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Abstract

Reliability-based design optimization (RBDO) is an active field of research with an ever

increasing number of contributions. Numerous methods have been proposed for the solution

of RBDO, a complex problem that combines optimization and reliability analysis. Classical

approaches are based on approximation methods and have been classified in review papers. In

this paper, we first review classical approaches based on approximation methods such as FORM,

and also more recent methods that rely upon surrogate modelling and Monte Carlo simulation.

We then propose a general framework for the solution of RBDO problems that includes three

independent blocks, namely adaptive surrogate modelling, reliability analysis and optimization.

These blocks are non-intrusive with respect to each other and can be plugged independently in

the framework. After a discussion on numerical considerations that require attention for the

framework to yield robust solutions to various types of problems, the latter is applied to three

examples (using two analytical functions and a finite element model). Kriging and support

vector machines together with their own active learning schemes are considered in the surrogate

model block. In terms of reliability analysis, the proposed framework is illustrated using both

crude Monte Carlo and subset simulation. Finally, the covariance-matrix adaptation - evolution

scheme (CMA-ES), a global search algorithm, or sequential quadratic programming (SQP), a

local gradient-based method, are used in the optimization block. The comparison of the results

to benchmark studies show the effectiveness and efficiency of the proposed framework.

Keywords: Reliability-based design optimization – RBDO – Surrogate modelling – Simula-

tion methods – Active learning
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1 Introduction

Realistic design of structures requires taking into account uncertainties which are ubiquitous

to real world applications, e.g. in manufacturing tolerances, loads or environmental and oper-

ational conditions. Casting the problem as a standard deterministic design does not allow one

to safeguard the structure against unforeseen failures. Various methods have been introduced

in the literature and applied by field engineers for the design of structures under uncertain-

ties. Partial safety factors (Ditlevsen and Madsen, 1996), for instance, allow the analyst to

implicitly account for uncertainties through the use of conservative characteristics design pa-

rameters. However, such an approach often results in unnecessarily conservative and therefore

costly design solutions. More convenient approaches have been developed under the framework

of reliability-based design optimization, where in most cases, the design constraints are assessed

in terms of failure probabilities with respect to some predefined performance function. This

implies modelling probabilistically the sources of uncertainty and then properly propagating

those uncertainties to the quantities of interest. The complexity of this problem stems from the

coupling of optimization and structural reliability analysis. A natural approach to its solution

consists in nesting the two levels i.e. exploring the design space using an appropriate optimiza-

tion algorithm and computing the failure probability of each explored design using a structural

reliability method. This is known in the literature as the two-level approach (Chateauneuf, 2008)

and includes popular methods such as the reliability index approach (Nikolaidis and Burdisso,

1988) or the performance measure approach (Tu et al., 1999). In two-level approaches, the in-

ner reliability analysis is carried out through an approximation method, typically the first-order

reliability method (FORM). The cost of this naive approach can be somewhat high as it may

require an overall large number of performance functions evaluations. Simplifying formulations

such as the so-called decoupled or mono-level approaches have also been proposed in the lit-

erature (See Aoues and Chateauneuf (2010); Valdebenito and Schuëller (2010)). Despite some

gain in efficiency, they remain expensive for the solution of real world problems, i.e. they re-

quire thousands of computer model runs. Additionally, the use of approximation methods to

evaluate the structural reliability constraints can hinder their application scope, due to their

lack of convergence for highly non-linear performance functions. Some authors have proposed

methods that rely on direct Monte Carlo simulation to evaluate the failure probability. The

interest in such approaches has dramatically grown with the introduction of surrogate modelling

in the RBDO framework. In a nutshell, the idea of surrogate modelling is to replace the original

expensive-to-evaluate model by a cheap approximation that can be used for subsequent anal-

yses. In this paper, a classification of such surrogate-assisted RBDO approaches is proposed

based on the different ways the surrogate model is introduced in the RBDO framework. Upon

reviewing various methods in the literature, a unified modular and non-intrusive framework is
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proposed. The modularity here means that the framework consists of three independent blocks,

namely design optimization, reliability analysis and surrogate modelling. By non-intrusiveness,

it is meant here that the analyst can plug-in any method of his choice for each block without the

need of changing anything else in the remaining blocks. Furthermore, the surrogate models are

built adaptively so as to enhance the efficiency of the proposed framework. As an illustration,

different configurations of each block are considered and applied to three problems of increasing

complexity, which involve two analytical functions and a finite element model. More specifically,

we consider:

• support vector machines and Kriging as surrogate models;

• crude Monte Carlo and subset simulation as reliability methods and

• constrained covariance matrix adaptation - evolution scheme (CMA-ES) and sequential

quadratic programming (SQP) as optimizers.

2 Formulation of the RBDO problem

There are various ways of formulating a reliability-based design optimization problem. A common

feature shared by all these approaches is that they attempt to trade the cost of the system with

its reliability. Frangopol (1985) and Chateauneuf (2008) make a short review from the historical

viewpoint of the various RBDO formulations. The early approaches proposed to minimize a

function which consists of an initial cost (mainly the addition of design and construction costs)

and an expected cost of failure (See for instance Enevoldsen and Sørensen (1994)). Due to the

difficulty of properly assigning monetary cost to structural failure, this formulation was not of

practical interest for engineering applications. It is now mostly investigated under the framework

of risk-based or life-cycle cost optimization (Beck and Gomes, 2012; Frangopol and Maute, 2003).

Alternative formulations for RBDO have henceforth emerged. One, for instance, consists in

maximizing the reliability, or equivalently minimizing the failure probability, under given cost

constraints (See for instance Kuschel and Rackwitz (1997); Royset et al. (2001); Taflanidis and

Beck (2008)).

The approach we consider in this paper, which is also the prevalent in current research,

consists in minimizing an initial cost under some probabilistic constraints (Hilton and Feigen,

1960). Let d ∈ RMd be an Md−dimensional vector defining some design parameters of the

structure. In the presence of uncertainties, the variability of these parameters can be described

by introducing random variables X ∈ X ⊂ RMd ∼ fX|d. These variables are called design

parameters with uncertainty, or by slight abuse, random design variables in the sequel. In some

cases, design parameters are purely deterministic. To simplify the notation, they are equally

considered as X (d) at this stage, where the related random variables would simply have a
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zero variance. Other random parameters that may affect the structural response without being

considered as decision parameters may also be of interest for the analysis. They are known

as environmental variables and are denoted here by Z ∈ Z ⊂ RMz ∼ fZ . A typical RBDO

formulation may then read (Dubourg et al., 2011):

d∗ = arg min
d∈D

c (d) subject to:





fj (d) ≤ 0, {j = 1, . . . , ns} ,
P [gk (X (d) ,Z) ≤ 0] ≤ P̄fk , {k = 1, . . . , nh} ,

(1)

where c is the cost function to be minimized under constraints that are classified into two

categories. The first, fj , j = {1, . . . , ns}, are a set of deterministic analytical functions that

define the feasible domain, e.g. bounds between the design parameters. The second category,

which consists of probabilistic constraints, set an upper threshold on the failure probability for

each identified failure mode of the structure (herein P̄fk , k = {1, . . . , nh}), assuming a series

system behaviour. The latter is defined through a so-called limit-state function which partitions

the random input space into safe and failure domains. By introducing a vectorW = {X (d) ,Z}T

that gathers the random design and environmental variables, the failure probability for a given

design d can be expressed as (Ditlevsen and Madsen, 1996):

Pfk (d) = P [gk (W (d) ≤ 0)] =

∫

Df

fW |d (w) dw, (2)

where Df = {w ∈ X× Z : gk (w) ≤ 0} represents the failure domain and fW |d is the joint dis-

tribution of all variables given a particular value of d.

