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HEURISTIC IMAGING FROM GENERIC PROJECTIONS: BACKPROJECTION

OUTSIDE THE RANGE OF THE RADON TRANSFORM

JEAN-BAPTISTE BELLET AND GÉRARD BERGINC

Abstract. Re�ective tomography is an e�cient method for optical imaging in the visible and near infrared
ranges. It computes empirical reconstructions based on algorithms from X-ray tomography. This subject
introduces mathematical gaps to be �lled, about the meaning of the reconstructions, and about their artifacts.
To tackle these questions, we study more generally the �ltered backprojection on projections outside the range
of the Radon transform. We consider generic projections that can involve any kind of physical and geometric
parameters. We claim that the backprojection contains partially the geometry of the original scene. More
precisely, we compare the singularities of the backprojection with the singularities of a representation of the
scene. This comparison of wavefront sets, inspired by studies of the artifacts in X-ray tomography, is based
on microlocal analysis. It gives a precise meaning to the well-reconstructed geometry, describes the invisible
parts, and the artifacts. We illustrate the heuristic and the analysis principle on canonical cases that belong
to various �elds: shape from silhouettes, constructible tomography, cloaking, reconstruction from cartoon
images, imaging of occluded lambertian objects. Numerical results show the relevance of the heuristic and
its analysis. In a word, this study provides a mathematical framework that covers the solver of re�ective
tomography, and exhibits an imaging method whose range of application is wide.

1. Introduction

1.1. Tomography. In usual tomography, the practitioners measure the attenuation of X-rays through a
medium. Then the records are processed to provide a reconstruction of a spatial function, representing
the attenuation property of the materials. From a mathematical point of view, the measurements are line
integrals of the attenuation function: they contain information about the X-ray transform of a �xed function,
or the Radon transform in two dimensions. So the reconstruction method looks like a Radon inversion, or
an X-ray inversion, which is often implemented using analytical formulas such as the �ltered backprojection
algorithm. This is the basis of transmission tomography and it is a well known subject [10].

The Radon transform has also been studied in a framework of microlocal analysis [11]: it is a Fourier
Integral Operator. In particular there are correspondences between the singularities of a distribution and
the singularities of its Radon transform. This is for example the basis of geometrical tomography [12] where
the singularities of an attenuation are reconstructed from the singularities of its Radon transform. Further-
more this provides a framework for the description of artifacts that arise from limited data in transmission
tomography [3, 5].

1.2. Re�ective tomography. The e�ciency of the �ltered backprojection leaded several authors to use the
method, outside the framework of X-ray inversion, for other ranges of wavelengths. We have especially in
mind the so-called re�ective tomography, in the visible-near infrared band. This subject emerged at the end
of the 80's in the context of laser radar imaging [8], and has been introduced in other frameworks, such as
modeling from photographs [6] and three-dimensional optronic identi�cation [1,2]. The common principle of
these heuristic methods: assuming that the measurements contain re�ective projections of a scene, compute
a reconstruction by the means of a tomographic algorithm. It is observed in numerical experiments that the
peaks of such reconstructions provide the well-reconstructed parts of the original surfaces, up to artifacts.
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Figure 1. A few images of a sequence of 2D real images in the visible-near infrared band.

Figure 2. Volume rendering of a 3D tomographic reconstruction from real 2D optical images.

1.3. Optical imaging based on re�ective tomography: example. The following real example illus-
trates the e�ciency of re�ective tomography in three-dimensional optical imaging. We consider a sequence
of 360 images of size 342× 181, measured by turning around the scene, one degree step. These active images
have been recorded in the visible-near infrared band (courtesy of Thales Optronique SA). See Figure 1 for
samples of the sequence. Using a home-made software, the tomographic reconstruction from these 360 images
takes 2.6 seconds on a Graphics Processing Unit (Nvidia Tesla C2075). Then the reconstruction is displayed
in real-time, using a volume rendering method. The Maximum Intensity Projection is very e�cient: it selects
the peaks. In the Figure 2, we represent snapshots of such re-projections. It is clear that re�ective tomog-
raphy is relevant: the reconstruction contains surfaces of the original scene with many features and details.

1.4. Backprojection outside the range of the transform. Nevertheless re�ective tomography is only a
heuristic method. There is indeed no guarantee that a re�ective dataset belongs to the range of the X-ray
transform. Thus there is a question about the meaning of a tomographic reconstruction from such data.
Furthermore many materials are opaque for optical wavelengths. This is a major di�erence with X-ray
wavelengths and has a strong consequence: in general there are occlusions. The superposition principle
is violated and so the optical projection cannot be modeled by the X-ray transform, and we come back
to the question about the meaning. Moreover the occlusions introduce incompleteness in the data [13],
while it is known in the �eld of transmission tomography that incompleteness introduces artifacts in the
reconstruction [3]. Other questions arise, concerning the artifacts of re�ective tomography, and especially
concerning the artifacts due to the occlusions.

1.5. Contributions of this work.

1.5.1. Framework of a generic imaging method. This work extends the principle of re�ective tomography: it
motivates the use of the Radon backprojection outside the range of the Radon transform. Such a generic
principle provides an e�cient heuristic for inverse problems involving projections along rays: the �ltered
backprojection. The forward model describing the dataset can be linear or nonlinear; it can depend on
physical properties and on geometric properties. The principle can be applied without precising the forward
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model, similarly as the gradient detects contours in image processing, without modeling the process of image
formation. Furthermore the dataset can be complete or incomplete.

