉〉 is a mapping from A∗ into K; the coefficient of a
word w in s is denoted 〈s, w〉, and s itself is denoted as a formal sum:

s =
∑

w∈A∗

〈s, w〉w. (2)

The support of s is the language of words with a coefficient different from 0K.
If it is finite, s is a polynomial: K〈A∗〉 is the subset of polynomials of K〈〈A∗〉〉.
Different operations can be defined for series:

Sum: s+ t =
∑

w∈A∗

(〈s, w〉+ 〈t, w〉)w;

Cauchy product: s · t =
∑

w∈A∗

∑

u,v∈A∗

uv=w

(〈s, u〉.〈t, v〉)w;

Hadamard product: s⊙ t =
∑

w∈A∗

(〈s, w〉.〈t, w〉)w.

(3)
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The Hadamard and the Cauchy products are both associative operations
which distribute over the sum. From [5], if K is a rationally additive semiring,
so is the semiring (K〈〈A∗〉〉,+, ·); it is also true with (K〈〈A∗〉〉,+,⊙) since all
operations are entrywise. The star of a series s in each of these semirings
is respectively called the Kleene star denoted s∗ and the Hadamard iteration
denoted s⊛. Notice that, for every word w, 〈s⊛, w〉 = 〈s, w〉∗.

The sum, the Cauchy product, and the Kleene star are called rational opera-
tions ; the sum, the Hadamard product, and the Hadamard iterations are called
entrywise operations.

Definition 2. The set KRatA∗ of rational series is the closure of the set of
polynomials K〈A〉 by the rational operations. The set KHadA∗ of Hadamard
series is the closure of KRatA∗ by the entrywise operations.

3. Weighted Rotating Automata

Rotating automata are one-way automata enhanced with rewinding tran-
sitions: when the input head reach the end of the input, if such a transition
is available, it can go back to the beginning of the input. In our model, the
computation can stop only if the input head is at the end of the input.

Definition 3. Let K be a semiring and A an alphabet. A rotating K-automaton
over A is a tuple (Q,E,R, I, T ), where
– Q is a finite set of states;
– E : Q×A×Q −→ K is the transition function,
– R : Q×Q −→ K is the rewinding function;
– I : Q −→ K is the initial function,
– T : Q −→ K is the final function.
The set of rotating K-automata over A is denoted RKAutA.

A state p is initial if I(p) 6= 0; it is final if T (p) 6= 0. In order to define the
labels of computations and the behaviour of the automaton, we assume that
there exists a special letter r which does not belong to A. In the sequel we
denote Ar = A ∪ {r}. A transition is a triple (p, a, q) in Q× Ar ×Q such that
either a is in A and E(p, a, q) 6= 0, or a = r and R(p, q) 6= 0. The letter a
in Ar is the label of such a transition; for every transition (p, a, q), the weight
w(p, a, q) of the transition is equal to E(p, a, q) if a is in A, and to R(p, q) if
a = r.

For every k in N, a path π with length k is a triple (r, (pi, ai, qi)i∈J1;kK, s),
such that:

• for every i in J1; kK, (pi, ai, qi) is a transition;

• if k is positive, r = p1 and s = qk, otherwise, r = s;

• for every i in J1; k − 1K, qi = pi+1.
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The label of a path is the concatenation of labels of its transitions. A compu-
tation over a word w in A∗ is a path (r, (ei)i∈J1;kK, s), where r is initial and s
final, with a label in (wr)∗w.

The weight of a computation is defined as:

w(r, (ei)i∈[1;k], s) = I(r).
k
∏

i=1

w(ei).T (s). (4)

For every word w, the number of computations over w in a rotatingK-automaton
is countable, potentially infinite. If Cw is the set of computations over w in A,
the weight of w in A is

〈A, w〉 =
∑

c∈Cw

w(c), (5)

if the sum is defined, otherwise, the weight of w is undefined.

Definition 4. An automaton A is valid if for every word w, the weight of w
in the automaton exists. In this case, the behaviour of A is the series

|A| =
∑

w∈A∗

〈A, w〉w. (6)

The following proposition can be deduced from the result in [9] that states
that every two-way K-automaton is valid, if K is a rationally additive semiring.
We provide here a direct proof.

Proposition 1. If K is a rationally additive semiring, every rotating K-auto-
maton is valid, and its behaviour is a Hadamard series.

Proof. Let A = (Q,E,R, I, T ) be a rotating K-automaton, and let n be the size
of Q. We identify Q with the interval J1;nK.
Let w be a word in A∗, k in N, and let π be a path in A with label u = (wr)k.
If k is equal to 0 or 1, we set order(π) = 0; otherwise, for every j in J0; kK, let
sj be the state met along π after reading (wr)j ; we set order(π) as the largest
state in (sj)j∈J1;k−1K (we do not consider s0 and sk which are the first and the
last states of π).
Let P(w, i, p, q) be the set of paths with label in (wr)∗ with order at most i that
start in p and end in q, and let S(w, i, p, q) be the sum of the weights of paths
in P(w, i, p, q). We show by induction on i that, for every pair of states (p, q),
S(w, i, p, q) is defined.
If order(π) = 0, the length of π is 0 or |w| + 1, hence P(w, 0, p, q) is finite for
every pair (p, q). Assume that for every j < i, S(w, j, p, q) is defined for every
pair (p, q). If we consider the concatenation of paths as a (partial) product, the
set P(w, i, p, q) can be unambiguously described as

P(w, i, p, q) = P(w, i− 1, p, q) ∪ P(w, i− 1, p, i).P(w, i− 1, i, i)∗.P(w, i− 1, i, q).
(7)
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Since this description is unambiguous,

S(w, i, p, q) = S(w, i−1, p, q)+S(w, i−1, p, i).S(w, i−1, i, i)∗.S(w, i−1, i, q). (8)

In a rationally additive semiring, the star is always defined, hence S(i, p, q) is
defined.
Let F (w, p, q) be the sum of paths from p to q with label w (there is a finite
amount of such paths). The weight of w in A is therefore defined and equal to

∑

p,q,r∈Q

I(p).S(w, n, p, q).F (w, q, r).T (r). (9)

Let s(i, p, q) be the series
∑

w∈A∗ S(w, i, p, q) and f(p, q) =
∑

w∈A∗ F (w, p, q).
The series s(0, p, q) and f(p, q) are rational for every pair (p, q). Moreover, by
Equation (8), s(i, p, q) = s(i−1, p, q)+s(i−1, p, i)⊙s(i−1, i, i)⊛⊙s(i−1, i, q),
for every i in J1;nK. Thus, by induction, s(n, p, q) is a Hadamard series. Hence,
the behaviour of A is the Hadamard series:

∑

p,q,r∈Q

I(p).s(n, p, q)⊙ f(q, r).T (r). (10)

Proposition 2. Every Hadamard series over K is the behaviour of a rotating
K-automaton.

