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Abstract. We consider the problem of interpolating a finite set of observations
at given time instant. In this paper, we introduce a new method to compute the
optimal intermediate control points that define a C2 interpolating Bézier curve.
We prove this concept for interpolating data points belonging to a Riemannian
symmetric spaces. The main property of the proposed method is that the control
points minimize the mean square acceleration. Moreover, potential applications
of fitting smooth paths on Riemannian manifold include applications in robotics,
animations, graphics, and medical studies.

Keywords: Riemannian Bézier curves · Regression on Riemannian manifolds ·
Curve fitting · Mean square acceleration · Special orthogonal group.

1 Introduction

The problem of constructing smooth interpolating curves in non-linear spaces, or mani-
folds plays an important role in a wide variety of applications. For instance, interpolation
in the rotation group SO(3) has immediate application not only in computer graphics and
animation of 3D objects [3, 10], [5], but also in applications ranging from robot motion
planning to machine vision [2,4,13]. Such applications encourage us to further search for
some efficient methods to generate smooth interpolating curves on non-linear spaces.

Motivated by potential applications in engineering science and technology, our goal
is to develop a new framework for generating C2 Bézier curves on Riemannian mani-
folds that interpolates a given ordered set of points at specified time instants. While quite
general, we will focus on a special class of Riemannian symmetric spaces. The task of con-
structing interpolating curve on SO(n) has attracted the attention of several authors. One
of the most widely cited approaches is the work of Shoemake [12] on SO(3), who adopts
a re-parametrization of the rotation matrices based on unit quaternion representation.
Shoemake’s approach can essentially be viewed as a generalization of the de Casteljau’s
algorithm for Bézier curves to SU(2) in which two elements of SO(3) are interpolated by
the geodesic that joins them. Although this algorithm seems computationally efficient,
unfortunately the resulting curve depends on the choice of local system coordinates. A
few years later, taking into account the Shoemake algorithm, a more careful geometric
analysis of unit-quaternion-based method was introduced by Barr et al. [3], Hart et al. [7],
Ge and Ravani [6], and Nielson et al. [9]. Despite the fact of producing an intrinsic curves,
these approaches does not generalize to higher-dimensional manifold.
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In this paper, we present a novel framework to treat the interpolation problem in
the setting of Riemannian geometry and Bézier curve approach. We show that it makes
sense to define a C2 interpolating Bézier curve on Riemannian symmetric spaces as the
result of a least squares minimization and a recursive algorithm. In particular, we will
focus on a special class of Riemannian symmetric spaces: the special orthogonal group
SO(n). Indeed, working in such Riemannian manifold allow nice properties to solve the
issues above. The key point to give explicit solution for the interpolation problem and
ensures the C2 differentiablity condition at joint points is the use of global symmetries in
these last points. In fact, we will first derive equations for control points of a C2 Bézier
curve on the Euclidean space Rm. Then, building upon prior works [2, 11], we use these
equations to find the control points of a C1 interpolating Bézier curve on Riemannian
manifolds as a generalization of the Bézier based fitting in the Euclidean space and by
means of methods of Riemannian geometry. These results are sufficient to give explicit
formula for control points of the C2 interpolating Bézier curve on SO(n). The proposed
method will be shown to enjoy a number of nice properties and the solution is unique in
many common situations.

The rest of the paper is organized as follows. In section 2, we present our new algo-
rithm to construct a C2 Bézier curve on the Euclidean space. This will help with the
visualization of its main features and motivate its generalization on SO(n). In section 3,
the generalization of our approach on the Lie group SO(n) is prescribed. We conclude
the paper with numerical examples and a conclusion .

2 C
2

Interpolating Bézier Curves on Rm

In this section, we first describe our approach on the Euclidean space Rm. For simplicity
we will assume that the time instants are ti = i. In this work, we only use Bézier curves
of degree 2 and 3 such that the segment joining p0 and p1, as well as the segment joining
pN�1 and pN are Bézier curves of order two, while all the other segments are Bézier curves
of order three. Explicitly, the Bézier curve �k of degree k 2 {2, 3} are expressed in Rm

with a number of control points bi, represented as their coefficients in the Bernstein basis
polynomials by :

�2(t; b0, b1, b2) = b0(1� t)2 + 2b1(1� t)t+ b2t
2,

�3(t; b0, b1, b2, b3) = b0(1� t)3 + 3b1t(1� t)2 + 3b2t
2(1� t) + b3t

3.