The heuristic process computes a reconstruction that represents the projected scene. We focus on the
geometry of the reconstruction: we select the wavefront set as a relevant information. In this way we give a
precise meaning to a �ltered backprojection outside the range of the Radon transform: it must be understood
that the method aims at computing a function whose wavefront set represents the geometry of the original
scene.

Moreover we propose a framework to analyze the heuristic. The key point is to compare the wavefront
set of the reconstruction with the wavefront set of a reference model of the scene, taking bene�t from the
canonical relations of the Radon transform and its dual. We write, in the spirit of [3], and in a generic way:
the well-reconstructed parts, the invisible parts and the artifacts. In particular we show circumstances where
singularities of the dataset disappear during the backprojection; such situations never happen in transmission
tomography, but in a general setting, it can happen with anti-symmetry properties.

1.5.2. Study of canonical cases. We apply and analyze the heuristic on canonical cases corresponding to
various kinds of projections.

We consider model problems with silhouettes, where we have to deal with smooth sets, occlusions, corners
and edges. We obtain the following results. A smooth convex set is recovered. A convex polygon is recovered
with artifacts: the lines containing the sides. For two smooth convex sets, the nonlinearity due do the
occlusions is translated under the form of a product. Then the sets are only partially recovered, and corners
of the dataset generate artifacts along the common tangents of the initial sets.

We show two original applications. An example of constructible tomography where the heuristic recovers
exactly the singularities of a constructible function from its constructible Radon transform [14]. And we
construct a case where a kind of cloaking is achieved: the object is visible in the projections but completely
disappears during the backprojection. Then we show that breaking the anti-symmetry counters this e�ect.

Furthermore we study the case of two smooth convex sets projected under the form of contrasted cartoon
images. We decompose the dataset by the means of operations on silhouettes. This is a way to deal with the
concealment. More particularly the concealment interactions between the objects appear as the product of
the individual silhouettes. We show that in comparison with the silhouettes, the wavefront set of the cartoon
images is larger. This enables the full reconstruction of the two convex sets, while the occlusions produce the
same kind of artifacts.

To �nish with we model a case of re�ective tomography, with two lambertian disks. We show that the
structure of this problem is essentially the same than the cartoon one: the projections look like cartoon images
weighted by a smooth factor depending on the geometry. In particular the Radon inversion is expected to
reconstruct the circles, with the common tangent as artifacts. To the authors' knowledge, this is the �rst
time that such a rigorous result is derived in re�ective tomography: we have proposed a rigorous meaning
for the reconstruction (the wavefront set), we have shown how to deal with the nonlinearity of the occlusions
(product of silhouettes), we have estimated the well-reconstructed parts and the artifacts.

1.6. Organization. The paper is organized as follows. We formulate a generic principle of imaging, and we
compare the wavefront set of such a reconstruction with the wavefront set of a representation of the scene.
Then we apply the principle on various cases; in particular we illustrate the artifacts due to truncation, and
we study nonlinearities due to concealment. The approach is strengthened by numerical experiments. This
paper takes bene�t from known results about microlocal analysis of the Radon transform, summarized in the
appendix.
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2. Imaging of singularities

2.1. Heuristic method.

Heuristic. Let g ∈ L1
loc([0, 2π] × R) be a generic function. We assume that g(θ, s) represents a kind of

projection of a scene, along the ray L(θ, s) : x · θ = s. In order to recover the scene, we introduce the dual
of the Radon transform R∗, and we �x a pseudodi�erential operator Λ. Then we consider that the �ltered
backprojection R∗Λg is a representation of the original scene. More precisely, we claim that if f ∈ L2(R2)
represents the scene, then the heuristic reconstruction R∗Λg should have similarities with f .

2.1.1. Transmission tomography. To illustrate the principle, we mention several known cases of imaging that
enters in this framework, in transmission tomography. The �rst one is the natural one: g = Rf is a Radon
transform. In that case, we set Λ = 1

4π

√
−∂2

s , and then we have exactly R∗Λg = f . With the same data

g = Rf , in local tomography [4], we set Λ = −∂2
s , and then WFR∗Λg = WF f : in that case, the similarities

ofR∗Λg and f are the wavefront sets. Furthermore, for limited data, g = 11ARf , where A ⊂ [0, 2π]×R de�nes

the set of rays for which the Radon transform is known. In that case, with the usual �lter Λ = 1
4π

√
−∂2

s ,
the wavefront set WFR∗Λg captures partially the wavefront set of WF f , and is augmented by a set which
de�nes artifacts [3].

2.1.2. Original applications. As we will do in the next section, the principle covers original applications in
other �elds than transmission tomography. In a generic way, g comes from measurements depending on
physical parameters and on geometric quantities.

2.2. Mathematical framework. We propose a framework to analyze such a heuristic, in the spirit of [3].
The analysis is based on the canonical relations of the Radon transform: see Appendix A. The scheme
is the following. We assume that the scene is represented by f ∈ L2(R2). In order to investigate the
similarities between the reconstruction R∗Λg and f , we focus on the singularities: we compare the wavefront
sets WF(R∗g) and WF(f). To do this, we start by comparing WF(g) with WF(Rf), where there is a
correspondence between WF(Rf) and WF(f) due to the canonical relation (15) of R. Then we deduce links
between WF(R∗g) and WF(f) from the canonical relation (18) of R∗.