Proof. The Kleene-Schützenberger Theorem [13] states that every rational series
is the behaviour of a one-way K-automaton, that is a particular rotating K-
automaton. We prove that the set of series which are behaviours of rotating
K-automata is closed under the entrywise operations.

If X is a subset of Y and f is a function from X into K, then f is naturally
extended to Y with f(y) = 0K for every y 6∈ X. If X and X ′ are two subsets of
Y , and f : X → K and f ′ : X ′ → K are two functions, then, for every y in Y ,
(f + f ′)(y) = f(y) + f ′(y).

If s and t are respectively the behaviours of A = (Q,E,R, I, T ) and B =
(Q′, E′, R′, I ′, T ′), then

• s + t is the behaviour of the union of A and B, A ∪ B = (Q ∪ Q′, E +
E′, R+R′, I + I ′, T +T ′). For every word w, the set of runs over w is the
disjoint union of the sets of runs over w in A and B, thus the weight of w
in the union is the sum of the weight of w in A and B.

• s⊙ t is the behaviour of A⊙B = (Q∪Q′, E +E′, R+R′ + S, I, T ′), with

∀(p, q) ∈ Q×Q′, S(p, q) = T (p).I ′(q). (11)

For every word w, and every pair of runs (p, (ei), q) and (p′, (e′j), q
′) over

w in A and A′, there is a run (p, (fk), q
′) in A⊙B, where the sequence (fk)

is the concatenation of (ei), a rewind transition (q, p′) and the sequence
(e′j); the weight of this run is the product of the weights of the runs in A
and B. Therefore A⊙ B(w) = A(w).B(w).
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• s⊛ is the behaviour of A⊛ = (Q ∪ {i}, E + F,R+ S, I + χi, T + χi), with

∀a ∈ A,F (i, a, i) = 1K, ∀(p, q) ∈ Q,S(p, q) = T (p).I(q), χi(i) = 1K. (12)

For every word w, and every list of runs (p(j), (e
(j)
i ), q(j))j∈[1;r] over w

in A, there is a run (p(1), (fk), q
(r)) in A⊛, where the sequence (fk) is

the concatenation of the sequences (e
(j)
i ) separated by rewind transitions

(q(j), p(j+1)); the weight of this run is the product of the weights of the
runs in A. Therefore A⊛(w) = A(w)∗.

We now study a link between rotating and one-way automata, which are,
in our framework, the subclass of rotating K-automata that do not contain any
rewinding transition. 1KAutA is the set of one-way K-automata over A, and
every automaton in 1KAutA is characterised by a tuple (Q,E, I, T ).

Moreover, an automatonA = (Q,E,R, I, T ) in RKAutA can be considered as
a one-way K-automaton 1w(A) = (Q,E′, I, T ), over the alphabet Ar, with E

′ =
E ∪ {(p, r, q) 7→ R(p, q) | (p, q) ∈ Q2}. Conversely, if A is in 1KAutAr, rot(A) is
the corresponding automaton in RKAutA, obtained by replacing every transition
with label r by a rewinding transition.

The canonical bijection between transitions ofA and 1w(A) extends to paths,
and every pair of corresponding paths has the same label and the same weight.
In particular, for every word w inA∗, every computation inA over w corresponds
to a computation in the automaton 1w(A) over a word u in (wr)∗w.

To characterise the behaviour of the rotating K-automaton A with respect
to the behaviour of the one-way K-automaton 1w(A), we define a linear function
from K〈〈A∗

r
〉〉 to K〈〈A∗〉〉:

∀s ∈ K〈〈A∗

r
〉〉, ϕ

(

∑

u∈A∗

r

〈s, u〉u

)

=
∑

w∈A∗

(

∑

u∈(wr)∗w

〈s, u〉

)

w. (13)

Notice that ϕ is partially defined; for every series s, ϕ(s) is defined if and only
if, for every word w, the family (〈s, u〉)u∈(wr)∗w is summable.

The following proposition naturally follows:

Proposition 3. Let K be a rationally additive semiring. For every automaton A
in RKAutA, ϕ(|1w(A)|) is defined and equal to |A|.

Proof. Let A be an automaton in RKAutA, and let B = 1w(A). By proposi-
tion 1, A is valid; this means that the sum of weights of runs in B labeled by a
word in w(rw)∗ is defined. Moreover, for every word u in w(rw)∗ the sum 〈s, u〉
of the weights of the (finite) set of runs in B with label u is defined. Hence, by
Axiom 5 of rationally additive semirings, the sum of 〈s, u〉 over all words u in
w(rw)∗ is defined and equal to the sum of the weights of runs in A with label
w.
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KRatA∗
r

KHadA∗

1KAutAr

RKAutA

ϕ

| · |

| · |

rot 1w

Figure 1: Proposition 3 as a commutative diagram.

Corollary 1. The image of ϕ restricted to KRatA∗
r
is the set KHadA∗.

Proof. By Kleene-Schützenberger Theorem, every series in KRatA∗
r
is the be-

haviour of an automaton A in 1KAutAr. The image of this series by ϕ is the
behaviour of rot(A), which is a Hadamard series.

Conversely, every Hadamard series s is the behaviour of a rotating automa-
ton B. The image of the (rational) behaviour of 1w(B) by ϕ is equal to s.

