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Abstract— The variable-height inverted pendulum (VHIP)
model enables a new balancing strategy by height variations
of the center of mass, in addition to the well-known ankle
strategy. We propose a biped stabilizer based on linear feedback
of the VHIP that is simple to implement, coincides with the
state-of-the-art for small perturbations and is able to recover
from larger perturbations thanks to this new strategy. This
solution is based on “best-effort” pole placement of a 4D
divergent component of motion for the VHIP under input
feasibility and state viability constraints. We complement it
with a suitable whole-body admittance control law and test the
resulting stabilizer on the HRP-4 humanoid robot.

I. INTRODUCTION

Bipeds are constantly compensating undesired motions of
their floating base by regulating their interaction forces with
the environment, an action known as balancing or stabiliza-
tion. Stabilization can be implemented by a collection of
feedback control laws, referred to collectively as stabilizer.
Any stabilizer needs to answer two core questions. First,
what contact wrench should be applied onto the environment
in response to an undesired floating base motion? Second,
how to realize this contact wrench?

Reduced models play a key role in answering the first
question. A reduced model makes assumptions on the
contact wrench and selects variables to describe it. The
most common reduced model is the linear inverted pendu-
lum (LIP) [13], which assumes constant centroidal angular
momentum as well as a planar motion of the center of
mass (CoM), and parameterizes the contact wrench by its
zero-tilting moment point (ZMP) [26]. For this model, the
answer to our question is known: the ZMP of ground
reaction forces should react proportionally to deviations of
the divergent component of motion (DCM) of the floating
base. This solution maximizes the basin of attraction among
linear feedback controllers [24] and has been widely repro-
duced [14], [11], [15], [5].

The LIP leaves us with two avenues for improvement:
enabling angular momentum [29] or enabling height varia-
tions. The variable-height inverted pendulum (VHIP) [16]
explores the latter with the addition of an input λ that
represents the stiffness of the massless leg between CoM
and ZMP. This new input makes the system nonlinear, but
gives it the ability to fall or push harder on the ground,
enabling a new “height variation” recovery strategy when
ZMP compensation is not available [16]. Studies of the
VHIP have focused on using this strategy to balance in the
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2D sagittal plane [21], [22], [16], with recent applications
tested on hardware [25]. Numerical optimization of 3D VHIP
trajectories has also turned out to be tractable for both
balancing and walking [23], [2].

The main alternative to the VHIP is the well-known 3D
DCM [10]. This reduced model works with the same set
of assumptions, but is more tractable owing to its linear
dynamics. Notably, it can be used for linear feedback control,
whereas the aforementioned 3D VHIP controllers are based
on nonlinear model predictive control. The price that the 3D
DCM pays for this simplicity lies in its nonlinear feasibility
constraints [4]. Unless they are taken into account, e.g. by
nonlinear model predictive control, the 3D DCM does not
produce the height-variation strategy that the VHIP allows.

In this study, we uncover a new solution on the spectrum: a
linear feedback controller for the VHIP that coincides with
the 3D DCM as long as feasibility constraints are not
saturated, and naturally resorts to height variations when
the ZMP approaches the edge of its support area. This
component generalizes LIP tracking [14] to VHIP tracking
in the standard stabilization pipeline (Figure 1).

To implement VHIP tracking on our position-controlled
robot, we also propose a whole-body admittance control
strategy corresponding to the new input λ. We validate
the closed-loop stability and performance of the resulting
stabilizer in experiments with the HRP-4 humanoid.

II. REDUCED MODEL TRACKING

What reaction forces should the robot apply on its envi-
ronment to compensate deviations of its floating base?

Let us consider the net contact wrench (f , τc), which
consists of the resultant f of contact forces applied to the
robot and their moment τc around the center of mass (CoM)
c. The equations of motion of an articulated robot consist of
two parts: joint dynamics, and floating base dynamics [28].
The latter are governed by Newton and Euler equations:[

mc̈

L̇c

]
=

[
f
τc

]
+

[
mg
0

]
(1)

where m denotes the total mass, g is the gravity vector, c
the position of the center of mass (CoM) and Lc the angular
momentum around c.