Proposition 1 (Correct reconstruction versus artifacts). Let g ∈ L1
loc([0, 2π]×R), and f ∈ L2(R2). We set:

Č(g, f) := WF(g) ∩WF(Rf), C(g, f) :=
{

(sθ − θ̂

σ
θ⊥, σθ) : (θ, s, θ̂, σ) ∈ Č(g, f), σ 6= 0

}
,

Ǎ(g, f) := WF(g) \WF(Rf), A(g, f) :=
{

(sθ − θ̂

σ
θ⊥, σθ) : (θ, s, θ̂, σ) ∈ Ǎ(g, f), σ 6= 0

}
.

(i) The wavefront set WF(g) is the disjoint union WF(g) = Č(g, f) ∪ Ǎ(g, f), and

(1) WF(R∗g) ⊂ C(g, f) ∪A(g, f).

Furthermore, if g satis�es the symmetry property g(θ + π,−s) = g(θ, s), then WF(R∗g) = C(g, f) ∪A(g, f).
(ii) The wavefront set of f satis�es:

(2) C(g, f) ⊂WF(f), A(g, f) ∩WF(f) = ∅.

Proof. (i) is exactly the canonical relation (18) ofR∗, while (ii) is a consequence of the canonical relation (15).
�

The set Č(g, f) contains the singularities of g that are also singularities of Rf . After backprojection,
this set provides a subset of the singularities of f : WF(R∗g) ∩ C(g, f) ⊂ WF(f). As a result, the set of
singularities WF(R∗g)∩C(g, f) de�nes correct similarities between the heuristic reconstruction R∗g and the
representation f of the scene. The set Ǎ(g, f) contains the other singularities of g. After backprojection,
it produces singularities that are not singularities of the representation f : A(g, f) ∩WF(f) = ∅. Thus, if
we focus on the wavefront sets, the set of singularities WF(R∗g) ∩ A(g, f) corresponds to the artifacts of
reconstruction.
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Proposition 2 (Invisibility). Let g ∈ L1
loc([0, 2π]× R), and f ∈ L2(R2). We set:

Ǐ(g, f) := WF(Rf) \WF(g),

I(g, f) :=
{

(sθ − θ̂

σ
θ⊥, σθ) : (θ, s, θ̂, σ) ∈ Ǐ(g, f), (θ + π,−s, θ̂,−σ) ∈ Ǐ(g, f), σ 6= 0

}
.

Then

(3) WF(f) = C(g, f) ∪ I(g, f), C(g, f) ∩ I(g, f) = ∅.

Proof. We get from (16): WF f = C(g, f) ∪ J , with

J =
{

(sθ − θ̂

σ
θ⊥, σθ) : (θ, s, θ̂, σ) ∈ Ǐ(g, f), σ 6= 0

}
.

We have I(g, f) ⊂ J , and we check that J \I(g, f) ⊂ C(g, f): if (x, x̂) ∈ J \I(g, f), ∃(θ, s, θ̂, ŝ) ∈ Ǐ(g, f),∃σ 6=
0,Φ(x, x̂, θ, s, θ̂, ŝ, σ) = 0, with (θ + π,−s, θ̂,−ŝ) /∈ Ǐ(g, f). Then Φ(x, x̂, θ + π,−s, θ̂,−ŝ) = 0, and then we

get from (15): (θ + π,−s, θ̂,−ŝ) ∈WFRf ∩WF g; therefore (x, x̂) ∈ C(g, f). �

The set Ǐ(g, f) contains the singularities of Rf that are not singularities of g. After backprojection, I(g, f)
contains the singularities of f that are invisible in g: they are not reconstructed due to WF(R∗g)∩C(g, f)∩
I(g, f) = ∅.

Lemma 1. Let g ∈ L1
loc([0, 2π]× R). We de�ne the symmetric part of g as

gsym(θ, s) =
1

2
(g(θ, s) + g(θ + π,−s)).

Then R∗g = R∗gsym.

Proof. By a simple calculus (change of variable θ := θ − π) we see that R∗[g(θ + π,−s)](x) = R∗[g](x). �

Due to this lemma, it is su�cient to study the reconstruction from the symmetric part gsym of g.

Proposition 3 (Disappearance). Let g ∈ L1
loc([0, 2π]× R), and f ∈ L2(R2). We set:

D(g, f) := C(g, f) \WF(R∗g).

(i) If g is symmetric, i.e. g(θ, s) = g(θ + π,−s), then

(4) D(g, f) = ∅.

(ii) More generally:

(5) D(g, f) =
{

(sθ − θ̂

σ
θ⊥, σθ) : (θ, s, θ̂, σ) ∈WF(g) ∩WF(Rf) \WF(gsym), σ 6= 0

}
.

Proof. (i) If g is symmetric then (18) is an equality and so WF(R∗g) = C(g, f) ∪A(g, f) ⊃ C(g, f).
(ii) Due to R∗g = R∗gsym: D(g, f) = C(g, f) \WF(R∗gsym) = C(g, f) \ C(gsym, f). �

The set D(g, f) represents the singularities of f that are not reconstructed by the heuristic R∗g, while
the dataset g contains the corresponding singularities of Rf : they disappear during the backprojection. In
transmission tomography, this set is always empty (case (i)) due to the symmetry g(θ, s) = g(θ+ π,−s): the
backprojection cannot kill any singularities. But more generally, it is possible that D(g, f) 6= ∅: the case

(ii) states that a correct singularity of g, (θ0, s0, θ̂, σ) ∈ C(g, f), disappears during the backprojection if, and

only if, the symmetric part gsym is smooth at (θ0, s0, θ̂, σ): this a kind of �anti-symmetry� that means that
g(θ + π,−s) and g(θ, s) are opposite in a neighborhood of (θ0, s0), up to a function smooth in the direction

(θ̂, σ).
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2.3. Synthesis. Finally, when a method based on the heuristic principle is derived, eventually for g outside
the range of the Radon transform, we propose to give a meaning to the heuristic reconstruction R∗g, based
on the wavefront set. In that case, the following disjoint unions must be investigated:

WF f = [WFR∗g ∩ C(g, f)] ∪D(g, f) ∪ I(g, f),

WFR∗g ⊂ C(g, f) ∪A(g, f).

