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On Prefixal One-Rule String Rewrite Systems

Michel Latteux, Yves Roos∗

Univ. Lille, CRIStAL, UMR 9189,
59650 Villeneuve d’Ascq, France

Abstract

Prefixal one-rule string rewrite systems are one-rule string rewrite systems for
which the left-hand side of the rule is a prefix of the right-hand side of the
rule. String rewrite systems induce a transformation over languages: from a
starting word, one can associate all its descendants. We prove, in this work,
that the transformation induced by a prefixal one-rule rewrite system always
transforms a finite language into a context-free language, a property that is
surprisingly not satisfied by arbitrary one-rule rewrite systems. We also give
here a decidable characterization of the prefixal one-rule rewrite systems whose
induced transformation is a rational transduction.

Keywords: One-rule string rewrite system, Context free language

1. Introduction

String rewrite systems are of primordial interest for computational problems.
Mainly, the problems that are investigated for rewrite systems are the accessi-
bility problem, the common descendant problem, the confluence problem, the
termination and uniform termination problem. For several years they have been
intensively studied and several deep results have been obtained. However some
intriguing decidability problems remain open even for very simple rewrite sys-
tems1. The most known among these problems is certainly the decidability of
the termination of one-rule rewrite systems, a question that remains open for
more than thirty years.

Other problems consider rewrite systems as transformation operations on lan-
guages: given a rewrite system S and a word w, S∗(w) is the set of all the
descendants of w in the rewrite system S. Thus S induces a transformation
relation S∗ over languages and, from there, one can wonder how these transfor-
mations on languages can interact with the classical families of formal languages
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([Sén90, Sén95]). In particular, a natural question is the following: given two
classes of languages C1 and C2, and a family of rewrite systems F , is it true that,
for every system S in F and for every language L in C1, it holds that S∗(L) is
in C2. If the property is satisfied then rewrite systems in F are said to be C1/C2
and, in the case when C1 = C2, we rather say that rewrite systems in F preserve
C1.

In this context, some families of rewrite systems have been identified as pre-
serving rational languages (C1 = C2 = RAT) like k-period expanding systems
([Leu08]), deleting systems ([HW04]) and match-bounded systems ([GHW04]) or
preserving context-free languages (C1 = C2 = CF) like systems with inhibitor
([McN01])and inverse match-bounded systems ([GHW05]).

Even for very simple rewrite systems, the question whether these systems are
C1/C2 for some given classes of languages C1 and C2 is not always so easy to
answer. One-rule rewrite systems are among the simplest rewriting systems
since they are defined by only two words u, v over an alphabet A. Clearly,
one-rule rewrite systems do not always preserve regular languages: the simplest
example of such a one-rule (length-preserving) rewrite system is the system
S = {ba −→ ab} but it has been proved RAT/CF in [CR90] , in the context
of a particular class of rewrite systems called semi-commutations. From this,
one could think that one-rule rewrite systems are at least FIN/CF where FIN is
the class of finite languages, but, rather surprisingly, it is not the case: for the
one-rule rewrite system S = {ba 7→ a2b2} it has been proved that S(b2a2) is
not a context-free language([LR12]). Since then, one-rule grid rewrite systems,
introduced in [Ges02] have been proved FIN/CF in [LR12].

In this paper, we consider prefixal one-rule rewrite systems that are systems in
the form S = {u 7→ uf} for some word u and some non empty word f , with
respect to the FIN/CF property and to the preserving of RAT. More precisely,
after technical preliminaries given in Section 3, we prove that every prefixal one-
rule rewrite system S is FIN/CF by defining, for every word w, an appropriate
context-free grammar that depends on S and w and that generates S∗(w). Then,
in section 5, we give a new example, different from the one given in [LR12],
of a one-rule rewrite system that is not FIN/CF and we prove that these two
examples are the simplest examples of non FIN/CF one-rule rewrite systems.
In Section 6, we give a decidable characterization of prefixal one-rule rewrite
systems S = {u 7→ uf} for which S∗ is a rational relation. In particular we
prove that it is the case if and only if S∗(u) is a rational language.

2. Preliminaries and Notations

Let A be a finite alphabet, A∗ will denote the free monoid over A and ε the
empty word in A∗. For a word w ∈ A∗, |w| denotes the length of the word w
and, for any letter a ∈ A, |w|a denotes the number of occurrences of the letter
a in w.
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A word w′ is a factor of a word w if there exist two words w1 and w2 such that
w = w1w

′w2 and we denote by F(w) the set of the factors of the word w. We
denote by RF(w) (respectively LF(w)) the set of suffixes (respectively prefixes)
of the word w, that is:

RF(w) = {w′ ∈ A∗ | ∃w′′ ∈ A∗, w = w′′w′},

LF(w) = {w′ ∈ A∗ | ∃w′′ ∈ A∗, w = w′w′′}.

For two words w and w′, we denote w ∧l w′ the largest word in LF(w) ∩ LF(w′)
and we denote w ∧r w′ the largest word, in RF(w) ∩ RF(w′).

A word u ∈ A+ is said to be primitive if it is not a power of another word, that
is, u = vn with v ∈ A∗ implies n = 1 and v = u. The root of a word u ∈ A+

is the unique primitive word ρ such that u = ρn for some natural number n. A
nonempty set X ⊆ A∗ is called a code if every equation u1u2 . . . um = v1v2 . . . vn
with ui, vj ∈ X for all i and j implies n = m and ui = vi for all i.

We denote FIN the family of finite languages, RAT the family of rational lan-
guages and CF the family of context-free languages.

A rewrite system over an alphabet A is a subset S ⊆ A∗ × A∗. Members of S are
denoted u 7→ v. We shall denote S−1 the system obtained from the system S by
reversing the rules of S, that is u 7→ v ∈ S iff v 7→ u ∈ S−1. One-step derivation,
denoted −→, is the binary relation over words defined by : ∀w,w′ ∈ A∗, w −→ w′

iff there exists u 7→ v ∈ S and α, β ∈ A∗ such that w = αuβ and w′ = αvβ. The
relation

∗−→, called derivation relation, is the reflexive and transitive closure of

the relation −→ and we denote
+−→the transitive closure of the relation −→ . For a

derivation w = w0 → w1 · · · → wn = w′, n is called the length of the derivation.
A rewrite system S induces a transformation over languages: for every word
w ∈ A∗, we shall denote S∗(w) the set S∗(w) = {w′ ∈ A∗ | w

∗−→ w′} and

S+(w) the set S+(w) = {w′ ∈ A∗ | w +−→ w′}; then, for every language L ⊆ A∗,
S∗(L) =

⋃
w∈L

S∗(w) and S+(L) =
⋃
w∈L

S+(w).

Among the different derivations starting from a word w, some of them play
a central role in this paper: a leftmost derivation from a word w is, like for
leftmost derivations in context-free grammars, a derivation where the rewriting
is applied, at each step, to the leftmost possible position in the current word.
Symmetrically, we will also consider rightmost derivations.

We say that a string rewrite system S is rational if the relation {(w,w′) | w′ ∈
S∗(w)} is a rational relation and we say that S is FIN/CF, if for every finite
language L, S∗(L) ∈ CF. If S = {u 7→ v} is a one-rule string rewrite system, we
say that S is prefixal if v = uf for some non-empty word f ; symmetrically S is
suffixal if v = fu for some word f .

In the following sections, a lot of definitions and claims have symmetric coun-
terparts that are not explicitly stated for the sake of clarity.
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3. The languages RS

Considering an arbitrary string rewrite system S and two words w and w′ with
w′ ∈ S∗(w), it may happen that, for all derivation from w to w′, the right edges
of some words that are involved in the derivation are necessarily reached: more
precisely, we say that a word w′ is right-complete with respect to a word w if
w′ ∈ S+(w) and there does not exist some words w1, w

′
1 and w2 6= ε such that

w = w1w2, w′ = w′1w2 and w′1 ∈ S+(w1). We get the following obvious property
that will often be used in the forthcoming proofs.

Property 1. Let S be an arbitrary string rewrite system and w, w′ be two
words with w′ ∈ S+(w).

1. if w′ is right-complete with respect to w then all derivation w
+−→ w′ can

be factorized in w
∗−→ zl and zr

∗−→ w′ for some word z and some l 7→ r ∈ S
2. there exist words w2, w1 and w′1 such that w = w1w2, w′ = w′1w2 and w′1

is right-complete with respect to w1.

This property motivates the following definition in the case when S = {u 7→ v}
is a one-rule rewrite system:

RS = S∗−1(A∗u) = {w ∈ A∗ | ∃w′ ∈ A∗, w ∗−→ w′u}.

From the above general property, it follows for every one-rule rewrite system S
and for every word w that S∗(w) = S∗(w1)w2 where w = w1w2 with w1 being
the longest prefix of w that belongs to RS .

As for the termination problem (see for instance [Ges03]) and the confluence
problem ([Wra90]), a lot of properties of a one-rule string rewrite system S =
{u 7→ v}, in relation with context-free preserving, depends on the existence of
overlaps between the left-hand side u and the right-hand side v of the rewriting
rule. For every one-rule rewrite system S = {u 7→ v}, we denote:

X = LF(u) ∩ RF(v) ∩A+, Z = RF(u) ∩ LF(v) ∩A+,
U ′ = uZ−1 = {u′ ∈ A∗ | u ∈ u′Z}, U ′′ = X−1u,
V ′ = vX−1 V ′′ = Z−1v as depicted in Figure 1.

Note that if |u| > |v| then S terminates so S∗ preserves FIN. In the case when
|u| = |v|, either u = v and S∗ is the identity function, or u 6= v and S terminates
so S∗ preserves FIN. Nevertheless, some non trivial results stated later hold in
the case |u| = |v|, so, in the rest of the paper, we consider only one-rule string
rewrite system S = {u 7→ v} with |v| ≥ |u| and u 6= v. For such systems, one
observe that all the derivations from a word w to a word w′ have the same
length. Indeed, it is clearly true when |v| > |u| and it has been proved in [LR14]
in the case |u| = |v|.

In this section, we study how to compute the set RS . While the definition of
this set is very simple, its construction is not so easy. As a matter of fact, this
language need not be rational as shown in the following example:
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U ′ Z V ′′ v

u

V ′ X U ′′

Figure 1: The sets X, Z, U ′, U ′′, V ′ and V ′′

Example 1. Let S = {aab 7→ aba}, then RS = A∗Lb where L = {w | |w|a =
|w|b+2}, so RS is a context-free language and it is not rational since RS∩a∗b∗ =
{anbp | n > p}. Let us prove the equality RS = A∗Lb.