A. Inverted pendulum models
1) Variable-height inverted pendulum: assuming constant

centroidal angular momentum L̇c = 0, centroidal dynam-
ics [19] are reduced to the variable-height inverted pendu-
lum (VHIP) model [16]:

c̈ = λ(c− z) + g (2)
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Fig. 1. Overview of the standard stabilization pipeline. A planning component, typically based on trajectory optimization, provides dynamically-consistent
references �d for all quantities. Reduced model tracking evaluates the errors ∆c,∆ċ in center of mass tracking (previously combined into the capture
point of the LIP, extended to a 4D DCM of the VHIP in Section III) and outputs a corresponding modification ∆w of the commanded contact wrench
w∗. Force control converts this wrench into joint angles (extended to include height variations in Section IV) for our position-controlled robot.

With its angular coordinates constrained to the manifold
τc = 0, the contact wrench is characterized by the three
coordinates (λ, z) that define its resultant f = mλ(c − z).
The coordinate λ is a normalized stiffness while z is the zero-
tilting moment point (ZMP) [26]. To be feasible, a contact
wrench must have positive λ (contact unilaterality) and a
ZMP within the contact surface; mathematically, these are
linear constraints λ > 0 and Cz ≤ d. Note that, although
we write it here as a 3D vector in the world frame, the ZMP
is a two-dimensional quantity as it lies on the contact surface.

2) Linear inverted pendulum: when walking over a hori-
zontal surface, further assuming a constant CoM height cz =
h leads to the linear inverted pendulum (LIP) model [13]:

c̈ = ω2
0(c− z) + g (3)

where ω0 =
√
g/h is the natural frequency of the LIP, with

g the standard acceleration due to gravity. With its stiffness
λ constrained to the manifold λ = ω2

0 , the contact wrench is
then characterized by the two coordinates z of the ZMP.

3) Floating-base inverted pendulum: alternatively, the
CoM acceleration can be parameterized by the enhanced
centroidal moment pivot (eCMP) [10]:

c̈ =
1

b2
(c− e) + g (4)

where b > 0 is a new parameter chosen by the user. In the
LIP where b = 1/ω0, the eCMP e coincides with the ZMP
z. While the parameter b is usually chosen close to 1/ω0,
the interest of this model is that it does not include a CoM
height constraint. The CoM is free to move vertically, but
then the eCMP leaves the contact area. The ZMP is then
located at the intersection of the ray from CoM to eCMP
with the contact area.

The floating-base inverted pendulum (FIP) expresses the
same contact wrenches as the VHIP but its input is the eCMP
e rather than the pair (λ, z). The price to pay for this simpler
input is its ZMP feasibility constraint Cz ≤ d becomes
nonlinear in e [4] (it can be approximated linearly for small
height variations [30]).

B. Divergent components of motion
For all three reduced models, an exponential dichotomy

can be applied to decompose the second-order dynamics of
the center of mass into two first-order systems.

1) Linear inverted pendulum: we can define the diver-
gent component of motion (DCM), also known as capture
point [20] for the LIP, as:

ξ = c+
ċ

ω0
(5)

Taking the time derivative of this expression and injecting
Equation (3) yields:

ξ̇ = ω0(ξ − z) +
g

ω0
ċ = ω0(ξ − c) (6)

The DCM is repelled by the ZMP, while the CoM is attracted
to the DCM. Notably, CoM dynamics have become both
independent from the ZMP and stable with respect to the
DCM. Controlling only the DCM therefore suffices to control
the CoM, and thus the floating base of the robot.

2) Floating-base inverted pendulum: the 3D DCM is
defined for the FIP model as:

ξ = c+ bċ (7)

Taking the time derivative of this expression and injecting
Equation (4) yields:

ξ̇ =
1

b
(ξ − e) + bg ċ =

1

b
(ξ − c) (8)

Second order dynamics are again decoupled in two linear
first-order DCM–eCMP and CoM–DCM sub-systems.