Equation (2) constitutes a multidimensional integration problem over an implicitly defined

domain whose solution is difficult. This difficulty to some extent explains the delay between

the early RBDO formulations and the implementation of solution procedures which flourished

in the 80s. In general, the reliability techniques used to solve this integration problem mainly

rely either on first-order approximations or on simulation methods, as detailed in the sequel.

3 A short review of RBDO solution techniques

3.1 Classical RBDO methods

Reliability-based design optimization is a rather rich and active field of research experiencing a

continuous flow of publications. All the proposed methods seek to reduce the computational cost

of the RBDO problem, mostly by introducing approximations in the reliability analysis or by

reformulating the optimization problem. We start our survey using the classification suggested in

Chateauneuf (2008); Aoues and Chateauneuf (2010), namely two-level, mono-level and decoupled

approaches. Some techniques do not entirely fit this classification though, as will be shown in

the sequel. We then proceed with other, more recent approaches that used advanced techniques.
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Older reviews of RBDO can also be found in Valdebenito and Schuëller (2010); Aoues and

Chateauneuf (2010).

3.1.1 Two-level approaches

A two-level approach is the most direct way to solve a RBDO problem. It consists of two nested

loops: the outer loop explores the design space via a suitable optimization scheme while the inner

loop performs a reliability analysis. As the values of design parameters vary across iterations, it

is necessary to repeatedly run a full reliability analysis, which may be computationally expensive.

The overall cost of this approach is in most cases prohibitive. To alleviate this burden, the two

main strategies in this category resort to approximation techniques, more specifically the first-

order reliability method (FORM). The reliability index approach (RIA) consists in simply using

FORM in the inner loop while replacing the probabilistic constraint by an equivalent reliability

index (Nikolaidis and Burdisso, 1988; Lee et al., 2002). An alternative formulation, the so-called

performance measure approach (PMA), relies on an inverse FORM analysis in the inner loop that

transforms the probabilistic constraints into equivalent target performance measures (Tu et al.,

1999; Youn et al., 2005). The main advantages of these approaches lie on the attractivity of

FORM which, besides being relatively cheap, allows for an efficient computation of the gradient

of the reliability index with respect to the design variables. However, FORM is also the weakness

of these approaches as it shows limitations when it comes to problems involving either highly

non-linear limit-state functions or multiple failure regions.

Using the same framework for two-level approaches, some contributions have suggested the

use of simulation methods in the inner loop (See for instance Royset (2004)). Even when using

advanced simulation methods whose cost is relatively small compared to crude Monte Carlo

sampling, the overall cost of such approaches is prohibitively high. In general, they are coupled

with surrogate models. This aspect is discussed in details later.

3.1.2 Mono-level approaches

Mono-level approaches attempt to solve the RBDO problem by avoiding the reliability analysis

and enforcing optimality conditions as initially proposed in Madsen and Hansen (1992). This,

in theory, allows one to reduce the computational cost since the failure probability is no more

explicitly computed. Kuschel and Rackwitz (1997) introduced the Karush-Kuhn-Tucker (KKT)

optimality conditions of the first-order reliability method for the solution of two differently

formulated RBDO problems, namely the minimization of cost under reliability constraints and

the maximization of reliability under cost constraints. A large number of techniques based

on KKT conditions have been proposed since then (See for instance Kharmanda et al. (2002);

Agarwal et al. (2007); Kaymaz (2007)). The most popular mono-level techniques are the single
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loop single vector and single loop approach, which are based on approximating the minimum

performance target point using the limit-state function sensitivities (Chen et al., 1997; Liang

et al., 2004, 2007).

Despite the gain in efficiency with respect to two-level approaches, mono-level formulations

also suffer from some limitations. In the numerical benchmark carried out by Aoues and

Chateauneuf (2010), it is shown for instance that SLA and the KKT-based approaches often

fail to converge when the starting point of the optimization problem is far from the optimal

solution. Lack of robustness of these methods is also observed when target reliability indexes

are large or when the design variables are the mean of the random parameters.

3.1.3 Decoupled approaches

As an alternative to mono-level approaches, so-called decoupled approaches have been introduced.

They consist in solving the RBDO problem through a sequence of deterministic optimization

and reliability analysis. In fact an approximate deterministic optimization problem is solved

using information from a previous reliability analysis.

Early contributions in this category suggested to approximate the reliability constraints by

introducing Taylor series expansions. Li and Yang (1994) formulated a linear programming

problem where at each iteration, the first-order Taylor series expansion of the reliability index

evaluated at the previous cycle is used. Royset et al. (2001) introduced an approach which

relies on an semiinfinite optimization algorithm. The most popular decoupled approach is the

sequential optimization and reliability assessment (SORA) where the probabilistic constraints

are translated for deterministic optimization through inverse FORM (Du and Chen, 2004). The

associated deterministic optimization problem is obtained by shifting the random variables using

the most probable target point found at the previous reliability cycle. Numerous papers have

been developed to improve the efficiency of SORA. For instance, Cho and Lee (2011) combine

convex linearization to SORA. Cheng et al. (2006) introduced the sequential approximate pro-

gramming (SAP) which relies on KKT. In SAP, a sub-optimization problem with an approximate

objective and constraint functions is solved at each iteration. To avoid running the reliability

analysis necessary for obtaining the reliability index and its sensitivities at each cycle, the latter

quantities are approximated using a recurrence formula. Zou and Mahadevan (2006) also sug-

gested a similar approach where the Taylor series are used to expand on the failure probability

rather than the reliability index. In all these approaches, sensitivities of the failure probability

or of the reliability index are necessary. They may be obtained in some cases using analytical

derivations. When such analytical derivations are not available, the authors suggest the use of

finite differences, though at a loss of efficiency.

In general, decoupled approaches suffer the same drawback as mono-level approaches. Given
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that the reliability and optimization problems are expected to converge simultaneously, approx-

imation errors in the early cycles may lead the algorithm in the wrong search direction. This

is exacerbated when the initial design is far from the optimal solution and when the limit-state

function is highly non-linear.

3.2 Use of advanced techniques and simulation in RBDO

The three groups of methods introduced in the previous section rely on approximation meth-

ods for computing failure probabilities. The numerous contributions all aimed at reducing the

computational burden resulting from a direct solution of the problem. Various applications have

shown that their respective efficiency is tightly linked to the problem at hand. To take advantage

on the best of each method, some researchers have proposed hybrid formulations which combine

methods from the different groups. For instance, Youn (2007); Lim and Lee (2016); Li et al.

(2015); Jiang et al. (2017) proposed various approaches that can switch from either single-loop

to decoupled or double-loop according to some predefined criteria. Even though such approaches

may increase the rate of convergence of these approximation-based methods, they remain flawed

because they inherit the well-known limitations of FORM, which can cause inaccuracies or even

divergence of the optimization when the limit-state function is highly non-linear or in presence

of multiple failure regions. As a consequence, other techniques have been developed in an at-

tempt to overcome these limitations. To deal with high curvatures of the limit-state surfaces,

one approach has been the introduction of the second-order reliability method (SORM). This

was already discussed in Shetty et al. (1998), while more recently Strömberg (2017) proposed

coupling SORM and sequential quadratic programming (SQP). The MPP-based dimension re-

duction method (Rahman and Xu, 2004) has also been used to improve the accuracy of failure

probability estimates w.r.t. FORM (Rahman and Wei, 2008; Lee et al., 2008).