• RS ⊆ A∗Lb: let w ∈ RS and l be the length of a shortest derivation from
w to some word of A∗u, say w′u. We make an induction on l. If l = 0,
we get w ∈ A∗Lb since A∗aab ⊆ A∗Lb. If l > 0, we get w = w1aabw2 −→
w1abaw2

l−1−−→ w′u. From the inductive hypothesis, w1abaw2 ∈ A∗Lb. We
can distinguish four cases that all imply w1aabw2 ∈ A∗Lb:

(i) w2 ∈ A∗Lb,
(ii) aw2 ∈ Lb that implies aabw2 ∈ Lb,

(iii) baw2 ∈ Lb, that implies w2 ∈ Lb
(iv) w′1abaw2 ∈ Lb for some w′1 ∈ RF(w1).

• A∗Lb ⊆ RS : let w ∈ L, we shall prove that wb ∈ RS by induction on |w|,
the length of the word w. One can assume that w 6∈ A+L. Since w ∈ L,
we get |w| ≥ 2. If |w| = 2 then w = aa and wb ∈ RS . If |w| > 2, then

w = aibw′ for some word w′ and some integer i ≥ 2. Since aib
∗−→ abai−1,

it follows w
∗−→ abai−1w′ that implies ai−1w′ ∈ L. Now, from the inductive

hypothesis, we get ai−1w′b ∈ RS so wb ∈ RS .

We do not know whether there exists some one-rule rewrite system S such
that RS is not a context-free set; we do not even know whether the set RS is
effectively recursive or not. Proposition 3 will give some general bounds for RS
but we can also identify some cases where it is easily seen that this set is rational:
for instance, if u ∈ RF(v) it clearly follows RS = A∗u but this condition is not
necessary. More precisely, we get:

Proposition 1. RS = A∗u if and only if X ⊆ RF(u).

Proof. Assume first that X 6⊆ RF(u); it follows that there exist some words x, u′′

and v′ such that u = xu′′, v = v′x and x 6∈ RF(xu′′). That implies u = xu′′ 6∈
RF(xu′′u′′) and we get uu′′ 6∈ A∗u whereas uu′′ −→ vu′′ = v′xu′′ = v′u = uv′′.
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Conversely, assume X ⊆ RF(u) and consider w ∈ RS . Then w
∗−→ w′u for some

word w′. We prove that w ∈ A∗u by induction on the length of the derivation
w
∗−→ w′u. If w = w′u, we are done else w = αuβ −→ αvβ

∗−→ w′u for some
words α and β. From the inductive hypothesis, αvβ = α′u for some word α′.
If |β| ≥ |u| then w ∈ A∗u. Else v = v′v′′ with u = v′′β and v′′ 6= ε (recall
that |u| ≤ |v|). So v′′ ∈ X ⊆ RF(u), and it follows v′′β = u ∈ RF(uβ) so
w ∈ A∗u.

Observe that Proposition 1 does not hold in the case when |u| > |v|: Let
S = {aab 7→ a}. Since Z = ∅, we have Z ⊆ LF(u) but aaabb −→ u and
aaabb 6∈ uA∗.

Proposition 3 will use the following set in order to give some bounds for RS :

D = {u′′ ∈ RF(u) | |vu′′ ∧r u| > |uu′′ ∧r u|}.

Why this definition? Consider one step of derivation w = u′uu′′ −→ w′ = u′vu′′

in a derivation from a word of RS to a word of A∗u. This step ”goes in the good
direction” if |w′ ∧r u| > |w ∧r u| that gives |vu′′ ∧r u| > |uu′′ ∧r u|.

We observe that ε is never in D and it is also easily seen that uD ∩A∗u = ∅.

Proposition 2. D = ∅ if and only if RF(v) ∩ F(u) ⊆ RF(u).

Proof. D 6= ∅ if and only if there exist words u′′, α, α′, α′′, β and two distinct
letters x and y such that uu′′ = αyβu′′, vu′′ = α′xβu′′ and u = α′′xβu′′. It is
equivalent to the existence of a word (xβ) in RF(v)∩F(u) which is not in RF(u)
(since yβ ∈ RF(u)).

Let d = u ∧r v. Clearly, dD ⊆ A∗d that implies dD∗ ⊆ A∗d. Since u 6= v
and |v| ≥ |u|, there exists some letter a ∈ A such that v ∈ A∗ad and we can
characterize D as

D = {u′ ∈ A∗ | adu′ ∈ RF(u)}.

Moreover, when u 6∈ RF(v), there exists a letter b, distinct from letter a, such
that u ∈ A∗bd. In this case, we have dD ⊆ A∗bd: indeed let u′′ ∈ D, then
du′′ ∈ RF(u) and |du′′| ≥ |bd| so bd ∈ RF(du′′). That implies dD+ ⊆ A∗bd.

Lemma 1. The three following statements are equivalent:

1. u ∈ RF(v)

2. A∗v ⊆ RS
3. A∗v ∩RS 6= ∅

Proof. Since v ∈ A∗ad, we have S∗(A∗v) ⊆ S∗(A∗ad) ⊆ A∗ad. It follows that
if u 6∈ RF(v) then S∗(A∗v) ∩ A∗u = ∅ so A∗v ∩ RS = ∅. That proves 3 =⇒ 1.
Conversely, when u ∈ RF(v), we get A∗v ⊆ A∗u ⊆ RS that implies A∗v∩RS 6= ∅.
That proves 1 =⇒ 2 =⇒ 3.
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Using this lemma together with Proposition 1 and Proposition 2, we get the
following diagram:

A∗v ⊆ RS =⇒ D = ∅ =⇒ RS = A∗u
m m m

u ∈ RF(v) =⇒ RF(v) ∩ F(u) ⊆ RF(u) =⇒ X ⊆ RF(u)

Conversely, RS = A∗u does not imply D = ∅: for S = {babb 7→ baab}, we have
X = {b} ⊆ RF(u) so RS = A∗u while D = {b} 6= ∅.

We can now give some bounds for RS :

Proposition 3. A∗uU ′′∗ ⊆ RS ⊆ A∗uD∗ ⊆ A∗d.

Proof. For the inclusionA∗uU ′′∗ ⊆ RS it is clearly sufficient to prove uU ′′∗ ⊆ RS
which is immediate since for all word u′′ ∈ U ′′ there exists some word v′ such
that vu′′ = v′u. The last inclusion A∗uD∗ ⊆ A∗d directly comes from the
inclusion dD∗ ⊆ A∗d that we have seen before. It remains to prove RS ⊆
A∗uD∗. Since this inclusion is clearly true if D = ∅, we may assume D = {u′ ∈
A∗ | adu′ ∈ RF(u)} with u ∈ A∗bd and v ∈ A∗ad.

Let w in RS and consider a derivation of minimal length w
∗−→ zu with z ∈ A∗.

The proof is by induction over the length of the derivation. If w = zu, we are
done. Else w = α0uβ0 −→ α0vβ0 = α1uβ1

∗−→ αnvβn = zu with αi ∈ A∗ and
βi ∈ A+ for all i ∈ [0, n]. Let k be such that βk is of minimal length then,
for all i ∈ [0, n] there exists some word β′i such that βi = β′iβk. It follows

w = w′βk for some word w′ with w′
∗−→ αku. From the inductive hypothesis, we

get w′ ∈ A∗uD∗.

We also have αkv
∗−→ αnvβ

′
n and, since clearly S∗(A∗v) ⊆ A∗ad, it follows

αnvβ
′
n = w′′ad for some word w′′. Moreover u 6∈ RF(αkuβk) since the derivation

w
∗−→ zu is of minimal length; that implies u 6∈ RF(dβk). On the other hand,

w′′adβk = zu and we get adβk ∈ RF(u) so βk ∈ D and w = w′βk ∈ A∗uD∗.

Remark 1. IfD is included in U ′′, Proposition 3 directly impliesRS = A∗uD∗ =
A∗uU ′′∗. This gives a second case where the language RS is an effective ratio-
nal set (as a matter of fact, it generalizes the first case: RS = A∗u when
u ∈ RF(v)). Nevertheless RS = A∗uD∗ does not imply that D is included in
U ′′ as for S = {u 7→ v} with u = aab and v = aaba. In this case, U ′′ = {ab},
D = {ab, b} and, since aabab −→ aabaab and aabb −→ aabab −→ aabaab, we get
that uD ⊆ RS so RS = A∗uD∗. We also observe that, for S = {aab 7→ aba}
that was used in Example 1 where U ′′ = {ab} and D = {ab, b}, the two inclu-
sions A∗uU ′′∗ ⊆ RS ⊆ A∗uD∗ are strict since RS is not rational in this case.
Symmetrically, U ′′ is not always included in D: if u ∈ RF(v), we get ε ∈ U ′′
and D = ∅ so U ′′ need not be a code, unlike D.
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From the above remark, we shall now identify when the inclusions A∗uU ′′∗ ⊆ RS
and RS ⊆ A∗uD∗ are strict or not; for this, we need to study the different
possible relations between D and U ′′. We first observe that dU ′′ ⊆ A∗d where
d = u ∧r v, that implies dU ′′∗ ⊆ A∗d.

Lemma 2. If u ∈ A∗bd and v ∈ A∗ad for some distinct letters a and b and
some word d then, for every word w ∈ U ′′, the four following statements are
equivalent:

1. w 6∈ D
2. uw ∈ A∗u
3. u ∈ RF(dw)

4. |w| ≥ |u| − |d|

Proof. Clearly 3 implies directly 2 and 2 implies 1 from Proposition 4. On the
other hand, 3 clearly implies 4 and 4 implies 1 since w ∈ D implies adw ∈ RF(u).
To finish the proof of the lemma, it is sufficient to prove that 1 implies 3: let
w ∈ U ′′ \ D; since u ∈ A∗bd and v ∈ A∗ad, it follows u 6∈ RF(v) that implies
ε 6∈ U ′′ so w 6= ε. Since w ∈ U ′′, it follows vw ∈ A∗u. Moreover, since v ∈ A∗ad
and adw 6∈ RF(u), we get |dw| ≥ |u| so u ∈ RF(dw).

