
HAL Id: hal-02289948
https://hal.science/hal-02289948v1

Submitted on 17 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Modelling Approach to Generating User Acceptance
Tests

Leandro Antonelli, Guy Camilleri, Julian Grigera, Mariangeles Hozikian,
Cécile Sauvage, Pascale Zaraté

To cite this version:
Leandro Antonelli, Guy Camilleri, Julian Grigera, Mariangeles Hozikian, Cécile Sauvage, et al.. A
Modelling Approach to Generating User Acceptance Tests. 4th International Conference on Decision
Support Systems Technologies (ICDSST 2018), May 2018, Heraklion, Greece. �hal-02289948�

https://hal.science/hal-02289948v1
https://hal.archives-ouvertes.fr

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/22452

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Antonelli, Leandro and Camilleri, Guy and
Grigera, Julian and Hozikian, Mariangeles and Sauvage, Cécile and
Zaraté, Pascale A Modelling Approach to Generating User
Acceptance Tests. (2018) In: 4th International Conference on
Decision Support Systems Technologies (ICDSST 2018), 22 May
2018 - 25 May 2018 (Heraklion, Greece).

A Modelling Approach to Generating User Acceptance Tests

Leandro Antonelli1, Guy Camilleri2, Julián Grigera1,3, Mariángeles Hozikian1, Cécile

Sauvage4, Pascale Zarate5

1LIFIA, Facultad de Informática, UNLP, Argentina

leandro.antonelli@lifia.info.unlp.edu.ar

2SMAC group, IRIT, 118 route de Narbonne, 31062 Toulouse Cedex 9, France

camiller@irit.fr

3CIC, Buenos Aires, Argentina

julian.grigera@lifia.info.unlp.edu.ar

4FEDACOVA, C/ Isabel la Católica 6. Pta9-10, 46004 Valencia, Spain

marian.hozikian @lifia.info.unlp.edu.ar

5ADRIA group, IRIT, Université de Toulouse, 2 rue du Doyen Gabriel Marty,
31042 Toulouse Cedex 9, France

zarate@irit.fr

ABSTRACT

 Software testing, in particular acceptance testing, is a very important step in the

development process of any application since it represents a way of matching the users’

expectations with the finished product´s capabilities. Typically considered as a

cumbersome activity, many efforts have been made to alleviate the burden of writing tests by,

for instance, trying to generate them automatically. However, testing still remains a largely

neglected step.

In this paper we propose taking advantage of existing requirement artifacts to semi-

automatically generate acceptance tests. In particular, we use Scenarios, a requirement

artifact used to describe business processes and requirements, and Task/Method models, a

modelling approach taken from the Artificial Intelligence field. In order to generate User

Acceptance tests, we propose a set of rules that allow transforming Scenarios (typically

expressed in natural language), into Task/Methods that can in turn be used to generate the

tests. Being high-level tests, close to the user experience, User Acceptance Tests verify that

the expectations of the system are met from an end-user’s point of view.

Using the proposed ideas, we show how the semi-automated generation of acceptance

tests can be implemented by describing an ongoing development of a proof of concept web

application designed to support the full process.

Keywords: User Acceptance Tests, Scenarios, Task/Method model, Agriculture

Production Systems

INTRODUCTION

Developing software remains a complex process involving several actors and consisting of

different steps. The testing step remains as one of the biggest problems, and it is frequently

avoided. As a consequence, the resulting system can fail to meet users’ expectations,

rendering it useless. Our objective is to ease the testing step by semi-automatically generating
User Acceptance Tests (UATs) from requirements artifacts. UATs represent high-level

functional requirements, close to the final user’s view. To do this, we combine two modelling

approaches: Scenarios, from the requirement engineering field and Task/Method models, from

the Artificial Intelligence field, particularly knowledge-based systems [1]. We provide rules to

automatically translate scenarios to task/method models from which UATs can be generated.

This work is applied to the RUC-APS project. RUC-APS is a H2020 RISE-2015 project,

aiming at Enhancing and implementing Knowledge based ICT solutions within high Risk and

Uncertain Conditions for Agriculture Production Systems. In this context we will use a scenario

based on agriculture production. The rest of the paper is organized as follows: we first introduce

related work, then present the background introducing scenarios and the Task/method

paradigm. In the third part we define our approach and in the fourth part we demonstrate a first

proof of concept. Finally, we show our conclusions and future work.