4. Hadamard Expressions

Like rational series, Hadamard series are naturally denoted by expressions.
In the following grammar, where A is an alphabet, R generates K-rational ex-
pressions inKRatExpA andH generatesK-Hadamard expressions inKHadExpA.

R→ 0 | 1 | a ∈ A | kR, k ∈ K | Rk, k ∈ K | R+R | RR | R∗ ,

H → R | kH, k ∈ K | Hk, k ∈ K | H +H | H ⊙H | H ⊛H.
(14)

As usual, parentheses can be added to prevent ambiguity. In the following, the
classical rules of priority apply. Notice that we use in the Hadamard expressions
a binary iteration operator that appears to be more suitable with the definitions
below (definition of ρ in particular). It is straightforward that the expressive-
ness of this operator is equivalent to a unary star operator: if E denotes the
series s, s⊛ is denoted by E⊛ (a1 + . . .+ an)

∗, where A = {a1, . . . an}. Besides,
the original Kleene star operator in [8] was binary.

Definition 5. The interpretation of an expression in KHadExpA is a series
in KHadA∗ inductively defined by :

J0K = 0K, J1K = 1K, ∀a ∈ A, JaK = a,

∀k ∈ K, JkFK = kJFK, JFkK = JFKk, JF+ GK = JFK + JGK,

JFGK = JFK · JGK, JF∗K = JFK∗,

JF⊙ GK = JFK ⊙ JGK, JF⊛ GK = JFK⊛ ⊙ JGK.

(15)

If the interpretation of E in KHadExpA is defined, for every w in A∗, we set
〈E, w〉 = 〈JEK, w〉.

8



In Section 3, we showed that every Hadamard series can be realised as the
image by ϕ of the behaviour of a one-way automaton. In this section, we
describe a formal inverse of ϕ: this is a syntactic transformation ρ which turns
an expression E in KHadExpA into an expression in KRatExpAr, inductively
defined by:

ρ(E) = E if E ∈ KRatExpA,

∀k ∈ K, ρ(kE) = kρ(E), ρ(Ek) = ρ(E)k, ρ(F+ G) = ρ(F) + ρ(G),

ρ(F⊙ G) = ρ(F)rρ(G), ρ(F⊛ G) = (ρ(F)r)∗ρ(G).

(16)

Proposition 4. Let E be a Hadamard expression. It holds JEK = ϕ(Jρ(E)K).

KHadExpA

KRatExpAr KRatA∗
r

KHadA∗
J.K

J.K

ρ
ϕ

Figure 2: Proposition 4 as a commutative diagram.

Proposition 4 is based on the following lemma. The proof involves some
summation exchanges which are licit in rationally additive semirings; using this
result in other semirings may require a new proof.

Lemma 1. Let E be an expression in KHadExpA. Then, for every word w

in A∗,

〈E, w〉 =

∞
∑

i=0

〈ρ(E), (wr)iw〉. (17)

Proof. The proof is by induction on E.
If E is a rational expression, ρ(E) = E, hence,

∞
∑

i=0

〈ρ(E), (wr)iw〉 =

∞
∑

i=0

〈E, (wr)iw〉 = 〈E, w〉. (18)

Assume that the result is true for two Hadamard expressions F and G;

• if E = F+ G, E = kF or E = Fk the result holds by linearity;

9



• if E = F⊙ G, then

〈E, w〉 = 〈F⊙ G, w〉

= 〈F, w〉〈G, w〉 =

(

∞
∑

i=0

〈ρ(F), (wr)iw〉

)





∞
∑

j=0

〈ρ(G), (wr)jw〉





=
∑

i,j∈N2

〈ρ(F), (wr)iw〉〈ρ(G), (wr)jw〉

=

∞
∑

k=0

k
∑

n=0

〈ρ(F), (wr)k−nw〉〈ρ(G), (wr)nw〉

=

∞
∑

k=0

〈ρ(F)rρ(G), (wr)k+1w〉

=

∞
∑

i=0

〈ρ(E), (wr)iw〉

(19)

• if E = F⊛ G, 〈E, w〉 = 〈F⊛ G, w〉 = 〈F, w〉∗〈G,w〉.
We consider an extension of rational and Hadamard expressions.
For every integer k, if E is a rational expression, Ek is an extended rational
expression with interpretation JEkK = JEKk.
Likewise, if E is a Hadamard expression, E⊙k is an extended Hadamard
expression such that, for every word w, 〈E⊙k, w〉 = 〈E, w〉k. By induction,
it holds, for every k,

〈E⊙k, w〉 = 〈E, w〉k =

∞
∑

i=0

〈(ρ(E)r)k, (wr)i〉 . (20)

Therefore,

〈F, w〉∗ =
∞
∑

k=0

〈F, w〉k =
∞
∑

k=0

〈F⊙k, w〉

=
∞
∑

k=0

∞
∑

i=0

〈(ρ(F)r)k, (wr)i〉

=
∞
∑

i=0

∞
∑

k=0

〈(ρ(F)r)k, (wr)i〉 =
∞
∑

i=0

〈(ρ(F)r)∗, (wr)i〉 .

(21)
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Finally,

〈E, w〉 =
∞
∑

i=0

〈(ρ(F)r)∗, (wr)i〉
∞
∑

j=0

〈ρ(G), w(rw)j〉

=
∑

i,j∈N2

〈(ρ(F)r)∗, (wr)i〉〈ρ(G), w(rw)j〉

=
∞
∑

n=0

n
∑

k=0

〈(ρ(F)r)∗, (wr)n−k〉〈ρ(G), w(rw)k〉

=
∞
∑

n=0

〈(ρ(F)r)∗ρ(G), w(rw)n〉

=

∞
∑

n=0

〈ρ(E), w(rw)n〉 .

(22)

Notice that the handling of infinite sums in this proof are licit thanks to the
axioms of rationally additive semirings [5].

