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Abstract

The description of gravity waves propagating on the water surface is consid-
ered from a historical point of view, with specific emphasis on the development
of a theoretical framework and equations of motion for long waves in shallow
water. This provides the foundation for a subsequent discussion about tsunami
wave propagation and run-up on a sloping beach, and in particular the role of
wave dispersion for this problem. Wave tank experiments show that wave dis-
persion can play a significant role for the propagation and wave transformation
of wave signals that include some higher frequency components. However, the
maximum run-up height is less sensitive to dispersive effects, suggesting that
run-up height can be adequately calculated by use of non-dispersive model
equations.
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1 Introduction

Surface gravity waves propagating on the air-sea interface are categorized as long
waves when their wave length λ is large compared with the average water depth h in
a water basin. Waves of this type include very large scale phenomena such as tides
and seiches, and local phenomena such as non-breaking shoaling waves at the coast.
In recent years much attention has been connected with the study of tsunamis, with
respect to their propagation over vast distances in open ocean, their transformation
in coastal waters and their inundation of coastal areas. A range of different model
equations have been discussed in connection with long wave propagation, including
nonlinear shallow water equations (NLSW) and Boussinesq-type equations, which
differ in their ability to represent nonlinear and dispersive effects. While elaborate
model equations may provide more accurate representation of the wave propagation
and transformation, they are generally more computationally demanding to integrate
over time. In practical cases where a prediction of the wave behaviour is needed
quickly, such as for a tsunami warning system, it has therefore been common practice
to rely on simple NLSW equations rather than Boussinesq-type equations. Questions
regarding the trade off between accuracy of prediction and efficiency of computation
for shallow water model equations remain an active area of research to this day.

In this article we consider the problem of shallow water waves in a historical
context, introducing some basic concepts of wave propagation. Thereafter we discuss
the importance of these factors in the context of tsunami wave propagation and run-
up on a sloping beach. Finally we consider some examples of different wave types,
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and assess the suitability of NLSW equations and a Boussinesq-type equation for
each of these.

2 Historical background

The description of surface gravity wave propagation at the air-sea interface is one
of the truly classical subjects in fluid mechanics, and developed in multiple stages
with early contributions from some of the most prominent figures in science history
such as Newton, Euler, Laplace, Lagrange, Poisson, Cauchy and Airy (see Craik
(2004, 2005); Darrigol (2003) for historical references). For instance, in 1786 La-
grange demonstrated that small-amplitude waves would propagate in shallow water
with a velocity of c =

√
gh, where g represents the acceleration of gravity, and h rep-

resents the water depth. Laplace (1776) was the first to pose the general initial-value
problem for water wave motion, i.e. given a localized initial disturbance of the sea
surface, what is the subsequent motion? He was also the first to derive the full linear
dispersion relation for water waves. A complete linear wave theory, which included
wave dispersion, was later published by Airy (1845). Despite the long and extensive
history of investigations into this problem, the study of dispersive surface gravity
waves continues to be an active field of research to this day.

2.1 Airy wave theory

In the following discussion we will restrict our attention to wave propagation in one
horizontal dimension x on a surface that can be displaced in the vertical z direction
(see Fig. 1). It is fairly simple to extend the theory to two horizontal dimensions,
but we will not consider any examples where this is necessary, e.g. crossing wave
patterns. A more thorough description of these equations can be found in standard
fluid mechanics textbooks (see e.g. Kundu (1990)).

A simple model equation for the propagation of surface gravity waves can be
derived under the assumption of irrotational fluid motion, ignoring viscous effects,
in which case the flow velocity components can be expressed in terms of a velocity
potential φ, defined by

u =
∂φ

∂x
and w =

∂φ

∂z
, (1)

for horizontal and vertical velocity components u and w, respectively. We do not
consider effects due to surface tension, which is an important effect for short and
steep waves but do not contribute significantly to long crested waves. Lastly, we
assume that the water depth does not change very abruptly, i.e. that the water
depth is fairly constant over the wave length.