In particular, they describe the well-reconstructed parts and the artifacts.

3. Applications

We test the imaging principle on various canonical examples. These examples involve silhouettes and so
we start by formulating some rules of calculus with silhouettes.

3.1. Computing with silhouettes. Let K ⊂ R2 be a compact set such that: K 6= ∅ and intK = K. Along
the line L(θ, s), the silhouette of K is de�ned by:

(6) S[K](θ, s) :=

{
1, if L(θ, s) ∩K 6= ∅,
0 otherwise,

θ ∈ [0, 2π], s ∈ R.

We formulate preliminary results concerning the e�ect of some operations on the wavefront sets of silhouettes.

3.1.1. Sum or counter. The sum of silhouettes S[K1] + S[K2] counts the number of objects K1 and K2

encountered along the ray of projection:

S[K1](θ, s) + S[K2](θ, s) =


0, if L(θ, s) ∩ (K1 ∪K2) = ∅,
2, if L(θ, s) ∩K1 6= ∅ and L(θ, s) ∩K2 6= ∅,
1, otherwise.

θ ∈ [0, 2π], s ∈ R.

The wavefront set of the sum is included in the union of the wavefront sets:

(7) WFS[K1] + S[K2] ⊂WFS[K1] ∪WFS[K2], with equality if WFS[K1] ∩WFS[K2] = ∅.

3.1.2. Product or occlusion. The product of silhouettes S[K1]S[K2] takes the value 1 for the rays that inter-
sects bothK1 andK2, and 0 otherwise. This product represents a property of concealment; S[K1]S[K2](θ, s) =
1 means: along the ray L(θ, s), K1 conceals K2 or K2 conceals K1. Assuming that

(8) (θ, s, θ̂, ŝ) ∈WFS[K1]⇒ (θ, s,−θ̂,−ŝ) /∈WFS[K2],

then the product S[K1]S[K2] satis�es [7]:

(9) WFS[K1]S[K2] ⊂ {(θ, s, θ̂1 + θ̂2, ŝ1 + ŝ2) : (θ, s, θ̂i, ŝi) ∈WFS[Ki] ∪ suppS[Ki]× {0}, i = 1, 2};

here suppS[Ki] = {(θ, s) : L(θ, s) ∩Ki 6= ∅} represents the set of rays that intersect Ki.

3.1.3. Union. The silhouette of a union satis�es S[K1 ∪K2] = 1− (1−S[K1])(1−S[K2]): it takes the value
1 on (θ, s) if, and only if, L(θ, s) intersects at least one of the Ki. Assuming (8) then

(10) {(θ, s, θ̂, ŝ) ∈WFS[Ki] : (θ, s) ∈ supp(1− S[Kı̄]), i = 1, 2} ⊂WFS[K1 ∪K2]

⊂ {(θ, s, θ̂1 + θ̂2, ŝ1 + ŝ2) : (θ, s, θ̂i, ŝi) ∈WFS[Ki] ∪ supp(1− S[Ki])× {0}, i = 1, 2};

here, supp(1− S[Ki]) = {(θ, s) : L(θ, s) ∩ intKi = ∅} is the set of rays that do not penetrate inside Ki and
Kı̄ = K1 ∪K2 \Ki (̄ı = i+ 1(2)).
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(a) (b) (c)

Figure 3. Imaging from the silhouettes of a disk K: (a) f = 11K , (b) g = S[K], (c) R∗Λg.

3.2. Imaging from silhouettes. We consider the following imaging problem: reconstruct the scene K from
the knowledge of the silhouettes g(θ, s) = S[K](θ, s), θ ∈ [0, 2π], s ∈ R. It is known that the biggest set of
R2 whose silhouette coincides with S[K] is (R∗S[K])−1(2π); it is called the visual hull of K [9]. Here we
aim at testing the heuristic approach when the dataset g contains the silhouette S[K]. For that purpose, we
represent the compact K by the function f = 11K . Due to the symmetry S[K](θ, s) = −S[K](θ + π,−s),
the singularities of WFS[K] do not disappear: D(g, f) = ∅. We now investigate WFR∗S[K] for several
canonical choices of K: a smooth convex set, a disjoint union of smooth convex sets, and a convex polygon.
These are model problems where we have to deal with smooth sets, occlusions, corners and edges.

3.2.1. Smooth convex set. Let K be a smooth compact convex set. The singularities of 11K and of R11K are
in correspondence with the tangents to ∂K:

WF 11K = {(x, σθ) : L(θ, x · θ) is tangent to ∂K at x ∈ ∂K, θ ∈ [0, 2π], σ 6= 0};

WFR[11K ] = {(θ, x · θ,−σx · θ⊥, σ) : L(θ, x · θ) is tangent to ∂K at x ∈ ∂K, θ ∈ [0, 2π], σ 6= 0}.