The three following statements have been proved in [LR15] for one-rule length-
preserving string rewrite systems. They respectively correspond to Lemma 12,
Lemma 9 and Lemma 10 in [LR15]. Although the proofs have been made in
a context where |u| = |v|, they never use this equality and hold for the more
general case |v| ≥ |u| since they only depend on the definition of D.

Proposition 4. uD∗ ∩A+uA∗ = ∅.

The two following lemmas assume that u ∈ A∗bd and v ∈ A∗ad for some word
d and two distinct letters a and b.

Lemma 3. Let w ∈ D∗ and a word z that satisfy zw ∈ D∗ with bd ∈ RF(bdz)
then z ∈ D∗.

Remark 2. From Proposition 4 it follows that for all w ∈ A∗uD∗, there is a
unique w′′ ∈ D∗ such that uw′′ ∈ RF(w). Moreover, it follows from Lemma 3
that D is a code and, because D is a code, there is a unique sequence α1, . . . , αk
such that w′′ = α1 . . . αk and αi ∈ D for each i ∈ {1, . . . , k}.

Lemma 4. If bu′bd ∈ RF(u) for some word u′, then A∗uD∗ ∩A∗au′bdD∗ = ∅.

This lemma is useful in order to obtain the following relations between U ′′ and
D:

Lemma 5.
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1. uU ′′∗ ⊆ A∗u(D ∩ U ′′)∗
2. A∗uU ′′∗ = A∗u(D ∩ U ′′)∗
3. A∗uD∗ ∩A∗uU ′′∗ = A∗u(D ∩ U ′′)∗
4. D∗ ∩ U ′′∗ = (D ∩ U ′′)∗
5. D∗ \ U ′′∗ = D∗(D \ U ′′)D∗

Proof. Clearly, 1 implies 2 that implies 3 and 4 implies 5. Let us prove that
3 implies 4. The inclusion (D ∩ U ′′)∗ ⊆ D∗ ∩ U ′′∗ is obvious. Conversely, let
w ∈ D∗∩U ′′∗. Then uw ∈ A∗uD∗∩A∗uU ′′∗ = A∗u(D∩U ′′)∗ by 3. Proposition
4 yields uw ∩ A+uA∗ = ∅, so uw ∈ u(D ∩ U ′′)∗, and so w ∈ (D ∩ U ′′)∗. It
now remains to prove 1 : let w ∈ uU ′′∗. If w = u then w ∈ A∗u(D ∩ U ′′)∗
otherwise w = uw1w2 . . . wp for some words w1 . . . wp ∈ U ′′ with p > 0. If for
every 1 ≤ i ≤ p it holds that wi ∈ D, we are done, else let us consider the
biggest i such that wi 6∈ D. We get wi+1 . . . wp ∈ (D ∩U ′′)∗ and uw1 . . . wi−1 ∈
A∗d since uU ′′∗ ⊆ A∗d. It follows uw1 . . . wi ∈ A∗dwi and, from Lemma 2,
uw1 . . . wi ∈ A∗u that implies w ∈ A∗u(D ∩ U ′′)∗.

We shall now prove a key lemma (Lemma 7) that will be particularly useful in
the next section. We first need the following corollary of Proposition 4, Lemma
4 and Proposition 3:

Corollary 1. Let S = {u 7→ v} be a one-rule rewrite system with |u| ≤ |v|. For
all words w,α, α′ ∈ A∗ and x ∈ D∗, the two following properties are satisfied:

1. if αu −→ w
∗−→ α′u then w ∈ A∗u,

2. if αux −→ w
∗−→ α′u then w = αvx or w ∈ A∗ux.

Proof. Observe that 1 is a consequence of 2 in the case when x = ε: indeed
from 2 we get that if αu −→ w

∗−→ α′u then w = αv or w ∈ A∗u. Since we have
seen that A∗v ∩ RS 6= ∅ if and only if u ∈ RF(v), we always have w ∈ A∗u. It
remains to prove 2.

Since αux −→ w, we have αux = w′uw′′ and w = w′vw′′ for some words w′ and
w′′. From Proposition 4, it follows |w′′| ≥ |x|. We have to consider three cases:

(i) |w′′| = |x|. In this case, w = αvx,

(ii) |w′′| ≥ |ux| − |d|. In this case, w ∈ A∗ux.

(iii) |x| < |w′′| < |ux| − |d|. In this case, w′uw′′ = w′u′′bu′bdx for some words
u′ and u′′ with bu′bd ∈ RF(u) and w = w′v′′au′bdx for some word v′′. It
follows from Lemma 4 that w 6∈ A∗uD∗, a contradiction since w ∈ RS and
RS ⊆ A∗uD∗ from Proposition 3.

We also need the following lemma:

Lemma 6. A∗dD∗D2 ∩A∗u = ∅.

9



Proof. This is clearly true if D = ∅. Else, u ∈ A∗bd and v ∈ A∗ad for some
distinct letters a and b. Moreover, since dD∗ ⊆ A∗d it is sufficient to prove
A∗dD2 ∩ A∗u = ∅. Assume A∗dD2 ∩ A∗u 6= ∅. So, there exist two words
u1, u2 ∈ D with A∗du1u2 ∩ A∗u 6= ∅. By u2 ∈ D, we have adu2 ∈ RF(u) so
A∗du1u2 ∩ A∗u ⊆ A∗du1u2 ∩ A∗adu2. It follows A∗du1u2 ∩ A∗adu2 6= ∅ that
implies A∗du1∩A∗ad 6= ∅, a contradiction since adu1 ∈ RF(u) and u ∈ A∗bd.

This allows us to state the following key lemma:

Lemma 7. For all w ∈ A∗, x ∈ D∗ and y ∈ D+, if wuxy
∗−→ zu for some word

z then there exists a word w′ ∈ A∗ such that:

1. wux
∗−→ w′u,

2. w′vy
∗−→ zu.

Proof. First observe that the property is clearly true if D = ∅ by choosing
w′ = z. So we assume D 6= ∅, u ∈ A∗bd and v ∈ A∗ad for some word d and
some distinct letters a and b. We prove the property by induction on the length
of derivation wuxy

∗−→ zu. Since y 6= ε, it follows from Proposition 4 that the
length of the derivation wuxy

∗−→ zu is at least one.

Assume wuxy −→ zu. It follows from Corollary 1 that zu = wvxy and, from
Lemma 6, x = ε and y ∈ D. In this case, we can take w′ = w that gives the
base case of our induction.

Consider now a derivation wuxy −→ w′′
∗−→ zu for some word w′′. From Corollary

1, either w′′ = wvxy, either w′′ ∈ A∗uxy. If w′′ ∈ A∗uxy, then w′′ = w′′′uxy
for some word w′′′ with wu

∗−→ w′′′u. From the inductive hypothesis, there
exists some w′ such that w′′′ux

∗−→ w′u and w′vxy
∗−→ zu. Hence we have

wux
∗−→ w′′′ux

∗−→ w′u and w′vy
∗−→ zu.

It remains the case: wuxy −→ wvxy
∗−→ zu. First observe that, if x = ε, we can

take w′ = w so we assume x 6= ε. Since wvxy ∈ RS , it follows from Proposition
3 that wvxy = αuβ for some words α ∈ A∗ and β ∈ D∗. Moreover, from Lemma
6, β 6= ε. Since u 6∈ RF(v) we have |β| < |xy| or |β| > |xy|. We shall distinguish
these two cases:

• |β| < |xy|. From Proposition 4, it follows u 6∈ RF(dD∗) so |uβ| > |dxy|.
It follows xy = gβ for some words g with dg ∈ RF(u). That implies
adg ∈ RF(u) so g ∈ D. Since D is a code, it follows x = gx1 with x1 ∈ D∗
and we get αux1y

∗−→ zu. From the inductive hypothesis, we get that
there exists a word w′ such that αux1

∗−→ w′u and w′vy
∗−→ zu. Finally,

wux = wugx1 −→ wvgx1 = αux1
∗−→ w′u.

w
v x

y

α u β

a d g x1

10



• |β| > |xy|. In this case, β = gxy for some word g.

wv
x

y

u
β

g

That implies ug ∈ RF(A∗v) so d ∈ RF(dg). On the other hand, we have
already seen that dD+ ⊆ A∗bd. Now, from d ∈ RF(dg) and x ∈ D+, we
get dgx ∈ A∗bd which implies bd ∈ RF(bdgx). Since gxy = β ∈ D∗ and
y ∈ D∗, we get gx ∈ D∗ from Lemma 3.

So we can apply the inductives hypothesis on the derivation wvxy =
αugxy

∗−→ uz: there exists a word w′ with αugx
∗−→ w′u and w′vy

∗−→ zu
that finishes the proof since we get wux −→ wvx = αugx

∗−→ w′u and
w′vy

∗−→ zu.

One can observe that it follows from Lemma 7 that wuxy ∈ RS with x, y ∈ D∗
implies wux ∈ RS . We are now able to characterize when RS = A∗uU ′′∗:

Proposition 5. RS = A∗uU ′′∗ if and only if A∗v(D \ U ′′) ∩A∗uU ′′∗ = ∅.

Proof. For the only if part assume wvw′ ∈ A∗uU ′′∗ for some words w ∈ A∗ and
w′ ∈ D\U ′′. Since wvw′ ∈ A∗uU ′′∗ ⊆ RS , it follows that wuw′ ∈ RS . Moreover,
since it does not exist w′′ ∈ D∗ with w′′ 6= w′ such that uw′′ ∈ RF(wuw′), it
follows that wuw′ 6∈ A∗u(D ∩U ′′)∗ that implies, from Item 2 of Lemma 5, that
wuw′ 6∈ A∗uU ′′∗.

Conversely, we assume RS \ A∗uU ′′∗ 6= ∅, and we shall prove that A∗v(D \
U ′′) ∩ A∗uU ′′∗ 6= ∅ by considering a shortest derivation w

∗−→ βu from some
w ∈ RS \ A∗uU ′′∗ to some word βu ∈ A∗u. Since w 6∈ A∗u, there exist words

w′′, w0 and w′0 such that w = w0uw
′
0 −→ w′′

∗−→ βu with w′0 ∈ D∗ \ U ′′∗.
From the hypothesis on the length of the derivation it follows w′′ ∈ A∗uU ′′∗ so
w′′ 6∈ A∗uw′0, and, from Corollary 1, we get w′′ = w0vw

′
0. On the other hand, it

follows w′0 = xyz with x, z ∈ D∗ and y ∈ D \U ′′ from Item 5 of Lemma 5. Now,

by Lemma 7, we get w0uxyz
∗−→ α1uyz

∗−→ α2uz
∗−→ βu for some words α1 and

α2. From the hypothesis on the length of the derivation, it follows x = z = ε
and we get w′′ = w0vy ∈ A∗v(D \ U ′′). Since w′′ ∈ A∗uU ′′∗, this finishes the
proof of the lemma.