RELATED WORK

The approach proposed by this paper is a problem that model-driven development has

been working for a long time. This paper proposes obtaining test cases (one of the last

products in software development life cycle) from requirements (one of the first). In

particular, we deal with a previous artifact that can describe requirements [2].

Test cases may be generated from requirements, designs and source code. In particular,
the use of abstract artifacts like UML diagrams, helps defining User Acceptance Tests, and

much research has been done in this direction. Two approaches can be distinguished in this

area: those that consider the relationships between elements (inter-scenario dependency),

and those that consider the variations within each element (intra-scenario).

Inter-scenario dependency approaches provide a high-level organization of the artifact

to cover different dependencies between them. Boucher et al. [3] transform workflow

models (Use Case Maps) into Acceptance Test Cases that can be automated with the JUnit

framework. Nomura et al. [4] model the business context in a matrix representing the

dependency between business process, from which they design test scenarios from the

perspective of Personas to cover the different situations. Sarmiento et al. [5] propose a

similar approach using scenarios.

Intra-scenario approaches focus on the detail of some artifact and analyze its steps or

elements to design tests. Pandit et al. [6] automatically design UATs from acceptance

criteria written in the Given-When-Then template. These criteria are divided in steps, and

dependencies amongst steps are arranged in a dependency graph. Lipka et al. [7] derive test

scenarios from use cases stated in natural language, enriched with annotations to connect

the specification with the source code of the application.

BACKGROUND

Scenarios

Scenarios can be used in different stages of software development, from clarifying business

process and describing requirements, to providing the basis of acceptance tests [8]. There is a

distinction between application domain (real world) and the application software (machine)[9]:

during business process modelling and requirements capture, Scenarios describe events in the

world, while in system specification, they describe events in the machine. Scenarios are stories

about people and the activities they do to reach goals, parting from a setting and counting with

resources. Their description ranges from visual (storyboards) to narrative (structured text) [10].

Leite et al. [11] propose a template with six attributes to describe Scenarios in a textual way:

Title, it is the name of the scenario to identify it.

Goal, conditions and restrictions to be reached after the execution of the Scenario.

Context, conditions and restrictions that are satisfied and constitute the starting point

of the Scenario execution.

Actors and agents that perform actions during the Scenario to traverse the path from the

context to reach the goal.

Resources, products and elements used by the actors to perform action.

Episodes: steps executed by actors using the resources in the context to reach the goal.

The text descriptions in Scenarios follow a fixed structure. In particular, episodes must be

written with full sentences describing the subject, the action they perform, and if necessary the

resource used. The following example describes a Scenario for farmer packing products. The

example also includes the cases to consider for testing the scenario. These test cases do not

belong to the original structure of the scenario:

Scenario: Packing the products
Goal: Put the products in boxes in order to distribute them
Context: The products have recently been harvested
Resources: Products, Box
Actors: Farmer
Episodes: The farmer washes the products

The farmer brushes the products
The farmer determines the destination of the products
The farmer determines the quality levels of the products according to the destination
The farmer determines the appropriate box according to the destination
The farmer chooses the products that satisfy the quality levels
The farmer packs the chosen products in the box

Test cases: Temperature forecast obtained / not obtained

Sun radiation forecast obtained / not obtained
Rain forecast obtained / not obtained
There is no best date to plant

Task/Method Paradigm

The task/method paradigm is a knowledge modelling paradigm (mainly from the artificial

intelligence field [12], [13]) that sees reasoning as a task. Knowledge is expressed in a

declarative way, making it easy to process by execution engines or planners [1]. A task/method

model is composed by a domain model and a reasoning model. The former describes the

objects of the world being used (directly or indirectly) by the latter, similarly to an application

ontology. It is often described in UML language and implemented with OO languages. The

reasoning model describes how a task can be performed. It uses two modelling primitives:

1. Task: it is a transition between two world state families (an action) and is defined by

the following fields: Name, Par, Objective and Methods.

2. Method: it describes one way of performing a task. A method must generate a state to

satisfy its task’s objective, although different methods could produce different effects.

It is characterized by the following fields: Heading, Prec, Effects, Control and Subtask.