We parametrize ∂K by the exterior normal vector θ: γ(θ), θ ∈ [0, 2π]. The tangents to ∂K are the lines
x · θ = γ(θ) · θ and x · θ = γ(θ + π) · θ. We see that S[K] = 11A, with A = {(θ, s) : γ(θ + π) · θ 6 s 6
γ(θ) · θ}. The delimiting curves of A, s = γ(θ) · θ and s = γ(θ + π) · θ, are smooth, with normal vectors

(−γ̇(θ) · θ− γ(θ) · θ⊥, 1) = (−γ(θ) · θ⊥, 1) and (−γ(θ+ π) · θ⊥, 1). Therefore, we get WFS[K] = WFR[11K ],
and after backprojection, C(S[K], 11K) = WF 11K = WFR∗S[K]. As a result, the wavefront set of 11K is
perfectly recovered, and the reconstruction is artifact-free. See Figure 3, where the arrows represent elements
of the wavefront sets.

3.2.2. Disjoint union of convex sets. Let K = K1 ∪K2, where K1 and K2 are disjoint smooth convex sets;
K1 ∩K2 = ∅. The wavefront set of 11K is:

WF 11K = {(x, σθ) : L(θ, x · θ) is tangent to ∂K at x ∈ ∂K, θ ∈ [0, 2π], σ 6= 0}.

For the Radon transform, R[11K ] = R[11K1
] +R[11K2

]. Due to the canonical relation (15) and K1 ∩K2 = ∅,
the sets WFR[11Ki ] are disjoint:

WFR[11Ki ] = {(θ, x · θ,−σx · θ⊥, σ) : L(θ, x · θ) is tangent to ∂Ki at x ∈ ∂Ki, θ ∈ [0, 2π], σ 6= 0};
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(a) (b) (c) (d)

Figure 4. Imaging from the silhouettes of two disks K = K1 ∪ K2: (a) f = 11K , (b)
g = S[K], (c) R∗Λg, (d) zoom on R∗Λg.

so WFR[11K ] = WFR[11K1
] ∪WFR[11K2

]. For the silhouettes, WFR[11Ki ] = WFS[Ki]. The condition (8)
is satis�ed because K1 ∩K2 = ∅. And so we apply the inclusion (10) for g = S[K1 ∪K2]; we get:

Č(g, f) = WFRf ∩ {(θ, s, θ̂, ŝ) : L(θ, s) ∩ intK = ∅},
Ǎ(g, f) ⊂ {(θ, s) : L(θ, s) is tangent to both ∂K1 and ∂K2} × (R2 \ {0}),

Ǐ(g, f) = WFRf ∩ {(θ, s, θ̂, ŝ) : L(θ, s) ∩ intK 6= ∅},
C(g, f) = {(x, σθ) : L(θ, x · θ) is tangent to ∂K at x ∈ ∂K and L(θ, x · θ) ∩ intK = ∅, θ ∈ [0, 2π], σ 6= 0},
A(g, f) ⊂ {(x, σθ) : L(θ, x · θ) is tangent to ∂K at two points, θ ∈ [0, 2π], σ 6= 0},
I(g, f) = {(x, σθ) : L(θ, x · θ) is tangent to ∂K at x ∈ ∂K and L(θ, x · θ) ∩ intK 6= ∅, θ ∈ [0, 2π], σ 6= 0}.

The well-reconstructed parts in R∗S[K] are the points x ∈ ∂K where the tangent does not penetrate inside
K. The points x ∈ ∂K such that the tangent at x penetrates inside K are invisible. The artifacts are
supported by the intermediate lines: the tangents to ∂K1 and ∂K2, associated with the corners of supp g.
See Figure 4, where the white arrows belong to the correct wavefront sets, WF f , Č(g, f) and C(g, f), while
the blue arrows belong to the sets that estimate the artifact sets Ǎ(g, f) and A(g, f).

3.2.3. Convex polygon. Let K be a convex polygon, de�ned by the vertices a1, . . . , an ∈ R2, such that the
interior normal vector to the side [ai−1, ai] is θi, with 0 6 θ1 < θ2 < . . . < θn < 2π; K = {x : (x− ai) · θi >
0, 1 6 i 6 n}. For convenience we extend the indexation by n-periodicity. The wavefront set of 11K is
obtained from the sides and the corners:

WF 11K = {(x, σθi) : x ∈ (ai−1, ai), σ 6= 0, 1 6 i 6 n} ∪ {(ai, x̂), x̂ 6= 0, 1 6 i 6 n}.

The corresponding wavefront set of R11K is:

WFR11K = {(θ, x · θ,−σx · θ⊥, σ) : x ∈ (ai−1, ai), θ = θi(π), σ 6= 0, 1 6 i 6 n}

∪ {(θ, ai · θ,−σai · θ⊥, σ), θ ∈ [0, 2π], σ 6= 0, 1 6 i 6 n}.

The singular support of the silhouette represents the lines that meet the vertices of K without penetrating
inside K; it is a union of pieces of sinusoids:

supp singS[K] = {(θ, s) : L(θ, s)∩ ∂K 6= ∅ and L(θ, s)∩ intK = ∅} = {(θ, ai ·θ), θ(π) ∈ [θi, θi+1], 1 6 i 6 n}.

If (θ, ai · θ) ∈ supp singS[K] with θ(π) ∈ (θi, θi+1), then it belongs to a single piece of sinusoid whose

normal direction is (−ai · θ⊥, 1), so WF(θ,ai·θ) S[K] = {(−σai · θ⊥, σ), σ 6= 0}. If (θ, ai−1 · θ) = (θ, ai · θ) ∈
supp singS[K] with θ(π) = θi, then it is the intersection of two pieces of sinusoids, whose normal directions

are linearly independent: (−ai−1 ·θ⊥, 1) and (−ai ·θ⊥, 1), and then WF(θ,ai·θ) S[K] = R2\{0}, with θ(π) = θi.
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(a) (b) (c)

Figure 5. Imaging from the silhouettes of a triangle K: (a) f = 11K , (b) g = S[K], (c) R∗g.