We can also characterize when the equality RS = A∗uD∗ = A∗uU ′′∗ holds:

11



Proposition 6. RS = A∗uD∗ = A∗uU ′′∗ if and only if D ⊆ U ′′.

Proof. We have seen before that if D ⊆ U ′′, the equality RS = A∗uD∗ =
A∗uU ′′∗ is a direct consequence of Proposition 3. Conversely, assume RS =
A∗uD∗ = A∗uU ′′∗ and let us consider a word w ∈ D. SinceA∗uD∗ = A∗uU ′′∗, it
follows uw ∈ A∗uU ′′∗. Moreover, from Proposition 4, uw 6∈ A+uA∗ so w ∈ U ′′∗.
Since w ∈ D ∩ U ′′∗, it follows from Item 4 of Lemma 5 that w ∈ D ∩ U ′′.

Clearly, RS = A∗uD∗ if and only if for each word w ∈ D, it holds that uw ∈ RS
and we shall see at the end of this section that this property is decidable. We now
state that the inclusions A∗uU ′′∗ ⊆ RS and RS ⊆ A∗uD∗, given in Proposition
3, can independently be strict or not by considering the four following examples:

(i) As said before, a case where A∗uU ′′∗ ( RS ( A∗uD∗ is given in Example
1 where RS is not rational.

(ii) A case where A∗uU ′′∗ = RS = A∗uD∗ is given by any system S where
u ∈ RF(v). Indeed, in this case, D = ∅ ⊆ U ′′ and RS = A∗u.

(iii) A case where A∗uU ′′∗ = RS ( A∗uD∗ is given by S = {u 7→ v} with u =
aab and v = bba: indeed we get for this example D = ab+ b and U ′′ = ab.
Clearly, ub 6∈ RS so RS ( A∗uD∗. On the other hand, A∗vb∩A∗u(ab)∗ = ∅
and it follows RS = A∗uU ′′∗ from Proposition 5.

(iv) A case where A∗uU ′′∗ ( RS = A∗uD∗ is given by S = {u 7→ v} with
u = aab and v = aaba: in this case, U ′′ = ab and we have already seen in
Remark 1 that RS = A∗uD∗. Moreover ub ∈ RS and ub 6∈ A∗uU ′′∗.

To finish this section, we state that, in the case when u ∈ F(v), we obtain a new
case where RS is effective rational set. We need the following result

Proposition 7. If u ∈ F(v) then ∀w,w′ ∈ A∗, wuw′ ∈ RS =⇒ uw′ ∈ RS.

Proof. The proof is by induction over the length of a shortest derivation from
wuw′ to a word of A∗u, say zu. If wuw′ = zu then u ∈ RF(uw′) so uw′ ∈ RS .
Else wuw′ = αuβ with β ∈ D+. From Proposition 4, we have |uβ| ≤ |uw′| so

uw′ = γuβ for some word γ. Since β ∈ D+, it follows αuβ −→ w′′
∗−→ zu for

some word w′′. From Corollary 1 we have to distinguish two cases:

(i) w′′ ∈ A∗uβ: in this case, w′′ = α′uβ
∗−→ zu for some word α′ and it follows

from the inductive hypothesis that uβ
∗−→ z′u for some word z′. That

implies uw′ = γuβ
∗−→ γz′u so uw′ ∈ RS .

(ii) w′′ = αvβ: since u ∈ F(v), we have v = α′uβ′ for some words α′ and β′.

We can apply the inductive hypothesis on the derivation αα′uβ′β
∗−→ zu

and we get uβ′β
∗−→ z′u for some word z′. It follows uw′ = γuβ −→ γvβ =

γα′uβ′β
∗−→ γα′z′u so uw′ ∈ RS .

The construction also needs the set E = {x ∈ D | ux ∈ RS} that will also be
used in the following section. First we prove that E is effectively computable in
order to get a decidable property:

12



Lemma 8. If u ∈ F(v) then the set E = {x ∈ D | ux ∈ RS} is an effectively
computable set.

Proof. Let D1 = {x ∈ D | vx ∈ A∗u} and, for all integer i > 1, Di = {x ∈ D |
vx ∈ A∗uD∗i−1} ∪Di−1. Let D? =

⋃
i≥1Di. Clearly, since D? ⊆ D, there exists

some integer n such that Dn = Dn+1 = D? so D? is an effectively computable
set. We shall now prove D? = E.

D? ⊆ E: let x ∈ D? we make an induction on the smallest i such
that x ∈ Di. If i = 1, it follows vx ∈ A∗u so ux ∈ RS and x ∈ E.
If i > 1, it follows vx ∈ A∗uD∗i−1. That implies vx = wuw′ for
some word w ∈ A∗ and some word w′ ∈ D∗i−1. From the inductive
hypothesis, we get w′ ∈ E∗ so vx ∈ RS which implies ux ∈ RS and
x ∈ E.

E ⊆ D?: Let x ∈ D such that ux ∈ RS . We shall prove x ∈ D?

by induction on the length n of a derivation ux
n−→ zu with z ∈

A+. From Proposition 4 we have ux −→ vx
n−1−−−→ zu since there

is only one occurrence of u in ux and x 6= ε. If n = 1, it follows

vx = zu so x ∈ D1 ⊆ D?. Else vx = αuβ
n−1−−−→ zu with β ∈ D+

and, from Proposition 7, uβ ∈ RS . Now, from Lemma 7, we get

αuβ = αuβ1 . . . βk
m−→ β′1uβ2 . . . βk

p−→ zu. Moreover, since all the
derivations from a word to another word have the same length, it
follows m + p = n − 1 so m < n and p < n. By induction, we
get βj ∈ D? for 1 ≥ j ≥ k. Let i be the greatest integer such
that βj ∈ Di for 1 ≥ j ≥ k, we get vx = uβ1 . . . βk ∈ A∗uD∗i so
x ∈ Di+1 ⊆ D?.

And we get as a corollary:

Proposition 8. If u ∈ F(v) then RS = A∗uE∗ so RS is an effective computable
rational set.

Proof. Since u ∈ RS and uE ⊆ RS , we get A∗uE∗ ⊆ RS .

Conversely, let wuw′ ∈ RS with w′ ∈ Dn for some n ≥ 0. From Proposition 7,
it follows uw′ ∈ RS . We shall prove by induction over n that w′ ∈ E∗.

• If n = 0 then w′ = ε ∈ E∗.

• Else w′ = xy with x ∈ Dn−1 and y ∈ D. From Lemma 7 and Proposition
7, it follows ux ∈ RS and uy ∈ RS so y ∈ E and, from the inductive
hypothesis, x ∈ E∗ so w′ = xy ∈ E∗ that finishes the proof of the equality
RS = A∗uE∗.

13



4. Prefixal one-rule systems are FIN/CF

In this section, we shall prove that the image of all word w by a prefixal one-rule
rewrite system S = {u 7→ v} is always context-free by defining a context-free
grammar Gw such that L(Gw) = S∗(w). If S = {u 7→ v} is a prefixal one-rule
rewrite system then S clearly satisfies the following property PR: for all words
α and α′, if αu −→ α′u then αv −→ α′v. Symmetrically, all suffixal one-rule
rewrite system satisfies the property PL: for all words α and α′, if uα −→ uα′

then vα −→ vα′. Although property PR does not give a characterization of
prefixal systems, for all one-rule rewrite system that satisfies it, we shall prove
the following nice property: if a word w belongs to RS \ A∗u then a shortest
derivation from w to a word in A∗u can be obtained by applying each rewriting
step on the rightmost occurence of u. The following lemma shows that properties
PR and PL are decidable.

Lemma 9. Let S = {u 7→ v} be a one-rule rewrite system with |u| ≤ |v|. The
three following statements are equivalent:

1. (RF(u) \ {u}) ∩X ⊆ Z.

2. S satisfies the PR property.

3. ∀α, α′ ∈ A∗, if αu
∗−→ α′u then αv

∗−→ α′v.

Proof. 1 =⇒ 2: Let us consider one step of derivation αu −→ α′u for some words
α and α′. If α −→ α′ then αv −→ α′v. Else u = u1u2 = u2u3 and v = v1u2 for
some words u1, u2, u3, v1 with u2 6= ε and α = xu1, α′ = xv1 for some word x. If
u1 = ε then α′u = αv1u = αv and we get αv −→ α′v, so we may assume u1 6= ε.
It follows u2 ∈ (RF(u)\{u})∩X that implies u2 ∈ LF(v). So we get v = u2v

′
1 for

some word v′1 and finally: αv = xu1v1u2 = xu1u2v
′
1 −→ xv1u2v

′
1 = xv1v = α′v.

2 =⇒ 3: This is an easy induction, using Corollary 1 that states that if αu −→
w
∗−→ α′u then w ∈ A∗u.

3 =⇒ 2: Let us suppose αu −→ α′u then αu −→ α′u −→ α′v. From 3, it follows
αv

∗−→ α′v and we get αu −→ αv
∗−→ α′v. Since, given two words w and w′, all

the derivations from w to w′ have the same length, it follows αv −→ α′v.

2 =⇒ 1: Let u1, u2, u3, v
′ ∈ A∗ with u = u1u2 = u2u3, v = v′u2 and u1, v

′ 6= ε;
we have to prove u2 ∈ LF(v). Since u1u = uu3 −→ vu3 = v′u, it follows from 2
u1v −→ v′v. One can distinguish two cases:

(i) u ∈ LF(v). It follows u2 ∈ LF(u) ⊆ LF(v).

(ii) u 6∈ LF(v). It follows u ∈ dbA∗ and v ∈ daA∗ for some distinct letters a,
b and some word d. That implies u1v ∈ dbA∗ and v′v ∈ daA∗: indeed,
u1u = uu3 ∈ dbA∗ so u1d ∈ dbA∗ since u1 6= ε and v′u = vu3 so v′d ∈ daA∗
since v′ 6= ε. Since u1v −→ v′v, we get u1v ∈ uA∗ that implies u2 ∈ LF(v).