3) Variable height inverted pendulum: a divergent com-
ponent of motion for the VHIP can be defined as [12]:

ξ = c+
ċ

ω
(9)

where the natural frequency ω is now time-varying and
satisfies the Riccati equation:

ω̇ = ω2 − λ (10)

See e.g. [2] for details on how this equation appears in the
derivation of this DCM. Taking the time derivative of (9) and
injecting Equations (2) and (10) yields:

ξ̇ =
λ

ω
(ξ − z) +

g

ω
ċ = ω(ξ − c) (11)

Second-order dynamics are thus decoupled in two first-order
nonlinear systems.

https://www.youtube.com/watch?v=vFCFKAunsYM&t=20


C. Linear feedback control of the DCM

Let us denote with the superscript �d a reference state of
the reduced model satisfying all of its equations, for instance
ċd = ωd(ξd − cd). This reference is typically obtained by
trajectory optimization (see Figure 1). The error on a quantity
x is written ∆x := x − xd. In the case of the LIP, from
Equation (6) the time derivative of the DCM error ∆ξ is:

∆ξ̇ = ω0(∆ξ −∆z) (12)

We want to realize pole placement so that this error con-
verges exponentially to zero:

∆ξ̇ = (1− kp)ω0∆ξ (13)

where 1 − kp < 0 is the normalized closed-loop pole.
Combining these two equations yields:

∆z = kp∆ξ (14)

This control law answers our initial question and implements
LIP tracking. When it observes a deviation ∆ξ of its DCM
from the reference ξd, the robot modifies (the ZMP of) its
contact wrench in proportion to the DCM error. An integral
term can also be added to eliminate steady-state error [17].

The same derivation applied to the FIP [10] yields:

∆ξ̇ = (1− kp)
1

b
∆ξ ∆e = kp∆ξ (15)

Pole placement is thus generalized to the 3D DCM parame-
terized by b. As long as the eCMP e = ed + ∆e is feasible,
i.e. the ZMP projected along the CoM–eCMP axis lies in
the support area, it achieves optimal closed-loop dynamics.
When the corresponding ZMP falls outside of the support
area, it is projected back to it and closed-loop pole placement
is not guaranteed any more. In this case, the DCM error will
either decrease sufficiently to end saturation, or diverge.

III. LINEAR FEEDBACK CONTROL OF THE VHIP

Recent studies of the VHIP showed the existence of an
alternative: even with the ZMP constrained at the boundary
of its support area, the system might be balanced using the
height-variation strategy. Trajectories that display this strat-
egy can be found by numerical optimization [23], [22], [15],
[2], but not by proportional feedback of the 3D DCM (7)
as they correspond to variations of the parameter b. In
what follows, we will see this behavior emerge from linear
feedback control of a different DCM of the VHIP.

A. Four-dimensional DCM for the VHIP

We noted previously [2] how ω behaves like a divergent
component repelled by the input λ. Let us embrace this ob-
servation fully and consider the joint vector x = [ξ ;ω] as a
four-dimensional DCM with three spatial and one frequential
coordinate. Its time derivatives are given by Equations (10)–
(11). Let us take their first order differentials with respect to
the reference. For the natural frequency, we get:

∆ω̇ = (ωd + ω)∆ω −∆λ ≈ 2ωd∆ω −∆λ (16)

where we assume that quadratic and higher order errors such
as ∆ω2 can be neglected. Applying a similar derivation to
the spatial DCM ξ yields:

∆ξ̇ =
λd

ωd
(∆ξ −∆z) +

ξd − zd

ωd
∆λ− c̈d

ωd
2 ∆ω (17)

Bringing these two equations together, we obtain a linearized
state-space model:

∆ẋ = Ad∆x+ Bd∆u (18)

with a four-dimensional state ∆x = [∆ξ ; ∆ω] and a three-
dimensional input ∆u = [∆z ; ∆λ]. The matrices Ad and
Bd are defined from the reference state by Equations (16)–
(17). We assign the closed-loop poles of this system as:

∆ξ̇ = (1− kp)
λd

ωd
∆ξ (19)

∆ω̇ = (1− kp)ωd∆ω (20)

Combining Equations (16)–(17) and (19)–(20) yields:

∆z +
ξd − vd

ωd
∆ω +

zd − ξd

λd
∆λ = kp∆ξ (21)

∆λ = ωd(1 + kp)∆ω (22)

where we used the shorthand vd := zd − gd/λd. When
∆ω = 0 Hz and ∆λ = 0 Hz2, Equation (21) reduces to
standard proportional feedback of the DCM at the ZMP (14).
Meanwhile, Equation (22) provides a direct analogous of (14)
over frequential coordinates.