The proof of Proposition 4 follows:

Proof of Proposition 4. We have Jρ(E)K =
∑

u∈A∗

r

〈ρ(E), u〉u, thus

ϕ(Jρ(E)K) = ϕ
(

∑

u∈A∗

r

〈ρ(E), u〉u
)

=
∑

u∈A∗

r

〈ρ(E), u〉ϕ(u)

=
∑

w∈A∗

∑

u∈(wr)∗w

〈ρ(E), u〉w =
∑

w∈A∗

∞
∑

i=0

〈ρ(E), (wr)iw〉w

=
∑

w∈A∗

〈E, w〉w = JEK .

(23)

To complete the description of the function ρ, we characterise now the ra-
tional expressions which are in its image; on this image, ρ can be inverted.

Definition 6. The set KPreHadExpA of K-pre-Hadamard expressions over A
is generated by the following grammar:

P → E ∈ KRatExpA | kP, k ∈ K | Pk, k ∈ K | P+ P | PrP | (Pr)∗P. (24)

Proposition 5. The image of ρ is KPreHadExpA.

Proof. The proof is straightforward by induction: first, the image of every
expression in KHadExpA is in KPreHadExpA; conversely, every production of
Grammar (24) corresponds to a right-hand side in the definition of ρ given
in (16).

11



5. From Hadamard Expressions to Weighted Rotating Automata

5.1. A Generic Extension of Automata Synthesis

An algorithm which turns a rational expression into a (one-way) automaton
realises a mapping σ from rational expressions to classical automata which is
consistent with the interpretation of expressions and the behaviour of automata.

KRatExpAr KRatA∗
r

1KAutAr

J.K

| · |σ

Figure 3: A correct conversion algorithm makes this diagram commutative.

The superposition of Figures 1, 2 and 3 leads to Figure 4.

KHadExpA

KRatExpAr KRatA∗
r

KHadA∗

1KAutAr

RKAutA

J.K

J.K

ρ
ϕ

| · |σ

| · |

rot 1w

Figure 4: The transformation of Hadamard expressions into rotating automata.

This illustrates how the combination of Propositions 3 and 4 proves following
theorem.

Theorem 1. If σ is an algorithm that converts a rational expression into an
equivalent one-way automaton, then rot ◦ σ ◦ ρ converts a Hadamard expression
to an equivalent rotating automaton.

The complexity of the transformation of a Hadamard expression into a ra-
tional expression by ρ is linear, and the complexity of rot is constant, since it
is only a different interpretation of the same object. Therefore, since the com-
plexity of the conversion σ of a rational expression to an automaton is at least
linear, the complexity of rot ◦ σ ◦ ρ is equal to the complexity of σ.

When the number of letters in the rational expression is a parameter of the
complexity of the conversion, this parameter must also count the number of
Hadamard operators to get the complexity of the extension of the conversion
from Hadamard expressions to rotating automata.

In the next subsections, we apply Theorem 1 to derivation, follow and
Thompson-like automata. Notice that Theorem 1 allows to extend any algo-
rithm that converts rational expressions to automata.
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5.2. Derivation

The derivation of weighted rational expressions has been defined in [10]. It
requires an auxiliary function Null.

Definition 7. The function Null from KRatExpA into K is inductively defined
by

∀a ∈ A, Null(a) = Null(0) = 0K, Null(1) = 1K,

Null(F+ G) = Null(F) + Null(G), Null(F.G) = Null(F)Null(G),

Null(kF) = kNull(F), Null(Fk) = Null(F) k, Null(F∗) = Null(F)∗.

(25)

It is straightforward that, for every rational expression E, Null(E) is the
weight of the empty word in JEK.

The derivative of an expression E is a linear combination of expressions,
called a polynomial of expressions. The formal sum in polynomials of expressions
(like in polynomials of positions in the next part) is denoted ⊞ to avoid any
confusion with the sum in expressions or with Hadamard operators. We use
square brackets around polynomials to point out the distributivity with the
operator that follows the brackets; for instance, if P = ⊞αiEi is a polynomial,
[P].F is the polynomial ⊞αi(Ei.F).

Definition 8. The derivative of an expression E in KRatExpA by a letter is a
polynomial of expressions inductively defined for all a in A as:

∂

∂a
0 =

∂

∂a
1 = 0, ∀b ∈ A,

∂

∂a
b =

{

1 if a = b,

0 otherwise,

∀k ∈ K,
∂

∂a
kE = k

∂

∂a
E,

∂

∂a
Ek =

[

∂

∂a
E

]

k,
∂

∂a
(E+ F) =

∂

∂a
E⊞

∂

∂a
F,

∂

∂a
(EF) =

[

∂

∂a
E

]

.F⊞ Null(E)
∂

∂a
F,

∂

∂a
(E∗) = Null(E∗)

[

∂

∂a
E

]

.E∗.

(26)

There is only a finite number of expressions that arise in the iterated deriva-
tion of an expression E. Therefore, a weighted (one-way) automaton can be
built, where each state is an expression, the initial state is E itself, there is a
transition from F to G with label a and weight k if 〈 ∂

∂a
F,G〉 = k, and the final

weight of a state F is 〈F, ε〉. By [10], the behaviour of this weighted automaton
is JEK.

We apply now Theorem 1 to derivation.

Example. Let E0 = (( 12 (a+b))
∗b(a+b)∗)⊛(ab)∗. We set F1 = ( 12 (a+b))

∗b(a+b)∗,
then E1 = ρ(E0) = (F1r)

∗(ab)∗. The derivatives of E1 are shown on Table 1.
This leads to the derivation automaton of E1 shown on Figure 5. This automaton
can be interpreted as the rotating derivation automaton of E0.

From the application of derivations to ρ(E), where E is a Hadamard ex-
pression, we can define an extension of the derivation rules to directly derive
Hadamard expressions. We first need to extend the Null function.

13



Expression ∂
∂a

∂
∂b

∂
∂r

E1 = (F1r)
∗(ab)∗ 1

2E2 ⊞ E4
1
2E2 ⊞ E3 0

E2 = F1rE1
1
2E2

1
2E2 ⊞ E3 0

E3 = (a+ b)∗rE1 E3 E3 E1

E4 = b(ab)∗ 0 E5 0
E5 = (ab)∗ E4 0 0

(27)

Table 1: The derivatives of E1.