Strategies based on higher-order approximations may attenuate issues due to high-curvature

of the limit-state function, however they do not directly tackle the challenges related to the

search of the most probable failure or target points (respectively MPP and MPTP). The use of

simulation methods in the estimation is in this respect an appropriate solution. Numerous con-

tributions have considered simulation methods in the inner loop of the two-level framework. Due

to their high cost, classical simulation techniques are often associated to surrogate models, as

discussed in the next section. However, some methods that solely depend on advanced simulation

techniques, have been developed. For instance, Rashki et al. (2014) use a weighted simulation

method to solve RBDO problems which are however limited to cases with only random design

variables (no deterministic and no environmental variables). Beaurepaire et al. (2013) use bridge

importance sampling where the idea is to recycle information from previous iterations during

the optimization process. Direct integration of the simulation methods to optimization is also
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possible. This has been done for instance in Royset (2004) where sensitivities of failure prob-

ability obtained using Monte Carlo simulation or importance sampling are developed. Finally,

Taflanidis and Beck (2008) introduced the so-called stochastic subset optimization (SSO) for

RBDO problems where the failure probability appears in the objective function. Upon formu-

lating an augmented reliability problem where the design variables are artificially considered as

uncertain, SSO iteratively identifies subsets of the original design space with high likelihood of

containing the optimal design. Identifying sub-regions of the design space is a challenging task

which involves a non-smooth optimization problem. To bypass this issue, Jia and Taflanidis

(2013) proposed to use kernel density estimation to directly approximate the objective function

instead of working with subsets. Remaining in the context of augmented reliability problem, Liu

and Cheung (2017) recently proposed a similar method where the failure probability, seen as a

function of the design parameters, is approximated.

Another reformulation of the RBDO which is based on quantiles has been introduced by

Moustapha et al. (2016):

d∗ = arg min
d∈D

c (d) subject to:





fj (d) ≤ 0, {j = 1, . . . , ns} ,
Qαk

(d; gk (X (d) ,Z)) ≤ 0, {k = 1, . . . , nh} ,
(3)

where

Qαk
(d; gk (X (d) ,Z)) = inf {q ∈ R : P [gk (X (d) ,Z) ≤ q] ≥ αk} , (4)

and αk = P̄fk . Such a formulation has been used in the literature under the name of percentile

approach (as used in PMA and SORA) whose solution relies on the so-called minimum target

performance point (MPTP), located using inverse FORM. Eq. (3) solves the same problem but

in a more direct manner where Monte Carlo simulation is considered for the computation of the

quantile. The latter can be seen as an equivalent of the limit-state function evaluated at the

MPTP.

All these approaches based on advanced simulation techniques have brought a substantial

gain in model evaluation savings, i.e. going from 108 − 109 for a direct two-level approach

with crude Monte Carlo simulation to 104 − 105 calls to the performance function. However,

they still remain expensive when considering time-consuming performance function evaluations.

For practical applications, efficient methodologies associate simulation methods with surrogate

modelling.

3.3 Use of surrogate models in RBDO

The basic idea in surrogate modelling is to replace an expensive-to-evaluate function with a

cheap approximation constructed using an experimental design, a.k.a training set, consisting of

a limited number of evaluations of the original model. Various surrogate models have been
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employed in RBDO problems using different solution techniques, i.e. based on simulation or

approximation methods. However, the schemes in which they are integrated differ from one

contribution to the other. This is summarized in the flowchart of Figure 1.

Surrogate-assisted RBDO

I. Approximation of Pf/β II. Approximation of g

1. Local approximation 2. Global approximation

a. Global region b. Trust region

Figure 1: Flowchart of different surrogate-assisted RBDO schemes

The first difference that exists between the various approaches in the literature relates to

the output function that is actually surrogated. One particular approach consists in directly

approximating the relationship between a given design and the corresponding failure probabil-

ity (resp. reliability index) (branch I. in Figure 1). In other words, the experimental design

consists of N pairs
{(
d(i), Pf

(
d(i)
))

, i = 1, . . . , N
}

(resp.
{(
d(i), β

(
d(i)
))

, i = 1, . . . , N
}

).

The optimization can then proceed using any suitable algorithm and replacing the true failure

probability with the one estimated by the surrogate model. This approach has been used in

various recent contributions. For instance, Foschi et al. (2002) use response surface modelling to

approximate the relationship between different design choices and the corresponding reliability

indexes computed by importance sampling. More recently, Lehký et al. (2017) developed an ap-

proach where the failure probability computed through FORM is approximated using artificial

neural networks (a type of surrogate model in itself). In these approaches, one sample of the

training set requires a full reliability analysis based on the true model. This becomes problematic

when the size of the experimental design is large and/or when the performance functions are

expensive-to-evaluate.

A less computationally expensive alternative consists in directly creating an approximation

of the performance function and to use it for reliability analysis (branch II. in Figure 1). Again,

building on this principle, various schemes have been proposed recently. One obvious approach

is to build distinct surrogate models locally used for each reliability analysis in the inner loop of

a two-level approach (branch II.1 in Figure 1). Agarwal and Renaud (2004) carry out a double-

loop approach where at each iteration, a second-order response surface model is built around the

MPP of the previous iteration in order to perform an approximate reliability analysis. Similarly,
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Papadrakakis et al. (2005) locally trains a neural network and use it to compute a Monte Carlo

estimate of the failure probability at each iteration of a double-loop optimization process. This

approach is also not optimal as it requires building from scratch a surrogate model at each

iteration of the optimization process.

Another option that has been explored is building a single surrogate model that can be used

to assess the failure probabilities considering multiple design choices (branch II.2 in Figure 1).

The challenge with such an approach is to build an accurate surrogate model over a large area.

An important observation though is that there is no need for a surrogate model that is highly

accurate globally, as only sub-regions will be explored during optimization. As a consequence,

most of the methods developed in this category resort to adaptive sampling in order to ensure

accuracy only in regions of interest. Various methods have been developed depending on the

space chosen to build the surrogate model. In problems where only design variables are considered

to be possibly uncertain, the space over which the surrogate model is built may coincide with

the design space (branch II.2.a in Figure 1). In Chen et al. (2015), a Kriging model is built

over the whole design space and SORA is used as the RBDO method. Li et al. (2016) solve a

RBDO problem using a Kriging model defined on the design space together with importance

sampling. In the two contributions, the surrogate models are built adaptively using respectively

the importance boundary sampling and a local sampling method based on the MPP.

Other authors have considered to rather build a surrogate model in a sub-region of the

space rather than a global one (branch II.2.b in Figure 1). This sub-region, often referred

to as local window or trust region, consists of a hypercube in a hybrid space encompassing

design and random variables (Kharmanda et al., 2002) whose size and center is updated as the

optimization progresses. The difference between the local approximation (branch II.1) and the

global approximation with trust region (branch II.2.b) is that in the former, the built surrogate

model can only be used with the current value of the design parameters whereas in the latter,

the input space allows for the computation of the failure probability for different designs using

the same surrogate model. As an example of methods based on trust-region, Lee (1997) builds

dynamic Kriging models on local windows and associates this with MCS for the solution of

RBDO problems. Other similar contributions include Taflanidis and Medina (2014); Zhang

et al. (2017); Gao and Li (2017); Gaspar et al. (2017). Lee et al. (2011); Song (2013) argue that

the accuracy of the surrogate model can be increased, specially for high-dimensional problems,

if the local window is hyperspherical. They then propose methods respectively based on virtual

support vector machines or dynamic Kriging.