The basic equation of motion is derived from the continuity equation

∂u

∂x
+
∂w

∂z
= 0 , (2)

3



Figure 1: Reference coordinate system for surface gravity waves.

which is transformed to the Laplace equation

∂2φ

∂x2
+
∂2φ

∂z2
= 0 (3)

with substitution of the velocity potential. The sea bed is traditionally considered
to be rigid and non-permeable, which implies that flow is only permitted along the
bed profile. Under this assumption the boundary condition at the sea bed requires
a zero normal velocity to the bed surface itself, which for a flat sea bed simplifies to

w =
∂φ

∂z
= 0 at z = −h . (4)

At the sea surface the fluid parcels are not restricted by any rigid boundary, and
in fact the location of this free surface boundary is a variable we wish to determine
by solving the equations of motion. If the wave field is sufficiently smooth we can
assume that this boundary is well represented by a material surface, i.e. that fluid
parcels at the boundary never leave the surface. Under this assumption the kinematic
boundary condition prescribed at z = η becomes

∂η

∂t
+ u

∂η

∂x

∣∣∣∣
z=η

=
∂φ

∂z

∣∣∣∣
z=η

. (5)

Provided the nonlinear term in eq. (5) is sufficiently small, this expression can be
replaced by the linear equation

∂η

∂t
=
∂φ

∂z
at z = η . (6)

Finally, the dynamic boundary condition prescribes that the pressure is continuous
across the free surface boundary, which is expressed by the linear form of the Bernoulli
equation

∂φ

∂t
+
P

ρ
+ gz = 0 , (7)
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where P is pressure and ρ is density. Assuming that the ambient pressure is zero at
the free surface, i.e. P = 0 at z = η, this condition simplifies to

∂φ

∂t
+ gη = 0 at z = η . (8)

The complete boundary value problem is defined by eqs. (3), (4), (6) and (8).
In order to solve the equations we need to assume an initial wave form. By

Fourier analysis it is possible to decompose any continuous disturbance into a sum
of sinusoidal components, hence we will assume an initial condition specified by one
such component with wave number k and angular frequency ω

η(x, t) = a cos(kx− ωt) . (9)

The wave number and angular frequency represents the number of wave cycles (in
radians) per unit length and unit time, respectively, and are defined in terms of the
wave length λ and wave period T as

k =
2π

λ
and ω =

2π

T
.

Solving the Laplace equation (3) with kinematic boundary conditions (4) and (6)
with this initial condition results in a velocity potential

φ =
aω

k

cosh k(z + h)

sinh kh
sin(kx− ωt) , (10)

and the original velocity components become

u = aω
cosh k(z + h)

sinh kh
cos(kx− ωt) , (11)

w = aω
sinh k(z + h)

sinh kh
sin(kx− ωt) . (12)

By combining this solution with the dynamic boundary condition (8) we find the
dispersion relation between k and ω as

ω =
√
gk tanh kh , (13)

and the corresponding phase velocity

cp ≡
ω

k
=

√
g

k
tanh kh . (14)

The dispersion relation eq. (13) links the wave number k with the angular fre-
quency ω, and represents a necessary condition for consistency of linear wave solu-
tions for the equations of motion. This implies that sinusoidal wave solutions eq.
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(9) can exist if and only if the wave length and period are strictly linked with each
other according to eq. (13). Eq. (14) demonstrates that the speed of propagation
for linear waves depend on the wave number (equivalently, wave length), hence an
initial disturbance that contains wave components with various wave numbers will
tend to separate into clusters of individual components as the waves propagate away
from the source.