The following proposition establishes connections between PR, PL, u ∧l v and
u ∧r v:
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Proposition 9. Let S = {u 7→ v} be a one-rule rewrite system with |u| ≤ |v|.
Then

1. if |u ∧l v| ≥ |u ∧r v| then S satisfies PR,

2. if |u ∧l v| ≤ |u ∧r v| then S satisfies PL,

3. S satisfies PR or S satisfies PL,

4. if S is prefixal then S satisfies PR,

5. if S is suffixal then S satisfies PL,

6. if S is confluent then S satisfies both PR and PL.

Proof. Let α = u ∧l v and β = u ∧r v and assume |α| ≥ |β|. Let us consider
x ∈ RF(u) ∩ X, it follows |x| ≤ |β| that implies x ∈ LF(α) ⊆ LF(v) so x ∈ Z
(a system where X ∩ Z 6= ∅ is called bordered in [GZ99]) and S satisfies PR
from Lemma 9. That proves 1 and symmetrically 2. Items 3, 4 and 5 are direct
consequences of 1 and 2. For 6, it has been proved in [Kur90, Wra90] that a
one-rule rewrite system S = {u 7→ v} with |u| ≤ |v| is confluent if and only if
(LF(u)∩RF(u)) \ {u} ⊆ LF(v)∩RF(v) that implies that S satisfies both PR and
PL.

Observe that, as we said before, property PR does not characterize prefixal one-
rule systems: S = {ba 7→ aa} satisfies PR since RF(u) ∩ X = ∅ ⊆ Z and S is
not prefixal. Nevertheless, we have the following result that will be used later:

Lemma 10. Let S satisfying PR. If αuβ
∗−→ α′u for some α, α′ ∈ A∗ and some

β ∈ D∗ then the following properties are satisfied:

1. if β 6= ε then αvβ
∗−→ α′u,

2. αvβ
∗−→ α′v,

Proof. Assume β ∈ D+. From lemma 7, it follows αu
∗−→ α′′u and α′′vβ

∗−→ α′u
for some word α′′. From Lemma 9, we get αv

∗−→ α′′v so αvβ
∗−→ α′′vβ

∗−→ α′u −→
α′v. Assume now β = ε, we get αv

∗−→ α′v from Lemma 9.

This lemma allows us to give the following definition that will be used in the
definition of the context-free grammar:

Definition 1. Let S satisfying PR, we define inductively ϕ : RS 7→ A∗u for all
word w ∈ RS by ϕ(w) = w if w ∈ A∗u otherwise ϕ(w) = ϕ(αvβ) if w = αuβ
with β ∈ D+.

This definition is sound since there is no ambiguity for the factorization of
arguments of ϕ from Proposition 4. Moreover, the fact that all the derivations
from a word to another have the same length, together with Lemma 10, ensure
the termination of this recursive definition. Clearly, we get that if w

∗−→ zu for
some words w and z, it holds that w

∗−→ ϕ(w)
∗−→ zu. More, thanks to Lemma

7, we can state:

Lemma 11. If αuβγ
∗−→ α′u for some words α, α′ ∈ A∗ and β, γ ∈ D∗, then

αuβγ
∗−→ ϕ(αuβ)γ

∗−→ ϕ(αuβγ)
∗−→ α′u.
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When u = ε, each one-rule rewrite system S = {u 7→ v} is FIN/CF regardless
of the right-hand side v, so, in the rest of this section, we assume that u 6= ε
and that S is prefixal i.e. v = uf for some word f 6= ε and u = u0c with c ∈ A.
Recall that such a system satisfies PR.

Proposition 10. If wuw′
∗−→ w′′ for some words w,w′, w′′ ∈ A∗ then w′′ =

w′′1w
′′
2 with wu0

∗−→ w′′1 and uw′
∗−→ u0w

′′
2 .

Proof. The proof is an induction on the length of the derivation wuw′
∗−→ w′′.

The case wuw′ = w′′ is immediate. Else, from Property 1, there exist words
w1, w2, w

′
1, z such that wuw′ = w1w2, w′1w2 = w′′ and w1

∗−→ zu −→ zuf
∗−→ w′1.

Let us consider two cases:

(i) |w2| > |w′|. In this case, w2 = γcw′ for some word γ ∈ A∗. Let w′′1 = w′1γ

and w′′2 = cw′. We get w′′ = w′′1w
′′
2 , wu0 = w1γ

∗−→ w′1γ = w′′1 since

w1
∗−→ w′1 and uw′ = u0w

′′
2 .

(ii) |w2| ≤ |w′|. In this case, w1 = wu0cγ and w′ = γw2 for some word γ with

wuγ
∗−→ zu −→ zuf

∗−→ w′1. It follows wuγ = wγ′uγ′′ for some γ′ ∈ A∗

and some γ′′ ∈ D∗. Moreover, γ′u ∈ uA∗. From Lemma 10, we get
wγ′ufγ′′

∗−→ zuf so there exists a word w0 = γ′ufγ′′ with uγ −→ w0 and
ww0

∗−→ zuf . Moreover, by γ′u ∈ uA∗ follows w0 = uw′0 for some word
w′0. Since all the derivations from a word to another have the same length,

the length of the derivation wuw′0
∗−→ w′1 is strictly smaller than the length

of the derivation wuγ
∗−→ zu −→ zuf

∗−→ w′1 so we can apply the inductive

hypothesis on the derivation wuw′0
∗−→ w′1 and we get w′1 = w′′1w

′
2 for some

words w′′1 and w′2 with wu0
∗−→ w′′1 and uγ −→ uw′0

∗−→ u0w
′
2. Moreover,

denoting w′′2 = w′2w2, we have uw′ = uγw2
∗−→ u0w

′
2w2 = u0w

′′
2 .

Proposition 10 needs u 6= ε but one can directly derive the following less precise
property that holds in the case u = ε:

Corollary 2. If wuw′
∗−→ w′′ for some words w,w′, w′′ ∈ A∗ then there exists a

factorization w′′ = w′′1w
′′
2 with wu

∗−→ w′′1 and uw′
∗−→ uw′′2 .

We are now able to prove:

Proposition 11. Each prefixal one-rule rewrite system is FIN/CF.

Clearly, every prefixal one-rule rewrite system S = {ε 7→ f} for some word f
is FIN/CF so we assume u = u0c for some word u0 and some letter c. In order
to prove the proposition, we shall use the following grammar for all prefixal
one-rule rewrite system S = {u 7→ uf} and all word w: Let K0 = sup({|ϕ(ue)| |
e ∈ E}) and K = sup({|w|,K0, |uf |}). Let A≤K = {α ∈ A∗ | |α| ≤ K} and
B = A≤K ∪ {αuβ | |αu| ≤ K ∧ |uβ| ≤ K}. Observe that, clearly, B is
closed by factor, that is B = F(B), and if ueβ ∈ B with e ∈ E and β ∈ E∗, then
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ϕ(ue)β ∈ B: indeed let e′u = ϕ(ue) then |e′u| ≤ K0 ≤ K and, from Proposition
4, there is only one occurrence of u in ueβ so |ueβ| ≤ K and it follows |uβ| ≤ K.

We define the grammar Gw = 〈A, V, Sw, R〉 where

• V is the set of variables, V = {Sα | α ∈ B} ∪ {S′α | α ∈ B},

• Sw is the axiom,

• and R ⊆ V × (V ∪A)∗ is the set of production rules, R =

{Sα 7→ α, S′u0α 7→ α, Sαβ 7→ SαSβ , S
′
αβ 7→ S′αSβ | α, uoα, αβ ∈ B}

∪
{Sαuβ 7→ Sαu0

S′uβ , S
′
αuβ 7→ S′αu0

S′uβ | αuβ ∈ B}
∪

{Su 7→ Suf , S
′
u 7→ S′uf}

∪
{S′ueβ 7→ S′e′uβ | ueβ ∈ B, e ∈ E, β ∈ E∗, ϕ(ue) = e′u}

Intuitively, a variable Sα may produce S∗(α) and a variable S′α may produce
u−10 S∗(α). The proof of Proposition 11 consists in the proof of the equality
between S∗(w) and L(Gw). Given a prefixal one-rule rewrite system S = {u 7→
uf} and a word w, we prove the following lemma for the inclusion S∗(w) ⊆
L(Gw):

Lemma 12. For all α ∈ B, if α
∗−→
S
α′ then Sα

∗−−→
Gw

α′ and if α′ = u0α
′′ then

S′α
∗−−→
Gw

α′′.

Proof. The proof is an induction on the length of the derivation in S: α
∗−→ α′. If

α = α′, we can use the rules Sα 7→ α and S′u0α 7→ α, otherwise we may assume
that α′ is right-complete with respect to α: indeed if α = α1α2 and α′ = α′1α2

for some words α1, α
′
1 and α2 with α′1 right-complete with respect to α1, there

exist the rules Sα1α2
7→ Sα1

Sα2
and Sα2

7→ α2, moreover, if α′1α2 = u0α
′′ for

some word α′′, we have α′1 = u0α
′′
1 for some word α′′1 since |α′1| ≥ |u| and we

can use the rules S′α1α2
7→ S′α1

Sα2 and Sα2 7→ α2.

Since α′ is right-complete with respect to α, there exists a derivation α =
α1uα2

∗−→ zu −→ zuf
∗−→ α′ with α2 ∈ E∗ by Proposition 8. Moreover, from

Proposition 10, there exist two words α′1 and α′2 such that α′ = α′1α
′
2 and

α1u0
∗−→ α′1 and uα2

∗−→ u0α
′
2. Note that we cannot have uα2 = u0α

′
2: indeed

that would lead to a derivation α1uα2 = α1u0cα2
∗−→ α′1cα2 = α′ that is not

right complete, a contradiction. It follows uα2
+−→ u0α

′
2 and we get from the

inductive hypothesis on the length of the derivation α1u0
∗−→ α′1 that Sα1u0

∗−→ α′1
and, if α′1 = u0α

′′
1 then S′α1u0

∗−→ α′′1 . It remains to prove S′uα2

∗−→ α′2 for which
we consider two cases:
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(i) α2 = ε. In this case, u −→ uf
∗−→ u0α

′
2. Since K ≥ |uf |, we get from the

inductive hypothesis for the derivation uf
∗−→ u0α

′
2 that S′u −→ S′uf

∗−→ α′2.