In most of the contributions listed above, it is not clear how the design space and the relia-

bility space are explored simultaneously by the surrogate model. A rigorous framework has been

established based on the idea of augmented reliability space (Au, 2005). The associated scheme
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can be classified in the group labeled II.2.a in Figure 1. The original principle is to artificially

consider design variables as uncertain and then use conditional sampling and Bayes theorem

to compute the failure probability given a realization of the design variables. Adopting this

philosophy, Taflanidis (2007); Taflanidis and Beck (2008) formulate a problem where the failure

probability lies in the objective function and then construct the stochastic subset optimization

algorithm. Taflanidis and Medina (2014); Zhang et al. (2017) solve a similar problem, now using

adaptive Kriging and trust regions. Dubourg et al. (2011) also developed the so-called meta-IS

approach by combining augmented space, adaptive Kriging and importance sampling. Finally,

Moustapha et al. (2016); Moustapha and Sudret (2017) formulate a quantile-based RBDO prob-

lem and solve it using Monte Carlo sampling based respectively on Kriging and polynomial chaos

expansions models built over an augmented space.

The use of an augmented space allows one to rigorously solve problems where all combina-

tion of deterministic/random and design/environmental variables can be considered. Starting

from this premise, an original generalized framework for RBDO combining adaptive surrogate

modelling and simulation is now proposed.

4 Proposed framework

4.1 Motivation

As shown in the previous review section, there is a tremendous amount of methods developed

for the solution of RBDO problems. Early methods were based on local approximations whose

aim was to reduce the associated computational burden. Even though these approaches can

solve a fair amount of problems, they are limited by their lack of robustness due to the very

use of FORM. Recent papers attempted to face these limitations but their computational cost

remain relatively large, thus limiting their range of applications to simple toy problems. As a

consequence, methods based on simulation methods have been developed to bypass the FORM-

related issues. The improvement of accuracy and robustness brought by these methods however

comes with of a dramatic increase of the computational cost. They have therefore been associated

to surrogate modelling to solve real-world problems where the performance function relies on

expensive-to-evaluate models.

Various methodologies that combine surrogate modelling and advanced reliability techniques

to solve RBDO problems have been proposed. However as indicated in the previous section,

these methods are either able to solve only a limited class of problems or are problem-specific

i.e., their implementations require advanced knowledge and specialized derivations. In this paper,

we propose a generalized framework based on simulation and adaptive surrogate modelling for

the solution of RBDO problems. The interest of the proposed framework can be delineated in
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the following three points.

First, the framework is based on a formulation where all possible combinations of ran-

dom/deterministic on the one hand and design/environmental variables on the other hand, can

be accounted for at once. Second, this modular framework is non-intrusive, i.e. it consists of

three distinct and independent blocks, namely surrogate modelling, structural reliability and op-

timization. There is no coupling between the different blocks in the basic form of the proposed

framework. For instance, the fact that we do not consider the use of analytical gradients for

optimization allows us to avoid specific implementations related to the sensitivity of failure prob-

ability (or reliability index), which would depend on the reliability technique used. Finally, there

is no specific requirement as to which method goes to each block. This will be illustrated in the

next section where we will consider applications with different techniques for each of the three

blocks namely i.e. Kriging vs. support vector regression, Monte Carlo simulation vs. subset

sampling and gradient-based vs. gradient-free optimization algorithms.

4.2 Detailed implementation of the approach

As shown in Figure 2, beside initialization, the proposed framework consists of three different

blocks which are now detailed.

4.2.1 Surrogate modelling

Basic idea

Surrogate modelling is in the core of the proposed framework. The basic idea is to replace any

expensive-to-evaluate black-box function by an easy-to-evaluate analytical function. This is made

possible by assuming that the original model has some accommodating properties such as regu-

larity/continuity and follows a general functional shape. Based on different assumptions, many

different surrogate modelling techniques are nowadays available, among which Gaussian process

modelling (a.k.a Kriging), polynomial chaos expansions, support vector machines, artificial neu-

ral networks, etc. Each of these surrogate models possesses some structure and parameters that

need to be calibrated through a learning algorithm on a limited set of data also known as the

experimental design or training set: D =
{

(W(i),Y(i)), i = 1, . . . , N
}

, where W(i) is an input of

the computational model M and Y(i) =M(W(i)) is the associated response.

Augmented space

As explained in the previous section, there are various ways of building a surrogate model

for RBDO. In this work, we consider building a single surrogate model in an augmented space

which spans both the space of random or deterministic design parameters and environmental

variables. In most cases, the corresponding input space is a bounded hypercube. The augmented
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Surrogate modeling
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Optimization
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• Set metamodeling options
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Create the experi-
mental design W × Y
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X ∼ fX|d(i) , Z ∼ fX

Simulation methods

Estimate Pfk(d
(i))

Get current design d(i)

Compute c(d(i)) Get Pfk(d
(i))

i = i+ 1

Update design
d(i+1) ← d(i)

Converged?

End

no

yes

Figure 2: Flowchart of the proposed framework.

space considered here aims at defining a confidence region over which the surrogate model will

be evaluated so as to minimize extrapolation, i.e. evaluation of the surrogate model far from

existing training points. More precisely, it consists of a tensor product of confidence regions

defined for the design parameters and environmental variables. For the former, we proceed by

simply extending the deterministic bounds on the design parameters di in each dimension to

reduce to an acceptable level the probability of sampling outside this area for designs close to

bounds. Let us denote these probabilities by αd−i
and αd+i

respectively for the lower and upper

bounds in each dimension i = {1, . . . ,Md}. The bounds of the associated augmented space in

the i-th dimension therefore read:

x−i = F−1
Xi|d−i

(αd−i
), x+i = F−1

Xi|d+i
(1− αd+i ), (5)
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where F−1
Xi|d−i

and F−1
Xi|d+i

are respectively the inverse cumulative distribution functions (CDF)

of the random variables associated to lower and upper bounds of di, denoted by d−i and d+i . The

design confidence region is eventually obtained by the following tensorization:

X =

Md∏

i=1

[
x−i , x

+
i

]
. (6)

For an environmental variable, the marginal confidence region is obtained by defining a symmetric

bounded area (with respect to the probability content) around its mean value. By defining the

above probability by αz, the marginal confidence region can be obtained as follows:

z−i = F−1Zi
(αzi/2), z+i = F−1Zi

(1− αzi/2), (7)

where F−1Zi
is the inverse CDF associated to the environmental variable Zi. The associated

confidence region therefore reads:

Z =

Mz∏

i=1

[
z−i , z

+
i

]
. (8)

Note that for the environmental variables, the construction of Z is not limited to this hy-

percube. In fact, since the environmental variables do not evolve during the optimization, the

original support of these random variables can be directly used as marginal confidence region Z.

Also, transformed variables U = T (Z) in the usual standard normal space could be considered.

In this paper, we however consider the construction in (8), which to the authors experience leads

to more accurate surrogate models.

Finally, the augmented space follows as a tensor product of the defined marginal confidence

regions, i.e.:

W = X× Z. (9)

An illustration of an augmented space for a three-dimensional problem is shown in Figure 3.

This problem consists of two design- and one environmental variables. Design parameter d1

is the mean value of random variable X1, while design parameter d2 is deterministic. This is

directly accounted for in the construction of X by extending the bounds in the first dimension

only, i.e. x−2 = d−2 and x+2 = d+2 . The flexibility of this construction allows one to consider all

possible combinations of deterministic or random variables and the presence or not of random

environmental variables.

