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ABSTRACT

Electron microscopy has shown to be a very powerful tool

to deeply analyze the chemical composition at various scales.

However, many samples can not be analyzed with an accept-

able signal-to-noise ratio because of the radiation damage in-

duced by the electron beam. Particularly, electron energy loss

spectroscopy (EELS) which acquires a spectrum for each spa-

tial position requires high beam intensity. Scanning transmis-

sion electron microscopes (STEM) sequentially acquire data

cubes by scanning the electron probe over the sample and

record a spectrum for each spatial position. Recent works

developed new acquisition procedures, which allow for par-

tial acquisition schemes following a predetermined scan pat-

tern. A reconstruction of the full data cube is conducted as

a post-processing step. A multi-band image reconstruction

procedure which exploits the spectral structure and the spatial

smoothness of STEM-EELS images is explained here. The

performance of the proposed scheme is illustrated thanks to

experiments conducted on a realistic phantom dataset as well

as real EELS spectrum-image.

Index Terms— Electron Energy Loss Spectroscopy

EELS, Scanning Transmission Electron Microscope STEM,

spectrum-image, multi-band imaging, image reconstruction,

partial sampling, inpainting.

1. INTRODUCTION

In a scanning transmission electron microscope (STEM), an

electron beam is used as the illumination source and is fo-

cused as a probe which is moved over the sample area of inter-

est. Among the commonly collected signals is the electron-

energy loss spectrum (EELS) [1] which is multi-channels

(the acquired multi-band image is called a spectrum-image).

However, a classical problem encountered is that the elec-

tron beam induce damages for sensitive materials [2] such as

organic materials. Indeed, standard acquisition schemes oper-

ate sequentially, line-by-line, and thus concentrate electrons

in contiguous areas. Common solution consists in reduc-

ing the electron dose (number of electrons per unit surface),
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which significantly lowers the signal-to-noise ratio (SNR)

and the overall image quality. Recent works proposed another

approach which consists in a random sampling scheme for

reducing cumulative damage on successive pixels while keep-

ing the best SNR and spatial resolution [3]. The last method

has several advantages as it allows adaptive studies to be

envisioned. Such a random sampling has been implemented

on the STEM VG HB 501 microscope in the Laboratoire de

Physique des Solides (LPS, Orsay, France) [4].

Our approach is based on a partial and random acquisi-

tion scheme, with optimal electron dose per pixel compared

to full acquisition schemes with a reduced dose. This partial

acquisition improves significantly the SNR for the sampled

areas. It requires computational reconstruction schemes to

recover the full data from the partial measurements within a

post-processing task. In image processing this is commonly

referred to as inpainting, a particular inverse problem which

can be solved by means of appropriate spatial and spectral

regularizations. Besides, the acquisition scan pattern, which

can be chosen before the acquisition, should be studied as it

impacts the reconstruction quality.

This paper considers the reconstruction of EELS spectrum-

images from partial acquisition. An optimization prob-

lem introducing a spatial regularization, chosen to promote

smoothly varying images, and a spectral regularization to bet-

ter take into account the nature of EELS data is proposed for

a reconstruction task. The choice of the scan pattern is also

discussed. Section 2 formulates the problem and develops

the proposed method. Section 3 describes its implementa-

tion and presents the scan patterns that will be compared.

This approach will be evaluated with numerical simulations

conducted on a realistic image in section 4, while Section 5

reports experiments on a real dataset acquired by the STEM

VG HB 501 microscope operated by LPS. Section 6 finally

concludes this work.

2. PROPOSED METHOD

2.1. Direct and inverse problem

Let Y denote the M × P matrix that corresponds to the full

EELS data composed of P pixels in M channels. To avoid



the damaging effects the electron dose could have on sensitive

samples, only some given spatial locations are acquired. Note

that this spatial subsampling scheme is not accompanied by

any spectral subsampling, since, at each spatial position, the

EELS spectrometer simultaneously separates all electron loss

energies, leading to the acquisition of the whole EELS spec-

trum. To summarize, the full spectra are acquired atN among

P available spatial positions, resulting in the spatial subsam-

pling ratio r = N/P . The corresponding index set of the N
acquired pixels and the matrix of the measurements gathering

the N columns of Y are denoted I and YI , respectively.