(ii) α2 6= ε. There exist some word β ∈ E∗ and some word e ∈ E such that

α2 = eβ. From Proposition 8 and Lemma 11, we get ueβ
+−→ e′uβ

∗−→ u0α
′
2

with e′u = ϕ(ue). Since ueβ ∈ B with e ∈ E, β ∈ E∗ and e′u = ϕ(ue),
it follows e′uβ ∈ B and we get from the inductive hypothesis for the
derivation e′uβ

∗−→ u0α
′
2 that S′e′uβ

∗−→ α′2. Moreover S′ueβ 7→ S′e′uβ is a

rule in G so S′ueβ −→ S′e′uβ
∗−→ α′2.

So we have:

• Sα1u0

∗−→ α′1,

• if α′1 = u0α
′′
1 then S′α1u0

∗−→ α′′1 ,

• S′uα2

∗−→ α′2,

and finally we get Sα = Sα1uα2 −→ Sα1u0S
′
uα2

∗−→ α′1α
′
2 = α′. Moreover, since

|α′1| ≥ |u0|, if α′ = u0α
′′ for some word α′′, it follows that α′1 = u0α

′′
1 for some

word α′′1 and we have S′α = S′α1uα2
−→ S′α1u0

S′uα2

∗−→ α′′1α
′
2 = α′′

Conversely, an easy induction over the length of the derivations permits to
state the following lemma, which gives, together with Lemma 12, a proof for
Proposition 11:

Lemma 13. For all α ∈ B, if Sα
∗−−→
Gw

α′ then α
∗−→
S
α′ and if S′α

∗−−→
Gw

α′ then

α
∗−→
S
u0α

′.

5. Non FIN/CF One-Rule String Rewrite Systems

The aim of this section is to prove that Proposition 11 cannot be generalized
to every one-rule string rewrite system and we produce here an example of
non FIN/CF one-rule string rewrite system. A example of non FIN/CF system
has been provided by Matthias Jantzen in [Jan85, Jan88] in the case of Thue
systems i.e. string rewrite systems with symmetric rules. Jantzen proved that
for S = {ε 7→ abba, abba 7→ ε} and each word w ∈ (a + b)∗, S∗(w) is not a
context-free language. Here, we want to find a one-rule string-rewrite system
S = {u 7→ v}, as simple as possible, and a word w for which S∗(w) is not a
context-free language. The following proposition, that is a consequence of a
result of [GHW05], shows that, for such an example, the left-hand side of the
rule u must contain at least two distinct letters:

Proposition 12. Let S = {u 7→ v} be a one-rule string rewrite system. If
u ∈ a∗ for some letter a then S is FIN/CF.
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Proof. Let S = {ai 7→ v} be a one-rule rewrite system over an alphabet A. If
i = 0 or v ∈ a∗ the property is clearly true. Otherwise there exists some letter
b, distinct from a, that occurs in v. Such a system, that is called rewrite system
with an inhibitor by McNaughton [McN01] have been proved FIN/CF by Geser
et al. [GHW05].

The example that we produce is the system S1 = {ba 7→ abab}. From above,
we cannot find a simplest left-hand side of rule. We shall proceed in two steps:
first, find a word w for which S∗1 (w) is not a context-free language and second,
prove that we cannot find a simpler example. The proof of the first step uses the
fact that the symmetric closure of S1 is simplifiable. This notion of simplifiable
system has been already used in [LR14], a previous work on some one-rule string
rewrite systems that are equivalent to a rational transduction.

For any rewrite system S, we denote by S↔ its symmetric closure: S↔ =
S ∪ S−1 = S ∪ {v 7→ u | u 7→ v ∈ S}. We say that a rewrite system is
left simplifiable if for every words w,w′ and w′′, it holds that ww′′ ∈ S∗(ww′)
implies w′′ ∈ S∗(w′). We define symmetrically the notion of right simplifiable
rewrite system and we say that a rewrite system is simplifiable if it is both left
simplifiable and right simplifiable.

Clearly, if a and b are distinct letters then any system S = {au 7→ bv} , where
u and v are arbitrary words, is left simplifiable. It is also true for S↔, the
symmetric closure of S as stated in the following lemma. In the following, in
order to simplify the notation for the derivations in a symmetric closure of a
system S↔, we shall write ←→ instead of −−→

S↔
for a single step of rewriting and

∗←→ instead of
∗−−→
S↔

for a derivation.

Lemma 14. Let S = {u 7→ v} with u, v ∈ A+. The three following statements
are equivalent:

1. S is left simplifiable,

2. S↔ is left simplifiable,

3. u ∈ aA∗ and v ∈ bA∗ for some distinct letters a and b.

Proof. Clearly 1 is equivalent to 3 and 2 implies 3; it remains to prove 3 implies 2.
Assume u ∈ aA∗ and v ∈ bA∗ for some distinct letters a and b, we have to prove
that for any words w,w′ and w′′ it holds that ww′

∗←→ ww′′ implies w′
∗←→ w′′.

The proof is by induction on the length of the derivation ww′
∗←→ ww′′. If

this length is null, the property is trivially satisfied, otherwise we may clearly
assume that w = x for some letter x. If x 6= a and x 6= b, the property is clearly
true, otherwise we assume x = a, the proof in the case x = b being completely
symmetric. If no step α ←→ β involved in this derivation satisfies α = uγ and
β = vγ then clearly w′

∗←→ w′′ so we assume that the derivation aw′
∗←→ aw′′

can be factorized in aw′
∗←→ uα ←→ vα

∗←→ vβ ←→ uβ
∗←→ aw′′. We can apply

the induction hypothesis on the derivation vα
∗←→ vβ to get α

∗←→ β. This gives
a shorter derivation aw′

∗←→ uα
∗←→ uβ

∗←→ aw′′ from aw′ to aw′′ and, by the
inductive hypothesis, we get that w′

∗←→ w′′.
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Remark 3. Clearly the previous lemma can be symmetrically stated in the
case of a system S = {ua 7→ vb} where a and b are two distinct letters. As a
consequence, we get that the system S1 = {ba 7→ abab} is simplifiable.

We can now state:

Proposition 13. Let S1 = {ba 7→ abab}. The language S∗1 (baba) is not a
context-free language.

Proof. We shall prove that S∗1 (baba)∩a∗(ba)∗b∗ = {an(ba)f(n)bn | n ≥ 0} where

f(n) is defined inductively by f(0) = 2 and f(i + 1) = 2 × f(i) − 1. As (ba)n
∗−→

(ab)2n = a(ba)2n−1b, an easy induction over n proves that {an(ba)f(n)bn | n ≥
0} ⊆ S∗1 (baba). Conversely, we observe first that S∗1 (baba) ∩ a∗(ba)∗b∗ is clearly
included in {an(ba)pbn | n, p ≥ 0}. We also observe that for non negative

integers i and j, it holds that if (ba)i
∗←→ (ba)j then i = j. Indeed assume j > i,

since S1 is simplifiable it follows ε
∗←→ (ba)j−i a contradiction. This implies,

using once again that S1 is simplifiable, that for every non negative integers n, p
and q, if an(ba)pbn

∗←→ an(ba)qbn then p = q. So for every non negative integer

n, f(n) is the unique integer p such that baba
∗←→ an(ba)pbn and that implies

that S∗1 (baba) = {an(ba)f(n)bn | n ≥ 0} that is not a context-free language.

We have seen with Proposition 12 that for any example of non FIN/CF one-rule
rewrite system S = {u 7→ v}, the left-hand side u must contains two distinct
letters so ba is among the two shortest possibilities. In order to show that S1

is a smallest example of non FIN/CF one-rule rewrite system, we consider now
different cases for the right-hand side v.

Let S = {ba 7→ v} be a non FIN/CF rewrite system. We first observe that both
a and b must occur in v otherwise, for every word w, S∗(w) is finite. At last, if
|v|a = |u|a or if |v|b = |u|b, such a one-rule string rewrite system S, called grid
system in [Ges02] in the context of the uniform termination, has been proved
FIN/CF in [LR12]. All these observations imply that |v|a > 1 and |v|b > 1 so it
is not possible to find a smaller example than S1.

Remark 4.

• For S1 = {u 7→ v} with u = ba and v=abab, clearly, S∗1 (u) = {an(ba)bn |
n ≥ 0} and so is a context-free language. It is not always the case: for
instance, if we consider the system S′1 = {ba 7→ ababab}, a proof very
similar to the proof of Proposition 13 permits to show that S′

∗
1(w) is not

context-free as soon as ba ∈ F(w).

• In [LR12], another example of a simple non FIN/CF rewrite system was
given: S2 = {u 7→ v} with u = ba and v=aabb for which S∗2 (bbaa) is not a
context-free language. The system S1 enjoys two properties that are not
satisfied by S2: for S1, u ∈ F(v) and S−11 is not confluent.
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• The systems S1 and S2 are the only non FIN/CF systems in the form
S = {ba 7→ v} with |v|a = |v|b = 2: indeed if v ∈ {abba, baab, baba} then
the corresponding system is prefixal or suffixal and for S3 = {u 7→ v} with
u = ba and v=bbaa there exists neither right nor left overlap between u
and v nor u itself. That implies that for every word w, the set S∗3 (w) is
context-free since it can be obtained by replacing each occurrence of ba in
w by the language {bnan | n > 0}. More precisely S∗3 corresponds to the
composition of an inverse morphism and a context-free substitution.

6. Decidability of the Rationality

The aim of this section is to give a decidable characterization of prefixal one-
rule string rewrite systems that are rational transductions. Observe that this
property is stronger than preserving regular languages: for instance every system
S = {u 7→ v} with |v| ≤ 1, called inverse context-free rewrite system in [HW04],
preserves regular languages ([BO93]) but need not be rational transductions:
S = {aa 7→ ε} corresponds to the restricted Dyck reduction for which (S−1)∗(ε)
is not a regular language so (S−1)∗ is not a rational transduction that implies
that S∗ is not a rational transduction either.