Finally:

WFS[K] = {(θ, ai · θ,−σai · θ⊥, σ) : θ(π) ∈ (θi, θi+1), σ 6= 0, 1 6 i 6 n}
∪ {(θ, ai · θ), θ(π) = θi, 1 6 i 6 n} × R2 \ {0}.

We obtain:

Č(g, f) = {(θ, ai · θ,−σai · θ⊥, σ) : θ(π) ∈ (θi, θi+1), σ 6= 0, 1 6 i 6 n}

∪ {(θ, x · θ,−σx · θ⊥, σ) : x ∈ [ai−1, ai], θ = θi(π), σ 6= 0, 1 6 i 6 n},
Ǎ(g, f) = {(θ, ai · θ), θ(π) = θi, 1 6 i 6 n} × R2 \ {0}

\ {(θ, ai · θ,−σx · θ⊥, σ) : x ∈ [ai−1, ai], θ = θi(π), σ 6= 0, 1 6 i 6 n},

Ǐ(g, f) = {(θ, ai · θ,−σai · θ⊥, σ), θ(π) /∈ [θi, θi+1], σ 6= 0, 1 6 i 6 n},
C(g, f) = {(ai, σθ) : θ(π) ∈ (θi, θi+1), σ 6= 0, 1 6 i 6 n} ∪ {(x, σθi) : x ∈ [ai−1, ai], σ 6= 0, 1 6 i 6 n},
A(g, f) = {(x, σθi) : x · θi = ai · θi, x /∈ [ai−1, ai], σ 6= 0, 1 6 i 6 n},
I(g, f) = {(ai, σθ) : θ(π) /∈ [θi, θi+1], σ 6= 0, 1 6 i 6 n}.

The reconstruction R∗S[K] contains the singularities of 11K , except some ranges of directions at the vertices.
In particular, the polygon ∂K is included in the singular support of the reconstruction. Moreover, the
artifacts are supported by the lines containing the sides of the polygon (minus the sides themselves). See
Figure 5.

3.3. Truncation. We model a simple case where the scene is not captured from all of the possible angles
(limited angle), and where the scene is only partially projected when the angle is �xed (spatial truncation).
Let K = {|x| 6 1} be the unit disk, represented by f = 11K . We assume that we know the silhouettes
S[K](θ, s) = 11[−1,1](s), θ ∈ [0, T ],−2 6 s 6 S, with T < π and S < 1. Alternatively, the measurements are a
truncation of the full silhouette g(θ, s) = S[K](θ, s)1106θ6T,s6S , θ ∈ [0, 2π], s ∈ R. It can be checked that:

Č(g, f) = {(θ,−1, 0, σ) : θ ∈ [0, T ], σ 6= 0}
Ǎ(g, f) = {(θ, s, σ, 0) : θ ∈ {0, T}, s ∈ (−1, S), σ 6= 0}

∪ {(θ, s, θ̂, ŝ) : θ ∈ {0, T}, s ∈ {−1, S}, θ̂ 6= 0} ∪ {(θ, S, 0, σ) : θ ∈ [0, T ], σ 6= 0},
Ǐ(g, f) = {(θ,−1, 0, σ) : θ ∈ (T, 2π), σ 6= 0} ∪ {(θ, 1, 0, σ) : θ ∈ [0, 2π], σ 6= 0}
C(g, f) = {(−θ, σθ) : θ ∈ [0, T ], σ 6= 0},

A(g, f) = {(sθ + tθ⊥, σθ) : θ ∈ {0, T}, s ∈ {−1, S}, t 6= 0, σ 6= 0} ∪ {(Sθ, σθ) : θ ∈ [0, T ], σ 6= 0},
I(g, f) = {(−θ, σθ) : θ ∈ (T, 2π), σ 6= 0}.
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(a) (b) (c)

Figure 6. Imaging from incomplete silhouettes: (a) f = 11K , (b) g = S[K]111106θ6T,s6S , (c) R∗Λg.

(a) (b) (c)

Figure 7. Imaging from the constructible Radon transform of two disks K1,K2: (a) f =
11K1 + 11K2 , (b) g = S[K1] + S[K2], (c) R∗Λg.

The method recovers the portion of the circle that is visible along the singularities of the dataset. The spatial
truncation introduce artifacts supported by a portion of circle, while the limited angle introduces the tangent
straight lines at extremities. We get here the same kind of artifacts than the artifacts from a limited Radon
transform in usual tomography: the same reasons produce the same e�ects. See Figure 6.

3.4. Euler-Poincaré index. We apply the heuristic in a framework of constructible tomography. Let
K = K1∪K2, where K1 and K2 are two disjoint disks. The constructible function f = 11K1 + 11K2 represents
K. We de�ne g as the constructible Radon transform of f : for every θ ∈ [0, 2π], s ∈ R, g(θ, s) is the number
of connected components of L(θ, s) ∩ K. We see, from the paragraph 3.1.1 about the sum of silhouettes,
that g = S[K1] + S[K2]. Thus WF g = WFRf = WFR[11K1

] ∪ WFR[11K2
] (disjoint union), and so

C(g, f) = WFR∗g = WF f . On this example, the dual of the usual Radon transform recovers exactly the
singularities of a constructible function, from its constructible Radon transform. See Figure 7.