The task’s field Name specifies the name of the task. The field Par contains the list of

parameters, that is, all objects handled by the task. For example, in a task Pack, the parameter

list could be (farmer, products) which are domain objects (from domain model) used by the

task Pack. We will write Pack(farmer, products). The list of methods which can be applied to

perform a task is described in the field Methods. A terminal task is a directly executable task,

with only one method to perform it. The method’s field Prec contains conditions that must be

satisfied to apply the method. The execution order of subtasks is described in the Control field,

and sub-tasks are recorded in the Subtask field. Note that, by essence, Task/Method models are

hierarchical. Here we explained only the fields used in this work, see [1] for a full reference.

APPROACH

The proposed approach consists in representing scenarios in the form of Task/Method

models. Being a modelling paradigm, the building of Task/Method models requires modelling

effort. On one hand, the integration of this modelling activity during the definition of scenarios

facilitates an early identification of misunderstandings between stakeholders. Moreover, as

Task/Method models are operational models, they can be executed to generate test cases. On

the other hand, building a task/method model at early stages shouldn’t take much effort. To

reduce this effort, we propose a semi-automatic translation of scenarios to task/method models.

We use scenarios expressed in natural language, since it’s the natural way to describe them.

In the packing example presented previously, the translation process would produce the

following Task/Method model for the general scenario and the first subscenario, respectively.

The strategy to obtain UATs consists in determining two possible situations for each action,

one in which the action can be performed successfully, and another where the action failed.

Method: M1

Task: Packing(products)
Control: wash(farmer, products);

 brush(farmer, products);
 determines(farmer, destination, products);
 determines(farmer,quality_levels,products,destination);
determine(farmer, appropriate_box, destination);

 choose(farmer, products, quality_level);
pack(farmer,products,box);

Method: M21

Task: brush(farmer,products) (IR2b)
Precondition:

not Product_correctly_washed
Control:

message(“not correctly washed, stop”);
stop;

In the next subsection, we present the translation rules, and a proof of concept.

Translation Rules

The translation of scenarios to task/method is performed thanks to the following rules:

Rule 1. Tasks Identification: each verb in the Scenario’s episodes is translated into a task

in Task/Method model. Each Scenario title is also a task in Task/Method model. Examples:
Episode: T Task: Wash
Episode: Th Task: Brush

Rule 2. Task’s Parameters Identification: each actor and resource used in the episodes of

a Scenario is translated by a parameter in Task / Method model. Examples:
Episode:
Episode:

Rule 3. Episode’s method: the episodes part of a scenario is translated by a method in

Task / Method model. Examples:
Episodes: The farmer wash the products

Rule 4. Sequence of tasks: the sequence of different lines in the episodes part of a Scenario

determines the sequence of tasks in the control part of a method in the Task / Method model.

The use of expressions like "then", "after", etc... in the episodes of a Scenario determines

also a sequence of tasks in the method’s control part. Examples:
Episodes:

The farmer washes the products
The farmer brushes the products

or The farmer washes the products, then brushes the products

Method: M1
Control: wash(farmer, product); brush(farmer, product)

Rule 5. Test Case Method: In this work, we assume that each test case (Test cases part of

scenario) corresponds to the achievement status (succeed or fail) of a task. In a failure

situation, the scenario will stop. This stop case will be represented by a method for the next

task in which the precondition field correspond to the test case failure. For example:
Test case:
Method: M21
Task: bush(farmer,products) # next task
precondition: not Product_correctly_washed

Control: message(“not correctly washed, stop”); stop;

The natural language used in the expression of scenarios is limited, we also assume that

episodes part only contains a “nominal” way to achieve a scenario, i.e. we consider that

execution of every task succeeds. In the test cases part, only failures of task achievement are

considered. With these assumptions and a few translation rules, it is possible to automatically

translate scenarios such as the packing scenario. Of course, this automatic translation has to be

used as a preliminary design and it should be analyzed and enriched by a test case designer.

PROOF OF CONCEPT

We are developing a web application where users can describe Scenarios and obtain the

Task/Method model that implements the UATs. Figure 1 depicts the architecture: a client

module allows describing the Scenarios and see the derived Task/Method model. The server

module performs the derivation using a Natural Language Processor and a set of rules. Rules

determine scenarios’ processing, elements to be identified, and how they relate to produce the

Task/Method. The NLP processes Scenarios, obtaining the elements determined by the rules.