For waves in a dispersive medium, the energy of wave components does not prop-
agate with the phase velocity cp eq. (14), but with the group velocity cg = dω/dk.
With the dispersion relation defined in eq. (13), the group velocity becomes

cg ≡
dω

dk
=
cp
2

[
1 +

2kh

sinh 2kh

]
. (15)

2.1.1 Deep and shallow water approximations

As seen in eq. (14), the phase velocity for wave components with different wave
numbers depend on the hyperbolic tangent function. It is instructive to consider
the behaviour of this equation in the deep and shallow water conditions, which
is determined by the value of kh (i.e. water depth relative to wave length). A
commonly used classification is to consider kh ≥ π as deep water, kh ≤ π/10 as
shallow water, and π/10 < kh < π as intermediate water depth. This classification
should be considered a “rule-of-thumb” rather than a strict rule, as the dispersion
relation varies continuously over the range of kh.

For the deep water approximation, the hyperbolic functions in eqs. (14) and (15)
can be approximated as

lim
kh→∞

tanh kh = 1 and lim
kh→∞

2kh

sinh 2kh
= 0 ,

in which case the phase and group speed in deep water becomes

cp =

√
g

k
and cg =

cp
2
, (16)

respectively. This implies that short waves in deep water propagate slower than
longer waves, and the wave energy propagate slower than the wave phase. Note
that eq. (16) is derived under the assumption that gravity is the only relevant
restoring force, which is not always correct. For instance, at very short wave lengths
(cm scale at the air-water interface) surface tension becomes the dominant restoring
force, which allows shorter wave components to propagate faster than longer wave
components. The velocity components simplify to

u = aωekz cos(kx− ωt) , (17)

w = aωekz sin(kx− ωt) , (18)
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which are circular orbits with a radius of a at the surface. It should be noted that
the linear wave theory assumes that effects due to the finite wave amplitude are
negligible. In reality waves have a finite amplitude, which induces a slow drift in
the direction of wave propagation, and therefore the orbits of fluid parcels are not
perfect circles but display a coil-like behaviour. This effect is called Stokes drift.

In shallow water the hyperbolic functions in eq. (14) can be replaced by kh
because

tanh kh = kh+O
(
(kh)2

)
, as kh→ 0 ,

and the hyperbolic function in eq. (15) can be approximated as

lim
kh→0

2kh

sinh 2kh
= 1 ,

hence the simplified expressions for the phase speed and group speed become

cp =
√
gh and cg = cp , (19)

respectively. In this case the phase velocity is not dependent on the wave number k,
hence waves in the shallow water limit are non-dispersive. This is also reflected in
the group velocity, which becomes identical to the phase velocity in shallow water. In
the special case of unidirectional flow, the shallow water wave field therefore becomes
stationary in the coordinate system that follows the phase speed cp. The velocity
components for shallow water waves (of small but finite depth) are

u =
aω

kh
cos(kx− ωt) , (20)

w = aω
(

1 +
z

h

)
sin(kx− ωt) . (21)

These are elliptic orbits where the vertical component is much smaller than the
horizontal.

2.2 Nonlinear long waves

The wave theory developed by Airy is a linear system, requiring both the underlying
equations of motion and boundary conditions to be linear, and therefore any wave
solution to this system must conform to the superposition principle. This means
that the net response to the system of two or more stimuli can be established by
determining the response of each stimulus separately, and subsequently adding these
together. Equivalently, any linear combination or scaling of valid solutions will pro-
duce a new valid solution to the problem. In particular, this means that the wave
amplitude, which can be altered by a scalar multiplication, must be an independent
variable that can not have any functional dependence to other wave properties. This
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property is specific for linear systems, whereas for nonlinear systems the wave ampli-
tude will normally be linked with other wave properties. In fact, waves of this type
had already been described at the time when Airy published his account.