Active learning

Once the augmented space is defined, the next step is to sample points that will be evaluated

using the original model in order to generate a training set. A common approach is to sample

the space uniformly. This can be achieved using stratified sampling approaches such as the well-

known Latin hypercube sampling (McKay et al., 1979) or low-discrepancy sequences such as the
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Figure 3: Illustration of the augmented space for a three-dimensional problem considering two

design variables X1 (d1) and d2 and a random environmental variable Z.

Sobol’ sequence (Sobol’, 1967). To reach the level of surrogate model accuracy necessary for a

valid RBDO solution, the space needs to be densely sampled. Unfortunately, in some cases the

resulting training set would be so large that it would defy the purpose of using surrogates in

the first place. However, it can be observed that the accuracy of the surrogate model does not

necessarily need to be large over the entire space but only in some limited regions of interest.

This observation gave rise to approaches known as adaptive design or active learning, where the

idea is to start with a small training set and then gradually increase its size by strategically

adding points to improve the accuracy of the surrogate model following the requirements of the

analysis at hand (reliability analysis or optimization).

When a limit-state function is approximated, the region of interest lies in the vicinity of the

limit-state surface. Various enrichment methods exist in this perspective. By various means,

they all aim to explore the space i.e. adding points in areas which are scarce in data and exploit

the space by focusing on the vicinity of the approximated limit-state surface.

Active learning is used in this framework to reduce the number of calls to the original model.

This allows one to use a single global surrogate model for the reliability analyses in each iteration

of the optimization process.

4.3 Structural reliability analysis

The structural reliability analysis block is considered as a black-box module in the proposed

framework. This means that any method to estimate failure probabilities that is judged most

suitable for the problem at hand can be used. In this work, focus is given to simulation meth-
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ods rather than approximation techniques due to the fact that the limit-state surface is an

inexpensive-to-evaluate surrogate model. The former are known to yield more accurate results,

at the expense of a dramatically increased computational cost though. Naturally, crude Monte

Carlo simulation is the most robust approach when it comes to estimating failure probabilities.

However the variance of the estimates decays very slowly with respect to the number of samples.

This becomes even more problematic in the presence of a rare event (i.e. with an extremely

low failure probability). Advanced simulation methods such as subset simulation (Au and Beck,

2001; Papaioannou et al., 2015), cross-entropy importance sampling (Kurtz and Song, 2013;

Geyer et al., 2019) or line sampling (Pradlwarter et al., 2007; de Angelis et al., 2015) that try

to achieve a faster decrease of the variance of Pf with diminishing values of the target failure

probability have been developed and shall be used whenever justified.

4.4 Design optimization

Global vs. local

As stated earlier, any optimization algorithm can be plugged non-intrusively in the proposed

framework. In general, one must distinguish so-called global from local search methods. In the

former, the entire design space is explored by sampling points according to a mechanism proper

to the algorithm. This sampling procedure is expected to converge towards the region with the

highest likelihood of containing the optimal solution. In contrast, the latter starts with an initial

guess and generates a sequence of improved designs using some local information on the cost

function. The sequence is expected to converge to a local minimizer which cannot be guaranteed

to be the global one, except if some conditions are met, e.g. the function is convex. In contrast,

global algorithms possess internal mechanisms that increase the likelihood of reaching the global

optimizer, at usually a typical higher cost w.r.t. local optimizers.

Variance reduction

A peculiar aspect of the RBDO problem is that the constraints are stochastic in nature. In

such a context, the computation of the sensitivities required by gradient-based approaches is

not trivial. For some reliability methods, it is possible to derive the sensitivities of the failure

probability with respect to the design variable, for instance using the so-called score functions

together with crude Monte Carlo simulation. Sensitivities of the cost with respect to the design

variables through analytical functions can improve the efficiency of the optimization algorithm.

However, such information may not be available and in any case it is not general, i.e. it depends

on the reliability method or distribution functions of the random variables. This defies the

purpose of providing a generalized non-intrusive framework.

In this work, we rather suggest the numerical estimation of the sensitivities. One widespread
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approach relies on finite-differences where the gradient can be estimated at the cost of Md + 1

(forward or backward) or 2Md (central finite difference) evaluations of the original model. One

of the issues with this approach is the stochasticity in the failure probability. In fact, the noise

inherent to each estimation of Pf or β in the finite difference procedure (due to the finite sets

of Monte Carlo sample) could make it difficult to properly estimate the gradient, as one cannot

anymore differentiate the information given by the actual perturbation of the design from that

due to random noise. To avoid this issue, it is possible to resort to the so-called common random

numbers approach (Spall, 2003a). This consists in introducing a consistent error between the

estimates of the failure probabilities for two different designs. In practice, this may be achieved

by using the same stream of random numbers to generate the samples needed to estimate Pf .

Exterior sampling approach (ESA) is similar to CRN as the same stream of random numbers

is used throughout the entire optimization process (Taflanidis and Beck, 2008). This actually

transforms the stochastic optimization problem into a deterministic one that can be solved using

any general-purpose optimization algorithm. However, the solution may be biased due to the

introduction of the consistent error. This can be accounted for by either increasing the sample

size or repeating the optimization procedure multiple times.

Stochastic approximation methods

The use of common random numbers or ESA however, does not solve all challenges related

to RBDO using finite-difference-based approaches. For instance, the finite difference step size

should be consistent with the variance of the estimated failure probability. Besides, for some

advanced simulation methods such as subset simulation or importance sampling, the use of the

ESA does not necessarily translate into a deterministic optimization problem. In fact the topol-

ogy in the reliability analysis can change drastically between two infinitesimally close designs.

An alternative approach to approximate gradients is based on simultaneous perturbation (Spall,

1998b,a) where, instead of varying one component of the design at a time (as in finite-difference),

one can simultaneously and randomly perturb all components of the design. The simultaneous

perturbation stochastic approach (SPSA) (Spall, 2003b) is based on this principle and has the

advantage of requiring only two function evaluations for each gradient estimate, regardless of the

problem dimension. Taflanidis and Beck (2008) explore its use in RBDO where the formulation

consists solely in minimizing the failure probability. This does not directly apply to the formu-

lation considered here as the stochastic part is in the constraints. One may however consider

constrained formulations of SPSA as proposed for instance in Wang (1998, 2003).

In our framework, we focus more on global stochastic algorithms. The reasons are two-fold.

First, as discussed earlier, such methods have a greater likelihood to find the global optimizer.

The associated increase in computational effort can be leveraged by the fact that the cost function
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is a simple analytical function and that the failure probability estimate is based on a surrogate

model. Second, the fact that only first-order information is needed allows one to avoid issues

related to computing sensitivities of the failure probability which can be, at best, inefficient.

5 Case studies

In this section, we will consider three different configurations of the proposed framework to solve

a set of benchmark problems. For each configuration case, we will consider different methods

in each block as detailed in Table 1. The reference solution corresponds to actually using the

original model associated to a large Monte Carlo set for the reliability analysis. The optimization

algorithm is hybrid covariance matrix adaptation - evolution scheme (CMA-ES), meaning that

we start with the CMA-ES (Hansen and Ostermeier, 2001; Arnold and Hansen, 2012) to locate

the global minimum and refine the found solution using a gradient-based algorithm. The entire

analysis is carried out in UQLab, a Matlab-based framework for uncertainty quantification

(Marelli and Sudret, 2014). The classical algorithms presented in the review are available in the

RBDO module of UQLab together with the proposed algorithm (Moustapha et al., 2019).