We shall first prove that for any prefixal system S = {u 7→ uf}, it holds that
S∗(u) ∈ RAT if and only if S∗(u) = uf∗. Despite the fact that this result holds
in both cases u ∈ RF(uf) and u 6∈ RF(uf), the proofs are different in these two
cases. First we state:

Lemma 15. Let S = {u 7→ uf} be a prefixal one-rule rewrite system such
that u ∈ RF(uf) and r be the root of f . The three following statements are
equivalent:

1. S∗(u) ∈ RAT,
2. S∗(u) = uf∗,
3. ur is the shortest member of A+u ∩ LF(uf).

Proof. 1 =⇒ 3: Let xu = uy be the shortest word in A+u ∩ LF(uf). Hence
x and y are primitive words. Let us assume y 6= r; it follows f 6∈ y∗ and
f = ytz for some t > 0 with z 6= ε and y 6∈ LF(z). We claim that z 6∈ LF(y):
indeed, since xtu = uyt, we get u ∈ RF(uyt), and, together with u ∈ RF(uytz),
that implies u ∈ RF(uz). If we assume |z| < |y|, it follows uz 6∈ LF(uf) and
z 6∈ LF(y). Hence, {y, z} is a prefix code. We shall prove the following property,
by induction on the length of the derivation:

∀k ≥ 0,∀w ∈ A∗, xkuw ∈ S∗(u) =⇒ k ≤ t|w| (1)

Let us consider the derivation u
∗−→ dug −→ dufg = xkuw, for some words d and

g, with xu 6∈ LF(uw) and let us distinguish two cases:

(i) d = xp for some p. Recall that xtu = uyt and f = ytz so dufg = dxtuzg.
Since xu = uy and {y, z} is a prefix code, we get xu 6∈ LF(uzg). It follows
k = p+ t and w = zg. From the inductive hypothesis, we have p ≤ t|g| so
k = p+ t ≤ t|zg|.
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(ii) d = xpx′ for some p with x′ 6= ε and x 6∈ LF(x′). We claim that x′u 6∈
LF(x+u): else we have x′u ∈ A+u∩ LF(uy) ⊆ A+u∩ LF(uf) and |x′| < |x|
which is a contradiction to the definition of x. It follows k ≤ p and
dug = xkuw′ with |w′| < |w|. From the induction hypothesis, we get
k ≤ t|w′| so k ≤ t|w|.

Now, since uf = xuyt−1z, it follows {xnu(yt−1z)n | n > 0} ⊆ S∗(u) and, from
Equation 1, S∗(u) 6∈ RAT.

3 =⇒ 2: Let ur = xu for some x; we claim that if dug ∈ uf∗ for some words
d and g then d ∈ x∗. Indeed, if d = ε, it is clear; else if dug ∈ uf∗ then
dug ∈ ur∗ = x∗u = x∗ur∗ and it follows d ∈ LF(x∗). So d = xmx′ for some
m and some non empty word x′ ∈ LF(x). Since dug ∈ ur∗ = x∗ur∗, we
get x′u ∈ LF(uf) and that implies x′ = x because xu is the shortest word
in A+u ∩ LF(uf). It follows d ∈ x∗, g ∈ r∗ and uf∗ = S∗(uf∗). Since the
implication 2 =⇒ 1 is clearly true, this finishes the proof of the lemma.

We observe that in the case when u = ε, Lemma 15 states that S∗(ε) is rational
if and only if the root of f is its first letter, so we get the well known result: for
all rewrite system S = {ε 7→ f}, S∗(ε) ∈ RAT if and only if f ∈ a∗ for some
letter a. In the case when S = {u 7→ v} is a one-rule string rewrite system that
satisfies u 6∈ RF(v), we can state:

Lemma 16. Let S = {u 7→ v} be a one-rule string rewrite system with u ∈
F(v) \ RF(v). The three following statements are equivalent:

1. S∗(u) ∈ RAT,

2. S∗(u) = uf∗ for some word f ,

3. S∗(u) ∩A+uA∗ = ∅.

Proof. Assume S∗(u) ∩ A+uA∗ = ∅. It follows v = uf for some f and S∗(u) =
uf∗ that implies S∗(u) ∈ RAT. It remains to prove that if S∗(u) ∈ RAT then
S∗(u)∩A+uA∗ = ∅. We shall prove the contrapositive: assume S∗(u)∩A+uA∗ 6=
∅ and let w0 be the smallest word of S∗(u)∩A+uA∗. One can set w0 = xuy with
x 6= ε and uy 6∈ A+uA∗. Since u 6∈ RF(v), Lemma 1 implies that S∗(u)∩A+u =
∅. Thus y 6= ε and we can write y = rt for some primitive word r, and some
t > 0. If u ∈ RF(r∗), it follows uy ∈ RF(r∗) and u ∈ RF(uy), a contradiction.
Thus u 6∈ RF(r∗) and u admits a factorization u = zrp with p ≥ 0 and {z, r} a
suffix code. We shall first prove:

v = z′rp+t for some word z′ with {z′, r} a suffix code and |z′| > |z| (2)

If w0 = v then we can set z′ = xz else v = uf and w0 = uf i for some i > 1. By
definition, y ∈ RF(f i). By minimality of w0, we have |y| < |f |, and so f = f ′y
for some f ′ ∈ A+. We claim that:

rf ′ = z′′rp for some word z′′ with {z′′, r} a suffix code (3)
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To prove 3, observe first that f ′ 6∈ r∗: indeed, if f ′ ∈ r∗ then uf i ∈ ur∗

that implies xu ∈ ur∗ and u ∈ RF(r∗), a contradiction. Now, since r is a
primitive word, rf ′ 6∈ RF(r∗) and rf ′ = z′′rj for some j with {z′′, r} a suffix
code. Moreover xu = uf i−1f ′ = xzrp ∈ A∗rf ′ = A∗z′′rj , that implies p = j, so
rf ′ = z′′rp with {z′′, r} a suffix code. We also have:

r ∈ RF(uf ′)⇐⇒ r ∈ RF(u) (4)

Indeed from w0 = xurt = uf i−2f2 = uf i−2f ′rtf ′rt, it follows xu ∈ A∗rf ′ so
xuf ′ ∈ A∗rf ′f ′. Now if r ∈ RF(uf ′), we get r ∈ RF(rf ′f ′) so r ∈ RF(rf ′) that
implies xu ∈ A∗r. Moreover, u 6∈ RF(r) and it follows r ∈ RF(u); the converse
implication is clear.

We are now able to prove 2 by considering two cases:

(i) p > 0. From the equality v = zrpf ′rt, we get, from 3, v = zrp−1z′′rp+t

and we can set v = z′rp+t with z′ = zrp−1z′′.

(ii) p = 0. From 4 it follows r 6∈ RF(uf ′). Moreover, since uy 6∈ A+uA∗, we
get uf ′ 6∈ RF(r) and we can set v = z′rp+t with z′ = uf ′ = zf ′.

We now use 2 to prove the key equation:

∀w, k, wrk ∈ S∗(u) =⇒ k ≤ (p+ t)|w| (5)

The proof is an induction over the length of the derivation from u to wrk.
If u = wrk then w = zrp−k so k ≤ p + t and |w| ≥ |z| > 0 that implies

k ≤ (p + t)|w|. Else, u
∗−→ αuβ −→ αvβ = wrk. Let β = β′rj with r 6∈ RF(β′)

and let us consider two cases:

(i) if β′ = ε, we get p + j ≤ (p + t)|αz| from the inductive hypothesis. Thus
k ≤ p + t + j ≤ p|αz| + t(|αz| + 1). Since |z′| > |z|, it follows k ≤
(p+ t)|αz′| ≤ (p+ t)|w|.

(ii) if β′ 6= ε, since r is a primitive word, it follows r2 6∈ A∗rβ′. Thus k ≤ j+ 1
and |wr| ≥ |αvβ′| > |αuβ′| + |r|. From the inductive hypothesis, we get
j ≤ (p+ t)|αuβ′| that implies j < (p+ t)|w| and k ≤ j + 1 ≤ (p+ t)|w|.

Finally, since xuy ∈ S∗(u), we get {xnuyn | n > 0} = {xnurtn | n > 0} ⊆ S∗(u)
and it follows from 5 that S∗(u) 6∈ RAT.

As a consequence of the two previous lemmas, we get:

Proposition 14. If S = {u 7→ uf} is rational then S∗(u) = uf∗.

The rest of this section is devoted to the converse of Proposition 14: if S =
{u 7→ uf} with S∗(u) = uf∗, then S is rational. First, we prove:
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Lemma 17. Let S = {u 7→ uf} be a prefixal one-rule rewrite system. If
S∗(u) = uf∗ then for all w ∈ A∗, S∗(uw) is a rational language.

Proof. If u = ε, then S∗(uw) = f∗t(w) where t is the rational substitution
defined by: ∀x ∈ A, t(x) = xf∗. Else, u = u0c for some word u0 and some letter
c. We make an induction on |w|, the length of the word w. If w = ε, S∗(uw) =
uf∗ else, we observe that if uf∗w ∩ A+uA∗ = ∅, it follows S∗(uw) = uf∗w
so we assume uf∗w ∩ A+uA∗ 6= ∅ and we denote i, the smallest integer such
that uf iw ∈ A+uA∗. Let us consider the rightmost occurrence of u in uf iw:
we set uf iw = xuy with x 6= ε and y 6∈ A∗uA∗. From Proposition 10, we get
S∗(xuy) = S∗(xu0)[(u0)−1S∗(uy)]. Let us distinguish two cases:

(i) xu = uf iw′ with w = w′y and w′ = w′′c. From the inductive hy-
pothesis, S∗(uw′′) and S∗(uy) are rational languages. It follows from
the definition of the integer i that S∗(uf iw′′) is a rational language; in-
deed we get S∗(uw′′) = uw′′ + ufw′′ + · · · + uf i−1w′′ + S∗(uf iw′′) so
S∗(uw′′) \S∗(uf iw′′) is finite. As a consequence, we get that S∗(uf iw) =
S∗(uf iw′′)[u−10 S∗(uy)] is rational since . That finally implies that S∗(uw)
is a rational language since S∗(uw) = uw+ufw+· · ·+uf i−1w+S∗(uf iw).

(ii) xu ∈ LF(uf i). In this case, since S∗(u) ∩ A+uA∗ 6= ∅, Lemma 16 implies
u ∈ RF(uf) that also implies uw 6∈ A+uA∗. It follows uf∗ ⊆ A∗u so
S∗(uw) = uf∗w is rational.