A few years prior to the publication of Airy’s wave theory, the naval engineer
John Scott Russell had published accounts of observations and experiments devoted
to surface gravity waves (Russell, 1844). Russell seem to have devoted most of
his efforts to explain wave generation and propagation in channels, which was of
practical importance for inland waterway transport at that time. A particularly
famous account describes his first observation of a large, solitary, progressive wave,
which was generated by a boat in a channel and proceeded to propagate upstream
of the boat. Russel was able to follow this wave on horseback for more than a
mile, and while it retained its original shape it then gradually subsided. In a series
of subsequent experiments he determined that the wave progressed upstream with
a velocity c =

√
g(h+ η), and that the wave making resistance against the boat

motion was at a maximum when the boat was traveling at this speed. He also
proposed that tidal motion could be explained as solitary waves of very large extent,
and suggested a mechanism whereby the tidal motion could generate tidal bores in
rivers and channels.

Airy devoted some attention to Russell’s experiments, but he dismissed Russell’s
treatment of solitary waves. According to Airy’s wave theory, maintaining such a
singular disturbance in the absence of any additional force would require the sur-
face slope of the disturbance to be constant, but since the slope should vanish at
infinity such a disturbance could not exist. The existence and importance of solitary
waves remained a contested issue for several decades after the initial treatments by
Russell and Airy. For example, the prominent scientist Georges Gabriel Stokes first
dismissed the possibility of such waves and their relevance to tidal motion in his 1846
hydrodynamic researches review (Stokes, 1846), but later became supportive of the
idea after researching finite oscillatory waves.

In 1870 Adhémar Jean Claude Barré de Saint-Venant published an account of
tidal bores in rivers (named mascaret in French), and the following year (de Saint-
Venant, 1871) he presented a set of equations that described the phenomenon

∂A

∂t
+
∂(Au)

∂x
= 0 , (22)

∂u

∂t
+ u

∂u

∂x
+ g

∂η

∂x
= −Pw

A

τ

ρ
, (23)

where A(x, t) is the channel cross-section area, u(x, t) is the depth-averaged hori-
zontal velocity component, Pw(x, t) is the length of wetted channel perimeter at the
cross-section, τ(x, t) is the wall shear stress, and ρ is the water density. The set of
equations (22) and (23) represent conservation of mass and balance of momentum,
respectively, and is possibly the first version of NLSW equations to be presented in
a publication. Due to the friction force induced by the shear stress at channel walls,
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the momentum of an initial disturbance will not be conserved in the model system.
The shallow water equations (22, 23) can describe the propagation of a solitary wave,
but the wave will transform over time, with a steepening of the wave front and a
decrease in the slope behind the crest. While this behaviour nicely described the
transformation of a regular tidal wave to a tidal bore in a channel, it did not provide
an adequate framework for describing the solitary waves of constant shape observed
by Russell. Although similar shallow water equations had been presented prior to
Saint-Venant’s treatment of mascarets (Fenton, 2010), the one-dimensional (1D) ver-
sion of the shallow water equations are often referred to as Saint-Venant equations
in honor of his contribution to understand shallow water hydrodynamics.

The same year as Saint-Venant presented the NLSW equations for description of
mascarets, one of his disciples, Joseph Boussinesq, presented the first approximate so-
lution of a solitary wave propagating without deformation (Boussinesq, 1871), which
finally provided a firm theoretical support for the existence of Russell’s wave. The
following year (Boussinesq, 1872) he presented a derivation of equations which per-
mitted his wave solution

∂η

∂t
+
∂(Hub)

∂x
=
h3

6

∂3ub
∂x3

, (24)

∂ub
∂t

+ ub
∂ub
∂x

+ g
∂η

∂x
=
h2

2

∂3ub
∂t∂x2

, (25)

where H = h+η (see Fig. 1) and ub is the horizontal velocity at the sea bed z = −h.
This is the original version of what is now called Boussinesq equations. In the absence
of higher-order derivatives (right-hand side of eqs. (24,25)) the Boussinesq system
becomes equivalent to the Saint-Venant equations (22,23) without a friction term.
Boussinesq derived his equations from the Euler equations by eliminating the explicit
dependence on the vertical coordinate z in these equations, while retaining nonlinear
terms of highest order. This procedure, which is now commonly used when deriving
shallow water equations, does not a priori stipulate the vertical reference level to
be used for the horizontal velocity component or which higher-order terms to retain
in the derivation. Numerous variations of Boussinesq-type systems can therefore
be derived by selecting different reference variables and forms of nonlinear terms,
resulting in equations with slightly different dispersive and nonlinear properties, as
well as numerical stability properties. A particularly useful variation was derived by
Peregrine (1967)