Framework Surrogate model Reliability method Optimization algorithm

Case #1 SVR Monte Carlo simulation SQP

Case #2 Kriging Subset simulation CMA-ES

Case #3 Kriging Quantile Monte Carlo CMA-ES with enrichment

Reference Original model Monte Carlo simulation Hybrid CMA-ES

Table 1: Different realizations of the proposed framework to be used in the benchmark problems.

5.1 Case #1

In the first case, we consider adaptive support vector regression as a surrogate model, crude

Monte Carlo simulation for the reliability analysis and the sequential quadratic programming

(SQP) as provided by Matlab’s fmincon as the gradient-based optimization algorithm. As the

latter two methods are standard, we focus only on support vector regression and its adaptive

enrichment in the sequel.

Basics of SVR

Support vector regression (Vapnik, 1995; Smola and Schölkopf, 2004; Moustapha et al., 2018)

is a machine learning technique often used for surrogate modelling in structural reliability. Given

18



a training set D = {W,Y} as defined in Section 4.2.1, the SVR prediction for a new point reads:

MSVR (w) =

N∑

i=1

(αi − α∗i ) k (wi,w) + b, (10)

where α(∗) = {(αi, α∗i ), i = 1, . . . , N} is a set of unknown coefficients, b is an unknown bias term

and k (•, •) is a predefined kernel function. The unknown parameters are found by minimizing

a regularized loss function. In this paper, we consider the quadratic ε-insensitive loss function

defined by `(y,MSVR (w)) =
(∣∣y −MSVR (w)

∣∣− ε
)2

if
∣∣y −MSVR (w)

∣∣ < ε and 0 otherwise. In

practice, the coefficients α(∗) correspond to Lagrange multipliers that can be found by minimizing

the following functional (Bourinet, 2018):

arg min
α,α∗

1

2
(α−α∗) K̃ (α−α∗) +

N∑

i=1

(αi + α∗i ) ε+

N∑

i=1

(αi − α∗i ) yi,

subject to:

N∑

i=1

(αi − α∗i ) = 0, and αi, α
∗
i ≥ 0, i = 1, . . . , N,

(11)

where K̃ = K+ 1/CIN with K = [k (wi,wj)]1≤i,j≤N and IN being respectively the Gram and

identity matrices of size N ×N .

Eq. (11) is a convex quadratic optimization programming problem which can be solved using

any specialized solver. The remaining bias term b in Eq. (10) can be obtained as by-product of

the solution of this problem.

In general, one needs to calibrate the model i.e. find the optimal hyper-parameters, namely

the penalty term C, the ε-insensitive tube width ε and the parameter(s) of the chosen kernel

function. This is done here by minimizing an approximation of the leave-one-out (LOO) cross-

validation error, more specifically the so-called span estimate (Chapelle et al., 2002). The LOO

error is aimed at approximating the surrogate model generalization error. The overall opti-

mization problem is carried out here using the covariance matrix adaptation-evolution scheme

(CMA-ES) (Hansen and Ostermeier (2001), see also Bourinet (2018); Moustapha et al. (2018)).

Adaptive construction of the training set

Various methods have been proposed for the adaptive construction of support vector machines

in the context of structural reliability. We consider a modified version of the method proposed

in Basudhar and Missoum (2008) where the authors suggest to solve the following maximin

problem:

max
w∈W

min
i=1,...,N

‖w −w(i)‖ subject to: g (w) = 0. (12)

In other words, this problem consists in finding the point from the currently approximated limit-

state surface (exploitation) that is the furthest away from the existing training set (exploration).

Finding the next point to add however consists in solving a continuous maximin problem

which may be expensive. In this paper, we propose to discretize this formulation. In this re-
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spect, we first sample a set of candidates for enrichment S =
{
s(1), , . . . , s(Ns)

}
. Then a subset

S ′ of this set consisting of the closest points to the limit-state surface is selected. Finally the

next best point is chosen by adapting Eq. (12), i.e. :

snext = max
s∈S′

min
i=1,...,N

‖s−w(i)‖, (13)

where S ′ = {s ∈ S : |ĝ (s)| ≤ q} with q being an γ-quantile of |ĝ (s)|. In this paper, we set

γ = 0.01.

Two convergence criteria are considered here. The first first one is related to the stability of

the failure domain within iterations of enrichment and reads:

|N (i−1)
f −N (i)

f |
N

(i−1)
f

< εDf
(14)

where N
(i)
f is the number of failed samples in S as computed at the i-th enrichment iteration.

The second criterion relates to the stability of failed vs. safe predictions: the surrogate model

is assumed to be good enough when the number of points that are predicted in the current safe

domain while it belonged to the failure domain in the previous iteration (and vice-versa) is low.

This can be written as:

Card
(
s ∈ S : ĝ(i−1) (s)× ĝ(i) (s) < 0

)

Ns
< εSC , (15)

where ĝ(i) denotes the surrogate model at the ith iteration.

Convergence is assumed in the following applications when these two criteria are satisfied

in two iterations in a row. The thresholds are set to εDf
= 0.001 and εSC = 0.001 in the case

studies presented in Section 6.

5.2 Case #2

Basics of Kriging

Kriging (Santner et al., 2003; Rasmussen and Williams, 2006; Lataniotis et al., 2018) is a

surrogate modelling technique which considers the model M as a realization of a stochastic

Gaussian process that can be cast as:

M (w) =

p∑

j=1

βjfj (w) + Z (w) , (16)

where the so-called trend consists of a linear combination of p preselected basis functions

f = {fj , j = 1, . . . , P} and Z is a zero-mean stationary Gaussian process with auto-covariance

Cov [Z (w) , Z (w′)] = σ2R (w,w′;θ). In the last equation, σ2 is a constant variance of the

process and R is a preselected auto-correlation function with parameters θ.
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The calibration of this model consists in estimating the regression coefficients

β = {βj j = 1, . . . , p} and the parameters θ of the selected auto-correlation function. The

weight coefficients can be estimated through least-square regression while the auto-correlation

parameters can be estimated through cross-validation and maximum likelihood estimation (Ba-

choc, 2013). Once the calibration is done, the prediction for a new point w is assumed to follow

a Gaussian distribution i.e. MK (w) ∼ N
(
µMK (w) , σ2

MK (w)
)
, with

µMK (w) = fT (w) β̂ + rT (w)R−1
(
y − F T β̂

)
,

σ2
MK (w) = σ2

(
1− rT (w)R−1r (w) + uT (w)

(
F TR−1F

)−1
u (w)

)
,

(17)

where β̂ =
(
F TR−1F

)−1
F TR−1y is the generalized least-square estimate of the weight co-

efficients β, r (w) is a vector of cross-correlations between the point w and each point of the

training set with components rj = k (w, wj) , j = 1, , . . . , , N . The following notations have been

introduced for the sake of clarity: F = [fj (wi)]1≤i≤N, 1≤j≤p and u (w) = F TR−1r (w)−f (w).

Adaptive construction of the training set

In this contribution, the learning function introduced by Bichon et al. (2008) is considered.

This consists in choosing the point which maximizes the so-called expected feasibility function as

the next point to add in the experimental design:

snext = max
s∈S

EFF (s) , (18)

where

EFF (s) = µMK (s)

[
2Φ

(
µMK (s)

σMK (s)

)
− Φ

(−2σMK (s)− µMK (s)

σMK (s)

)
− Φ

(
2σMK (s)− µMK (s)

σMK (s)

)]

−σMK (s)

[
2ϕ

(
µMK (s)

σMK (s)

)
− ϕ

(−2σMK (s)− µMK (s)

σMK (s)

)
− ϕ

(
2σMK (s)− µMK (s)

σMK (s)

)]

+2σMK (s)

[
Φ

(
2σMK (s)− µMK (s)

σMK (s)

)
− Φ

(−2σMK (s)− µMK (s)

σMK (s)

)]
.