Moreover, we assume that there exists two artificial control points (bb�
i
,bb+

i
) on the left and

on the right hand side of the interpolation point pi for i = 1, ..., (N � 1). Consequently,
the Bézier curve � on Rm is given by:

�(t) =

8
>><

>>:

�2(t; p0,bb�1 , p1), if t 2 [0, 1]

�3(t� (i� 1); pi�1,bb+i�1,
bb�
i
, pi), if t 2 [i� 1, i], i = 2, ..., N � 1

�2(t� (N � 1); pN�1,bb+N�1, pN ), if t 2 [N � 1, N ]

Then � is C1 on [ti, ti+1], for i = 0, ..N � 1. To ensure that � is C1 at knots pi, for
i = 1, ..N � 1, we shall make the following assumption:

�̇ki(bi0, ..., b
i

ki ; t� i+ 1)|t=i = �̇ki+1(bi+1
0 , ..., bi+1

ki+1 ; t� i)|t=i i = 0, ..., N � 2. (1)
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This differentiability condition allows us to express bb+
i

in terms of bb�
i

as:

bb+1 =
5

3
p1 �

2

3
bb�1 , (2)

bb+
i
= 2pi �bb�

i
, i = 2, ..., N � 2 (3)

bb+
N�1 =

5

2
pN�1 �

3

2
bb�
N�1, (4)

We are left with the task of computing the control points bb�
i

, for i = 1, ..., N � 1, that
generate the C1 Bézier curve �. In [11], we have shown that solutions of the problem of
minimization of the mean square acceleration of the Bézier curve � are exactly the control
points of the curve:

min
bb�1 ,...,bb�N�1

E(bb�1 , ...,bb
�
N�1) := min

bb�1 ,...,bb�N�1

Z 1

0
k�̈0

2(t; p0,bb
�
1 , p1)k2+

N�2X

i=1

Z 1

0
k�̈i

3(t; pi,bb
�
i
,bb�

i+1, pi+1)k2 +
Z 1

0
k ¨�N�1

2 (t; pN�1,bb�N�1, pN )k2 (5)

It turns out that the optimal solution Y = [bb�1 , ...,bb
�
N�1]

T 2 R(N�1)⇥m of (5) is the unique
solution of a tridiagonal linear system

Y = A�1CP = DP with
j=N+1X

j=0

dij = 1. (6)

where A is a tridiagonal sparse square matrix of size (N � 1)⇥ (N � 1) with a dominant
diagonal, C a matrix of size (N�1)⇥ (N+1) and P the matrix of pi’s of size (N+1)⇥m
given by:

A(1,1:2) = [16 6] (7)
A(2,1:3) = [6 36 9] (8)

A(i,i�1:i+1) = [9 36 9], (9)
A(n�1,n�2:n�1) = [9 36] (10)

C(1,1:2) = [16 6] (11)
C(2,2:3) = [6 36 9] (12)

C(i,i:i+1) = [9 36 9], i = 3, ..., n� 2 (13)
C(n�1,n�1:n+1) = [9 36] (14)

Now, let us assume that � is C1, so that (1) is met and the solution Y given by (6)
is obtained. The additional C2 condition for a C1 curve is the equality of the second
derivative at the joint point pi, for i = 1, ..., N � 1:

�̈ki(bi0, ..., b
i

ki ; t� i+ 1)|t=i = �̈ki+1(bi+1
0 , ..., bi+1

ki+1 ; t� i)|t=i i = 0, ..., N � 2.

It is obvious that with this C2 condition the position of the control points bb�
i

and bb+
i

that
generate the curve � will be modified. Therefore, it is more convenient to use another
notation. Let us denote by b�

i
and b+

i
the new control points on the left and on the right

hand side of the interpolation point pi, for i = 1, ..., N � 1. Computing the acceleration
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of � on respective intervals and taking into account that � is C1, we shall replace b+1 by
(2), b+

i
by (3), and b+

N�1 by (4). We deduce that :

b�2 =
1

3
p0 �

1

2
b�1 +

8

3
p1, (15a)

b�
i+1 = b+

i�1 + 4pi � 4b�
i
, i = 2, ..., N � 2 (15b)

pN = 2pN�1 + 2b+
N�1 � 6b�

N�1 + 3b+
N�2, (15c)