E1

E2

E3

E4E5

1
2a+

1
2b

b

r

a+ b

a

1
2a+

1
2b

b
a

b

Figure 5: The one-way derivation automaton of E1 = ρ(E0).

Definition 9. For every Hadamard expression E, if E is a rational expression,
Null(E) follows Definition 7, otherwise, it is inductively defined as:

∀k ∈ K, Null(kE) = kNull(E), Null(Ek) = Null(E) k, Null(E⊙ F) = 0,

Null(E+ F) = Null(E) + Null(F), Null(E⊛ F) = Null(F).
(28)

Remark. Note that Null(E) = 〈E, ε〉 does not hold anymore. This discrepancy
comes from the fact that Null(E) is forged to be equal to 〈ρ(E), ε〉, which is
different from 〈E, ε〉.

Definition 10. The derivation over Hadamard expressions is extended as fol-
lows; for every letter a, if E is a rational expression, the derivation follows
Definition 8, otherwise, the derivation is inductively defined as:

∀k ∈ K,
∂

∂a
kE = k

∂

∂a
E,

∂

∂a
Ek =

[

∂

∂a
E

]

k,
∂

∂a
(E+ F) =

∂

∂a
E⊞

∂

∂a
F,

∂

∂a
(E⊙ F) =

[

∂

∂a
E

]

⊙ F,
∂

∂a
(E⊛ F) =

[

∂

∂a
E

]

⊙ (E⊛ F)⊞
∂

∂a
F.

(29)

A derivation with respect to the Hadamard product is also defined:

∂

∂⊙
E = 0 if E ∈ KRatExp,

∂

∂⊙
(kE) = k

∂

∂⊙
E,

∂

∂⊙
(Ek) =

[

∂

∂⊙
E

]

k,

∂

∂⊙
(E+ F) =

∂

∂⊙
E⊞

∂

∂⊙
F,

∂

∂⊙
(E⊙ F) = Null(E)F⊞

[

∂

∂⊙
E

]

⊙ F,

∂

∂⊙
(E⊛ F) =

[

∂

∂⊙
E

]

⊙ (E⊛ F)⊞ Null(E) (E⊛ F)⊞
∂

∂⊙
F.

(30)
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The correctness of this definition comes from Theorem 1 and the following
proposition.

Proposition 6. For every Hadamard expression E,

Null(E) = Null(ρ(E)),

∀a ∈ A,
∂

∂a
E = ρ−1

(

∂

∂a
ρ(E)

)

, and
∂

∂⊙
E = ρ−1

(

∂

∂r
ρ(E)

)

,
(31)

where ρ−1 is extended to polynomials by linearity.

Proof. The proof is by induction on E. If E is in KRatExp, ρ and ρ−1 are the
identity, and ∂

∂r
ρ(E) = 0, hence the result holds. Assume that the result is true

for F and G. It holds by linearity for E = kF, E = Fk and E = F+G.

a) If E = F⊙ G, Null(ρ(E)) = Null(ρ(F ))Null(r)Null(G) = 0 = Null(E), and:

∂

∂a
(F⊙ G) =

[

∂

∂a
F

]

⊙ G =

[

ρ−1
( ∂

∂a
ρ(F)

)

]

⊙ G

= ρ−1

([

∂

∂a
ρ(F)

]

rρ(G)

)

= ρ−1

(

∂

∂a

(

ρ(F)rρ(G)
)

)

= ρ−1

(

∂

∂a
ρ(E)

)

(32)

∂

∂⊙
(F⊙ G) = Null(F)G⊞

[

∂

∂⊙
F

]

⊙ G

= Null(ρ(F))G⊞

[

ρ−1
( ∂

∂r
ρ(F)

)

]

⊙ G

= ρ−1

(

Null(ρ(F))ρ(G)⊞

[

∂

∂r
ρ(F)

]

rρ(G)

)

= ρ−1

([

[ ∂

∂r
ρ(F)

]

r⊞ Null(ρ(F))
∂

∂r
r

]

ρ(G)

)

= ρ−1

([

∂

∂r

(

ρ(F)r
)

]

ρ(G)

)

= ρ−1

(

∂

∂r

(

ρ(F)rρ(G)
)

)

= ρ−1

(

∂

∂r
ρ(E)

)

.

(33)

b) If E = F⊛ G,
Null(ρ(E)) = (Null(ρ(F ))Null(r))∗Null(G) = Null(G) = Null(E), and:
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∂

∂a
(F⊛ G) =

[

∂

∂a
F

]

⊙ (F⊛ G)⊞
∂

∂a
G

= ρ−1

([

∂

∂a
ρ(F)

]

r(ρ(F)r)∗ρ(G)

)

⊞
∂

∂a
G

= ρ−1

(

(Null(ρ(F)r))∗
[

∂

∂a

(

ρ(F)r
)

]

(ρ(F)r)∗ρ(G)

)

⊞
∂

∂a
G

= ρ−1

([

∂

∂a
(ρ(F)r)∗

]

ρ(G)⊞
∂

∂a
ρ(G)

)

= ρ−1

([

∂

∂a
(ρ(F)r)∗

]

ρ(G)⊞ Null((ρ(F)r)∗)
∂

∂a
ρ(G)

)

= ρ−1

(

∂

∂a

(

(ρ(F)r)∗ρ(G)
)

)

= ρ−1

(

∂

∂a
ρ(E)

)

.