Multiband images encountered in numerous imaging

modalities are known to be highly spectrally correlated and,

in most cases, obey a low-rank property. A physically-

motivated instance of this property arises when analyzing

multi-band images under the unmixing paradigm [5]. We ex-

ploit this property through dimension reduction, which also

allows for lighter computations. More precisely, the image

to be recovered is assumed to write X = HS where H is a

M ×M orthonormal matrix defining the data principal com-

ponent basis and S = [s1, . . . , sP ] is a M × P matrix which

gathers the representation coefficients of the spectrum-pixels

in this basis. In this work, the basis H is supposed to be

estimated beforehand by conducting a principal component

analysis (PCA) of the observed pixels YI . Note that, as

discussed in Section 1, a partial spatial sampling of the scene

results in a higher SNR than the one obtained with a con-

ventional sampling. Thus, the first principal components of

highest energy are expected to span a reliable estimate of the

actual signal subspace (assumed to be of dimension Rtrue).

Given this decomposition, the reconstruction problem,

which consists in recovering a full (and possibly denoised)

M × P spectrum-image X from the acquired data YI , can

be formulated directly into the principal component basis and

boils down to estimating the M × P coefficient matrix S.

This reconstruction task is an ill-posed problem and can be

addressed by solving the following optimization problem

Ŝ = argmin
S∈RM×P

φ(S) + µψ(S)

s.t.
1

M

∥

∥HTYI(n) − SI(n)
∥

∥

2

2
≤ σ̂2, ∀n ∈ !1,M" (1)

where φ(·) and ψ(·) are spatial and spectral regularizations

with µ a parameter adjusting their relative impact. The data

fitting term is written as a constraint, since the squared Eu-

clidean distance between the observations and the solution is

expected to be equal to noise variance σ whose estimation

is σ̂ because we assume independent white Gaussian noise.

The resulting proposed method will be referred to as Sobolev

SubSpace (3S).

2.2. The spatial regularization

Classical spatial regularizations used in image restoration

usually rely on the image gradient XD, where D is the

spatial discrete gradient operator applied in each channel

independently. This gradient is minimized with respect to

(w.r.t.) its ℓ2-norm to promote smoothly varying image.

Here, the EELS images are expected to be spatially smooth

since the target spatial resolution is relatively low compared

to the atomic resolution. As a consequence, the energy of the

spatial gradient, which enforces spatial smoothness in each

band, will be considered

φ(S) =
1

2M
‖SD‖2F . (2)

2.3. The spectral regularization

When the eigenvectors h1, . . . ,hM identified by PCA and

composing the columns of H are ordered such that the eigen-

values are sorted in decreasing order, the corresponding rep-

resentation vectors S1,:, . . . ,SM,: are expected to be of de-

creasing energy magnitudes, where Sm,: stands for the mth

row of S. In particular, if the pixel spectra lie into a subspace

of dimension Rtrue with Rtrue ≤ M , the squared norms

‖Sm,:‖22 of the irrelevant representation vectors are expected

to be close to 0 for m ≥ Rtrue. This suggests a weighted

penalization of the form

ψ(S) =
1

2

M
∑

m=1

wm ‖Sm,:‖22 (3)

with increasing weights (wm)m=1,...,M . A Bayesian inter-

pretation yields to the following formulation [6]

wm =
σ̂2

lm − σ̂2
(4)

with (l)m=1,...,M the estimated eigenvalues of the spectrum

image covariance matrix. We consider the following Stein

estimator

lm =
λm

1 + 1
N

∑M
j=1
j #=m

λm+λj

λm−λj

(5)

where (λ)m=1,...,M are the PCA eigenvalues ordered in

decreasing order. An isotonic regression [7] is used as a

post-processing to ensure the non-decreasing property of

(l)m=1,...,M , which usually returns a set of corrected eigen-

values with associated multiplicity orders. Moreover, an esti-

mate σ̂2 of the noise variance can be chosen as the corrected

eigenvalues of lowest magnitude, whose multiplicity order is

expected to be M − R. Hence, for m > R, Sm,: is forced to

be null. In other words, the optimization problem (1) can be

equivalently rewritten with respect to a R × P matrix S1:R,:

and where all the occurrences of M are replaced by R.