Figure 1. Architecture of the application

The system is being implemented with Node.js (https://nodejs.org) and Angular 2
(https://angular.io). This will allow users to define the scenarios and obtain the Task/Method

executing the rules specified through the Stanford Natural Language Processing Framework

(https://nlp.stanford.edu). After that, the final translation will be shown to the client.

CONCLUSION

In this paper we have shown a new way of generating acceptance tests from well-known

requirements artifacts, by presenting a set of rules to guide the implementation of semi-

automated solutions and shown the first steps towards a supporting tool. We are now working

in completing the ruleset, by adding the rules required to translate iterative episodes into tasks.

For example, each verb used in the episode of a Scenario that describes iteration should be

written as a while expression in in Task/Method model: while <condition> <block>. This

would help to support other scenarios that require iterative tasks, e.g. “For each order,

determine the time needed to take the products to the destination”. We also plan to publish the

web application in order to experiment with the presented ideas in real development settings,

so we can assess the benefits of semi-automatically generated UATs.

ACKNOWLEDGEMENTS

Authors of this publication acknowledge the contribution of the Project 691249, RUC-APS:

Enhancing and implementing Knowledge based ICT solutions within high Risk and Uncertain

Conditions for Agriculture Production Systems (www.ruc-aps.eu), funded by the European

Union under their funding scheme H2020-MSCA-RISE-2015

REFERENCES

[1] G. Camilleri, J.-L. Soubie, and J. Zalaket, “TMMT: Tool Supporting Knowledge

Modelling,” in Knowledge-Based Intelligent Information and Engineering Systems, vol.

2773, 2003, pp. 45–52.

[2] V. A. Rubin, A. A. Mitsyuk, I. A. Lomazova, and W. M. P. van der Aalst, “Process

mining can be applied to software too!,” in Proceedings of the 8th ACM/IEEE

International Symposium on Empirical Software Engineering and Measurement - ESEM

’14, 2014, pp. 1–8.

[3] M. Boucher and G. Mussbacher, “Transforming Workflow Models into Automated End-

to-End Acceptance Test Cases,” in Proceedings - 2017 IEEE/ACM 9th International

Workshop on Modelling in Software Engineering, MiSE 2017, 2017, pp. 68–74.

[4] N. Nomura, Y. Kikushima, and M. Aoyama, “A Test Scenario Design Methodology

Based on Business Context Modeling and Its Evaluation,” 2014 21st Asia-Pacific Softw.

Eng. Conf., vol. 1, pp. 3–10, 2014.

[5] E. Sarmiento, J. C. S. P. Leite, E. Almentero, and G. Sotomayor Alzamora, “Test

Scenario Generation from Natural Language Requirements Descriptions based on Petri-

Nets,” Electron. Notes Theor. Comput. Sci., vol. 329, pp. 123–148, 2016.

[6] P. Pandit, S. Tahiliani, and M. Sharma, “Distributed agile: Component-based user

acceptance testing,” in 2016 Symposium on Colossal Data Analysis and Networking

(CDAN), 2016, pp. 1–9.

[7] R. Lipka, T. Potuak, P. Brada, P. Hnetynka, and J. Vinarek, “A Method for Semi-

Automated Generation of Test Scenarios Based on Use Cases,” in Proceedings - 41st

Euromicro Conference on Software Engineering and Advanced Applications, SEAA

2015, 2015, pp. 241–244.

[8] I. Alexander and N. Maiden, “Scenarios, Stories, and Use Cases: The Modern Basis for

System Development,” IEEE Comput. Control Eng., vol. 15, no. 5, pp. 24–29, 2004.

[9] M. Jackson, “The world and the machine,” in Proceedings of the 17th international

conference on Software engineering - ICSE ’95, 1995, pp. 283–292.

[10] R. Young, The requirements engineering handbook. 2004.

[11] A. Hussain et al., “Review on formalizing use cases and scenarios: Scenario based

testing,” 2015 Int. Conf. Emerg. Technol., vol. 3, no. 3, p. 1, 2015.

[12] F. Trichet and P. Tchounikine, “DSTM: A framework to operationalise and refine a

problem solving method modeled in terms of tasks and methods,” Expert Syst. Appl., vol.

16, no. 2, pp. 105–120, 1999.

[13] G. Schreiber, H. Akkermans, A. Anjewierden, R. De Hoog, N. R. Shadbolt, and B.

Wielinga, Knowledge Engineering and Management: The CommonKADS Methodology,

vol. 99. 2000.