We see at once that points that will be modified by the additional C2 condition are bb�
i

and hence bb+
i
, for i = 2, ..., N�1. The point bb�1 remains invariant and consequently it will

be the case for bb+1 . We thus get b�1 = bb�1 , with bb�1 is the first row of the matrix Y obtained
as a solution of the optimization problem (5). However, the endpoint pN is affected as
we can deduce from Eqn. (15c). Nevertheless, it follows that giving the control point b�1
allows us to find all the other control points including b�2 with Eqn. (15a) and hence b+2
with (3), then b�

i+1 for i = 2, ..., N � 2 with (15b) and therefore b+
i
, for i = 3, ..., N � 2

with (3) and b+
N�1 with (4).

3 C
2

Interpolating Bézier Curves On SO(n)

Our objective in this section is to work out concretely the extension of our approach
used to find control points that define a C2 Bézier curve in the Euclidean space to the
Riemannian manifold SO(n). In other words, given R0, ..., RN a set of (N + 1) distinct
points in SO(n) and 0 = t0 < t1 < ... < tN = N an increasing sequence of time
instants, we present a conceptually simple framework to construct a C2 Bézier curve
� : [0, N ] ! SO(n) such that �(tk) = Rk, k = 0, ..., N . For the most part of Riemannian
manifolds, the generalization of our approach is not straightforward. For the case treated
here, of the Lie group SO(n), since it is a symmetric space and all the important geometric
functions have nice, closed-form expressions, the problem of finding a C2 Bézier curve that
interpolates a given set of points in such space can be completely solved.

Let us start by briefly sketch the differential structure of SO(n). We illustrate this with
the geometric toolbox described in table.1. For more details concerning the differential
geometry of SO(n), see [8], [1].

Table 1: Geometric toolbox for the Riemannian manifold SO(n)

Set: SO(n) = {R 2 Rn⇥n | RTR = In and det(R) = 1}
Tangent spaces: TRSO(n) = {H 2 Rn⇥n | RHT +HRT = 0}
Inner product: < H1, H2 >R= trace(HT

1 H2)
Exponential: ExpR(H) = ExpI(R

TH) = R exp(RTH).
Logarithm: LogR1

(R2) = R1 log(R
T
1 R2)

The shortest geodesic arc joining R1 to R2 in SO(n) can be parameterized explicitly
by:

↵(t, R1, R2) = R1 exp(t log(R
T

1 R2)), t 2 [0, 1]. (16)
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and we write:
↵̇(t, R1, R2) :=

@

@u
|u=t ↵(t, R1, R2).

Furthermore, for each R1 2 SO(n), there exists a symmetry

'R1 : SO(n) �! SO(n), R2 �! R1R
T

2 R1

that reverses geodesics through R1. It is easy to check that 'R1 is an isometry and thus
SO(n) turns into a Riemannian symmetric space. For R1, R2 2 SO(n), let us denote by
(dExp

R1
)H the derivative of Exp

R1
at H 2 TR1SO(n) and by (d'R1)R2 the derivative of

the geodesic symmetry 'R1 at R2. Then, the following result can be easily proved and
will be very important for the derivation of the results presented along this section.

Lemma 1. Let R1 2 SO(n).

i) (d'R1)
�1
R2

= (d'R1)'R1 (R2), for all R2 2 SO(n)

ii) (dExp
R1

)�1
H

= �(dExp
R1

)�H � (d'R1)ExpR1
(H), for all H 2 TR1SO(n)

Let us now denote by �k(t, V0, ..., Vk) the Bézier curve of order k 2 {2, 3} on SO(n)
with a number of control points Vi for i = 0, ..., k. Furthermore, similar to the Euclidean
case, we will suppose that there exists two artificial control points ( bZ�

i
, bZ+

i
) on the left

and on the right hand side of the interpolation point Ri for i = 1, ..., (N � 1). Hence, the
Bézier Curve � : [0, N ] �! SO(n) is defined by:

�(t) =

8
>><

>>:

�2(t;R0, bZ�
1 , R1), if t 2 [0, 1]

�3(t� (i� 1);Ri�1, bZ+
i�1,

bZ�
i
, Ri), if t 2 [i� 1, i], i = 2, ..., N � 1

�2(t� (N � 1);RN�1, bZ+
N�1, RN ), if t 2 [N � 1, N ]