(34)

∂

∂⊙
(F⊛ G) =

[

∂

∂⊙
F

]

⊙ E⊞ Null(F)E⊞
∂

∂⊙
(G)

= ρ−1

([

∂

∂r
ρ(F)

]

rρ(E)

)

⊞ ρ−1

(

Null(ρ(F))
∂

∂r
rρ(E)

)

⊞
∂

∂⊙
(G)

= ρ−1

([

[ ∂

∂r
ρ(F)

]

r⊞ Null(ρ(F))
∂

∂r
r

]

ρ(E)

)

⊞
∂

∂⊙
(G)

= ρ−1

([

∂

∂r

(

ρ(F)r
)

]

ρ(E)

)

⊞
∂

∂⊙
(G)

= ρ−1

(

(

Null(ρ(F)r)
)∗

[

∂

∂r

(

ρ(F)r
)

]

(ρ(F)r)∗ρ(G)⊞
∂

∂r
ρ(G)

)

= ρ−1

([

∂

∂r

(

ρ(F)r
)∗

]

ρ(G)⊞ Null
(

(ρ(F)r)∗
) ∂

∂r
ρ(G)

)

= ρ−1

(

∂

∂r

(

(ρ(F)r)∗ρ(G)
)

)

= ρ−1

(

∂

∂r
ρ(E)

)

.

(35)

5.3. Follow Automata

The definition of the Follow automaton for rational expressions is described
in [6]. In every rational expression E, we consider the list of occurrences of
letters; each of these occurrences is called a position, and we denote pos(E) the
set of positions of the expression E. We consider (formal) linear combinations
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of positions, and we denote the set of linear combinations of positions of E

with K〈pos(E)〉.1

The Follow automaton requires the definition of four functions: Null(E) in K

is already defined in Proposition 7; First(E), Last(E), and Follow(E, p) (where p
is a position) are inductively defined by:

First(0) = First(1) = 0K, First(a) = position of(a),

First(F+ G) = First(F)⊞ First(G), First(FG) = First(F)⊞ Null(F)First(G),

First(kF) = k First(F), First(Fk) = First(F), First(F∗) = (Null(F))∗First(F)
(36)

Last(0) = Last(1) = 0K, Last(a) = position of(a),

Last(F+ G) = Last(F)⊞ Last(G), Last(FG) = Last(G)⊞ Last(F)Null(G),

Last(kF) = Last(F), Last(Fk) = Last(F) k, Last(F∗) = Last(F)(Null(F))∗
(37)

Follow(0, p) = Follow(1, p) = Follow(a, p) = 0K,

Follow(kF, p) = Follow(Fk, p) = Follow(F, p),

Follow(F+ G, p) = Follow(F, p)⊞ Follow(G, p),

Follow(FG, p) = Follow(F, p)⊞ Follow(G, p)⊞ 〈Last(F), p〉First(G),

Follow(F∗, p) = Follow(F, p)⊞ 〈Last(F), p〉(Null(F))∗First(F),

(38)

where a is a letter and k is in K. It is convenient to extend pos(E) with an
initial position i0 and to extend Follow by Follow(E, i0) = First(E); moreover, by
convention, 〈Last(E), i0〉 = Null(E).

The weighted Position automaton [3] can then be defined, where the set of
states is the set of positions, the initial state is the initial position, there is a
transition from p to q with label a and weight k if there is a letter a in position q
and 〈Follow(E, p), q〉 = k; the final weight of state p is 〈Last(E), p〉.

The Follow automaton is a quotient of the Position automaton: if Follow
coincides on two positions p and q, and 〈Last(E), p〉 = 〈Last(E), q〉, then the
corresponding states can be merged.

Example. We consider the expression E1 defined in Example 5.2, a rational ex-
pression with 8 positions. For convenience, we add indices to identify positions:
(( 12 (a1 + b2))

∗b3(a4 + b5)
∗r6)

∗(a7b8)
∗. The Follow and Last functions shown on

Table 2 induces an equivalence on positions: {{i0, 6}, {1, 2}, {3, 4, 5}, {7}, {8}};
the Follow automaton of E1 is drawn on Figure 6; seen as a rotating automaton,
this automaton realises JE0K.

Like for derivatives, the functions First, Last and Follow can be extended to
Hadamard expressions in order to get a direct construction. Notice that, for
every Hadamard expression E, an occurrence of letter r appears in ρ(E) for each
Hadamard operator which appears in E. This leads to extend the positions to

1Notice that K〈pos(E)〉 is not a semiring, since pos(E) is not a monoid; nevertheless, we
use the same notations as series for denoting the coefficient of such a linear combination.
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position Follow(E1, pos) 〈Last(E1), pos〉
i0

1
2 1⊞

1
2 2⊞ 3⊞ 7 1

1 (a) 1
2 1⊞

1
22⊞ 3 0

2 (b) 1
2 1⊞

1
22⊞ 3 0

3 (b) 4⊞ 5⊞ 6 0
4 (a) 4⊞ 5⊞ 6 0
5 (b) 4⊞ 5⊞ 6 0
6 (r) 1

2 1⊞
1
2 2⊞ 3⊞ 7 1

7 (a) 8 0
8 (b) 7 1

(39)

Table 2: The Follow and Last functions for expression E1.

78 i0, 6

1, 2

3, 4, 5

1
2a+

1
2b

b

r

a+ b

a

1
2a+

1
2b

b
a

b

Figure 6: The Follow automaton of E1 = ρ(E0).

the occurrences of Hadamard operators. The extension of function Null is done
in Definition 9.

Definition 11. For every Hadamard expression E, the inductive definition of
First, Last and Follow given in Equations (36), (37) and (38) is extended to
Hadamard operators by

First(F⊙i G) = First(F)⊞ Null(F) i,

First(F⊛i G) = First(F)⊞ Null(F) i⊞ First(G),
(40)

Last(F⊙i G) = Last(G)⊞ Null(G) i,

Last(F⊛i G) = Last(G)⊞ Null(G) i,
(41)

Follow(F⊙i G, p) = Follow(F, p)⊞ Follow(G, p)

⊞ 〈Last(F), p〉 i⊞ 〈i, p〉First(G),

Follow(F⊛i G, p) = Follow(F, p)⊞ Follow(G, p)⊞ 〈Last(F), p〉 i

⊞ 〈i, p〉First(F⊛i G),

(42)

where 〈i, p〉 is equal to 1 if i = p, and to 0 otherwise.