3. IMPLEMENTATION

3.1. Optimization

The optimization problem (1) amounts to minimizing the sum

of the following functions

f(S) = φ(S) + µψ(S) (6)

g(S) =

N
∑

n=1

ιB(HTYI(n),
√
Rσ̂)(SI(n)) (7)

where ιA(x) is the indicator function of a set A and B(x0, r0)
is the ball centered on x0 of radius r0. Using this decompo-

sition, f is a convex and continuously differentiable function

with Lf -Lipschitz continuous gradient (with Lf ≤ LUB =
1 + 8µ) and g is a convex nonsmooth function. Hence, for

all L ≥ Lf (particularly, for L = LUB), the FISTA algo-

rithm [8] given in Algo. 1 converges toward the solution of

our optimization problem.

The corresponding gradient of f(·) required in Step 3 of

Algo. 1 is given by

∇f(S) = − 1

R
S∆+ µWS (8)

where ∆ = −DDT is the discrete spatial Laplacian operator.

Moreover, as shown by (7), the function g(·) is separable with

respect to the pixel indexes n ∈ !1, N". Hence, the proximal

operator associated with g(·) consists in projecting SI(n) on

B(HTYI(n),
√
Rσ̂) for all n ∈ !1, N".

Algorithm 1: FISTA with constant step size [8]

1 Input : L > Lf an upper bound of Lf

2 Initialisation : Set y(1) = x(0) ∈ R
p, θ(1) = 1, i = 1

while stopping rule not satisfied do

3 x(i) = proxg/L
(

y(i) − 1
L∇f(y(i))

)

4 θ(i+1) = 1
2

(

1 +
√

1 + 4(θ(i))2
)

5 y(i+1) = x(i) +
(

θ(i)−1
θ(i+1)

)

(

x(i) − x(i−1)
)

6 i← i+ 1

3.2. Scan patterns

The random scanning system implemented at LPS allows us

to choose which pixel we want to sample. In what follows,

three scan patterns will be proposed and their reconstruction

quality will be discussed. The first proposed scan pattern is

the random scan which consists in randomly acquiringN pix-

els over P . At the opposite side, we also consider a regular

sampling, which produces a more uniform coverage of the

sample. In between, we also consider a jittered scan which

consists in randomly choosing a pixel among regularly dis-

tributed sub-grids. As an example, for r = 0.25, a pixel will

be drawn among sub-grids of 2×2 pixels. These scan patterns

will be discussed in subsection 4.3.

4. SIMULATION RESULTS

4.1. Synthetic datasets

The performances of the proposed methods are assessed

thanks to experiments conducted on synthetic spectrum-

images. More precisely, the full spectrum-image Y ∈ R
M×P

is generated according to

Y = X+E (9)

where X is the noise-free spectrum image and E is a noise

matrix. To mimic realistic EELS acquisitions, the noise-free

image has been decomposed as X = MA, following the so-

called linear mixing model that can be used to describe the

spatial mapping of materials within an observed sample [5].

The M ×Nc matrix M = [m1, . . . ,mNc
] gathers Nc spectra

associated with distinct materials (referred to as endmembers)

and A = [a1, . . . ,aP ] is a Nc × P matrix which stands for

the spatial distribution of the materials in the pixels (referred

to as abundances). Here, Nc = 4.

The endmember spectra have been extracted from reals

EELS data using the vertex component analysis (VCA) [9].

The spectra are shown in Figure 1 where four particular en-

ergy thresholds reveal the presence of chemical elements: car-

bon (K-edge at 285 eV), calcium (L 2,3 -edge composed of a

double peak around 350 eV), nitrogen (K-edge at 400 eV)

and oxygen (K-edge at 530 eV). These components do not

correspond to well defined chemicals compounds. Neverthe-

less, for simplicity, in the following, the endmembers will be

related to particular materials and designed as calcification,

resin, organic 1 and organic 2. The number of bands (cor-

responding to energy channels of the spectrometer) is M =

1337.

Concerning the four abundance maps Ak,: = [ak1, . . . , akP ]
(k ∈ !1, Nc") represented in Fig. 2 (first column) have been

designed to define the spatial distribution of the different ma-

terials in the sample. In these experiments, the spatial maps

are of size 100× 100 pixels and sum exactly to 1.

4.2. Unmixing analysis of reconstructed data

In this section, the observation matrix YI is generated using

r = 0.25 (the scan pattern is chosen to be random here) and

a signal-to-noise ratio of 25dB is chosen, corresponding to

a classical non-destructive electron dose. Its 3S reconstruc-

tion quality is evaluated by comparing the 3S reconstruction

(Reconstruction) to the noise-free spectrum-image (Oracle).