B. The DCM is not a direct measurement
A novelty of the VHIP lies in its ability to choose its

DCM by varying the natural frequency ω. In the LIP or
FIP, the DCM error ∆ξ is fully determined from sensory
measurements ∆c and ∆ċ by Equations (5) and (7). In the
VHIP, differentiating Equations (9) gives us:

∆ξ = ∆c+
∆ċ

ωd
− ċ

ωd
∆ω

ωd
(23)

The measured output vector ∆c + ∆ċ/ωd has dimension
three, but the state vector [∆ξ ; ∆ω] has dimension four.
The extra dimension is not an exogenous output: rather,
the controller has an internal state by which it decides how
to weigh sensory measurements. Intuitively, if the robot is
pushed hard enough so that the ZMP saturates its support
area for the current value of ω, the controller can choose
to increase ω instead, thus increasing λ and pushing harder
on the ground by (22). This way, it can keep the spatial
DCM in the vicinity of the contact area, yet only for a while
as pushing harder on the ground requires raising the CoM,
which is only available in limited supply depending on joint
kinematic and torque limits.

C. Input feasibility conditions
To generate feasible contact wrenches, the inputs ∆z and

∆λ need to satisfy a set of inequality constraints.
Let us define the ZMP frame as the average contact frame

over all contacts with the environment. We denote the origin
of this frame by p frame and its rotation matrix (from ZMP
to inertial frame) by R.



1) ZMP support area: the coordinates of the ZMP com-
pensation in the inertial frame are then given by ∆z = R̄z̄,
where z̄ ∈ R2 and R̄ consists of the first two columns of
R. In single support, the ZMP after compensation should lie
within the contact area, so that:

−X ≤ z̄dx + ∆z̄x ≤ X (24)

−Y ≤ z̄dy + ∆z̄y ≤ Y (25)

The inequalities provide a halfspace representation:

C∆z̄ ≤ d (26)

In double support, and more generally in multi-contact
scenarios, similar halfspace representations of the multi-
contact ZMP support area can be obtained by projection of
the contact wrench cone [6]. A simple method to compute
it is reported in Section IV.C of [3].

2) Actuation limits: contact unilaterality and joint torque
limits of the underlying robot model can be approximated in
the reduced model by lower and upper bounds on the normal
contact force:

fmin ≤ (n · f) = mλn · (c− p) ≤ fmax (27)

These inequalities can be readily rewritten:

fmin

mn · (c− p)
≤ λd + ∆λ ≤ fmax

mn · (c− p)
(28)

The lower bound λmin and upper bound λmax thus defined
depend on actuation limits, total mass and the instantaneous
position of the center of mass.

D. State viability conditions

Input feasibility conditions are not sufficient to guarantee
that the system will not diverge to a failed state: they should
be complemented by state viability conditions. Instances of
viability conditions include keeping the capture point (for the
LIP) inside the convex hull of ground contact points [24],
or bounding joint accelerations in whole-body control to
maintain joint angle limits in the long run [7].

1) Frequency limits: to be feasible, the natural frequency
ω of the VHIP should not exceed the bounds of its corre-
sponding input λ (again in fitting analogy to the spatial DCM
and ZMP support area):√

λmin ≤ ωd + ∆ω ≤
√
λmax (29)

The intuition for this viability condition lies in the Riccati
equation (10): once ω2 decreases below λmin it is impossible
for ω̇ to be positive again. See Property 6 in [2] for details.