∂η

∂t
+
∂(Hu)

∂x
= 0 , (26)

∂u

∂t
+ u

∂u

∂x
+ g

∂η

∂x
− h

2

∂3(hu)

∂2x∂t
+
h2

6

∂3u

∂x2∂t
= 0 , (27)

which can be applied under gently varying depth conditions. While the achievement
of Boussinesq is widely recognized at present time, his results were not immediately
seized upon by his contemporaries. Five years after Boussinesq presented his solitary
wave solution, Lord Rayleigh independently derived a long wave equation for the
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solitary wave of constant shape (Rayleigh, 1876). When Korteweg and de Vries
later derived their famous KdV equation, they reference to Rayleigh’s work but were
apparently unaware of the earlier contribution by Boussinesq (Korteweg and de Vries,
1895).

2.3 Model equations for long wave run-up on a beach

In the classical formulations of long wave equations it is usually assumed that the
waves propagate in a water basin with small and gentle changes in water depth.
However, we would like to apply these model equations to study wave run-up on a
beach, and this requires some modifications to the standard equation formulations.
In the following we consider a depth profile

h(x) =

{
h0 , if x ∈ [a, b]

h0 − (x− b) tanα , if x ∈ [b, c]
, (28)

with waves approaching the beach from the offshore point a (see Fig. 1). The
modified NLSW equations are defined as

∂H

∂t
+
∂(Hu)

∂x
= 0 , (29)

∂(Hu)

∂t
+

∂

∂x

(
Hu2 +

g

2
H2
)

= gH
∂h

∂x
, (30)

where u(x, t) is the depth-averaged flow velocity. For comparison, we use a Boussinesq-
type equation based on Peregrine’s formulation, which we call the modified Peregrine
equations

∂H

∂t
+
∂Q

∂x
= 0 , (31)

(
1 +

1

3

∂H2

∂x
− H

6

∂2H

∂x2

)
∂Q

∂t
− H2

3

∂3Q

∂x2∂t
(32)

−H
3

∂H

∂x

∂2Q

∂x∂t
+

∂

∂x

(
Q2

H
+
g

2
H2

)
= gH

∂h

∂x
,

where Q = Hu represent the horizontal momentum. The modified Peregrine equa-
tions have been studied in detail in Durán et al. (2018).

2.4 Numerical method

In the following discussion we will apply numerical methods for integration of the
Boussinesq equations over time. For simple channel geometries it is possible to derive
exact solitary wave and periodic wave solutions to the Boussinesq equations (Chen,
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1998; Clarkson, 1990; Yan and Zhang, 1999). Furthermore, the run-up properties
of such general wave solutions can be investigated by analytical methods for some
regular beach profiles (Didenkulova and Pelinovsky, 2011; Didenkulova et al., 2007;
Pelinovsky and Mazova, 1992). However, such analytical methods are not practical
when considering general wave types and variable depth conditions. The numerical
model we use is based on a finite volume method for both the modified NLSW
and modified Peregrine equations (Durán et al., 2018; Dutykh et al., 2011). This
involves discretization of the of the governing equations, and obtaining solutions on
a finite mesh covering the model domain. In the finite volume method, the divergence
theorem is applied to convert divergence terms in the differential equations to surface
integrals, which are evaluated as fluxes at the cell surfaces in the mesh. Finite volume
methods are particularly useful for problems where quantities should be preserved,
e.g. mass or momentum, since whatever quantity flows out of one grid cell surface
will be identical to the inflow of the neighbouring grid cell.