In order to obtain equations that govern the control points of the C2 Bézier curve on
SO(n), one should begin to compute ( bZ�

i
, bZ+

i
), for i = 1, ..., N � 1, control points of the

Bézier curve � that ensure the C1 diffirentiablity condition of � at knots Ri on SO(n).
To do this, our main idea is to treat the fitting problem on the tangent space TRiSO(n)
at a point Ri 2 SO(n) as for the Euclidean case. Consequently, for each i = 1, ..., N � 1,
we would like to transfer the data R0, ..., RN in each tangent space TRiSO(n) using
Riemannian logarithmic map. The mapped data are then given by Q = (Qi

0, ..., Q
i

N
) with

Qi

k
= Log

Ri
(Rk) for k = 0, ..., N . Applying our approach used to define a C2 Bézier curve

on the Euclidean space Rm in each tangent space TRiSO(n), for i = 1, ..., N � 1, provides
a natural and intrinsic method to compute control points ( bZ�

i
, bZ+

i
) of the desired C1

Bézier curve � on SO(n).

Theorem 1. Let R0, ..., RN be a finite sequence of distinct points in the special orthogonal
group SO(n) with RT

i
Rk, i 6= k, sufficiently close to In. For each i = 1, ..., N � 1, Q =

(Qi

0, ..., Q
i

N
) are the corresponding mapped data in the tangent space TRiSO(n) at Ri

defined by Qi

k
= Log

Ri
(Rk) for k = 0, ..., N . Set t0 = 0 < ... < tN = N a sequence of time

instants. Then, there exists a unique matrix Xi = [(B1
1)

�, ..., (B1
N�1)

�]T 2 Rn(N�1)⇥n

containing the (N�1) control points that generate the C2 Bézier curve �i, in each tangent
space TRiSO(n) and a matrix Q̃ = [Q̃i

0, ..., Q̃
i

N
]T of size n(N +1)⇥n containing the new

(N + 1) interpolation points in each tangent space TRiSO(n).
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Algorithm 1 Construction of the C1 interpolating Bézier curve on SO(n).
Input: N � 3, R = [R0, ..., RN ]T a matrix of size n(N+1)⇥n containing the (N+1) interpolation

points on SO(n).
Output: bZ and R̃.
1: for i = 1 : N � 1 do

2: Calculate Q = [Qi
0, ..., Q

i
N ]T a matrix of size n(N + 1)⇥ n containing the (N + 1) inter-

polation points on TRiSO(n):
3: for k = 0 : N do

4: Qi
k = LogRi

(Rk) = Ri log(R
T
i Rk)

5: Calculate Xi = [(Bi
1)

�, ..., (Bi
N�1)

�]T a matrix of size n(N � 1) ⇥ n containing the
(N � 1) control points of the C2 Bézier curve �i on TRiSO(n), and Q̃ = [Q̃i

0, ..., Q̃
i
N ]T a

matrix of size n(N + 1)⇥ n containing the new interpolation points on TRiSO(n) using the
prescribed method on section 2.

6: Calculate control point bZ�
i with bZ�

i = ExpRi
((Bi

i)
�)

7: Calculate the new interpolation points R̃k = ExpRi
(Q̃i

k).
8: end for

9: end for

10: return bZ and R̃,

Proposition 1. Under the same hypotheses of Theorem 1, there exists a unique matrix
Z = [ bZ�

1 , ..., bZ�
N�1]

T 2 Rn(N�1)⇥n, containing the (N � 1) control points that generate
the Bézier curve � interpolating the points Ri at ti on SO(n), for i = 0, ..., N . The rows
of bZ are given by:

bZ�
i

= Exp
Ri
(x̃i), i = 1, ..., N � 1. (17)

where x̃i, represent the row i of Xi in TRiSO(n), for i = 1, .., N � 1. Moreover, the new
(N + 1) interpolation points in SO(n) are given by:

R̃k = Exp
Ri
(Q̃i

k
), k = 0, ..., N ; i = 1, ..., N � 1. (18)

Algorithm 1 provides a detailed exposition of the steps of the proof of Theorem 1 and
Proposition 1.

Corollary 1. The Bézier path � : [0, 1] ! SO(n) is C1 on SO(n).

Proof. The following result may be proved in much the same way as Corollary 3.3. in
[11].