2) DCM height limits: variations of λ require the under-
lying robot model to adjust the height of its CoM. From
Equation (11), the CoM is attracted to the DCM, so that
bounding DCM height is a sufficient condition to bound CoM
height. Let us define:

ξnext
z = ξdz + ∆ξz + (1 + κ)dt∆ξ̇z (30)

where dt is the control period and κ = 0.5 is a damping
factor to allow sliding on the constraint when it is saturated

without making the control problem infeasible. Height limits
are finally expressed as:

hmin ≤ ξnext
z ≤ hmax (31)

E. Quadratic programming formulation

Our problem is now specified: realize at best the desired
closed-loop poles (19)–(20) while satisfying input feasibility
and state viability constraints. Let us cast it in matrix form1

as a quadratic program:

minimize
X

X TWX (32)

subject to GX ≤ h (33)
AX = b (34)

We choose to include both states and inputs in our vector
of optimization variables:

X = [∆ξ ∆ω ∆z̄ ∆λ ∆σ] ∈ R10 (35)

where ∆σ ∈ R3 is an additional vector to allow violations
of our desired pole placement on the spatial DCM. We make
this vector homogeneous to a position:

∆ξ̇ =
λd

ωd
[(1− kp)∆ξ + ∆σ] (36)

1) Objective function: we minimize pole placement vio-
lations on horizontal components with highest priority, then
on the vertical component:

W = diag(ε, ε, ε, ε, ε, ε, ε, 1, 1, 10−3) (37)

where ε � 10−3 makes the matrix W positive-definite,
adding the minimization of other optimization variables as
the lowest priority objective.

2) Equality constraints: states and inputs are bound to-
gether by Equations (21) (updated by (36) to include ∆σ),
(22) and (23). Let us omit �d superscripts for concision:

A =

−kpI3
ξ−ν
ω R̄ r−ξ

λ I3

I3
ċ
ω2 03×2 03×1 03×3

01×3 ω(1 + kp) 0 −1 01×3

 (38)

b =
[
03×1 ; ∆c+ ∆ċ

ω ; 0
]

(39)

where I3 is the 3× 3 identity matrix, A is a 7× 10 matrix
and b a 7× 1 column vector.

3) Inequality constraints: limits (26) on the ZMP, (28) on
λ and (29) on ω can be readily included as block matrices
in G and h. DCM height limits are obtained by injecting
the expression of the related spatial DCM velocity (36) into
Equation (30):

Gnext
ξ =

[
0 0 +gξ 0 0 0 0 0 0 +gσ
0 0 −gξ 0 0 0 0 0 0 −gσ

]
(40)

hnext
ξ =

[
hmax − ξdz ; ξdz − hmin

]
(41)

where gσ = (1 + κ)dtλd/ωd and gξ = 1 + gσ(1− kp).
Overall, this quadratic program has 10 variables, 7 dense

equality constraints and 6 + m sparse inequality constraints,

1Before computing these matrices explicitly, we used (and warmly
recommend) the CVXPY [8] modeling language to prototype our controller.



where the number m of ZMP inequalities is usually less than
10. During standing experiments with m = 4, it was solved
in 0.1± 0.05 ms by LSSOL on a laptop computer.

F. Comparison to DCM–eCMP feedback control

We compare the response of the best-effort pole place-
ment QP (32)–(34) with standard DCM–eCMP feedback
control [15], [10] in a perfect simulation.2 The target state of
the inverted pendulum is a static equilibrium with the center
of mass m = 38 kg located h = 80 cm above ground and
3 cm away from a lateral edge of the support area. Both
controllers use the same feedback gain kp = 3. The velocity
scaling parameter of the DCM–eCMP feedback controller is
set to the recommended value b =

√
h/g.

Figure 2 illustrates the response of the two controllers to
increasingly high impulses applied to the CoM in the lateral
direction. For a small impulse i = m∆ċy = 1.5 N.s, the
ZMP does not hit the edge of its support area and the two
controllers match exactly.

For a medium impulse i = 4.5 N.s, the ZMP hits the edge
of the area but the DCM is still inside it. The DCM–eCMP
controller keeps on the edge until its DCM comes back in the
vicinity of the desired state. The VHIP controller saturates
its ZMP as well, and performs two additional behaviors:
• At impact time, ω jumps from its reference ω0 =

3.5 Hz to 4.2 Hz. As a consequence, the post-impact
DCM of the VHIP lies more inside the support area
than its FIP counterpart.