Since a position is assigned to each Hadamard operator of a Hadamard
expression E, and each Hadamard operator has a corresponding occurrence of r

18



in ρ(E), there is a natural bijection between positions of E and positions of ρ(E).
The soundness of Definition 11 comes hence from the following proposition.

Proposition 7. For every Hadamard expression E,

First(E) = First(ρ(E)), Last(E) = Last(ρ(E)),

∀p ∈ pos(E), Follow(E, p) = Follow(ρ(E), p).
(43)

5.4. Thompson-like Automata

Like for one-way automata, the model of rotating automata can be extended
to support ε-transitions. We consider here a variant of the Thompson automaton
which is more suitable for weighted automata since it prevents circuits of ε-
transition. This variant is inspired by the ZPC-structure described in [4]. For
every rational expression E, the automaton T (E) has a single initial state i (with
weight 1) and a final state t (with weight 1), distinct from state i; on top of
state t, the initial state i may also be final. There is no path with label ε from
i to t; hence, the weight of ε in the behaviour of E is given by the final weight c
of i. Like in the Thompson automaton,

• there is no incoming transition on state i;

• there is no outgoing transition from state t;

• if two distinct transitions come from (resp. go to) the same state, they
are ε transitions.

The inductive construction of T (E) is described on Figure 7. Using Theorem 1,
this construction can be extended to Hadamard expressions. Automata of Fig-
ure 8 are obtained from the direct application of Theorem 1 by contracting non
branching paths of ε-transitions. This construction proves that, like in the case
of rational expressions, for every Hadamard expression, an equivalent rotating
automaton with ε-transitions can be built, with a linear number of states and
transitions.

6. From Weighted Rotating Automata to Hadamard Expressions

We apply the method used in the previous section to get an algorithm which
converts rotating automata to Hadamard expressions. An algorithm that turns
a one-way automaton into a rational expression is a function τ from 1KAutA

to KRatExpA which is consistent with the interpretation of expressions and the
behaviour of automata. Hence, if an inverse of ρ existed, a commutative diagram
similar to Figure 4 could be drawn, and a result similar to Theorem 1 would be
proved.

Unfortunately, the inverse of ρ is only defined on a strict subset of ratio-
nal expressions, the pre-Hadamard expressions of Definition 6. To apply our
method, we must therefore ensure that the algorithm τ outputs pre-Hadamard
expressions.
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T (0) :

i t

T (1) :

i t

T (a) :

i t
a

T (E1 + E2) :

T (E1)

T (E2)

i t

i1 t1

i2 t2c1 + c2

ε

ε

ε

ε

T (kE1) :

T (E1)i i1 t1

kc1

ε|k
T (E1k) :

T (E1) ti1 t1

c1k

ε|k

T (E1E2) :
T (E1)

T (E2)
i t

i1 t1

i2 t2
c1c2

ε

ε

ε
ε|c1

ε|c2

T (E∗
1) :

T (E1)i ti1 t1

c∗1

ε|c∗1 ε|c∗1

ε|c∗1

Figure 7: A Thompson-like automaton for rational series

Theorem 2. If τ is an algorithm that converts an automaton in 1KAutAr to
an equivalent pre-Hadamard expression, then ρ−1◦τ ◦1w converts an automaton
in RKAutA to an equivalent Hadamard expression.

6.1. State Elimination on an r-local Automaton

We show in this part that the State Elimination method introduced in [1] can
be applied on some particular automata over Ar in such a way that it outputs
pre-Hadamard expressions. These automata are r-local automata.

Definition 12. An automaton (Q,E, I, T ) in 1KAutAr is r-local if there is a
partition {Q1, Q2} of Q with no initial state in Q2, and such that the label of a
transition is r if and only if this transition ends in Q2.

We briefly recall the principle of the State Elimination method applied to
an automaton A = (Q,E, I, T ) in KAutA.

First, A is converted into a directed graph with no multiple arcs, where arcs
are labeled by rational expressions:
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T (E1 ⊙ E2) :

T (E1)

T (E2)

i

t

i1 t1

i2 t2

ir

tr

ε ε
r

ε ε

ε|c1

ε|c2

T (E1 ⊛ E2) :
T (E1)

T (E2)

i

i1 t1
ir

tr

i2 t2
t

c2

ε

ε

ε

ε|c1

ε

r

ε

ε
ε|c2

ε ε

Figure 8: A Thompson-like automaton for Hadamard series

• every state is converted into a vertex, and two vertices, named i0 and t0
are added;

• for every transition (p, a, q) with weight k 6= 0K in A, there is an arc
(p, q) with label ka; if there are several transitions between the same pair
(p, q) of states, the label of the arc (p, q) is the sum of the corresponding
expressions;

• if state p is initial with weight k, there is an arc (i0, p) with label k;

• if state p is final with weight k, there is an arc (p, t0) with label k.

Then, the elimination method runs as follows. At each step, a vertex p

different from i0 and t0 is considered. For every predecessor q of p, for every
successor r of p, the arc (q, r) is updated as follows:

q p r
E G

F

H

7−→ q r
E.F ∗.G+H

Then, the vertex p is deleted. If the vertex p has no loop, there is no factor F ∗

in the resulting expression.
At the end, only vertices i0 and t0 remain, and the label of the arc (i0, t0)

denotes the behaviour of A.
Notice that the result heavily depends on the ordering on vertices during the

elimination.

We present a variant of this algorithm for r-local automata in order to ob-
tain a pre-Hadamard expression. First, the vertices corresponding to states
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with incoming transitions with a label different from r are deleted before the
other ones. Second, to get well-formed pre-Hadamard expressions, the following
rewriting rules are applied:

Er+ Fr → (E+ F)r

E(kr) → (Ek)r

E(Fr) → (EF)r.

(44)

KHadExpA

KPreHadExpAr KRatA∗
r

KHadA∗

1KAutAr

RKAutA

J.K

J.K

ρ−1 ϕ

| · |τ ′

| · |

rot 1w

Figure 9: The transformation of rotating automata into Hadamard expressions.

Proposition 8. The variant of the elimination method applied to an r-local
automaton A yields a pre-Hadamard expression E(A) such that JE(A)K = |A|.