The simplest approximation to a solution in the finite volume formulation is
obtained by considering all variables as constant within each grid cell, whereby a
piece-wise constant solution can be obtained. However, by this approach the spatial
discretization error will be determined by the grid size. In order to obtain more
accurate results, a common method is to replace the piece-wise constant data with
a piece-wise polynomial representation of the solution. In our simulations we have
applied the non-oscillatory UNO2 scheme, which is designed to constrain the number
of local extrema in the numerical solution at each time step (Harten and Osher, 1987).

Integration of the solution forward in time is achieved by the Bogacki-Shampine
time stepping method (Bogacki and Shampine, 1989). This is a version of a Runge-
Kutta method, and is a third order method with four stages. An embedded second
order method is used to estimate the local error and if necessary adapt the time-step
size.

3 Tsunami propagation and run-up

Developing model equations that adequately describe the propagation and run-up
of tsunamis is a challenging task. Suggested model formulations range from sim-
ple nonlinear shallow water theory (NLSW) to the very elaborate fully nonlinear
Navier-Stokes theory (FNS), with Boussinesq theory occupying an intermediate place
in between. NLSW has often been favored for long wave run-up calculations over
dispersive wave models represented by Boussinesq-type approximations. Wave run-
up calculated using dispersive model formulations is prone to numerical instabili-
ties, which make computations more sensitive to numerical parameters (Bellotti and
Brocchini, 2001). Furthermore, the Boussinesq terms in the dispersive model tend
to zero at the shoreline, so that dispersive equations simplify to NLSW in this region
(Madsen et al., 1997).

High accuracy can be achieved by applying the fully nonlinear Navier-Stokes
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equations, but this approach requires large computational resources and a lengthy
integration time, making it unsuitable for operational forecasting in ocean-wide or
even regional scale applications. Horrillo et al. (2006) studied dispersive effects dur-
ing 2004 Indian Ocean tsunami propagation by comparing NLSW with the fully
nonlinear Navier-Stokes equations (FNS). They concluded that NLSW offered the
more suitable framework for hazard assessments, providing an adequate assessment
at a very low computational cost. Although the NLSW model tended to over-predict
the maximum wave run-up, the over-prediction was considered to be within a reason-
able range for a safety buffer, and hence did not degrade the overall assessment. For
tsunami warning purposes it is of critical importance to determine the time of arrival
of the leading wave to different coastal sections. These leading waves are usually well
described by NLSW, whereas the trailing wave train may contain shorter wave com-
ponents that are more sensitive to wave dispersion (Løvholt et al., 2012). For this
reason, the NLSW is often considered to be more appropriate than more elaborate
Boussinesq-type methods for warning purposes (Glimsdal et al., 2013). Note, that
maximum wave is often not the first one, at least for tsunamis propagating over a
long distance, see, for example, Candella et al. (2008).

3.1 Wave tank experiment

Wave tank experiments were carried out at the Large Wave Flume (GWK) located
in Hannover, Germany, and is the world’s largest publicly available research facility
of its kind. It has a length of about 310 m usable for experiments, a width of 5 m,
and a maximum depth of 7 m. Access to this facility was granted by the Integrating
Activity HYDRALAB IV program, and was carried out over two periods; 10–16 Oct.
2012 and 29 July – 9 Aug. 2013. The basic experiment setup consisted of a wave
generator at one end of the flume, a 251 m channel of constant depth, and a ramp of
1:6 slope at the opposite end of the flume representing the beach. The water depth in
the channel was kept at a constant h0 = 3.5 m for all the experiments. Wave gauges
were placed at 16-18 locations along the channel to measure the waves propagating
in the channel and up the slope. The wave run-up was measured by a capacitance
probe and also recorded by two regular video cameras. A series of experiment runs
were performed with different initial wave signals, and with varying roughness of the
ramp slope surface. Details of the experiments are described in Didenkulova et al.
(2013).