3.5. Cloaking and counter-cloaking. We illustrate on a simple example a property of cloaking, due to dis-
appearances. Let K = {|x| 6 1}. We assume that we have measured: g(θ, s) = 3+(s+ 1

2 cos(θ))11−16s61, θ ∈
[0, 2π], s ∈ R. With f = 11K , WF g = WFRf , and thus C(g, f) = WF f . Here, gsym is smooth; we get from
Proposition 3(ii) that D(g, f) = C(g, f) and WFR∗g = ∅! We see here that the wavefront set of g is perfect,
but the anti-symmetry property completely cancels the singularities during the backprojection.

This e�ect can be corrected. For example, we multiply g by a function that kills the anti-symmetry,
without changing the wavefront set: we compute R∗g̃, with g̃(θ, s) = (s + 1

2 sin(θ))g(θ, s). The symmetric

part of g̃ is g̃sym(θ, s) = (s+ 1
2 sin(θ))(s+ 1

2 cos(θ))11−16s61, θ ∈ [0, 2π], s ∈ R. We apply now Proposition 3(i):
D(g̃sym, f) = ∅, and then WFR∗g̃ = WF f ; this is now perfect. See Figure 8.

3.6. Cartoon images. We test the heuristic method on cartoon images with occlusions and contrasts. We
assume that the smooth convex set K1 is projected with constant value f1 > 0, while a second smooth convex
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(a) (b) (c) (d)

Figure 8. Cloaking and counter-cloaking: (a) g is �anti-symmetric�, (b) R∗Λg sees nothing,
(c) g̃(θ, s) = (s+ 1

2 sin(θ))g(θ, s) breaks the anti-symmetry, (d) R∗Λg̃ sees the initial disk.

set K2, well-separated from K1, is projected with constant value f2 > 0. The scene K = K1 ∪ K2 can be
represented by f = f111K1

+ f211K2
, such that WFRf = WFR11K1

∪WFR11K2
(disjoint union). For every

ray (θ, s) ∈ [0, 2π]×R, if L(θ, s)∩K = ∅, then we set g(θ, s) = 0. Otherwise, we set g(θ, s) = f(x) ∈ {f1, f2},
where x ∈ ∂K minimizes x · θ⊥ over the set L(θ, s) ∩ K. We assume that the images are contrasted:
f1 6= f2. Otherwise g would contain exactly the silhouettes of K, discussed previously. We notice that if
L(θ, s)∩K1 6= 0 and L(θ, s)∩K2 6= 0, then one of the disks is occluded. We have the following decomposition:
g = f1S[K1]+f2S[K2]−f111K2 conceals K1

−f211K1 conceals K2
. The symmetric part gsym of g can be decomposed

using the silhouettes and the symmetric concealment function S[K1]S[K2]:

gsym(θ, s) = f1S[K1] + f2S[K2]− f1 + f2

2
S[K1]S[K2].

We deduce from WFR11Ki = WFS[Ki] and f1 6= f2:

{(θ, s, θ̂, ŝ) ∈WFR11Ki : (θ, s) /∈ supp singR11Kı̄ , i = 1, 2}
⊂WF gsym ⊂WFR11K1

∪WFR11K2
∪WFS[K1]S[K2].

Passing to the closure for the left-hand side:

(11) WFRf ⊂WF gsym ⊂WFRf ∪WFS[K1]S[K2].

The �rst inclusion of (11) guarantees that

Č(gsym, f) = WFRf, C(g, f) = C(gsym, f) = WF f,

and so the whole geometry is recovered. In comparison with the reconstruction from silhouettes, the set of
singularities of g is augmented due to the contrast f1 6= f2. As a result we recover more information: the
invisible part is now empty. By the way K1 ∩K2 = ∅, so (8) is true and (9) estimates the singularities due
to the concealment:

WFS[K1]S[K2] ⊂ {(θ, s, θ̂1 + θ̂2, ŝ1 + ŝ2) : (θ, s, θ̂i, ŝi) ∈WFS[Ki] ∪ suppS[Ki]× {0}, i = 1, 2}.

We get from the second inclusion of (11):

Ǎ(g, f) = Ǎ(gsym, f) ⊂ {(θ, s, θ̂1 + θ̂2, ŝ1 + ŝ2) : (θ, s, θ̂i, ŝi) ∈WFS[Ki], i = 1, 2}
⊂ supp singR11K1

∩ supp singR11K2
× R2 \ {0},

A(g, f) = A(gsym, f) ⊂ {(x, σθ) : L(θ, x · θ) is tangent to ∂K at two points, σ 6= 0}.
The artifacts due to concealment are supported by the common tangents of ∂K1 and ∂K2, as for the union
of silhouettes. See Figure 9.
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(a) (b) (c) (d)

Figure 9. Imaging from cartoon images of two disks K1,K2: (a) f = f111K1
+ f211K2

, (b)
g, (c) R∗Λg, (d) zoom on R∗Λg.

(a) (b) (c) (d)

Figure 10. Re�ective tomography of two lambertian disks K1,K2: (a) f = f111K1
+f211K2

,

(b) g = f(v)θ⊥ · ν, (c) R∗Λg, (d) zoom on R∗Λg.

3.7. Lambertian di�usion. We model a case of re�ective tomography. We want to reconstruct the bound-
ary ∂K of a compact K using an active imaging system as follows. The acquisition device turns around
the scene K: for the angle θ, it is located at −ρθ⊥, where ρ is very large compared with the size of K. It
illuminates the scene with a light source, and records the intensity g(θ, ·) of the light re�ected o� the objects,
on a focal plane directed by θ. We describe below a lambertian model of g for K = K1 ∪K2, where K1 and
K2 are two disjoint disks (centers zi, radii ri).