• After impact, the controller adds around 15 cm of
DCM height variations. As a consequence, the DCM
is brought back to the desired state faster than its FIP
counterpart.

Note how these two behaviors were not explicitly part of our
controller specification: they emerge from best-effort pole
placement, input feasibility and state viability constraints.

For a larger impulse i = 5.7 N.s, the DCM of the
FIP model falls outside of the support area. The DCM–
eCMP controller is unable to recover from such disturbances.
Applying the above strategy, the VHIP controller maintains
its post-impact DCM within the support area. It then raises
the DCM until the kinematic constraint ξz ≤ hmax = 1 m is
met. At this stage, state and inputs are fully saturated and the
controller holds on. The DCM eventually comes back to the
support area and returns to the desired state. In this particular
example, failure thresholds are respectively i = 5.2 N.s for
the DCM–eCMP controller and i = 6.0 N.s for the VHIP
controller.

IV. VERTICAL FORCE CONTROL

Reduced model control produces a desired net contact
wrench. For torque-controlled robots, this net wrench is
supplied as a target to whole-body control [27], [15], [9],
[1], and the resulting joint torques are sent to lower-level
joint controllers. For position-controlled robots, an additional
layer is required to regulate wrenches by admittance control.

2Source code: https://github.com/stephane-caron/pymanoid/blob/master/
examples/vhip stabilization.py
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Fig. 2. Comparison of the VHIP (solid lines) and DCM–eCMP (dotted
lines) feedback controllers in perfect simulation. The DCM is impacted by
impulses of increasing magnitude (1.5 N.s, 4.5 N.s, 5.7 N.s). For a small
impulse, the two controllers match exactly. The VHIP controller is able to
sustain larger impulses thanks to the height variation strategy.

A. Whole-body admittance control

Biped stabilizers usually include several admittance con-
trol laws in parallel, which can be collectively thought
of as whole-body admittance control. There are two main
approaches to regulate the net contact wrench: distribute it
across end effectors in contact and regulate contact wrenches
independently at each effector, or apply extra accelerations
to the center of mass. These two approaches are not mutually
exclusive. In what follows, we will use of the following:
• Foot damping control [14] regulates the center of pres-

sure under each foot by independent damping control
over their respective ankle roll and pitch joints.

• Foot force difference control [14] regulates the differ-
ence (f left

z − f right
z ) of measured normal forces at each

foot. Regulating a relative value elegantly avoids pitfalls
coming from absolute discrepancies between measured
and model forces (e.g. in its model HRP-4 weighs 38 kg
but our robot is now closer to 42 kg).

• Horizontal CoM admittance control [18] improves net
ZMP tracking by adding a horizontal CoM acceleration
offset ∆c̈xy = Axy∆z proportional to the ZMP error.

See [5] for a more detailed survey of the state of the art.

B. Vertical CoM admittance control

All admitance control strategies mentioned above con-
tribute to improve ZMP tracking, which is consistent with
the state of the art where reduced model control outputs a
net ZMP z = zd + ∆z. Using them altogether, the biped

https://github.com/stephane-caron/pymanoid/blob/master/examples/vhip_stabilization.py
https://github.com/stephane-caron/pymanoid/blob/master/examples/vhip_stabilization.py
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Fig. 3. Response to vertical pushes for the LIP (left) and VHIP (right)
stabilizers. User pushes (yellow background) are reflected in the measured
normalized stiffness λ (blue). In the LIP, the robot stays totally stiff. In
the VHIP, its commanded stiffness λc (red) increases and the CoM height
(green) complies in the direction of the user’s push.

becomes compliant to external perturbations in the horizontal
plane, while remaining totally stiff in the vertical direction.
This phenomenon is illustrated with the LIP-based stabilizer
from [5] in the accompanying video.