4 Measured and modeled wave propagation and

run-up

In order to illustrate the wave transformation and run-up properties for different
wave signals, we consider the four experimental test cases listed in Table 1. These
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Type of waves Wave Initial wave Experimental
period (s) amplitude (m) run-up (m)

Sine wave 20 0.20 0.571
Bi-harmonic wave 20 0.12 0.794
Wake-like train 20→10 ∼ 0.10 0.517
Positive pulse 20 0.15 0.438

Table 1: Parameters for four experiment runs of different wave types, and the mea-
sured run-up for each case.

consist of a regular sine wave, a bi-harmonic wave signal, a wave train that resembles
a ship wake signal, and a single positive pulse. The wave maker produced waves of
period T = 20 s, which remained constant for the sine and bi-harmonic signals, but
gradually reduced to T = 10 s for the wake-like train. The initial wave amplitude
was different for each experiment, with the largest initial wave amplitude A = 0.20 m
for the sine wave (Fig. 2a). However, the bi-harmonic wave signal contained two
wave components with amplitude A = 0.12 m that could interfere constructively to
produce instances of larger amplitude wave peaks than the sine wave (Fig. 3a). The
wake-like train did not contain waves of equal amplitude. Instead, initially long,
low-amplitude waves were followed by progressively shorter and larger-amplitude
waves (Fig. 4a). The single positive pulses were generated with A = 0.15 m, but
were not initiated as stable solitary wave shapes and hence reduced in amplitude to
approximately A = 0.10 m at an early stage during the wave propagation (Fig. 5a).
Each figure shows a comparison between the experimental record and two model
results; the dispersive modified Peregrine model (hereafter mPer) and the NLSW
model solutions.

Figure 2 show the sine wave propagation and run-up. In this case mPer is fairly
close to the measured waves throughout the propagation phase and for the run-
up, although there is a tendency for mPer to underestimate the run-up height. It
is noticeable that NLSW has a lower wave height near the wave maker than the
measured wave, but increase in amplitude relative to the reference solution, and in
the final stage produce significantly larger run-up values than the measured values.
It is clear that the dispersive properties of mPer in this case balance the nonlinear
effect to produce a relatively stable wave train, while this feature is missing for NLSW
and therefore results in excessive nonlinear steepening and amplification. Note that
the capacitance runup gauge does not record the wave form correctly in the receding
phase. The reason is that the wires are submerged in the thin near-surface layer of
water when the bulk of the wave is gone. Therefore, only the raising front phase of
experimentally measured runup should be used for comparison with the simulations
and the rundown values indicated by the gauge should be ignored.

Figure 3 show the bi-harmonic wave propagation and run-up. In this case we
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(a) Water surface elevation at different wave gauges (x = 60 m, 160 m, 220 m,
and 235 m from the wave maker)

(b) Run-up height

Figure 2: Wave propagation and run-up for a sine wave with A = 0.2 m and T = 20 s
on a beach slope tanα = 1:6, mPer is shown with the red dash line, NLSW solution
is shown with Blue dash-dots line and the experimental record is shown with the
black dots line.
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(a) Water surface elevation at different wave gauges (x = 60 m, 160 m, 180 m,
and 230 m from the wave maker)

(b) Run-up height

Figure 3: Wave propagation and run-up for a bi-harmonic wave with A = 0.12 m
and T = 20 s on a beach slope tanα = 1:6, mPer is shown with the red dash line,
NLSW solution is shown with Blue dash-dots line and the experimental record is
shown with the black dots line.
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again see a reasonably good agreement in wave structure between mPer and the
measurements, but now there is a clear tendency that mPer underestimates the wave
amplitude both in the propagation phase and the run-up phase. The NLSW solution
looks fairly reasonable in the early stages, but significant discrepancies appear at
x = 180 m and x = 230 m in the later stages of the wave train. The bi-harmonic
signal is particularly sensitive to the phase speed as wave components may interfere
both constructively and destructively at different stages, hence the inclusion of wave
dispersion plays a significant role in this case.