(19)

Enrichment is made sequentially and the convergence criteria in Eqs. (14) and (15) introduced

for SVR are used here as well.

5.3 Case #3

In the case #3, we consider the quantile-based formulation introduced in Eq. (3). Furthermore, a

slight modification in the enrichment scheme is introduced in order to increase the performance

compared to case #2. In fact, the enrichment procedure introduced above seeks to produce
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a surrogate model that is accurate in the vicinity of the limit-state surface in the entire aug-

mented space. However optimization is the ultimate goal of the proposed methodology: in this

context, only a subset of the space is of interest, i.e. where the cost function is minimal. To

take advantage of this, we consider a two-stage enrichment scheme as originally proposed in

Moustapha et al. (2016). In the first stage, enrichment is done as described in Case #2 but with

a looser convergence criterion. Herein, the thresholds εDf
and εSC in Eqs. (14) and (15) are

both increased to 0.01. The idea behind is to locate the limit-state surface without necessarily

focusing on extreme accuracy. The remaining epistemic uncertainty due to surrogate modelling

is taken care of in the second stage where optimization is coupled with enrichment. The proce-

dure consists in ensuring accuracy of the estimated failure probabilities, or herein quantiles, at

each iteration of the optimization process. For this, we consider a metric introduced in Dubourg

et al. (2011) and adapted for quantile estimation in Moustapha et al. (2016) where an upper

and lower bounds of the quantiles estimates (resp. q−α (d) and q+α (d)) are introduced using the

models defined respectively by µMK (x)− 1.96σMK (x) and µMK (x) + 1.96σMK (x). It can be

shown that

q−α (d) ≤ qα(d) ≤ q+α (d). (20)

Even though this bound does not indicate where the true quantile lies, it is a measure of how

accurate the estimated quantile is with respect to the Kriging epistemic uncertainty. Therefore,

at each iteration of the optimization process, the following criterion is checked:

|q−α (d)− q+α (d)|
1 + |qα(d)| ≤ εq, (21)

where εq is a threshold to be defined. If this condition is not respected, then enrichment is made

locally using the procedure introduced in Section 5.2 where the candidates for enrichment are

simply the set of points that are locally used to compute the failure probability.

For this special application using CMA-ES, the criterion is computed only for sampled points

that are feasible and improve the current best point. This is to avoid enrichment in the ex-

ploratory part of CMA-ES. Other tricks can be used to make the procedure more robust and

efficient (e.g. a threshold εq that decreases as the optimization progresses) but this is not in the

scope of this paper. With this slight modification, Case #3 does not exactly illustrate the pro-

posed framework and is qualified here as gray-box because of the coupling between optimization

and surrogate modelling. Its main interest however is that it greatly enhances the efficiency of

the solution.

6 Application examples

In this section, the three configurations of the proposed framework are illustrated using three

examples of increasing complexity. Furthermore, the versatility of the surrogate framework
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is shown by considering the different classes of probabilistic inputs which consist in a) design

variables with uncertaintyX (d) only, b) design and environmental variables and c) deterministic

design parameters and random environmental variables.

6.1 Two-dimensional highly non-linear limit-state function

In this first example, we consider a two-dimensional highly non-linear function for which the

RBDO problem reads (Lee and Jung, 2008):

d∗ = arg min
d∈[0, 3.7]×[0, 4]

(d1 − 3.7)2 + (d2 − 4)2

subject to :





f (d) = 3− d1 − d2 ≤ 0,

P [g (X (d)) = X1 sin (4X1) + 1.1X2 sin(2X2) ≤ 0] ≤ Φ(−2),

(22)

where Xi ∼ N
(
di, 0.12

)
, i = {1, 2}. The reference solution for this problem is c∗ = 1.3285

corresponding to an optimal design d∗ = {2.8582, 3.2127}. This solution is found using a direct

double-loop approach on the original functions with a large size Monte Carlo simulation in the

inner loop (see also Dubourg (2011)).

To solve this problem, an initial experimental design of size 6 is drawn using Latin hypercube

sampling (LHS). The solution is repeated 20 times to account for the inherent statistical variabil-

ity of the different solution schemes. Figure 4 shows boxplots of the found solutions (left panel)

together with the total number of model evaluations (right panel) for each case. The results are

also summarized in Table 2 together with some benchmark solutions for comparison purposes.

It can be observed that the three framework configurations lead to an accurate solution at a

reasonable cost. In fact the number of calls to the original model is smaller than approximation

approaches such as PMA as reported by Lee and Jung (2008) or the Kriging-based RBDO ap-

proach proposed in Dubourg et al. (2011). The larger number reported in Dubourg et al. (2011)

can be explained by the fact that they also approximate the first constraint by a surrogate model.

Let us now look at the convergence of each framework configuration. Figure 5 shows the final

surrogate models and the experimental design points for the median solution of each solving

strategy. The entire panel window shows the augmented space while the design space is limited

by the inner black rectangle. As explained earlier, the augmented space in this case is simply

obtained by extending the bounds of the design space in each direction. The limit-state surface

as computed by the original model is drawn with the thick blue line and the gray shaded area

represents the unfeasible space due to the soft constraint. Figure 5a show additionally contours

of the cost function and the reference solution represented by the magenta diamond. In the

remaining panels, the initial experimental design is shown by the blue squares. The red circles

correspond to the enrichment points added prior to starting the optimization process. The
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Figure 4: Example 1 - Two-dimensional highly non-linear limit-state function: optimized cost and

number of model evaluations for the three strategies (box-plots summarizing 20 replications).

Table 2: Example 1 - Two-dimensional highly non-linear limit-state func-

tion: optimization results and comparison of costs.

Method d∗1 d∗2 c (d)∗ N

Reference solution 2.85 3.23 1.33 ∼ 107

Performance measure approach (PMA)a 2.84 3.23 1.33 296

Meta-RBDOb 2.81 3.25 1.35 80

Framework #1c 2.87 3.20 1.33 47.5

Framework #2c 2.88 3.20 1.32 52.5

Framework #3c 2.84 3.24 1.32 36.5

a As calculated in Lee and Jung (2008)

b As calculated in Dubourg (2011)

c Median values found from 20 replications

approximated limit-state surface is represented by the dashed red line. The cases #1 and #2 show

approximately the same enrichment scheme. The case where SVR together with the maximin

enrichment scheme are used (Figure 5b) produces the most uniform sampling with almost all

the new points located near to the final limit-state surface. The framework configuration #2

(Figure 5c) produces a slightly less accurate Kriging approximation. The case #3 (Figure 5d)

corresponds to the coupling of enrichment with optimization. In fact, only two points are added

at the first stage of enrichment. The green diamonds show the points that are added during
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optimization. Almost all the points added in this stage are located around the solution. The final

Kriging model is not accurate everywhere in the space but only in areas of the limit-state surface

around the optimum. Overall, this allows the approach to converge to the solution with fewer

number of model evaluations. Particularly, very few points are added where the cost function is

large or in unfeasible regions due to the soft constraints.
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Figure 5: Example 1 - Two-dimensional highly non-linear limit-state function: initial experimental

design and enrichment points for the the median solution (out of 20 replications) for the three

proposed solving strategies.
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6.2 Short column under oblique bending

This benchmark deals with a short column structure of rectangular cross-section b× h which is

subject to an axial load F and biaxial bending moments M1 and M2. The limit-state function

characterizes the performance of the structure with respect to its yield stress σy and reads:

g (X (d) ,Z) = 1− 4M1

bh2σy
− 4M2

b2hσy
−
(

F

bhσy

)2

. (23)

The probabilistic model is defined in Table 3. Note that the uncertainty in the design parameters

has been artificially introduced by Dubourg (2011) to accommodate his method. Even though

in the proposed framework such trick is not necessary, we keep the same problem formulation so

as to be able to compare the results.