To extend tracking to the VHIP, we want to track not only
z but also λ, which corresponds to the normal contact force:

λ =
n · f

mn · (c− p)
=

fz
m(cz − zz)

(42)

It seems we then need to regulate absolute forces, which
in turns requires accurate force sensor calibration. This
requirement was avoided by previous laws, for instance
foot force difference control. We propose to circumvent it
again by extending CoM admittance control to the vertical
direction based on feedback, not from the net vertical force
fz , but from the normalized stiffness λ of the VHIP:

∆c̈z = Az
(
λd − λ

)
= −Az∆λ (43)

where λ is measured from sensory data using Equation (42).
This law is consistent with the VHIP. Like the other admit-
tance control laws, it is stable in closed loop with reduced
model tracking (Figure 1) and unstable in open loop (con-
sider for instance what would happen if λd were a constant).

V. EXPERIMENTAL VALIDATION

We updated the stabilizer from [5] with the two contribu-
tions of this manuscript: generalizing LIP tracking to VHIP
tracking (Section III) and extending CoM admittance control
to the vertical direction (Section IV). We release the resulting
controller as open source software3 and invite readers to
open issues in the corresponding repository for any related
discussion. Closed issues also provide technical details not
discussed in this manuscript.

A. CoM admittance control

We confirmed the stability of the closed-loop system
consisting of both VHIP tracking and three-dimensional
CoM admittance control by assessing the robot’s compliance
to external pushes, as shown in the accompanying video.
In the horizontal plane, LIP and VHIP stabilizers perform
identically, using the same gain kp = 1.4 for both. In the

3https://github.com/stephane-caron/vhip walking controller/

Fig. 4. Push recovery with saturation of ZMP constraints shown in the
accompanying video. The VHIP stabilizer behaves like its LIP counterpart
while its commanded ZMP stays inside the support area, and resorts to
height variations when the ZMP compensation strategy is exhausted. This
hybrid behavior is not specified explicitly, but emerges from best-effort pole
placement under feasibility and viability conditions.

vertical direction, the robot is totally stiff with the LIP
and complies with the VHIP. Figure 3 shows measured and
commanded values of λ from these experiments, as well
as CoM height variations resulting from admittance control.
When the robot is pushed down, λ increases above λc and
the CoM complies downward.

In this setup, we could raise the admittance gain to Az =
0.005 m.s−2, achieving clear vertical compliance but with a
rather low bandwidth. We could increase bandwidth using
larger values of Az , but then the center of mass would
become prone to pick up oscillations from force sensor noise,
which are presently entirely unfiltered. This behavior can be
traded off with delay by applying signal filtering, e.g. using
the solution to a similar issue proposed in [9].

B. Push recovery and walking

The VHIP stabilizer on HRP-4 behaves essentially like its
LIP counterpart until the ZMP hits the edge of the support
area. In the experiment depicted in Figure 4, we trigger this
event by pushing the robot until it rocks backward. The
stabilizer then raises the CoM twice: a first time around
t = 0.7 s to increase recovery forward acceleration, and
a second time after t = 1.4 s when the robot is back on its
feet but has accumulated too much sagittal velocity.

We also confirmed that the VHIP stabilizer performs
similarly its LIP counterpart [5] for nominal walking, with a
slight height increase at the final braking step. Samples from
both experiments are shown in the accompanying video.

VI. CONCLUSION

We proposed a linear feedback controller for the variable-
height inverted pendulum based on best-effort pole place-
ment under input feasibility and state viability constraints.
This solution is simple to implement, coincides with the
3D DCM for small perturbations and does not require any
additional parameter. It can recover from larger perturbations
than the 3D DCM by leveraging both the ankle and height-
variation strategies.

https://github.com/stephane-caron/vhip_walking_controller/


ACKNOWLEDGMENTS

The author warmly thanks Arnaud Tanguy for his assis-
tance with experiments, as well as Niels Dehio and Johannes
Englsberger for their feedback on previous versions of this
manuscript.

REFERENCES

[1] C. Dario Bellicoso, Fabian Jenelten, Christian Gehring, and Marco
Hutter. Dynamic locomotion through online nonlinear motion op-
timization for quadrupedal robots. IEEE Robotics and Automation
Letters, 3(3):2261–2268, 2018.
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