Figure 4 show a wave train with a wake-like structure, with a distinct envelope
shape created by an initial long, low-amplitude wave followed by shorter, higher
amplitude waves. The initial phase of the wave train is captured well by both mPer
and NLSW, although both models struggle to reproduce the later stages of the wave
train. Both models also reproduce the run-up phase fairly well, although NLSW
develops a slight phase shift relative to the reference solution, and both models
severely over-estimates the run-up for the trailing waves.

Figure 5 show the wave propagation and run-up for single positive pulse waves.
The model results for mPer and NLSW are remarkably similar for the propagation
phase in this case, although both models tend to overestimate the wave amplitude
slightly. This discrepancy can likely be explained by inaccuracies in the initial condi-
tions for the wave, as it deviates slightly from a stable solitary wave form. The run-up
results are likewise very similar between mPer, NLSW and the reference solution,
but again we see the tendency that mPer underestimates the run-up height, whereas
NLSW overestimates the run-up height and has a slight phase shift indicating that
the propagation speed is slightly elevated relative to the reference solution.

5 Concluding remarks

The results in the preceding section demonstrate some of the capabilities of the
NLSW and modified Peregrine equation systems for representation of long wave
transformations. Both models compare well with the long single wave of positive
polarity. For sine waves, bi-harmonic signals and dispersive wake-like signals the
wave dispersion clearly plays a more prominent role, in which case NLSW does
not adequately represent the high frequency components. Despite the differences in
wave transformation and propagation, the differences in maximum wave run-up are
quite modest, suggesting that the dispersive wave properties does not influence the
resulting run-up to a significant extent. This would suggest that NLSW could be a
suitable framework for prediction of tsunami events also in the future, despite the
known shortcomings of the model equations for dispersive waves.

Research into surface gravity wave phenomena has a long and fascinating history.
Modern day researchers benefit greatly by working within a framework where the-
ories for e.g. Fourier analysis, ordinary and partial differential equations, potential
theory, and perturbative methods, are well established. The emergence of compu-
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(a) Water surface elevation at different wave gauges (x = 60 m, 160 m, 180 m,
and 230 m from the wave maker)

(b) Run-up height

Figure 4: Wave propagation and run-up for a wake-like wave train with A = 0.1 m
and T ∈ [10, 20] s on a beach slope tanα = 1:6, mPer is shown with the red dash
line, NLSW is shown with Blue dash-dots line and the experimental record is shown
with the black dots line.
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(a) Water surface elevation of solitary wave at different wave gauges (x = 60 m,
160 m, 2250 m, and 245.53 m from the wave maker)

(b) Run-up height

Figure 5: Wave propagation and run-up for a single positive pulse (solitary wave)
with A = 0.15 m and T ∈ [10, 20] s on a beach slope tanα = 1:6, mPer is shown with
the red dash line, NLSW is shown with Blue dash-dots line and the experimental
record is shown with the black dots line.
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tational resources have created new approaches for research into complex physical
phenomena by use of numerical modeling tools. Despite these differences between
modern day research and the situation faced by researchers in the eighteenth and
nineteenth centuries, some properties of research activities are remarkably similar.
A constant feature of scientific research is the need to conduct accurate experiments
and develop more adequate model equations to describe the natural phenomena we
observe. However, there is also a debate concerning the value of accuracy and prac-
ticality in describing these phenomena. While Airy and Stokes were debating the
existence and basic properties of solitary waves of permanent shape in channels on
theoretical grounds, Russell was constructing boats that were capable of high speed
travel in channels, helped in part by this very wave phenomenon. To some extent,
a similar debate is ongoing today within the tsunami research community, where on
one side there is a need to develop models that represent fundamental properties of
tsunami waves as accurately as possible in order to study the wave transformation
and run-up processes in detail, and on the other side a need to develop tools for
operational forecasting of tsunami wave events that are adequate and practical for
warning purposes.
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