The considered criterion is the normalized mean square error

(NMSE) of the reconstructed image X̂

NMSE(X, X̂) =
||X̂−X||2F

||X||2F
. (10)
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Fig. 1. The Nc = 4 endmember spectra represented as am-

plitude vs. energy loss (in eV). The following characteristic

thresholds are depicted: carbon (285 eV), calcium (350 eV),

nitrogen (400 eV) and oxygen (530 eV).

Standard unmixing techniques are also used to analyze

the 3S reconstruction technique. Particularly, for both Or-

acle and Reconstruction spectrum-images, the spectra mk,

k ∈ !1, . . . , Nc", have been recovered using the SISAL al-

gorithm [10] applied on the acquired data. Then, the abun-

dance maps A are estimated from the compared images using

the SUNSAL algorithm [11]. The quality of the estimated

endmember matrix M̂ is evaluated using the average spectral

angle distance (aSAD) defined by [12]

aSAD(M, M̂) =
1

Nc

Nc
∑

k=1

acos

( 〈mk, m̂k〉
||mk||2 × ||m̂k||2

)

.

(11)

The relevance of the estimated abundance maps is evaluated

by computing the corresponding NMSE(A, Â) as defined

by (10). Figure 2 shows the estimated abundance maps while

the two first lines of Table 1 give the metric results These

results show that Oracle and Reconstruction unmixing re-

sults are comparable and succeed in analyzing the sample

elements.

4.3. Scan pattern impact

Here, the study detailed in previous subsection is conducted

for the three scan patterns given in subsection 3.2. Their cor-

responding sampling masks are given in Figures 3(a) to 3(c),

colored compositions of the reconstructed spectrum-images

are given in Figures 3(d) to 3(f) and unmixing performances

are given in Table 1. As expected, the random scan seems

to give the worst results since the mask presents black holes.

Regular and jittered scan patterns give quite similar perfor-

mances but the regular reconstruction spectrum image con-

tains artefacts, especially visible in only-resin areas.
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Fig. 2. Row 1: colored composition of the oracle and recon-

structed spectrum-images. Rows 2-5: the abundance maps es-

timated by SUNSAL on the corresponding spectrum-images.

Table 1. Unmixing performance with respect to scan pattern.

Pattern NMSE(X, X̂) aSAD(M, M̂) NMSE(A, Â)

Oracle 0.00000 0.10254 0.33640

Random 0.00017 0.10315 0.51204

Regular 0.00010 0.11616 0.38726

Jittered 0.00013 0.09299 0.34585

5. A REAL DATA APPLICATION

In this section, the proposed reconstruction method is applied

to a real spectrum-image acquired by the STEM VG HB 501

microscope and equipped with a partial sampling implemen-

tation. The acquired image size is 100×98 pixels and is com-

posed of 1337 bands. Two protocols were applied to the same

sample: a full sampling (r = 1) with a small local electron

dose d (which gives the Full2ms image) and a partial sampling
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Fig. 3. Sampling masks (a)-(c) and the reconstructed spec-

trum images colored compositions (d)-(f) for random, regular

and jittered scan patterns.

(r = 0.2) with a higher local electron dose 5d (Reconstruc-

tion image). An unmixing study using the VCA algorithm fol-

lowed by the SUNSAL algorithm has been conducted on both

images. The three most powerful maps are given in Figure 4.

We can observe that our approach returns abundance maps

similar to the ones returned by standard acquisition scheme

and a denoing action is observed.
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Fig. 4. The abundance maps estimated by SUNSAL applied

to the two real spectrum-images Full2ms and Reconstruction.

6. CONCLUSION

In this paper, we introduced new acquisition and reconstruc-

tion techniques to better preserve sensitive materials in scan-

ning transmission electron microscopy. The proposed method

is based on a partial acquisition of an EELS spectrum-image

followed by reconstruction using a priori information. An al-

gorithm was proposed to conduct the reconstruction task and

experiments compared this approach with a standard acquisi-

tion scheme.

When comparing with a standard (full) acquisition, the

partial sampling scheme showed better spectra estimation,

while some spatial details seemed deteriorated. Note that

there are other benefits of partial sampling, including a better

distribution of the energy within the sample, and the ability

of reconstructing dynamic (temporal) sequences. This opens

new perspectives towards fast or dynamic STEM-EELS imag-

ing.
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