Proof. Let A = (Q1 ∪Q2, E, I, T ) be an r-local automaton in 1KAutAr. Let R
denote the set of vertices that remain at each step of the elimination. The first
stage is the removing of vertices in Q1; the following properties are invariant
during this stage :

∀p ∈ R, ∀q1 ∈ R \Q2, p
E

−→ q1 =⇒ E ∈ KRatExpA,

∀q2 ∈ Q2 ∩R, p
E

−→ q2 =⇒ E = Fr with F ∈ KRatExpA.
(45)

The second stage is the removing of vertices in Q2, and the following properties
are invariant:

∀p ∈ R, ∀q2 ∈ Q2 ∩R, p
E

−→ q2 =⇒ E = Fr with F ∈ KPreHadExpA,

p
E

−→ t0 =⇒ E ∈ KPreHadExpA.
(46)

Finally, at the end, the label of the arc (i0, t0) is in KPreHadExpA.

6.2. State Elimination Variant in 1KAutAr.

If an automaton in 1KAutAr is not r-local, a preprocessing must be applied.
It consists in splitting states which violate the r-local property. The operation
is a covering ; this ensures that it preserves the behaviour.

Definition 13. Let A = (Q,E, I, T ) and B = (S, F, J, U) be two automata
in 1KAutA. A is a covering of B if there exists a surjection ψ from Q to S such
that:
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• ∀p ∈ Q, T (p) = U(ψ(p));

• ψ induces a bijection from initial states of A onto initial states of B, such
that for every initial state p of A, I(p) = J(ψ(p));

• for every transition (r, a, s) in B, and every state p in ψ−1(r), there exists
one and only one state q in ψ−1(s) such that (p, a, q) is a transition of A;
moreover E(p, a, q) = F (r, a, s).

This definition implies that there is a bisimulation between automaton A
and B: there is one and only one way to lift up every initial state of B in A
consistently with ψ, and for every path of B lifted up in A, and every transition
extending this path, there is one and only one way to lift this transition in A.
Therefore, there is a canonical one-to-one mapping of computations of B into
computations of A that preserves both the labels and the weights.

Lemma 2. If A is a covering of B, they have the same behaviour: |A| = |B|.

Remark. There is a one-to-one mapping between computations of A and rot(A),
hence Lemma 2 implies that coverings of rotating automata also preserve the
behaviour.

Lemma 3. Every automaton in 1KAutAr admits an r-local covering.

Proof. Let B = (S, F, J, U) be in 1KAutAr. We define the automaton A =
(Q1∪Q2, E, I, T ) in 1KAutAr. Q1 and Q2 are two distinct copies of S; for every
state p in S, the correponding state in Q1 (resp. Q2) is denoted p1 (resp. p2).
For every p, q in S, for every i in {1, 2},

I(p1) = J(p), I(p2) = 0, T (pi) = U(p),

∀a ∈ A, E(pi, a, q1) = F (p, a, q), E(pi, a, q2) = 0,

E(pi, r, q1) = 0, E(pi, r, q2) = F (p, r, q).

A is a covering of B where p1 and p2 are mapped onto p. It is straightforward
that A is r-local.

Finally, we get an algorithm τ that fulfills the hypothesis of Theorem 2, from
which an algorithm that converts rotating automata to Hadamard expressions
is deduced.

Proposition 9. Let A be in RKAutA and let F be the pre-Hadamard expres-
sion resulting from the elimination method on a r-local covering of 1w(A).
Then, ρ−1(F) is a Hadamard expression such that

Jρ−1(F)K = |A|. (47)

Remark. It is possible to design an algorithm h that turns every expression in
KRatExpAr to a pre-Hadamard expression. Then for every algorithm τ which
converts weighted one-way automata into rational expressions, the algorithm
ρ−1 ◦ h ◦ τ ◦ 1w converts weighted rotating automata to Hadamard expressions.
Nevertheless, it seems that it is more efficient to modify the algorithm τ such
that it directly outputs pre-Hadamard expressions.
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Example. The application of the usual State Elimination method on the au-
tomaton A2 drawn on Figure 10 results in the following expressions,

(

ba∗(
1

2
r+ a)

)∗

, (48)

which is not the image by ρ of any Hadamard expression. The automaton A′
2

on Figure 11 is a r-local covering of A2. We apply the variant of the state
elimination method; we first eliminate states q1 and p1 which have no incoming
transition with label r; this leads to the graph of Figure 12. For convenience,
to shorten the expressions, we use the identity ε + EE∗ ≡ E∗. Finally, after
eliminating state p2, the following rational expression is obtained:

(ba∗a)∗ + (ba∗a)∗ba∗
1

2
r

(

(ba∗a)∗ba∗
1

2
r

)∗

(ba∗a)∗. (49)

This expression is indeed a pre-Hadamard expression; it is the image by ρ of

(ba∗a)∗ + (ba∗a)∗ba∗
1

2
⊙

(

(ba∗a)∗ba∗
1

2

)

⊛ (ba∗a)∗. (50)

Notice that it can easily be proved that F+ E⊙ E⊛ F and E⊛ F are equivalent
for every pair of Hadamard expressions, hence, the behaviour of A2 is described
by the Hadamard expression

(

(ba∗a)∗ba∗ 1
2

)

⊛ (ba∗a)∗.

p q
b

1
2r, a

a

Figure 10: The rotating automaton A2.

p1 p2q1
b

ba

a
1
2r

Figure 11: The r-local rotating automaton A′

2
.

p2i0

t0
(ba∗a)∗ (ba∗a)∗

(ba∗a)∗ba∗ 1
2r

(ba∗a)∗ba∗ 1
2r

Figure 12: After the first stage in the variant of the state elimination applied to A′

2
.
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7. Conclusion

The results stated in this paper are generic and can be applied to any semir-
ing, commutative or not. The same methods can be applied in semirings which
are not rationally additive semirings, but the fact that the interpretation of
expressions and the behaviour of automata are defined, as well as the valid-
ity of the transformations, depend on specific properties of the expressions or
automata.
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