Table 3: Example 2 - Short column under oblique bending: parameters of the variables defining

the probabilistic model - d = {b, h}T are the design variables and Z = {F,M1,M2, σy}T are the

environmental variables.

Parameter Distribution Mean COV (δ%)

b (mm) Normal µb 0.01

h (mm) Normal µh 0.01

F (N) Lognormal 2.5× 106 0.20

M1 (N.mm) Lognormal 250× 106 0.30

M2 (N.mm) Lognormal 125× 106 0.30

σy (MPa) Lognormal 2.5× 106 0.10

The optimization is started with an initial experimental design of size 21. For this six-

dimensional example, the convergence criteria do not lead to robust solutions with respect to

the replications. As shown in Table 4, the median number of calls to the limit-state surface are

respectively 84 and 86 for the cases #1 and #2. The corresponding solutions however show some

scatter around the reference value. The case #3 allows us to reduce both the solution scatter

and the average number of model evaluations.

6.3 Dome structure

This final example is related to the optimization of the dome structure introduced by Kaveh and

Talatahari (2009), albeit in a deterministic context. This problem is extended here to account

for uncertainties in the loading as proposed by Torre et al. (2018). The dome, illustrated in

Figure 7, consists of 120 bars divided into seven groups as numbered in panel A. The dome
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Figure 6: Example 2 - Short column under oblique bending: optimized cost and number of model

evaluations for the three strategies (box-plots summarizing 20 replications).

Table 4: Example 2 - Short column under oblique bending:

optimization results and comparison of costs.

Method d∗1 d∗2 c (d)∗ N β†

Reference solution 334 587 1.96× 105 ∼ 107 3.00

Nested FORMa 399 513 2.12× 105 9, 472 3.38

Meta-RBDOb 358 580 2.15× 105 70 3.32

Framework #1c 332 596 1.97× 105 84 3.00

Framework #2c 336 592 1.99× 105 86 3.00

Framework #3c 331 592 1.96× 105 57 3.00

a As calculated in Lee and Jung (2008)

b As calculated in Dubourg (2011)

c Median values found from the 20 replications

† The constraints are not saturated in the other references because their RBDO formu-

lation is slightly different: d = arg mind c (d) + CfPf (X (d) ,Z)

surface is divided into seven sectors to which a Gumbel-distributed load is assigned with the

following mean values: 1 kN/m2 in the top and north-east sectors A, B and F, 0.5 kN/m2 in

the north-west and south-east sectors C, E, G and I and finally 0.25 kN/m2 in the south-west

sectors D and H. The coefficient of variation is 0.2 in all cases. These loads are supposed to

model snow falling from north-east direction (Torre et al., 2018). In addition, self-weight and

deterministic service loads are applied to each node of the structure as follows: 60 kN to node 1,
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30 kN on nodes 2 to 13 and 10 kN on nodes 14 to 37 (Kaveh and Talatahari, 2009). The node

groups and sectors are illustrated using different color schemes (respectively shades of blue and

red).

Figure 7: Example 3 - Dome structure: geometry and loading sectors (adapted from Torre et al.

(2018))

The optimization problem consists in minimizing the weight of the structure with design

variables being the bars cross-sectional areas d ∈ D = [10, 40] cm2 while ensuring that the

vertical displacement of node #2 remains below a given threshold δ̄ = 10 cm. Accounting for

uncertainties, the target failure probability is set to P̄f = 0.01.

The problem is solved using only the framework configuration #3 which has proven to be

the most efficient in the other applications. An initial experimental design of 80 points is drawn

using optimal Latin hypercube sampling. The first stage of enrichment is then carried out and

convergence is achieved after two iterations only. The final solution is achieved with a total of

154 model evaluations. The optimal weight is found to be 8.68 tons. Figure 8 shows the relative

areas with respect to lower and upper bounds for each design dimension. The largest section is

attributed to the group of bars labeled 2 which is close to the maximum allowable size. The two

groups of bars which are not in the radial direction and not connected to node #2 do not really

influence the deflection and are hence set close to their lower bounds by the optimizer.

This result given above assumes that the surrogate model is accurate enough. In order to

validate the surrogate model accuracy in the vicinity of the limit-state surface, a Monte Carlo set

of 1, 000 points is drawn using the final design, i.e. the design components are those of the optimal

design while the environmental variables follow their own distributions. Since the constraints

are saturated, the estimated quantiles should be equal to δ̄ = 10 cm. Figure 9 shows the boxplot

of the quantiles with 500 bootstrap replications when using the final Kriging model and the

original model. Bootstrap is used here to account for the small size of the validation Monte
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Figure 8: Relative coordinates of the optimal design with respect to their respective lower and

upper bounds.

Carlo set. Accounting for the bootstrap standard deviation, the targeted threshold belongs to a

small confidence interval around the estimated quantiles. Thus the final Kriging model is deemed

accurate enough considering this validation set even though it seems to slightly underestimate the

true quantile. Note that a better fit could be obtained by calibrating the enrichment convergence

criterion to allow for more enrichment points.

Original model Kriging
9

9.5

10

10.5

11

Figure 9: Example 3 - Dome structure: Comparison of the quantiles at th efinal design computed

using the original model and the final Kriging model.

Finally it is worth emphasizing that only 154 finite element runs were used to solve a 16-

dimensional RBDO problem.
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7 Conclusion

This paper aims at introducing a global and unified framework for the solution of reliability-based

design optimization (RBDO) problems. A review of classical approximation-based approaches

is first carried out following the widely accepted classification into double-loop, single-loop and

decoupled methods similar to Chateauneuf (2008). Upon stressing the limitations of such meth-

ods, more recent approaches that combine simulation techniques for the reliability analysis and

surrogate-modelling are further reviewed. These methods have been developed mainly since

2010. They are classified here according to the way the surrogate model is integrated into the

RBDO framework.

Then, a global framework that combines three independent blocks, namely adaptive surro-

gate modelling, reliability analysis and optimization, is proposed together with some numerical

considerations, e.g. on the gradients estimation. It is argued that the proposed framework is

modular and non-intrusive, meaning that each block can be set independently from the others.

Hence the analyst can freely choose his favorite surrogate modelling, reliability analysis and

optimization method.

Finally, an illustration of the proposed framework is made using different combinations for

each block. Each of the three examples treats an RBDO formulation with the three classes of

probabilistic inputs: only random design parameters which appears as parameters of random

variables; deterministic design- and random environmental variables and eventually the combi-

nation of all types of variables. All these cases can be treated in the same way through the use of

an augmented space. It is worth emphasizing that most of the current literature focus on one for-

mulation and require adaptations to treat other scenarios. The results for the three examples are

compared to literature references. Efficiency of the framework is demonstrated by the number of

calls to the performance functions, which is in the same range as other surrogate-based methods

in the literature. As expected, the efficiency and robustness is much larger than approaches that

rely on approximation methods such as FORM for the reliability analysis. However results are

dependent on the convergence of the enrichment scheme which require a proper calibration. The

proposed general framework is currently integrated as a new module (Moustapha et al., 2019) of

the uncertainty quantification platform UQLab (Marelli and Sudret, 2014), which will ensure

further dissemination of surrogate-based RBDO methods.
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