We assume that the objects K1 and K2 have a constant albedo: f1 > 0 and f2 > 0. So we set f =
f111K1

+ f211K2
. For θ ∈ [0, 2π], s ∈ R, if the ray L(θ, s) does not meet K, then g(θ, s) = 0. Otherwise, the

device sees the visible point v(θ, s) ∈ ∂K, that minimizes x · θ⊥ over the set L(θ, s) ∩K. The interior unit
normal of K at v(θ, s) is denoted by ν(θ, s). The Lambert's cosine law that we assume is the following:

g(θ, s) = f(v(θ, s))θ⊥ · ν(θ, s).

So g(θ, s) = g̃(θ, s)θ⊥ · ν(θ, s), where g̃ is the cartoon image of the albedo f , while θ⊥ · ν(θ, s) is a smooth

function on the pieces where g̃ is constant: if v(θ, s) ∈ Ki, then ν(θ, s) = − s−zi·θri
θ+

√
1− ( s−zi·θri

)2θ⊥. And

thus WF g ⊂WF g̃, and WFR∗g ⊂WFR∗g̃: we expect the heuristic to recover the same singularities with
the lambertian model and with the cartoon model, with the same kind of artifacts. See Figure 10.

Appendix A. Microlocal analysis of the backprojection

We summarize microlocal properties of the Radon transform. See [3] for detailed descriptions.
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A.1. Radon transform. The Radon transform R maps a function f ∈ L2(R2) onto R[f ] de�ned by:

(12) R[f ](θ, s) =

∫
f(x)δ(x · θ − s)dx =

∫
L(θ,s)

f(x)dσ, θ ∈ [0, 2π], s ∈ R,

where L(θ, s) = {x : x · θ = s} = {sθ + tθ⊥, t ∈ R} is the line normal to θ = (cos θ, sin θ), directed by

θ⊥ = (− sin θ, cos θ), and at signed distance s from the origin. So R[f ](θ, s) integrates f along the line
x ·θ−s = 0, where (θ, s) is �xed. The dual operator R∗ of R is called the backprojection. It maps a function
g ∈ L1

loc([0, 2π]× R) (2π-periodic with respect to the �rst place) onto R∗[g] such that:

(13) R∗[g](x) =

∫ 2π

0

g(θ, x · θ)dθ, x = (x1, x2) ∈ R2.

Thus, R∗[g](x) integrates g along the sinusoid x · θ − s = 0, where x ∈ R2 is �xed.

A.2. Fourier integral operators. The Radon transform R is an elliptic Fourier integral operator, with
amplitude 1

2π and phase ψ(θ, s, x, σ) = σ(s− θ · x):

(14) R[f ](θ, s) =

∫
R2

∫
R

1

2π
eiσ(s−θ·x)dσ f(x)dx, f ∈ L2(R2).

The canonical relation of R is:

(15) WF(R[f ]) =
{

(θ, s, θ̂, ŝ) ∈ T ∗([0, 2π]× R) : ∃(x, x̂) ∈WF(f),∃σ ∈ R \ {0},

∂σψ = s− x · θ = 0, (θ̂, ŝ) = ∂(θ,s)ψ = σ(−x · θ⊥, 1), x̂ = −∂xψ = σθ
}
.

This equality establishes a correspondence between the singularities of Rf and f . As a consequence:

(16) WF(f) =
{

(x, x̂) ∈ T ∗(R2) : ∃(θ, s, θ̂, ŝ) ∈WF(Rf),∃σ ∈ R \ {0},

s− x · θ = 0, (θ̂, ŝ) = σ(−x · θ⊥, 1), x̂ = σθ
}
.

The backprojection R∗ is an elliptic Fourier integral operator, with amplitude 1
2π and phase ϕ(x, θ, s, σ) =

σ(x · θ − s):

(17) R∗[g](x) =

∫
[0,2π]×R

∫
R

1

2π
eiσ(x·θ−s)dσ g(θ, s)dθds, g ∈ L1

loc([0, 2π]× R).

The canonical relation of R∗ is:

(18) WF(R∗[g]) ⊂
{

(x, x̂) ∈ T ∗R2 : ∃(θ, s, θ̂, ŝ) ∈WF(g),∃σ ∈ R \ {0},

∂σϕ = x · θ − s = 0, x̂ = ∂xϕ = σθ, (θ̂, ŝ) = −∂(θ,s)ϕ = σ(−x · θ⊥, 1)
}
.

Furthermore, under the symmetry constraint g(θ + π,−s) = g(θ, s), then the canonical relation (18) is an
equality.

Remark 1. We set

(19) Φ(x, x̂, θ, s, θ̂, ŝ, σ) := (x · θ − s, x̂− σθ, θ̂ + σx · θ⊥, ŝ− σ).

Then the canonical relations of R and R∗ are expressed by the means of the equation: Φ(x, x̂, θ, s, θ̂, ŝ, σ) = 0.

A.3. Filtered backprojection. If Λ is a pseudodi�erential operator, then the �ltered backprojection R∗Λ
satis�es [15]:

(20) WF(R∗Λg) ⊂WF(R∗g).

In particular, this is true for the �lter that achieves the Radon inversion, Λ = 1
4π

√
−∂2

s , and for the local

�lter of the so-called Λ-tomography, Λ = −∂2
s . Due to this inclusion, we restrict our attention to the study

of WF(R∗g).
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