We are now in a position to formulate the main theorem of this section, which contains
the counterpart of the equations derived in the last section that generate control points of
a C2 Bézier curve on Rm. Let us assume that � is C1, so that the solution bZ is obtained.
Let us denote by Z�

i
and Z+

i
the new control points on the left and on the right side of

the interpolation point R̃i that generate the C2 Bézier curve � on SO(n). The key point
to find the control points Z�

i
, for i = 1, ..., N � 1 is similar to the Euclidean case. That

is, we might know Z�
1 (and therefore Z+

1 by the C1 differentiability condition on SO(n))
and wish to define iteratively Z�

i
for i = 2, ..., N �1 (and obviously Z+

i
in much the same

way as Z+
1 ).



Bézier curves and C2 interpolation on SO(n) 7

Algorithm 2 Construction of the C2 interpolating Bézier curve on SO(n).
Input: N � 3, R̃ = [R̃0, ..., R̃N ]T a matrix of size n(N+1)⇥n containing the (N+1) interpolation

points on SO(n).
Output: Z.
1: Calculate bZ = [ bZ�

1 , ..., bZ�
N�1]

T using Algorithm 1.
2: Set Z�

1 = bZ�
1 .

3: Calculate control point Z+
1 :

4: Z+
1 = ExpR̃1

(� 2
3Exp�1

R̃1
(Z�

1 ))

5: Calculate control point Z�
2 :

6: Z�
2 = ExpZ+

1

⇣
1
3

⇣
(d'R̃1

)Z�
1

⇣
↵̇(1, R̃0, Z

�
1 )

⌘
� 4↵̇(0, Z�

1 , R̃1)
⌘⌘

7: for i = 2 : N � 2 do do
8: Z+

i = ExpR̃i
(�Exp�1

R̃1
(Z�

i ))

9: Z�
i+1 = ExpZ+

i

⇣⇣
(d'R̃i

)Z�
i

�
↵̇(1, Z+

i�1, Z
�
i )

�
� 2↵̇(0, Z�

i , R̃i)
⌘⌘

10: end for

11: Calculate control point Z+
N�1:

12: Z+
N�1 = ExpR̃N�1

(� 2
3Exp�1

R̃N�1
(Z�

N�1))

13: return Z,

Theorem 2. Let R̃0, ..., R̃N be a set of distinct points in the special orthogonal group
SO(n) given by Eqn. (18) and ↵(t) the shortest geodesic arc joining control points of the
curve � on SO(n) given by Eqn. (16). Let X1 = [(B1

1)
�, ..., (B1

N�1)
�]T be the matrix of

size n(N � 1)⇥ n containing the control points of the C2 Bézier curve �1 in TR1SO(n).
Then, there exists a unique matrix Z = [Z�

1 , ..., Z�
N�1]

T 2 Rn(N�1)⇥n, containing the
(N � 1) control points that generate the C2 Bézier curve � interpolating the points R̃i at
ti on SO(n), for i = 0, ..., N . The rows of Z are given by:

i) Z�
1 = Exp

R1
((B1

1)
�).

ii) Z�
2 = Exp

Z
+
1

⇣
1
3

⇣
(d'

R̃1
)
Z

�
1

⇣
↵̇(1, R̃0, Z

�
1 )

⌘
� 4↵̇(0, Z�

1 , R̃1)
⌘⌘

.

iii) Z�
i+1 = Exp

Z
+
i

⇣⇣
(d'

R̃i
)
Z

�
i

�
↵̇(1, Z+

i�1, Z
�
i
)
�
� 2↵̇(0, Z�

i
, R̃i)

⌘⌘
,

i = 2, ..., N � 2.

We illustrate the proposed method to construct a smooth interpolating path on SO(3)
from four rotation matrices R1, R2, R3, and R4. We display the result in Figure 1 where
rotations are applied to rotate a 12 sided dice and the given time instants are displayed
in a box. We can easily check that the resulting curve path is smooth including at the
interpolation points.

4 Conclusion

In this paper, we have introduced a new framework and algorithms to study the fitting
problem of C2 Bézier curves to a finite set of time-indexed data points on the special
orthogonal group SO(n). The proposed method takes into account the global symmetries
defined in the joint points. Therefore, the presented approach is valid on any locally
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Fig. 1: Example of an interpolating path on SO(3) applied to rotate a 12 sided dice at given
time instants (1, 5, 9, 13).

symmetric space and other Riemannian symmetric spaces. In the future, we intend to
extend the theory and then apply it to more general nonlinear manifolds.
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