In the following, we consider a prefixal one-rule rewrite system S = {u 7→ uf}
over an alphabet A and we assume S∗(u) = uf∗. The system S is rational if
and only if the language M = {(w,w′) | w′ ∈ S∗(w)} is a rational subset of
A∗ × A∗(See [Ber79] for a reference study on rational transductions and their
use for the classification of context-free languages.). If we denote L = {(w,w′) |
uw′ ∈ S∗(uw)}, we observe that if L is rational, so is M : indeed M can be
obtained as M = Id ∪ Id(u, u)L where Id = {(w,w) | w ∈ A∗}. So, it remains to
prove that L is a rational language.

Let R = {w | uw ∈ A+u ∧ uw 6∈ A+uA+} and K = {w | uw 6∈ A+uA∗}.
Intuitively, R permits to point out all the left factors of uw that are in A+u.
Clearly ε ∈ K and A∗ = R∗K. One can also observe that if u = ε then R = A
and K = {ε}. Let LR = L∩ (R×A∗) and LK = L∩ (K ×A∗). We first prove:

Lemma 18. L = (LR)∗LK .

Proof. It is easily seen that LRL = {(w1w2, w
′
1w
′
2) | (w1, w

′
1) ∈ LR, (w2, w

′
2) ∈

L} is included in L. It follows L = (LR)∗L that implies (LR)∗LK ⊆ L. For the
converse inclusion, let (w,w′) ∈ L; we consider two cases:

(i) uw 6∈ A+uA+. In this case, w ∈ K ∪R that implies (w,w′) ∈ LR ∪ LK ⊆
(LR)∗LK .

(ii) uw ∈ A+uA+. In this case, w = w1w2 with w1 ∈ R. So uw1 = αu for
some word α and by Corollary 2 it follows uw′ = w′′1w

′′
2 for some words
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w′′1 , w
′′
2 with uw1 = αu

∗−→ w′′1 and uw2
∗−→ uw′′2 . Observe that w′′1 = uw′′′1

for some word w′′′1 since u −→ uf , that implies w′ = w′′′1 w
′′
2 . Now, from the

inductive hypothesis over the length of w, we get (w2, w
′′
2 ) ∈ (LR)∗LK .

Moreover (w1, w
′′′
1 ) ∈ LR so (w,w′) = (w1, w

′′′
1 )(w2, w

′′
2 ) ∈ (LR)∗LK .

For all word e ∈ E, we denote Re = u−1S∗(ϕ(ue))) where ϕ is the function
defined in Definition 1 and we define U =

⋃
e∈E({e} × Re) and V = ({ε} ×

f∗)U∗Id. From Lemma 17, Re ∈ RAT and, since E is finite, U and V are
rational subsets of A∗ ×A∗. We get:

Lemma 19. LK = V ∩ (K ×A∗).

Proof. Since V is clearly included in L, we have the inclusion V ∩(K×A∗) ⊆ LK .
Conversely, let (w,w′) ∈ LK . The proof is an induction over |w|, the length of
the word w. If w = ε then w′ ∈ f∗, so (w,w′) ∈ {ε} × f∗ ⊆ V ∩ (K × A∗); if
|w| > 0, since w ∈ K, it follows uw 6∈ A+uA∗, so u 6= ε and we consider two
cases:

(i) uw′ is not right-complete with respect to uw. In this case, uw = uw1y

and uw′ = uw′1y for some y 6= ε and uw1
∗−→ uw′1. From the inductives

hypothesis, we get (w1, w
′
1) ∈ V that implies (w,w′) = (w1, w

′
1)(y, y) ∈ V .

(ii) uw′ is right-complete with respect to uw. In this case, uw
∗−→ zu

∗−→ uw′

for some word z. Since w ∈ K and RS = A∗uE∗ from Proposition 8, it
follows w ∈ E+. That implies w = ey with e ∈ E, y ∈ E∗, so y ∈ K and
we have from Lemma 11: uey

∗−→ e′uy
∗−→ zu

∗−→ uw′ with e′u = ϕ(ue).

From Proposition 10, it follows that w′ = w′1w
′
2 with ue

∗−→ e′u
∗−→ uw′1 and

uy
∗−→ uw′2. So, (y, w′2) ∈ LK that implies (y, w′2) ∈ V from the inductive

hypothesis and (e, w′1) ∈ U . Finally, we get (w,w′) ∈ UV ⊆ V .

Lemma 20. LR = V ({ε} × f∗) ∩ (R×A∗).

Proof. Let us first consider the case u = ε. In this case, R = A, K = {ε}, LR =⋃
a∈A({a}×f∗af∗), U = ∅ and V = ({ε}×f∗)Id. It follows that LR ⊆ V ({ε}×

f∗) so we have LR = V ({ε}×f∗)∩ (R×A∗). We now assume u 6= ε, so u = u0c
for some word u0 and some letter c. The inclusion V ({ε}×f∗)∩ (R×A∗) ⊆ LR
is clear. To prove the converse inclusion, let (w,w′) ∈ LR. Since w ∈ R,

w = w0c for some word w0 and, since uw0c
∗−→ uw′, w′ can be factorized as

w′ = w′1cw
′
2 with uw0

∗−→ uw′1 and u
∗−→ uw′2 from Proposition 10. That implies

w′2 = f i for some integer i so w′ = w′1cf
i. Now, since w = w0c ∈ R, it follows

uw0c 6∈ A+uA+ that implies uw0 6∈ A+uA∗ so w0 ∈ K. As a consequence, we
get (w0, w

′
1) ∈ LK = V ∩ (K ×A∗) so (w0c, w

′) = (w0, w
′
1)(c, c)(ε, f i) that is in

V ({ε} × f∗).

As a consequence of Lemma 18, Lemma 19 and Lemma 20, we get that L
is a rational subset of A∗ × A∗ that implies that S is rational, so using also
Proposition 14, we can state:
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Proposition 15. Let S = {u 7→ uf} be a prefixal one-rule rewrite system. The
three following statements are equivalent:

1. S is rational

2. S∗(u) is a rational language

3. S∗(u) = uf∗

As a corollary, we get:

Corollary 3. Let S = {u 7→ uf} be a prefixal one-rule string rewrite system.
If f ∈ a+ for some letter a then S is rational.

Proof. Assume f = ai for some i > 0. Let us consider two cases:

(i) ua∗ ∩A+uA∗ = ∅. In this case, S∗(u) = uf∗.

(ii) ua∗ ∩A+uA∗ 6= ∅. That implies u ∈ a∗, so S∗(u) = u(ai)∗ = uf∗.

An important point is that Proposition 15 gives a characterization of rational
prefixal one-rule rewrite systems that is decidable: indeed, given a prefixal
system S = {u 7→ uf} one can decide whether S∗(u) is a rational language
(or equivalently whether S∗(u) = uf∗), thanks to the more general following
result:

Proposition 16. Let S = {u 7→ v} be a one-rule string rewrite system with
u ∈ F(v). Then S is rational if and only if S∗(u) is rational, moreover this
property is decidable.

Proof. Let S = {u 7→ v} with u ∈ F(v). There exist four cases:

(i) u 6∈ LF(v) and u 6∈ RF(v): in this case v ∈ A+uA+ so S∗(u)∩A+uA∗ 6= ∅.
From Lemma 16 it follows that S∗(u) is not a rational language so S is
not rational.

(ii) v = uf = gu for some words f and g: from Lemma 15, we have to check
the third statement of this lemma, that is clearly decidable.

(iii) v = uf and u 6∈ RF(uf): the equivalence comes from Proposition 15.
Moreover the rationality of S∗(u) is equivalent to the emptiness of S∗(u)∩
A+uA∗ from Lemma 16. To check whether S∗(u) ∩ A+uA∗ is empty or
not is equivalent to check whether uf∗ ∩A+uA∗ is empty or not which is
decidable.

(iv) v = gu and u 6∈ LF(gu): this case is symmetric to the previous one.

26



7. Conclusion and Perspectives

We have proved in Proposition 11 that the image of a finite language by a
prefixal one-rule rewrite system is always context-free, a property that is not
satisfied by an arbitrary one-rule rewrite system as shown in Proposition 13.

This question can be extended to rational languages rather than finite ones: are
prefixal one-rule rewrite systems RAT/CF? And, in the case of a negative answer,
is it possible to decide, given a prefixal one-rule rewrite system S = {u 7→ uf}
whether it is RAT/CF? More generally, we do not know whether prefixal one-
rule rewrite systems preserve context-free languages like inverse match-bound
rewrite systems.

Of course, some of these questions deserve to be studied in the more general
case of one-rule rewrite systems: is it possible to decide, given a one-rule rewrite
system S = {u 7→ v}

Q1) whether, S∗ preserves rational languages ?

Q2) whether for all word w, S∗(w) is a rational language ?

Q3) whether, given a word w, S∗(w) is a rational language ?

Q4) whether, S∗ preserves context-free languages ?

Q5) whether for all word w, S∗(w) is a context-free language ?

Q6) whether, given a word w, S∗(w) is a context-free language ?

Note that the following one-rule rewrite system S = {ba 7→ a2b} gives an in-
teresting example of a system where for all word w, S∗(w) is a context-free
language, but where S∗(b∗a) ∩ a∗b∗ = {a2pbp | p ≥ 0} is not a context-free
language.

We also remark that, in the case of prefixal one-rule rewrite systems, only Q4 is
an open question. Indeed, we have positively answered to Q1 and Q2 and, using
the technics of Section 6, it is possible to positively answer to Q3 by proving
that S∗(w) is a rational language if and only if S∗(u) is rational or w 6∈ A∗uA∗.
Trivial positive answer to Q5 and Q6 is a direct consequence of Proposition 11.

Proposition 16 gives a decidable characterization of rational prefixal one-rule
rewrite systems. We observe that we are unable to give such a decidable charac-
terization for one-rule length-preserving rational rewrite systems S = {u 7→ v},
that is in the case when |u| = |v| and u 6= v: indeed, it is conjectured that a
one-rule length-preserving rewrite system is a rational transduction if and only
if the left-hand side u and the right-hand side v of the rule of the system are not
quasi-conjugate or are equal, that means if u and v are distinct, there do not ex-
ist words x, y and z such that u = xyz and v = zyx ([TS00, LR14, LR15]). This
conjecture is still open. More generally, one can wonder whether this property
is decidable for an arbitrary one-rule rewrite system.
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[Sén90] Géraud Sénizergues. Some decision problems about controlled rewrit-
ing systems. Theor. Comput. Sci., 71(3):281–346, 1990.
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